
Attacks on Local Searching Tools∗

Seth Nielson Seth J. Fogarty Dan S. Wallach
sethn@cs.rice.edu sfogarty@cs.rice.edu dwallach@cs.rice.edu

Department of Computer Science, Rice University

1 Introduction

The Google Desktop Searchis an indexing tool, currently in beta testing, designed to allow users fast,
intuitive, searching for local files. The principle interface is provided through a local web server which
supports an interface similar to Google.com’s normal web page. Indexing of local files occurs when the
system is idle, and understands a number of common file types.A optional feature is that Google Desktop
can integrate a short summary of a local search results with Google.com web searches. This summary
includes 30-40 character snippets of local files.

Despite the obvious usefulness of local searching, there has been considerable discussion about the privacy
implications of local indexing systems like the Google Desktop Search. Fundamentally, indexing systems
make data access easier for legitimate users without also making it easier for unauthorized individuals.
Additionally, some do not consider the authors of such software to be trusted parties and fear that the
applications might leak information to corporate entities.

Google Desktop Search was created and is marketed with thesesecurity concerns in mind. Not only are a
number of security features evident in this tool, but the online literature provided by Google is emphatic
about the safety of a user’s private information. It should be noted that the Google Desktop Search is
designed to be used on single-user machines running Windows; as an administrative process it can, and
does, index all files regardless of owner. Obviously this is unacceptable on multi-user machines.

In our research we searched for a vulnerability that would release private local data to an unauthorized
remote entity. Our focus was on the small snippets of local data that the integration feature handled. We
realized that this feature was combining local private datawith remote public data in a possibly unsafe
environment. We present two different attacks that exploitthis vulnerability.

The remainder of this report is structured as follows. In thesecond section, we describe the operation of
the Google Desktop Search in greater detail. In the third andfourth sections, we describe our attacks on the
integration feature. The fifth section presents our analysis of the situation and discusses possible solutions
as well as the solution chosen by Google.

∗This paper may be cited as Technical Report TR04-445, Department of Computer Science, Rice University. When more
information is available, it will be posted athttp://seclab.cs.rice.edu .

Sponsored Links

Kentrox Cables

950 Series DE9P to DB25P 5 Foo

Hardware at PricingNetwork.com

www.pricingnetwork.com

Pair of Bronze Foo Dogs

Home Decor - Others

Home and Garden at PriceGrabber

www.pricegrabber.com

See your message here...

Web Images GroupsNew! News Froogle Desktop more »

Search
Advanced Search

Preferences

Web Results 1 - 10 of about 8,670,000 for foo [definition]. (0.25 seconds)

275 results stored on your computer - Hide - About

D. Migrating Gallery - Warning: fopen (albums/foo/album.dat - Oct 18

cltkDMain.c - wrong #args: should be \argv[0] foo.cmo args - Sep 19, 2002

Product search results for foo

To Wong Foo, Thanks For Everything! - To Wong Foo Thanks For ... - $9.09

- CD Universe

Best of Foo Fighters: Signature Licks (Bk & CD) - $22.95 -

Barnes & Noble.com

Japanese Sterling Foo Lion Menuke Cufflinks - $200.00 - GoAntiques

FOO FIGHTERS - ONE BY ONE
... 07.10.2005, Naas, Co. Kildare, Ireland, See all tour date details! RAB E-CARD.

Foofighters.com has full coverage of tons of shows, and other Foo Fighter events! ...

www.foofighters.com/ - 20k - Dec 16, 2004 - Cached - Similar pages

foo

Figure 1: Google Desktop’s integration of local search results into web searches.

2 Background on Google Desktop Search

After installation on a local host, the Google Desktop application begins indexing local files. The current
beta version indexes a variety of common files, including Microsoft Word, Excel, and PowerPoint, email
stored in Outlook or Outlook Express and AOL instant messaging conversations [3]. The indexing process
generally consumes system resources only when the system isidle.

Queries against the local search index are performed through a web interface. The Google Desktop appli-
cation installs a local web server and the user interface is provided by web pages served by this internal
server. The layouts of the desktop search and the returned results pages are almost identical in style and
form to the Google.com web search and results pages.

One unusual feature of the Google Desktop application is theintegration of local result snippets into remote
Google.com web searches. If this option is enabled, when a user performs a search at Google.com, his or
her results page is modified to display a small number of matching results on the local computer along with
very short, 30-50 character, snippets of the matching text.Figure 1 shows an example of this feature. When
the user performed a search for “foo,” a single web page presented the results of local searches, product
searches, sponsored advertisements, and normal web searches. This level of search integration allows the
user to find what he or she is looking for without making each ofthose queries individually.

2.1 Privacy objectives

Google states that “We treat your privacy with the utmost respect. The Google Desktop Search program
does not make your computer’s content accessible to Google or anyone else” [3]. The privacy policy
elaborates, “Your computer’s content is not made accessible to Google or anyone else without your explicit
permission” [4].

To protect the Google Desktop application from being used for malicious purposes, it was designed to be
inaccessible to remote users. The local web server only accepts connectionsto localhost or127.0.0.1 ,
regardless of the source address. By ignoring the source address and accepting packets based strictly
on the destination address the web-server sidesteps the problem of source-address forging. Only network
connections originating on and connecting to the local machine will ever be seen as connecting to localhost.
This design clearly and elegantly prevents external computers from directly querying the local web server.

2.2 Desktop integration

In our study, we decided to further examine the local search integration feature of the Google Desktop.
We wanted to learn how this feature operated, as it seemed a promising avenue of attack. If an external
attacker could read the local search integration results, significant private information would be leaked. If
the attacker could choose the search terms, this attack could be particularly damaging to users, particularly
those who keep sensitive information, such as passwords or credit card numbers, stored in their private files.

According to Google,

Desktop Search allows you to simultaneously send your queryto two different programs and
locations. One query goes to Google, which performs a standard Google Web Search. A dupli-
cate query goes to the Desktop Search application running onyour computer, which searches
the information the application has indexed for you. Desktop Search intercepts Google’s re-
sults page before you see it and adds your Desktop Search results just above your web results
so you can see both at once. [5]

The raw HTML seems consistent with this explanation. The local search results appear to be a normal part
of the file. No JavaScript, frames, or other directives to theweb browser were used to integrate the local
results with the web results. To gain a better understandingof how the integration worked, we conducted a
number of experiments.

2.2.1 Network sniffing

Our first experiment with the integration feature was to simply capture the network packets of a Google
query. This could determine if any local information went over the network. We used Ethereal1 to monitor
communication between our local computer and Google. We captured traces of Google searches on two
different computers, one on Rice’s network and one on a private DSL connection at home. Likewise, we
captured plain text sessions (HTTP/1.0) and gziped (HTTP/1.1) sessions. We discovered that:

1. The Google Desktop Search does not transmit private data during a web search.

2. None of the response packets from Google captured by Ethereal had any of the integration data.

1Available athttp://www.ethereal.com

In other words, we verified that integration is indeed a localoperation. We now knew that some agent was
running locally on our machine that would intercept incoming Google result pages and integrate the results
from local indexing. Two questions remained. We were not certain where exactly integration happened,
and we did not know what triggered the local search.

2.2.2 Replay reconnaissance

Google’s explanation of local result integration seemed tosuggest that the integration was initiated by the
originating page, sending off two different requests. Ethereal cannot detect packets sent on the loopback
interface, so that remained a possibility. Two other logical options were that it was triggered by the outgoing
request or the incoming response.

To determine the answer, we used Ethereal to save several Google packet traces to disk. These packets
contained the response to a previous Google search for some term SearchA. To feed these back to the
browser, we wrote a simple Python script that would accept HTTP proxy requests but would then always
replay the packets that we had previously captured.

We then opened a browser and configured it to use our proxy server. We pointed the browser towww.
google.com , and entered a different search (SearchB). As a result, the proxy server returns the results for
SearchA, but the local search results forSearchB were integrated with the web page. Thus, the local search
engine only considers the outgoing request, not the inboundresponse, for determining its own search query.
We also observed that the integrated results seemed to be inserted directly after the second TCP response
packet, thus simplifying the matter of modifying packets and dealing with the compressed HTTP/1.1 data
stream.

2.2.3 Socket scrutiny

We knew where local search results are integrated, and we knew where the local search engine got its query.
However, we needed to know what conditions were necessary totrigger this process. We were curious if
any HTTP request to Google by any program running on the user’s machine would trigger integration, or
if the request need originate from the main Google.com web page. Likewise, we were curious whether the
integration would occur even when a web browser was configured to use a proxy server rather than directly
connecting to Google over the Internet. To test this, we wrote a simple Python script that would open a
socket to Google.com and execute a search request. We similarly attempted submitting a request through a
proxy. We found that both the direct request and the proxied request would both have local search results
integrated. From this, we conclude

1. Google Desktop must be observing all outgoing network connections.

2. Google Desktop performs packet analysis to identify HTTPproxy connections in addition to looking
for direct connections to Google.

3. The search requests did not need to originate from a web browser visiting Google.com.

Network Stack

Browser App
GDS

User Machine

Proxy Server
(Optional)

www.google.com

+

Figure 2: Normal operation of Google Desktop Search. GDS intercepts all outbound network connections
and integrates local search results with Google web queries.

4. Integration is triggered by observing outgoing packets,and occurs after packets are received, but
before they are given to the web browser or application.

Figure 2 describes our understanding of this process.

The challenge, from the perspective of an attacker, is to make integration-triggering network connections
from the target’s computer and to read the results after integration has occurred.

3 Java applet attacks

Because the Google Desktop application bases its decision to integrate strictly on network traffic, all that
is required for an eavesdropper to obtain an integrated web page is to open a socket on the target computer
and send an HTTP request to Google.com, either directly or through any server configured as a web proxy
server. This is well within the capabilities of a Java applet, even when running with the restrictive “sandbox”
security model.

Downloading and running a Java applet is an automated process for most Java-enabled web browsers.
Thus, any web page a victim loads off of a hostile server may include a malicious Java applet. This applet
will be downloaded and executed inside the web browser without user intervention. Such Java applets are
normally used to implement a variety of features, not available through regular HTML and JavaScript, that
range from user interface widgets to complex games and animations.

The Java “sandbox” security model places a number of restrictions on untrusted Java applets that ensure
they are safe to run. In particular, applets are not allowed to read or write any local files, nor are they
allowed to make network connections to any host beyond the one they originated from. While numerous
security holes have been found in Java [2], we do not exploit any of these holes to effect an attack. Once
the malicious applet starts running, the attacker can use itto make queries against the local search engine

Network Stack

Browser

Applet
GDS

User Machine

Applet Origin
Server

www.google.com
(Optional)

+

Figure 3: A Java applet, legally connecting to its origin server, can fool the Google Desktop service into
integrating local search results into non-Google pages.

until the entire browser application is closed. These queries will return the snippets of text the integration
feature provides.

3.1 Implementation

To accomplish the attack, we took advantage of the Java applet’s ability to connect to the machine from
which it is loaded. That machine, under the control of the attacker, can run a web proxy server of the
attacker’s design. The applet can legally connect to the proxy server and make requests for the proxy to
fetch results from Google.com. The proxy can return the results from any previous Google page, as those
results will not actually be used. The Google Desktop’s local search integration cannot distinguish this
connection from the Java applet with a legitimate connection from a web browser, and will thus integrate
the search results where they can be read by the applet. Of course, the applet can subsequently transmit
these results back to the server from which it was loaded. We diagram this process in Figure 3.

In our implementation, we designed the applet to first open a control channel with the server. This allows
the server to issue search queries to the applet. When appletreceives one of these queries, it connects back
to the server, as described above, to make a proxy request andsubsequently capture the local search results.
These results are returned to the server over the control channel. This gives the attacker real-time control
over the applet, allowing him to try a number of different queries and to refine them with the results of the
earlier queries. Thus the attacker can search interactively for sensitive, private, information on the target
computer.

3.2 Feasibility

The main impediment to performing this attack is to somehow trick the user of the target computer to visit
a hostile web site. Of course, the attacker could break into (i.e., deface) a legitimate web site that the target
user regularly visits. Likewise, the attacker could perform some kind of social engineering, perhaps with
spam-like email advertisements, to entice the target user to visit the hostile site.

Once the target user loads the hostile page, the damage has been done. There is no need for the attacker
to be on the same network as the target, nor is there any need for the attacker to “break into” the target
machine in any traditional fashion. Furthermore, because all of the interaction between the target machine
and the attacker uses standard web traffic, most commercial firewalls would offer no protection against
this attack. Of course, if the user has disabled Java, or the firewall has filtered out any Java applets, then
this attack would fail, although similar attacks might be possible with other programmable content types
like Macromedia’s Flash. On the other hand, if the user has disabled local search integration with web
searches, the attack would be completely defeated. This only requires deselecting a single checkbox on the
“preferences” screen.

3.3 Man-in-the-middle variants

In many cases, an attacker will be in a position to observe thenetwork traffic coming from the target’s
computer and can inject network traffic that pretends to comefrom Google or any other network host. Such
“man-in-the-middle” attacks are particularly easy to perform when the attacker and target are sharing the
same 802.11 wireless network. These networks are increasingly available in many hotels, airports, and
cafés and do not use any 802.11 security features such as WEPencryption. Even on a private network with
WEP encryption, an attacker could easily break the encryption [11].

The attacker’s goal, in such a scenario, will be to trick the target computer’s web browser into loading
the attack applet within an unrelated web page. This takes advantage of a common practice, particularly
with web advertising, where web sites will include Java applets or Flash animations hosted by third parties.
While a number of techniques may be used to accomplish the attack, probably the simplest is to passively
read every web page loaded by the target, looking for references to external applets. Upon seeing this, the
attacker can predict that the target will make a DNS lookup for the applet host. The attacker then issues a
DNS response that maps that DNS name to the attacker’s IP address. Eventually, the correct DNS response
will arrive, but the target machine will discard it and fetchthe applet from the attacker. A sophisticated
attack applet could be engineered to impersonate the original applet; the attack could even be implemented
as a virus attached to the original applet.

While web sites could take countermeasures to defeat this attack, such as operating entirely with SSL/TLS
encryption and authentication, this seems unlikely to be widely adopted. Instead, users of wireless net-
works could tunnel all of their traffic through a virtual private network (VPN). VPN systems are generally
provided by corporations to allow traveling users to accessthe company’s intranet while traveling outside.
VPN technologies would defeat man-in-the-middle opportunities on the target’s local wireless connection.
Unfortunately, VPNs are generally only available to corporate users. Furthermore, some wireless systems
restrict the ports where they will carry traffic, sometimes interfering with some VPN systems.

4 JavaScript-based attacks

In many organizations, the use of Java or other generally programmable plugin systems like Macromedia’s
Flash is forbidden. Such organizations are uncomfortable with the risk that a crafty attacker could circum-
vent the protections enforced by these tools. By banning these tools, a possible vector of attacks is removed.
In practice, while this might degrade the experience of manyweb sites, most will continue to operate cor-

rectly. Because many users do not have Java or Flash installed at all, even the most multimedia-laden web
sites will commonly offer a simplified, plain HTML view. In contrast, the JavaScript scripting language
is used extensively by numerous web sites and is widely supported by commercial browsers. Disabling
JavaScript renders many such web sites unusable. As such, itwould be valuable, from the perspective of
an attacker, to discover an attack that need not rely on Java.

4.1 Ley’s attack

Ley recently described an attack that takes advantage of Google’s web customization features [7]. For web
sites that use Google to “power” their site searches, Googleprovides an interface for sites to add their logos
and such to the Google results. Ley used this feature to inject malicious JavaScript into a Google web
page which would implement a “phishing” attack. Similarly,this inserted JavaScript could also be used to
read other contents of a Google web page, including any integrated local search results, and send them to a
third party. Google’s web servers now filter out any JavaScript or VBScript references passed through the
customization interface, thus defeating Ley’s attack.

4.2 Man-in-the-middle variants

Despite Google having closed Ley’s security hole, if an attacker is appropriately positioned in the network
to perform a man-in-the-middle attack (see Section 3.3), the attacker should be able to modify any page
transmitted from Google to include malicious JavaScript. The Document Object Model (DOM) allows
scripts of this kind to fully traverse and extract all elements of the HTML page. A script can return the
extracted elements to the attacker in a number of ways, including passing them as arguments to a CGI
script on a colluding web server.

In the same fashion that our Java attack used forged DNS results to strategically redirect queries from
legitimate web servers, we could similar interpose when a target host’s web browser does a DNS lookup on
www.google.com , redirecting the target to the attacker’s machine. The attacker would then dispatch the
query to the real Google server, add in some malicious JavaScript, and pass the results to the target.

The malicious JavaScript, as in the Ley attack, would read the contents of the local search results, and
transmit the results back to the attacker, perhaps by opening a zero-height internal frame (IFRAME) that
would not be visible to the user. Furthermore, the page returned by the attacker could easily be redirected
to perform another Google query. The attacker would thus be able to make interactive queries against the
local search service without the target machine’s user being aware of the attack.

4.3 Implementation

We designed a “proof-of-concept” of this attack to study itsviability. Using our wireless network, we
programmed a laptop to listen for DNS requests forwww.google.com and respond with the IP address
of the laptop. This places the attacker in the position of being a (transparent) proxy server between the
target and Google. We had the proxy insert JavaScript which would attempt to read the integrated local
search results.

Our JavaScript successfully read the local search results and reprinted it at the bottom of the web page as
proof that we could, indeed, extract the local results. We felt it was unnecessary, for the proof-of-concept,
to transmit it back to the attacker. (The open-source DNS hijacking tool we used,dnshijacker2, has been
ported to numerous platforms and is very easy to use.)

4.4 Feasibility

Google appears to have fixed Ley’s JavaScript vulnerability, but the man-in-the-middle attack is still entirely
feasible, particularly when the target computer is using a wireless network and the attacker is physically
nearby.

Making the attack interactive is much more complicated and more likely to be detected. To be interactive,
the JavaScript must pop-up or “pop-under” another window that allows the attacker some modicum of
control over Google searches (although this might be successfully hidden in a zero-height IFRAME). For
the attacker’s server to instruct the target machine what search to perform next, the JavaScript must poll for
new instructions, perhaps by refreshing at regular intervals. Such behavior might increase the likelihood
that the attack is detected.

As described in Section 3.3, users and web sites can take countermeasures to reduce their exposure to man-
in-the-middle attacks. If Google, for example, were to offer all of its services over SSL/TLS and users
exclusively visitedhttps://www.google.com rather than thehttp version, the man-in-the-middle
would be unable to put the hostile JavaScript into the web page.

5 Attack analysis

Both versions of our attack, whether using Java or JavaScript, take advantage ofcompositioneffects. Java,
by itself, has a security policy that gives applets a limitedability to make network connections. When
used in traditional web pages, this allows applets to have useful behaviors without compromising a user’s
security. Likewise, the Google Desktop’s local search integration feature, by itself, injects local search
results into web queries, giving users an improved search experience. So long as network connections are
only coming from “trusted” sources, like a web browser, there is no danger of the local search results being
leaked. However, when an attacker composes these two systems, the attacker can use a property of applet
security to help violate a property of the Google Desktop’s security. Such composition effects are one of
the most difficult issues in the engineering of secure software; an attacker need only find a single unusual
combination of features to accomplish an attack, while the system engineer must consider all possible
combinations to prevent any possible attack. As a result, the attacker has a significant advantage. The
traditional response is to engineer systems in a conservative fashion, using simple, mature mechanisms.
The Google Desktop’s use of low-level mechanisms to intercept network connections is an example of an
“unusual” approach that may be expected to have unintended consequences. A more conservative approach
would be to simply keep local search results entirely separate from web search results.

2http://pedram.redhive.org/projects.php

5.1 Proposed solutions

We present five basic solutions that would prevent these and similar attacks. Some of these solutions are
necessarily more thorough than others, and not all are feasible.

1. Not including snippets: The Google Desktop search system currently integrates snippets of the con-
tents of documents that match the search query. By removing these snippets, perhaps only listing the
file names, significantly less information would be available for an attacker. Of course, significantly
less value would be present for the user.

2. Not integrating: Local search integration is not a fundamental part of the Google Desktop. It is an
optional feature that can be disabled by selecting one checkbox in the preferences dialog.

3. Images: Instead of inserting text directly into the web page, the Google Desktop could instead insert
a reference to an external image, hosted by the Google Desktop’s internal web server. A Java applet
would only be able to read the name of the image. Malicious JavaScript would likewise only see the
name of the image. An attacker would be unable to see the pixels of the image. Unfortunately, such
images would not get larger if the user requested larger fonts, nor would they be legible to users with
screen-reading software nor would they support cutting andpasting the text within them.

4. FRAMEs or IFRAMEs: Rather than inserting the local search results directly into the Google
search result, the Google Desktop could insert some HTML that creates an internal frame (IFRAME)
element which loads its content from the Google Desktop’s internal web server. This IFRAME would
have a different “source” than the web page that surrounds it, meaning that hostile JavaScript, even
in the main Google page, would be unable to read the local search results.

5. SOCKS or other proxy styles:The Google Desktop currently intercepts TCP connects at a low level
in the operating system. This could be replaced, perhaps, byexplicitly setting a proxy or SOCKS
server in the web browser’s Internet settings. Of course, ifsuch proxies are already in use, integrating
the Google Desktop would be more complicated. Furthermore,while the Java applet attack might be
defeated with such settings, the JavaScript attacks would continue to work.

Google decided to follow the IFRAME approach in their new implementation. For contrast, Microsoft’s
recent MSN Desktop Search3 appears to have no search integration whatsoever, althoughit does have an
ActiveX control that might be worthy of further investigation.

5.2 Security of IFRAMEs

The IFRAME solution completely resolves both the Java applet and JavaScript-based attacks described in
this paper. A Java applet, making a simulated Google query, would only see the HTML code to built the
IFRAME (<iframe src="http://127.0.0.1:4664/search?q=foo...">) but would not be
able to see the contents of the IFRAME. Likewise, JavaScriptis restricted by the “same-origin” policy,
which generally denies scripts from one website the power toaccess, modify, or manipulate properties
of another website originating from a different server [9].These restrictions also apply to the contents

3http://beta.search.msn.com

of FRAME and IFRAME elements of HTML pages. The main page’s origin is Google.com while the
IFRAME’s origin is 127.0.0.1 . As a result, even if an attacker injects malicious JavaScript into a
Google page, it will not be able to learn the results of local searches.

One possible method for breaking the same-origin policy would be to use cross-site scripting attacks. These
attacks insert JavaScript into target pages by passing the JavaScripts as arguments to web CGI scripts. The
Ley attack (described in Section 4.1) is an example of a cross-site scripting attack. Similar attacks have
been done against web-mail systems [6] and web single-signon systems [10]. The normal solution is for
the intermediary system to aggressively filter out JavaScript and any other active content [1]. Following the
Ley attack, Google now does this filtering at Google.com. There does not appear to be any opportunity to
mount an attack of this kind against the Google Desktop’s local web server. As a result, we believe that the
Google Desktop is not vulnerable to this class of attack.

Today, the security of the Google Desktop system is resting on JavaScript’s “same-origin” policy. If an
attacker can somehow violate this policy, far more serious attacks than merely reading local search results
will become possible [8]. As long as users are running reasonably modern web browsers, they should be
safe against this class of attacks.

6 Conclusions

We found that the Google Desktop personal search engine contained serious security flaws that would allow
a third party to read the search result summaries that are embedded in normal Google web searches by the
local search engine. While an attacker would not be able to read the victim’s files directly, the search results
often contain snippets of the file results that will be visible to the attacker. If the victim had a file with a
list of web passwords, for example, an attacker might be ableto read some of those passwords. These
attacks, now fixed by Google, represent a common example of a composition attack, where the attacker
could combine unrelated features of the system to violate the security assumptions of a critical service.

References

[1] CERT Coordination Center.Understanding Malicious Content Mitigation for Web Developers, Feb. 2000.
http://www.cert.org/tech_tips/malicious_code_mitiga tion.html .

[2] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz. Java security: Web browsers and beyond. In D. E.
Denning and P. J. Denning, editors,Internet Besieged: Countering Cyberspace Scofflaws, pages 241–269. ACM
Press, New York, New York, Oct. 1997.

[3] Google Corporation.About Google Desktop, Dec. 2004.http://desktop.google.com/about.html .

[4] Google Corporation.Google Desktop Search Privacy Policy, Dec. 2004.http://desktop.google.com/
privacypolicy.html .

[5] Google Corporation.Why are my personal results appearing on Google?, Dec. 2004.http://desktop.
google.com/support/bin/answer.py?answer=10996&query =integration&topic=
0&type=f .

[6] J. Grossman. Hotmail CSS Vulnerability (New Strain). WhiteHat Security, Aug. 2001.http://www.
whitehatsec.com/labs/advisories/WH-Security_Advisor y-08152001.html .

[7] J. Ley. Google Desktop Exploit, Oct. 2004.http://jibbering.com/2004/10/google.html .

[8] A. Megacz.XWT Foundation Advisory: Firewall circumvention possiblewith all browsers. XWT Foundation,
July 2002.http://www.securitytracker.com/alerts/2002/Jul/1004 878.html .

[9] T. Powell and F. Schneider. JavaScript: The Complete Reference. McGraw-Hill/Osborne,
2004. Security-relevant chapters online athttp://www.devarticles.com/c/a/JavaScript/
JavaScript-Security/0/ .

[10] M. Slemko. Microsoft Passport to Trouble, Nov. 2001. http://alive.znep.com/˜marcs/
passport/ .

[11] A. Stubblefield, J. Ioannidis, and A. D. Rubin. Using theFluhrer, Mantin, and Shamir attack to break WEP. In
Network and Distributed Systems Security Symposium (NDSS), San Diego, CA, Feb. 2002.

