
www.halfdog.net / Security / 2013 / Vm86SyscallTaskSwitchKernelPanic /

Share via f g+

Introduction

Problem description: The initial observation was, that the
linux vm86 syscall, which allows to use the virtual-8086
mode from userspace for emulating of old 8086 software as
done with dosemu, was prone to trigger FPU errors. Closer
analysis showed, that in general, the handling of the FPU
control register and unhandled FPU-exception could trigger
CPU-exceptions at unexpected locations, also in ring-0 code.
Key player is the emms instruction, which will fault when e.g.
cr0 has bits set due to unhandled errors.

The exact cause for the observed fault is still not completely
clear, there might also be some interaction when running the
linux system under test (Debian sid, 3.12-1-486) on
problematic CPUs (AMD E-350 Processor)

Methods

Virtual86SwitchToEmmsFault.c was the first POC, that
triggers kernel-panic via vm86 syscall. Depending on task
layout and kernel scheduler timing, the program might just
cause an OOPS without heavy side-effects on the system.
OOPS might happen up to 1min after invocation, depending
on the scheduler operation and which of the other tasks are
using the FPU. Sometimes it causes recursive page faults,
thus locking up the entire machine.

To allow reproducible tests on at least a local machine, the
random code execution test tool (Virtual86RandomCode.c)
might be useful. It still uses the vm86-syscall, but executes
random code, thus causing the FPU and task schedule to
trigger a multitude of faults and to faster lock-up the system.
When executed via network, executed random data can be
recorded and replayed even when target machine locks up
completely. Network test:

Linux Kernel-Panic in vm86 Syscall During Task Switch http://www.halfdog.net/Security/2013/Vm86SyscallTaskSwitch...

1 of 3 1/7/14, 4:35 PM



socat TCP4-LISTEN:1234,reuseaddr=1,fork=1
EXEC:./Virtual86RandomCode,nofork=1

tee TestInput < /dev/urandom | socat -
TCP4:x.x.x.x:1234 > ProcessedBlocks

An improved version allows to bring the FPU into the same
state without using the vm86-syscall. The key instruction is
fldcw (floating point unit load control word). When enabling
exceptions in one process just before exit, the task switch of
two other processes later on might fail. It seems that due to
that failure, the task->nsproxy ends up being NULL, thus
causing NULL-pointer dereference in exit_shm during
do_exit.
When the NULL-page is mapped, the NULL-dereference
could be used to fake a rw-semaphore data structure. In
exit_shm, the kernel attemts to down_write the semaphore,
which adds the value 0xffff0001 at a user-controllable
location. Since the NULL-dereference does not allow
arbitrary reads, the task memory layout is unknown, thus
standard change of EUID of running task is not possible.
Apart from that, we are in do_exit, so we would have to
change another task. A suitable target is the
shmem_xattr_handlers list, which is at an address known
from System.map. Usually it contains two valid handlers and
a NULL value to terminate the list. As we are lucky, the value
after NULL is 1, thus adding 0xffff0001 to the position of the
NULL-value plus 2 will will turn the NULL into 0x10000
(the first address above mmap_min_addr) and the following 1
value into NULL, thus terminating the handler list correctly
again.
The code to perform those steps can be found in
FpuStateTaskSwitchShmemXattrHandlersOverwriteWithNullPage.c

The modification of the shmem_xattr_handlers list is
completely silent (could be a nice data-only backdoor) until
someone performs a getxattr call on a mounted tempfs. Since
such a file-system is mounted by default at /run/shm, another
program can turn this into arbitrary ring-0 code execution. To
avoid searching the process list to give EUID=0, an
alternative approach was tested. When invoking the xattr-
handlers, a single integer value write to another static address
known from System.map (modprobe_path) will change the
default modprobe userspace helper pathname from
/sbin/modprobe to /tmp//modprobe. When unknown

Linux Kernel-Panic in vm86 Syscall During Task Switch http://www.halfdog.net/Security/2013/Vm86SyscallTaskSwitch...

2 of 3 1/7/14, 4:35 PM



executable formats or network protocols are requested, the
program /tmp//modprobe is executed as root, this demo just
adds a script to turn /bin/dd into a SUID-binary. dd could then
be used to modify libc to plant another backdoor there. The
code to perform those steps can be found in
ManipulatedXattrHandlerForPrivEscalation.c.

Results, Discussion

Timeline

20131228: Discovery, report at lkml, full-disclosure
20140107: Local-root privilege POC, working both on
native CPU and within VirtualBox

Material, References

Test tool: Virtual86SwitchToEmmsFault.c
Random code test tool: Virtual86RandomCode.c
Serial console output: SerialConsoleOutput.txt
Local-root-excalation: Modify xattr-handler
(FpuStateTaskSwitchShmemXattrHandlersOverwriteWithNullPage.c),
execute ring-0 code via xattr-handler
(ManipulatedXattrHandlerForPrivEscalation.c)
Mailing-list reports: full-disclosure
Bug reports:

Debian bug tracker: 733551

Last modified 20140107
Contact e-mail: me (%) halfdog.net

Linux Kernel-Panic in vm86 Syscall During Task Switch http://www.halfdog.net/Security/2013/Vm86SyscallTaskSwitch...

3 of 3 1/7/14, 4:35 PM


