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Preface
SAC2001, the eighth annual workshop on selected areas in cryptography, was
held at the Fields Institute in Toronto, Ontario, Canada. Previous SAC work-
shops were held at Queen’s University in Kingston (1994, 1996, 1998, and 1999),
at Carlton University in Ottawa (1995 and 1997) and at the University of Water-
loo (2000). The conference was sponsored by the center for applied cryptographic
research (CACR) at the University of Waterloo, Certicom Corporation, Com-
munications and Information Technology Ontario (CITO), Ecole Polytechnique
Fédérale de Lausanne, Entrust Technologies, and ZeroKnowledge. We are grate-
ful to these organizations for their support of the conference.

The current SAC board includes Carlisle Adams, Doug Stinson, Ed Dawson,
Henk Meijer, Howard Heys, Michael Wiener, Serge Vaudenay, Stafford Tavares,
and Tom Cusick. We would like to thank all of them for giving us the mandate
to organize SAC2001.

The themes for SAC2001 workshop were:

– Design and analysis of symmetric key cryptosystems.
– Primitives for private key cryptography, including block and stream ciphers,

hash functions, and MACs.
– Efficient implementations of cryptographic systems in public and private key

cryptography.
– Cryptographic solutions for web and internet security.

There were 57 technical papers submitted to the conference from an inter-
national authorship. Every paper was refereed by at least 3 reviewers and 25
papers were accepted for presentation at the conference. We would like to thank
the authors of all the submitted papers, both those whose work is included in
these proceedings, and those whose work could not be accommodated.

In addition to these 25 papers, two invited presentations were given at the
conference: one by Moti Yung from CertCo, USA, entitled “Polynomial Recon-
struction Based Cryptography ” and the other by Phong Nguyen from the Ecole
Normale Supérieure, France, entitled “The two faces of lattices in cryptology”.
Thanks to both Moti and Phong for their excellent talks and for kindly accepting
our invitation.

The program committee for SAC2001 consisted of the following members:
Stefan Brands, Matt Franklin, Henri Gilbert, Howard Heys, Hideki Imai, Shiho
Moriai, Kaisa Nyberg, Rich Schroeppel, Doug Stinson, Stafford Tavares, Serge
Vaudenay, Michael Wiener, Amr Youssef , and Yuliang Zheng.

On behalf of the program committee we would like to thank the following
sub-referees for their help in the reviewing process: Joonsang Baek, Guang Gong,
Ian Goldberg, Darrel Hankerson, Keiichi Iwamura, Mike Just, Masayuki Kanda,
Liam Keliher, Mira Kim, Kazukuni Kobara, Frédéric Légaré, Henk Meijer, Al-
fred John Menezes, Miodrag Mihaljevic, Ulf Mőller, Dalit Naor, Daisuke No-
jiri, Mohammad Ghulam Rahman, Palash Sarkar, Akashi Satoh, Junji Shikata,
Takeshi Shimoyama, Ron Steinfeld, Anton Stiglic, Edlyn Teske, Yodai Watan-
abe, Huapeng Wu, Daichi Yamane, and Robert Zuccherato.
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We would like to thank all the people involved in organizing the conference.
In particular we would like to thank Pascal Junod for his effort in making the
reviewing process run smoothly. Special thanks are due to Frances Hannigan
for her help in the local arrangements and for making sure that everything ran
smoothly during the workshop. Finally we would like to thank all the partici-
pants of SAC2001.

August 2001 Serge Vaudenay and Amr Youssef
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Johannes Blömer, Alexander May (University of Paderborn)

Timed-Release Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Wenbo Mao (Hewlett-Packard Laboratories)

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359



Weaknesses in the Key Scheduling Algorithm
of RC4

Scott Fluhrer1, Itsik Mantin2, and Adi Shamir2

1 Cisco Systems, Inc.,
170 West Tasman Drive, San Jose, CA 95134, USA

sfluhrer@cisco.com
2 Computer Science department, The Weizmann Institute,

Rehovot 76100, Israel
{itsik,shamir}@wisdom.weizmann.ac.il

Abstract. In this paper we present several weaknesses in the key schedul-
ing algorithm of RC4, and describe their cryptanalytic significance. We
identify a large number of weak keys, in which knowledge of a small
number of key bits suffices to determine many state and output bits
with non-negligible probability. We use these weak keys to construct
new distinguishers for RC4, and to mount related key attacks with prac-
tical complexities. Finally, we show that RC4 is completely insecure in a
common mode of operation which is used in the widely deployed Wired
Equivalent Privacy protocol (WEP, which is part of the 802.11 standard),
in which a fixed secret key is concatenated with known IV modifiers in
order to encrypt different messages. Our new passive ciphertext-only at-
tack on this mode can recover an arbitrarily long key in a negligible
amount of time which grows only linearly with its size, both for 24 and
128 bit IV modifiers.

1 Introduction

RC4 is the most widely used stream cipher in software applications. It was
designed by Ron Rivest in 1987 and kept as a trade secret until it leaked out in
1994. RC4 has a secret internal state which is a permutation of all the N = 2n

possible n bits words, along with two indices in it. In practical applications n = 8,
and thus RC4 has a huge state of log2(28! × (28)2) ≈ 1700 bits.

In this paper we analyze the Key Scheduling Algorithm (KSA) which derives
the initial state from a variable size key, and describe two significant weaknesses
of this process. The first weakness is the existence of large classes of weak keys,
in which a small part of the secret key determines a large number of bits of
the initial permutation (KSA output). In addition, the Pseudo Random Gen-
eration Algorithm (PRGA) translates these patterns in the initial permutation
into patterns in the prefix of the output stream, and thus RC4 has the undesir-
able property that for these weak keys its initial outputs are disproportionally
affected by a small number of key bits. These weak keys have length which is

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 1–24, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 Scott Fluhrer, Itsik Mantin, and Adi Shamir

divisible by some non-trivial power of two, i.e., � = 2qm for some q > 01. When
RC4n uses such a weak key of � words, fixing n + q(� − 1) + 1 bits of K (as a
particular pattern) determines Θ(qN) bits of the initial permutation with prob-
ability of one half and determines various prefixes of the output stream with
various probabilities (depending on their length).

The second weakness is a related key vulnerability, which applies when part
of the key presented to the KSA is exposed to the attacker. It consists of the
observation that when the same secret part of the key is used with numerous
different exposed values, an attacker can rederive the secret part by analyzing
the initial word of the keystreams with relatively little work. This concatena-
tion of a long term secret part with an attacker visible part is a commonly used
mode of RC4, and in particular it is used in the WEP (Wired Equivalent Pri-
vacy) protocol, which protects many wireless networks. Our new attack on this
mode is practical for any key size and for any modifier size, including the 24 bit
recommended in the original WEP, and the 128 bit recommended in the revised
version WEP2.

The paper is organized in the following way: In Section 2 we describe RC4
and previous results about its security. In Section 3 we consider a slightly mod-
ified variant of the Key Scheduling Algorithm, called KSA∗, and prove that a
particular pattern of a small number of key bits suffices to completely determine
a large number of state bits. Afterwards, we show that this weakness of KSA∗,
which we denote as the invariance weakness, exists (in a weaker form) also in
the original KSA. In Section 4 we show that with high probability, the patterns
of initial states associated with these weak keys also propagate into the first
few outputs, and thus a small number of weak key bits determine a large num-
ber of bits in the output stream. In Section 5 we describe several cryptanalytic
applications of the invariance weakness, including a new type of distinguisher.
In Sections 6 and 7 we describe the second weakness, which we denote as the
IV weakness, and show that a common method of using RC4 is vulnerable to
a practical attack due to this weakness. In Section 8, we show how both these
weaknesses can separately be used in a related key attack. In the appendices, we
examine how the IV weakness can be used to attack a real system (appendix A),
how the invariance weakness can be used to construct a ciphertext-only distin-
guisher and to prove that RC4 has low sampling resistance (appendices B and
C), and how to derive the secret key from an early permutation state (appendix
D).

2 RC4 and Its Security

2.1 Description of RC4

RC4 consists of two parts (described in Figure 1): A key scheduling algorithm
KSA which turns a random key (whose typical size is 40-256 bits) into an initial

1 Here and in the rest of the paper � is the number of words of K, where each word
contains n bits.
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KSA(K)
Initialization:

For i = 0 . . . N − 1

S[i] = i

j = 0

Scrambling:

For i = 0 . . . N − 1

j = j + S[i] + K[i mod �]

Swap(S[i], S[j])

PRGA(K)

Initialization:

i = 0

j = 0

Generation loop:

i = i + 1

j = j + S[i]

Swap(S[i], S[j])

Output z = S[S[i] + S[j]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm

permutation S of {0, . . . , N − 1}, and an output generation part PRGA which
uses this permutation to generate a pseudo-random output sequence.

The PRGA initializes two indices i and j to 0, and then loops over four
simple operations which increment i as a counter, increment j pseudo randomly,
exchange the two values of S pointed to by i and j, and output the value of S
pointed to by S[i] + S[j]2. Note that every entry of S is swapped at least once
(possibly with itself) within anyN consecutive rounds, and thus the permutation
S evolves fairly rapidly during the output generation process.

The KSA consists of N loops that are similar to the PRGA round operation.
It initializes S to be the identity permutation and i and j to 0, and applies the
PRGA round operation N times, stepping i across S, and updating j by adding
S[i] and the next word of the key (in cyclic order).

2.2 Previous Attacks on RC4

Due to the huge effective key of RC4, attacking the PRGA seems to be infea-
sible (the best known attack on this part requires time that exceeds 2700). The
only practical results related to the PRGA deal with the construction of dis-
tinguishers. Fluhrer and McGrew described in [FM00] how to distinguish RC4
outputs from random strings with 230 data. A better distinguisher which re-
quires 28 data was described by Mantin and Shamir in [MS01]. However, this
distinguisher could only be used to mount a partial attack on RC4 in broadcast
applications.

The fact that the initialization of RC4 is very simple stimulated considerable
research on this mechanism of RC4. In particular, Roos discovered in [Roo95] a
class of weak keys that reduces their effective size by five bits, and Grosul and
Wallach showed in [GW00] that for large keys whose size is close to N words,
RC4 is vulnerable to a related key attack.

2 Here and in the rest of the paper all the additions are carried out modulo N
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More analysis of the security of RC4 can be found in [KMP+98], [Gol97] and
[MT98].

3 The Invariance Weakness

Due to space limitations we prove here the invariance weakness only for a sim-
plified variant of the KSA, which we denote as KSA∗ and describe in Figure 2.
The only difference between them is that KSA∗ updates i at the beginning of
the loop, whereas KSA updates i at the end of the loop. After formulating and
proving the existence of this weakness in KSA∗, we describe the modifications
required to apply this analysis to the real KSA.

3.1 Definitions

We start the round numbering from 0, which means that both KSA and KSA∗

have rounds 0, . . . , N−1. We denote the indices swapped in round r by ir and jr,
and the permutation S after swapping these indices is denoted as Sr. Notice that
by using this notation, ir = r in the real KSA. However, in KSA∗ this notation
becomes somewhat confusing, when ir = r+1. For the sake of completeness, we

can say that j−1 = 0, S−1 is the identity permutation and i−1 =
{ −1 KSA
0 KSA∗ .

Definition 1. Let S be a permutation of {0, . . . , N −1}, t be an index in S and
b be some integer. Then if S[t]

mod b≡ t, the permutation S is said to b-conserve
the index t. Otherwise, the permutation S is said to b-unconserve the index t.

Definition 2. A permutation S of {0, . . . , N − 1} is b-conserving if Ib(S) = N ,
and is almost b-conserving if Ib(S) ≥ N − 2.

KSA(K)a

For i = 0 . . . N − 1

S[i] = i

i = 0

j = 0

Repeat N times

j = j + S[i] + K[i mod �]

Swap(S[i], S[j])

i = i + 1

KSA∗(K)

For i = 0 . . . N − 1

S[i] = i

i = 0

j = 0

Repeat N times

i = i + 1

j = j + S[i] + K[i mod �]

Swap(S[i], S[j])

a KSA is rewritten in a way which clarifies its relation to KSA∗

Fig. 2. KSA vs. KSA∗
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We denote the number of indices that a permutation b-conserves as Ib(S). To
simplify the notation, we often write Ir instead of Ib(Sr).

Definition 3. Let b, � be integers, and let K be an � word key. Then K is called
a b-exact key if for any index r, K[r mod �] ≡ (1−r) (mod b). In case K[0] = 1
and MSB(K[1]) = 1, K is called a special b-exact key.

Notice that for this condition to hold, it is necessary (but not sufficient) that
b | �.

3.2 The Weakness

Theorem 1. Let q ≤ n and � be integers and b
def
= 2q. Suppose that b | � and

let K be a b-exact key of � words. Then the permutation S = KSA∗(K) is
b-conserving.

Before getting to the proof itself, we will prove an auxiliary lemma

Lemma 1. If ir+1 ≡ jr+1 (mod b), then Ir+1 = Ir.

Proof. The only operation that might affect S (and maybe I) is the swapping
operation. However, when i and j are equivalent ( mod b) in round r + 1, Sr+1
b-conserves position ir+1 (jr+1) if and only if Sr b-conserved position jr (ir).
Thus the number of indices S b-conserves remains the same.

Proof. (of Theorem 1) We will prove by induction on r that for any −1 ≤ r ≤
N−1, it turns out that ir ≡ jr (mod b) and Ib(Sr) = N and . This in particular
implies that IN−1 = N , which makes the output permutation b-conserving.

For r = −1 (before the first round), the claim is trivial because i−1 = j−1 = 0
and S−1 is the identity permutation which is b-conserving for every b. Suppose
that jr ≡ ir and Sr is b-conserving. Then ir+1 = ir + 1 and

jr+1 = jr +Sr[ir+1] +K[ir+1 mod �]
mod b≡ ir + ir+1 + (1− ir+1) = ir +1 = ir+1

Thus, ir+1 ≡ jr+1 (mod b) and by applying Lemma 1 we get Ir+1 = Ir = N
and therefore Sr+1 is b-conserving.

KSA∗ thus transforms special patterns in the key into corresponding pat-
terns in the initial permutation. The fraction of determined permutation bits is
proportional to the fraction of fixed key bits. For example, applying this result
to RC4n=8,
=6 and q = 1, 6 out of the 48 key bits completely determine 252
out of the 1684 permutation bits (this is the number of bits encapsulated in the
LSBs).

3.3 Adjustments to KSA

The small difference between KSA∗ and KSA (see Figure 2) is essential in that
KSA, applied to a b-exact key, does not preserve the equivalence ( mod b) of i
and j even after the first round. Analyzing its execution on a b-exact key gives

j0 = j−1 + S−1[i0] +K[i0] = 0 + S−1[0] +K[0] = K[0]
mod b≡ 1

mod b


≡ 0 = i0
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and thus the structure described in Section 3.2 cannot be preserved by the cyclic
use of the key words. However, it is possible to adjust the invariance weakness
to the real KSA, and the proper modifications are formulated in the following
theorem:

Theorem 2. Let q ≤ n and � be integers and b
def
= 2q. Suppose that b | � and let

K be a special b-exact key of � words. Then

Pr[KSA(K) is almost b-conserving] ≥ 2/5

where the probability is over the rest of the key bits.

Due to space limitations, the formal proof of this theorem (which is based
on a detailed case analysis) will appear only in the full version of this paper.
However, we can explain the intuition behind this theorem by concentrating on
the differences between Theorems 1 and 2, which deal with KSA∗ and KSA
respectively. During the first round, two deviations from KSA∗ execution oc-
cur. The first one is the non-equivalence of i and j which is expected to cause
non-equivalent entries to be swapped during the next rounds, thus ruining the
delicate structure that was preserved so well during KSA∗ execution. The sec-
ond deviation is that S b-unconserves two of the indices, i0 = 0 and j0 = K[0].
However, we can cancel the ij discrepancy by forcing K[0] (and j0) to 1. In this
case, the discrepancy in S[j0] (S[1]) causes an improper value to be added to j in
round 1, thus repairing its non-equivalence to i during this round. At this point
there are still two unconserved indices, and this aberration is dragged across
the whole execution into the resulting permutation. Although these corrupted
entries might interfere with j updates, the pseudo-random j might reach them
before they are used to update j (i.e., before i reaches them), and send them
into a region in S where they cannot affect the next values of j3. The proba-
bility of this lucky event is amplified by the fact that the corrupted entries are
i0 = 0 which is not touched (by i) until the termination of the KSA due to its
distance from the current location of i, and j1 = 1 + K[1] > N/2 (recall that
MSB(K[1]) = 1), that is far the position of i (i1 = 1), which gives j many
opportunities to reach it before i does. The probability of N/2 pseudo random
j’s to reach an arbitrary value can be bounded from below by 2/5, and extensive
experimentation indicates that this probability is actually close to one half.

4 Key-Output Correlation

In this section we will analyze the propagation of the weak key patterns into the
generated outputs. First we prove Claim 4 which deals with the highly biased
behavior of a significantly weakened variant of the PRGA (where the swaps are
avoided), applied to a b-conserving permutation. Next, we will argue that the

3 if a value is pointed to by j before the swap, it will not be used as S[i] (before the
swap) for at least N − 1 rounds, and in particular it will not affect the values of j
during these rounds.
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prefix of the output of the original PRGA is highly correlated to the prefix of
this swapless variant, when applied to the same initial permutation. These facts
imply the existence of biases in the PRGA distribution for these weak keys.

Claim. Let RC4∗ be a weakened variant of RC4 with no swap operations. Let
q ≤ n, b

def
= 2q and S0

4 be a b-conserving permutation. Let {Xr}∞
r=1 be the

output sequence generated by applying RC4∗ to S0, and xr
def
= Xr mod b. Then

the sequence {xr}∞
r=1 is independent of the rest of the key bits.

Since there are no swap operations, the permutation does not change and
remains b-conserving throughout the generation process. Notice that all the val-
ues of S are known mod b, as well as the initial indices i = j = 0 ≡ 0 (mod b),
and thus the round operation (and the output values) can be simulated mod b,
independently of S. Consequently the output sequence modb can be predicted,
and deeper analysis implies that it is periodic with period 2b, as exemplified in
Figure 3 for q = 1.

i j S[i] S[j] S[i] + S[j] Out
0 0 0 0 0 /
1 1 1 1 0 0
0 1 0 1 1 1
1 0 1 0 1 1
0 0 0 0 0 0
1 1 1 1 0 0
...

...
...

...
...

...

Fig. 3. The rounds of RC4∗, applied to
a 2-conserving permutation

1st word 1 · · · 1 1 1

2nd word n · · · 3 2 1

3th word n · · · 3 2 1

...
�th word n · · · 3 2 1

Fig. 4. The stage in which each one of
the bits is exposed during the related key
attack

Recall that at each round of the PRGA, S changes in at most two locations,
and thus we can expect the prefix of the output stream generated by RC4 from
some permutation S0, to be highly correlated with the stream generated from
the same S0 (or a slightly modified one) by RC4∗. In particular the stream
generated by RC4 from an almost b-conserving permutation is expected to be
highly correlated with the (predictable) substream {xr} from Claim 4. This
correlation is demonstrated in Figure 8, where the function h −→ Pr[1 ≤ ∀r ≤
h Zr ≡ xr mod 2q] (for special 2q-exact keys) is empirically estimated for n = 8,
� = 16 and different q’s. For example, a special 2-exact key completely determines
20 output bits (the LSBs of the first 20 outputs) with probability 2−4.2 instead
of 2−20, and a special 16-exact key completely determines 40 output bits (4 LSBs
from each of the first 10 outputs) with probability 2−2.3, instead of 2−40.
4 The term S0 is used here for the common purpose of indicating the initial permuta-
tion of the PRGA.
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We have thus demonstrated a strong probabilistic correlation between some
bits of the secret key and some bits of the output stream for a large class of weak
keys. In the next section we describe how to use this correlation to cryptanalyze
RC4.

5 Cryptanalytic Applications of the Invariance Weakness

5.1 Distinguishing RC4 Streams from Randomness

In [MS01] Mantin and Shamir described a significant statistical bias in the sec-
ond output word of RC4. They used this bias to construct an efficient algorithm
which distinguishes between RC4 outputs and truly random sequences by ana-
lyzing only one word from O(N) different outputs streams. This is an extremely
efficient distinguisher, but it can be easily avoided by discarding the first two
words from each output stream. If these two words are discarded, the best known
distinguisher requires about 230 output words (see [FM00]). Our new observation
yields a significantly better distinguisher for most of the typical key sizes. The
new distinguisher is based on the fact that for a significant fraction of keys, a
significant number of initial output words contain an easily recognizable pattern.
This bias is flattened when the keys are chosen from a uniform distribution, but
it does not completely disappear and can be used to construct an efficient dis-
tinguisher even when the first two words of each output sequence are discarded.

Notice that the probability of a special 2q-exact key to be transformed into
a 2q-conserving permutation, does not depend of the key length � (see Theorem
2). However, the number of predetermined bits is linear in �, and consequently
the size of this bias (and thus the number of required outputs) also depends
on �. In Figure 5 we specify the quantity of data (or actually the number of
different streams) required for a reliable distinguisher, for different key sizes. In
particular, for 64 bit keys the new distinguisher requires only 221 data instead
of the previously best number of 230 output words.

It is important to notice that the specified output patterns extend over several
dozen output words, and thus the quality of the distinguisher is almost unaffected
by discarding the first few words. For example, discarding the first two words
causes the data required for the distinguisher to grow by a factor of between
20.5 and 22 (depending on �). Another important observation is that the biases
in the LSBs distribution can be combined in a natural way with the biased
distribution of the LSBs of English texts into an efficient distinguisher of RC4
streams from randomness in a ciphertext-only attack in which the attacker does
not know the actual English plaintext which was encrypted by RC4. This type
of distinguishers is discussed in Appendix B.

5.2 RC4 Has Low Sampling Resistance

Biryukov, Shamir and Wagner defined in [BSW00] a new security measure of
stream ciphers, which they denoted as their Sampling Resistance. The strong
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� q b k1
a k2

b pc PRND
d PRC4

e Data

4 1 2 12 15 2−3 2−15 2 · 2−15 215

6 1 2 14 18 2−4 2−18 2 · 2−18 218

8 1 2 16 21 2−5 2−21 2 · 2−21 221

10 1 2 18 24 2−6 2−24 2 · 2−24 224

12 1 2 20 27 2−7 2−27 2 · 2−27 227

14 1 2 22 30 2−8 2−30 2 · 2−30 230

16 1 2 24 34 2−10 2−34 2 · 2−34 234

a number of predetermined bits (q(� − 1) + n + 1)
b number of determined output bits
c probability of these k1 key bits to determine these k2 output bits (taken from Figure 8)
d = 2−k2

e ≈ PRND + 2−k1 p

Fig. 5. Data required for a reliable distinguisher, for different key sizes

correlation between classes of RC4 keys and corresponding output patterns can
be used to prove that RC4 has relatively low sampling resistance, which improves
the efficiency of time/memory/data tradeoff attacks. Further details can be found
in Appendix C.

6 RC4 Key Setup and the First Word Output

In this section, we consider related key attacks where the attacker has access to
the values of all the bits of certain words of the key. In particular, we consider
the case where the key presented to the KSA is made up of a secret key concate-
nated with an attacker visible value (which we will refer to as an Initialization
Vector or IV ). We will show that if the same secret key is used with numerous
different initialization vectors, and the attacker can obtain the first word of RC4
output corresponding to each initialization vector, he can reconstruct the secret
key with minimal effort. How often he can do this, the amount of effort and the
number of initialization vectors required depends on the order of the concate-
nation, the size of the IV, and sometimes on the value of the secret key. This
observation is especially interesting, as this mode of operation is used by several
deployed encryption systems ([Rei01], [LMSon]) and the first word of plaintexts
is often an easily guessed constant such as the date, the sender’s identity, etc,
and thus the attack is practical even in a ciphertext-only mode of attack. How-
ever, the weakness does not extend to the Secure Socket Layer (SSL) protocol
that browsers use, as SSL uses a cryptographic hash function to combine the
secret key with the IV.
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In terms of keystream output, this attack is interested only in the first word
of output from any given secret key and IV. Hence, we can simplify our model
of the output. The first output word depends only on three specific permutation
elements, as shown in the figure below showing the state of the permutation
immediately after KSA. When those three words are as shown, the value labeled
Z will be output as the first word.

1 X X +D

X D Z

In addition, we will define the resolved condition as any time within the
KSA where i is greater than or equal to 1, X and Y , where X is defined as Si[1]
and Y is defined as X + Si[X] (that is, X +D). When this resolved condition
occurs, with probability greater than e−3 ≈ 0.05, none of the elements S[1],
S[X], S[Y ] will participate in any further swaps5. In that case, the value will be
determined by the values of Si[1], Si[X] and Si[Y ]6. With probability less than
1− e−3 ≈ 0.95, at least one of the three values will participate in a swap, which
will destroy the resolved condition and set that element to an effectively random
value. This will make the output value effectively random. Our attack involves
examining messages with specific IV values such that, at some point, the KSA
is in a resolved condition, and where the value of S[Y ] gives us information on
the secret key. When we observe sufficiently many IV values, the actual value of
S[Y ] occurs detectably often.

7 Details of the Known IV Attack

Whenever we discuss a concatenation of an IV and a secret key, we denote the
secret key as SK, the size of the IV by I, and the size of SK as �−I. The variable
K still represents the RC4 key, which in this case is the concatenation of these
two (e.g. in section 7.1 K[1 . . . �] = IV [0] . . . IV [I − 1]SK[0] . . . SK[� − 1 − I]).
The numbering of the rounds, as well as the terms ir, jr and Sr are as defined
in section 3.1.

7.1 IV Precedes the Secret Key

First consider the case where the IV is prepended to the secret key. In this circum-
stance, assuming we have a known I word IV, and a secret key (SK[0] . . . SK[�−
1 − I]), we attempt to derive information on a particular word B of the secret
key (SK[B] or K[I+B]) by searching for IV values such that after round I (that
is after I + 1 rounds), SI [1] < I and SI [1] + SI [SI [1]] = I +B. Then, with high
likelihood (probability ≈ e− 2B

N if we model the intermediate swaps as random),

5 In our case we assume that c ≈ 1 (since i is small), that the remaining swaps in the
key setup touch words with random j’s, and that the three events are independent.

6 And, in particular, if 1, X, Y are mutually distinct, then Si[Y ] will be output as the
first word.
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we will be in a resolved condition after round I + B, and so the most probable
output value will be SI+B [I + B]. We further note that, at round I + B, the
following assignments will take place:

jI+B = jI+B−1 +K[B] + SI+B−1[I +B]

SI+B [I +B] = SI+B−1[jI+B ]

Using algebra, we see that if we know the value of jI+B−1 and SI+B−1, then
given the first output word (which we will designate Out), we can make the
probabilistic assumption that Out = SI+B [I + B], and then predict the value
based on the assumption:

K[B] = S−1
I+B−1[Out] − jI+B−1 − SI+B−1[I +B]

where S−1
r [V ] denotes the location within the permutation Sr where the value

V appears. Since Out = SI+B [I +B] more than 5% of the time, this prediction
is accurate that often, and effectively random less than 95% of the time. By
collecting sufficiently many values from different IVs, we can reconstruct K[B].

In the simplest scenario (3 word chosen IVs), the attack works as follows7:
suppose that we know the first A words of the secret key (K[3], . . . ,K[A + 2],
with A = 0 initially), and we want to know the next word K[A+3]. We examine
a series of IVs of the form (A+3, N −1, V ) for approximately 60 different values
for V . At the first round, j is advanced by A + 3, and then S[i] and S[j] are
swapped, resulting in the key setup state which is shown schematically below,
where the top array is the combined IV and secret key presented to the KSA,
and the bottom array is a portion of the permutation, and where the positions
of the i, j variables are indicated.

A+ 3 N − 1 V K[3] K[A+ 3]
0 1 2 A+ 3

A+ 3 1 2 0
i0 j0

Then, on the next round, i is advanced, and then the advance on j is computed,
which happens to be 0. Then, S[i] and S[j] are swapped, resulting in the below
structure:

A+ 3 N − 1 V K[3] K[A+ 3]
0 1 2 A+ 3

A+ 3 0 2 1
i1 j1

Then, on the next round, j is advanced by V + 2, which implies that each
distinct IV assigns a different value to j, and thus beyond this point, each IV
7 This scenario was first published by Wagner in [Wag95].
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acts differently, approximating the randomness assumption made above. Since
the attacker knows the value of V and K[3], . . .K[A + 2], he can compute the
exact behavior of the key setup until before round A+3. At this point, he knows
the value of jA+2 and the exact values of the permutation SA+2. If the value at
SA+2[0] or SA+2[1] has been disturbed, the attacker discards this IV. Otherwise,
j is advanced by SA+2[iA+3] +K[A+3], and then the swap is done, resulting in
the below structure:

A+ 3 N − 1 V K[3] K[A+ 3]
0 1 2 A+3

A+ 3 0 S[2] SA+3[A+ 3]
iA+3

The attacker knows the permutation SA+2 and the value of jA+2. In addition, if
he knows the value of SA+3[A+ 3], he knows its location in SA+2, which is the
value of jA+3, and hence he would be able to compute K[A + 3]. We also note
that iA+3 has now swept past 1, SA+3[1] and SA+3[1]+SA+3[SA+3[1]], and thus
the resolved condition exists, and hence with probability p > 0.05, by examining
the value of the first word of RC4 output with this IV, the attacker will be able
to compute the correct value of K[A + 3]. Hence, by examining approximately
60 IVs with the above configuration, the attacker can rederive K[A+ 3] with a
probability of success greater than 0.5.

By iterating the above process across the secret key, the attacker can rederive
� words of secret key using 60� chosen 3 word IVs.

The next thing to note is that the attack works for IVs other than those in
the specific (A + 3, N − 1, V ) form. Any I word IV that, after I rounds, leaves
SI [1] < I and SI [1] + SI [SI [1]] = I + B will suffice for the above attack. In
addition, since the attacker is able to simulate the first I rounds of the key
setup, he is able to determine which IVs have this property. By examining all
IVs that have this property, we can extend this into a known IV attack, without
using an excessive number of IVs8. The probabilities to find the next word, and
the expected number of IVs needed to obtain 60 IVs of the proper form, are
given in Figure 6.

7.2 IV Follows the Secret Key

In the case that the IV is appended to the secret key, we need to take a different
approach. The previous analysis attacked individual key words. When the IV
follows the secret key, what we do instead is select IVs that give us the state of
8 Note that different IVs that lead to the same intermediate values of j, are not
properly modeled by our random swap model. It is possible that specific values of j
will suggest specific incorrect keyword values, independently of the actual IV words.
One way to overcome this difficulty, is to take only IVs which induce distinct values
of j. An alternative approach is to try all the high probability key words in parallel,
instead of concentrating only on the most probable one.
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IV Length Probability Expected IVs required

3 4.57 × 10−5 1310000

4 4.50 × 10−5 1330000

5 1.65 × 10−4 364000

6 1.64 × 10−4 366000

7 2.81 × 10−4 213000

8 2.80 × 10−4 214000

9 3.96 × 10−4 152000

10 3.94 × 10−4 152000

11 5.08 × 10−4 118000

12 5.04 × 10−4 119000

13 6.16 × 10−4 97500

14 6.12 × 10−4 98100

15 7.21 × 10−4 83200

16 7.18 × 10−4 83600

Fig. 6. For various prepended IV and known secret key prefix lengths, the probability
that a random IV will give us information on the next secret key word, and the expected
number of IVs required to derive the next secret key word.

the permutation at an early phase of the key setup, such as immediately after
all the words of the secret key have been used for the first time. Given that only
a few swaps have occurred up to that point, it is reasonably straight-forward to
reconstruct those swaps from the permutation state, and hence obtain the secret
key (see Appendix D for one such method).

To illustrate the attack in the simplest case, suppose we have an A word
secret key, and a 2 word IV. Further suppose that the secret key was weak in
the sense that, immediately after A rounds of KSA, SA−1[1] = X, X < A, and
X +SA−1[X] = A. This is a low probability event (p ≈ 0.00062 if A = 13)9. For
such a weak secret key, the attacker can assume the value of jA−1 + SA−1[A],
and then examine IVs with a first word of W = V − (jA−1 + SA−1[A]) (this
assumption does increase the amount of work by a factor of N , and forces us
to verify the assumption, which we can do by observing a consistent predicted
value of SA−1). With such IVs, the value of jA will be the preselected value V .
Then, S[A] and S[V ] are swapped, and so SA[A] = SA−1[V ]. Here, assuming
V was neither 1 nor SA−1[1], then the resolved condition has been established,
and with probability > 0.05, SA−1[V ] will be the first word output. Then, by

9 A straightforward assumption that the permutation SA−1 is equidistributed gives
a much lower probability 13/256 × 1/256 ≈ 0.00020, however, SA−1 is not equidis-
tributed; the first A bytes are biased towards small values.
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examining such IVs with the second word being at least 60 different values, we
can observe the output a number of times and derive the value of SA−1[V ] with
good probability. By selecting all possible values of V , we can directly observe
the state of the SA−1 permutation, from which we can rederive the secret key.
We will denote this result as key recovery.

If X + SA−1[X] = A + 1, a similar analysis would appear to apply. By
assuming SA−1[A], SA−1[A+1] and jA−1, we can swap SA−1[V ] into SA+1[A+1]
for N −2 distinct IVs for any particular V . However, the value of jA+1 is always
the same for any particular V , and so the probabilities that a particular IV
outputs the value S[V ] are not independently distributed. This effect causes
the reading of the permutation state to be ’noisy’, that is, for some values of
V , we see S[V ] as the first word far more often than our analysis expected,
and for other values of V , we see it far less often. Because of this, some of the
entries SA−1[V ] cannot be reliably recovered. Simulations assuming a 13 word
secret key and n = 8 have shown that an average of 171 words of the SA−1
permutation state can be successfully reconstructed, including an average of 8
words of (SA−1[0], . . . , SA−1[12]), which immediately give you effectively 8 key
words. With this information, the key is reduced enough that it can be brute
forced. We will denote this result as key reduction.

If we have a 3 word IV, then there are more types of weak secret keys. For
example, consider a secret key where SA−1[1] = 1 and SA−1[A] = A. Then, by
assuming jA−1, we can examine IV where the first word has a value W so that
the new value of jA is 1, and so SA−1[1] and SA−1[A] are swapped, leaving the
state after round A to be:

SK[0] SK[1] SK[A− 1] W IV [1] IV [2]
0 1 A− 1 A A+ 1 A+ 2

SA−1[0] A SA−1[A− 1] 1 SA−1[A+ 1] SA−1[A+ 2]
jA iA

Then, by assuming SA−1[A + 1] (which with high probability is A + 1, and
will always be at most A+1), we can examine IVs with the second word IV [1] =
V − (1 + SA−1[A+ 1]), for an arbitrary V , which will cause ja+1 = V and swap
the value of SA−1[V ] into SA+1[A+1]. Assuming V isn’t either 1 or A, then the
resolved condition have been set up, and using a number of values for the third
IV word Z, we can deduce the value of SA−1[V ] for an arbitrary V , giving us
the permutation after A rounds.

There are a number of other types of weak keys that the attacker can take
advantage of, summarized in Figure 7.

The last weak secret key listed in Figure 7 is especially interesting, in that
the technique that exposes the weakness is rather different than that of the other
weak secret keys listed. Immediately after A rounds, the state is:
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IV Settings
Condition First Second Third Probability Result
SA−1[1]=1 Swap with 1 Swap with Y Cycle 0.0037 Key recovery
SA−1[A]=A

SA−1[1]=2 Swap with 1 Cycle Swap with Y 0.0070 Key reduction
SA−1[A+1]=A+1
SA−1[1]=X<A Swap with Y Cycle Cycle 0.0007 Key recovery
SA−1[X]+X=A

SA−1[1]=X<A Cycle Swap with Y Cycle 0.0009 Key recovery
SA−1[X]+X=A+1
SA−1[1]=X<A Cycle Cycle Swap with Y 0.0007 Key reduction
SA−1[X]+X=A+2
SA−1[1]=A Swap with Swap with Y Cycle 0.0037 Key recovery

S−1
A−1[1]

SA−1[1]=A+1 Swap with Y Swap with Cycle 0.0036 Key recovery
S−1

A−1[N−1]
SA−1[1]=A+2 Cycle Swap with Y Swap with 0.0038 Key reduction

S−1
A−1[N−1]

SA−1[1]=N−2 Swap with Y Cycle Swap with 1 0.0034 Key reduction
SA−1[A+2]=A+2
SA−1[1]=N−1 Swap with Y Swap with 1 Cycle 0.0036 Key recovery
SA−1[A+1]=A+1
SA−1[1]=X<A Swap with X Cycle Cycle 0.1007 Key reduction
SA−1[A]=Z

X+Z>A+2

Fig. 7. Weak secret keys with 3 word postfix IVs. Listed are the conditions on the
SA−1 permutation that distinguish them, the IV properties that the attacker searches
for to reveal S[Y ], the probability that this class of weak key will occur with n = 8
and a 16 word secret key, and the result of the attack on the weak key.

SK[0] SK[1] SK[V ] W Z

0 1 V A A+ 1
SA−1[0] V SA−1[V ] Z SA−1[A+ 1]

The initial IV word causes SA−1[V ] and SA−1[A] to be swapped, leaving the
state as:

SK[0] SK[1] SK[V ] W Z

0 1 V A A+ 1
SA−1[0] V Z SA−1[V ] SA−1[A+ 1]

jA iA

Now, to inquire about the value of SV +Z [W +Const], we examine numerous
IVs with second and third words that all set the value of jA+2 to be W . The
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KSA will continue for V + Z − (A + 2) more rounds until i now points to the
element SV +Z [V + Z]. At this point, since we haven’t gone through a great
number of rounds since we knew the value of j (since V +Z − (A+2) ≤ A− 4),
then with high probability, jV +Z+1 = W + Const, where Const is a constant
term that depends only on the state of the permutation SA. If this is true, then
SV +Z+1[V + Z] = SV +Z [W + const], and if the elements S[1] and S[V ] have
not been disturbed (again, this happens with high probability), the resolved
condition has been achieved, and the first output word will be biased towards
SV +Z [W + const]. In addition, because the value of const will be the same
independent ofW , its value can easily be determined, thus allowing the attacker
to observe many of the values of SV +Z . This class of weak keys requires far more
known IVs to exploit, but also occurs relatively frequently.

If we have a 4 word10 IV, then the same general approach as the previous
analysis can be used to recover virtually all secret keys, given sufficient IVs. First,
we assume jA−1, SA−1[A], SA−1[A+1], SA−1[A+2], SA−1[A+3] 11. Then, based
on this assumption, we search for IVs that, after round A+3, sets SA+3[1] = V
and SA+3[V ] = Z for V,Z < A + 4, V + Z ≥ A + 4, and we note the value of
jA+3 =W . Then, we save the value of V +Z, the value W and the value output
as the first word for that particular IV. With nontrivial probability, the value of
this word will be SV +Z [W +constV +Z ], where constV +Z is a constant term that
depends on the secret key, and the value V +Z. Since that value is independent
of the IV, we can collect numerous possible values of SV +Z [W + constV +Z ] for
various values of V + Z, and use that to first reconstruct constV +Z , and then
reconstruct SV +Z .

8 Related-Key Attacks on RC4

In this section, we discuss two related-key attacks based on weaknesses discussed
previously in this paper. They work within the following model: the attacker is
given a black box that has a randomly chosen RC4 key K inside it, an output
button and an input tape of |K| words. In each step the attacker can either press
the output button to get the next output word, or write ∆ on the tape, which
causes the black-box to restart the output generation process with a new key
defined as K ′ = K ⊕ ∆. The purpose of the attacker is to find the key K (or
some information about it).

8.1 Related-Key Attack Based on the Invariance Weakness

This attack works when the number of key words, is a power of two. It consists of
n stages where in stage q the qth bit of every key word is exposed12. The predicate
CheckKey takes as input an RC4 blackbox and a parameter q (the stage number)
and decides whether the key in the box is special 2q-exact. This purpose can be
10 This approach generalizes in the obvious way to longer IVs.
11 Note that SA−1[x] ≤ x for x ≥ A. This limits the size of the search required.
12 In fact, K[1] is fully revealed during the first stage (see Figure 4)
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achieved by randomly sampling key bits that are irrelevant for the 2q-exactness of
the key and estimating the expected length of q-patterned output. For a special
2q-exact key the expected length will be significantly longer than in a random
output (where it is less than 2) and thus CheckKey works in time O(1). The
procedure Expand takes as input an RC4 blackbox and a parameter q (the stage
number), assumes that the key in the box is special 2q−1-exact, and makes it
special 2q-exact. The method for doing so is by enumerating all the possibilities
for the qth bits (2
−1 such possibilities) and invoking CheckKey to decide when
the key in the box is special 2q-exact. Expand works in a slightly different way
for q = 1 and q = n. For q = 1, except for the LSBs, it determines the complete
K[0] (by forcing it to 1) and MSB(K[1]). For q = n, there is only one 2n-exact
key and consequently we can calculate the output produced from this key and
replace CheckKey by simple comparison. The time complexity of this stage is
O(2n+
) for q = 1 and O(2
−1) for any other q.

The total time required for the attack is thus O(2n+
) + (n − 1)O(2
) =
O(2n+
). For typical RC4n=8 key with 32 bytes, the complexity of exhaustive
search is completely impractical (2256), whereas the complexity of the new attack
is only O(2n+
) = O(240).

8.2 Related-Key Attack Based on the Known IV Weakness

In this section we use the known IV weaknesses to develop an efficient related
key attack on RC4.

The attack consists of 3 stages, where in the first two stages we gain informa-
tion on the first three words of the secret key, and in the third stage we iterate
down the key, and expose each word of the key successively. The stages of the
attack are as follows:

Step 1. This step attempts to find values of K[0], K[1] such that S1[1] = 1,
and reveal the value of K[2]. The procedure is to select random values of
(X,Y ), and for each such random value, write onto the tape 240 vectors
with the initial four words (X,Y, Z,W ) for Z ∈ {0, N/4, N/2, 3N/4} and
with 60 distinct random values of W , and for each such vector, press the
output button. If X and Y are such that S1[1] = 1 (for the modified key),
then the output of the first word will be biased towards 3+(K[2]⊕Z), unless
that value happens to be 1. Hence, for at least 3 of the selected values of
Z, the first word outputs will be biased towards one of const, const+N/4,
const + N/2, const + 3N/4. This is detectable, and also by examining the
value of const, the attacker can reconstruct the value of K[2]. We expect to
try N random values of (X,Y ) before finding a pair that is appropriate.

Step 2. This step attempts to find the values of K[0], K[1]. The procedure is to
write on the tape 60 vectors with the initial four words (X,Y, Z,W ), where
X, Y are the values recovered in the previous step, Z = (N − 3) ⊕ K[2],
and with 60 distinct random values of W , and for each such vector, press
the output button. This particular initial sequence assures that S2[1] = 1
and S2[2] = S1[0] = K[0], and hence the output will be biased towards K[0].
Once that has been recovered, K[1] can be computed.
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Step 3. This step iteratively recovers individual words of the key. It operates
by running a subprocedure that assumes that we have already recovered
(K[0], . . . ,K[A− 1]), and want to learn the value of K[A]. The procedure is
to write 60 vectors that have the property that, given the known values of
(K[0], . . . ,K[A − 1]), that SA−1[1] = X < A and X + SA−1[X] = A. With
60 such vectors, we can use the procedure shown in 7.1 to rederive K[A].

The total time required for the attack is thus (because 2n ≥ �):

Step1 + Step2 + (�− 3) ∗ Step3 = O(2n+8) + 26 + (�− 3)26 = O(2n+8)

For a RC4 key with n = 8 the time complexity is O(216) and is essentially
independent of the key length.

8.3 Comparing the Attacks

Both attacks are able to completely reconstruct the randomly chosen RC4 key13

with a number of chosen keys and amount of work that is significantly below
that of brute force (except for extremely short RC4 keys). The first attack scales
upwards as the key grows longer, while the time complexity of the second attack
is independent of key length, with a cross-over point at � = 8.

However, due to the second word weakness, future implementations of RC4
are likely to discard some prefix of the output stream, and in this case the second
attack becomes difficult to apply – output word x depends on 2x+1 permutation
elements immediately after KSA, and all the 2x+1 elements must occur before
r for the resolved condition to hold. On the other hand, the first attack extends
well, in that the probability of the output words being patterned drops modestly
as the number of discarded words increases.

9 Discussion

Section 3 describes an interesting weakness of RC4 which results from the sim-
plicity of its key scheduling algorithm. We recommend to neutralize this weakness
by discarding the first N words of each generated stream. After N rounds, every
element of S is swapped at least once and the permutation S and the index j
are expected to be “independent” of the initialization process.

Section 6 describes a weakness of RC4 in a common mode of operation in
which attacker visible IV’s are concatenated with a fixed secret key. It is easy
to extend the attack to other simple types of combination operators (e.g., when
we XOR the IV and the fixed key) with essentially the same complexity. We
recommend to neutralize this weakness by avoiding this mode of operation, or
by using a secure hash to form the key presented to the KSA from the IV and
secret key.

13 the first attack works only for some key lengths.



Weaknesses in the Key Scheduling Algorithm of RC4 19

0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

L
o
g
 o

f 
th

e
 p

ro
b
a
b
ili

ty
 o

f 
p
a
tt
e
rn

e
d
 p

re
fix

 o
f 
si

ze
 h

h − size of the patterned prefix

q=1
q=2
q=3
q=4

Fig. 8. This graph demonstrates the probabilities of special keys (2q-exact with K[0] =
1, MSB(K[1] = 1)) of RC4n=8,�=16 to produce streams with long patterned prefixes

A Applying the Attack to WEP

The Wired Equivalent Privacy (WEP) protocol is designed to provide privacy
to packet based wireless networks based on the 802.11 standard (see [LMSon]).
It encrypts by taking a secret key and a per-packet 3 byte IV, and using the
IV followed by the secret key as the RC4 key. Then, it transmits the IV, and
the RC4 encrypted payload. By using the results from Section 7.1, we can show
how, by examining enough ciphertext packets, to reconstruct the secret key for
WEP.

We assume that the attacker is able to retrieve the first byte of the RC4
output from each packet14. By the analysis done in section 7.1, to recover key
byte B, the attacker needs to know the previous key bytes, and then search for
IVs that sets up the permutation such that

14 Because of the payload format used with 802.11, the first byte of each plaintext
payload is a known constant, and hence the attacker is able to derive the first byte
of RC4 output.
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V = SB+3[1] < B + 3 (1)

V + SB+3[V ] = B + 3

With about 60 such IVs, the attacker can rederive the key byte with rea-
sonable probability of success. The number of packets required to obtain that
number of IVs depends on the exact IVs that the sender uses. Although the
802.11 standard does not specify how an implementation should generate these
IVs, common practice is to use a counter to generate them.

A.1 Analysis of IVs Generated by a Little Endian Counter

If the IVs are generated by a multibyte counter in little endian order (and hence
the first byte of the IV increments the fastest), then the attacker can search for
IVs of the form (B, 255, V ) for 3 ≤ B < 8. If he can collect these for 60 different
values of V , then he can derive the secret key with little work. This requires
approximately 4,000,000 packets.

A.2 Analysis of IVs Generated by a Big Endian Counter

If the IVs are generated by a multibyte counter in big endian order (and hence
the last byte of the IV increments the fastest), then the attacker can, as above,
search for IVs of the form (B, 255, V ). This requires approximately 1,000,000
packets to collect the requisite IVs, assuming that the counter starts from zero.

However, if the counter doesn’t start from zero, the attacker has an alter-
native strategy available to him. He can assume the first several bytes of secret
key, and then search for IVs that set up the permutation as in Equation 1. If
the attacker assumes the first two bytes of secret key, then for each initial IV
byte, there are approximately 4 settings of the remaining two bytes that set
up the permutation as required to rederive a particular key byte. Hence, with
approximately 1,000,000 packets, and an additional 216 work factor, he can still
rederive the key.

It is common practice in the industry to extend the length of the WEP secret
key (which is specified as 40 bit). Because the above attacks recover each key
byte individually, the time complexity of the attack grows linearly rather than
exponentially with the key length, and the data complexity of the attack remains
essentially constant. Consequently, even an extremely long key is not immune to
this attack.

Shortly after the publication of a preliminary version of this paper, Stub-
blefield, Ioannidis and Rubin ([SIR01]) implemented the attack and successfully
derived a 128 bit WEP key, by observing the network during a single evening.
Several optimization techniques can probably reduce the required amount of
data, to the number of packets sent on a fully loaded network, in less than 15
minutes.
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B Ciphertext-Only Distinguishers
Based on the Invariance Weakness

The distinguishers we presented in Section 5.1, as well as most of the distin-
guishers mentioned in the literature (for RC4 and other stream ciphers) assume
knowledge of the plaintext in order to isolate the XORed key stream.

However, in practice the only information the attacker has is typically some
statistical knowledge about the plaintext, e.g., that it contains English text.
Combining the non-random behaviors of the plaintext and the key-stream is not
always possible, and there are cases where XORing biased streams result with
a totally random stream (e.g. when one stream is biased in its even positions
and the other stream is biased in its odd positions). We prove here that if the
plaintexts are English texts, it is easy to construct a ciphertext-only distinguisher
from our biases. The intuition of this construction is that the biases described
in Section 5.1 are in the distribution of the LSBs, and consequently they can be
combined with the non-random distribution of the LSBs of English texts.

There are many major biases in the distribution of the LSBs of English texts,
and they can be combined with biases of the key-stream words in various ways.
In Theorem 3, we show how to combine the distribution of the first LSB of the
RC4 output stream, with the first order statistics of English texts15 :

Theorem 3. Let C be the ciphertext generated by RC4 from a random key and
the ASCII representation of plaintexts, distributed according to the first order
statistics of English texts. Let p be the probability of a random key to be special
2-exact. Then C can be distinguished from a random stream by analyzing the
first few words of about 200

p2 different RC4 streams.

For example, for RC4n=8 with 8 byte keys, p = 2−16, which implies a reliable
ciphertext-only distinguisher that works with less than 240 data. The proof of
Theorem 3 is based on the observation that the LSB of a random English text
character is zero with probability of about 55%. The formal proof is omitted due
to space limitations.

It is important to note that Theorem 3 does not use all the statistical infor-
mation which is available in either the key-stream or the plaintext distributions,
and consequently does not represent the best possible attack.

C The Sampling Resistance of RC4

Most of the Time/Memory/Data tradeoff attacks on stream ciphers are based
on the following paradigm. The attacker keeps a database of [state,output] pairs
(sorted by output) and lookups every subsequence of the output stream in this
database. When a (sufficiently long) database sequence is located in the output,

15 Since the purpose of the theorem is only to demonstrate this approach, we ignore
the fact that the distribution of the first characters in an English sentence differs
from the distribution of mid-text characters.
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the attacker can conclude that the actual state is the one stored along with this
sequence and predict the rest of the stream.

A drawback of this approach is that the large database must be stored in a
hard disk(s) whose random access time is about a million times slower than a
computational step. To improve that attack we can keep on disk only states that
are guaranteed to produce outputs with some rare but easy recognizable property
(e.g., starting with some prefix α). In this case only output sequences that have
this property have to be searched in the database, and thus the expected time
and the expected number of disk probes is significantly reduced.

In general, producing a pair [state,output] with such a rare property costs
much more than producing a random pair. O( 1p ) random states are required to
find a single pair, where p is the probability of a random output to have this prop-
erty. However, if we can efficiently enumerate states that produce such outputs,
the number of sampled states decreases dramatically, and this method can be
applied without significant additional cost during the preprocessing stage. The
sampling resistance of a stream cipher provides a lower bound on the efficiency
of such enumeration.

Such an attack can be applied to RC4 in two ways, based on the KSA and
PRGA parts. An attack on the generation part constructs a database of pairs
[RC4 state, output substring] and analyzes all the substrings along a single out-
put stream. The database construction is very simple since it is easy to enumerate
states which produce outputs that have some constant prefix. However, this enu-
meration seems to be useless due to the huge effective key of this part (1684 bits)
which makes such a tradeoff attack completely impractical. A more promising
approach is based on the KSA part which uses a key of 40-256 bits and might be
vulnerable to tradeoff attacks. In this case, the pairs in the database are [secret
key, prefix of the output stream], and the attack requires prefixes from a large
number of streams (instead of a single long stream).

The correlation described in Section 4 provides an efficient sampling of keys
that are more likely to produce output prefixes of the patterned type specified
above (predictable mod b).

For example, consider the problem of samplingM keys which are transformed
by the KSA into streams whose first five words are fixed ( mod 16). This property
of random streams has probability of 2−20, and the expected number of disk
probes during the actual attack is reduced by this factor. For stream ciphers with
high sampling resistance, such a filter would increase the preprocessing time by
a factor of one million, as one would have to sample a million random keys in
order to find a single “good” key. For RC4 (due to the invariance weakness),
the preprocessing time increases by a factor of less than four, as more than one
quarter of the exact special keys produce such streams, which have this fixed
pattern. Consequently, the preprocessing stage is accelerated by a factor of 218.

To summarize this section, we proved that RC4 has relatively low Sampling
Resistance, which greatly improves the efficiency of tradeoff attacks based on its
KSA.
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D Deriving the Secret Key
from an Early Permutation State

Given the values SA[0], . . . , SA[A − 1], one method to find all the values of
K[0], . . . ,K[A− 1] that result in such a permutation is:

i = j = 0
S = [0, 1, . . . , N − 1]
For i = 0 . . . A− 1

X = S−1[SA[i]]
If i < X < A

Branch over all values of 0 ≤ X < A s.r. X ≥ i or
S[X] 
= SA[X], running the remaining part of this
algorithm for all such values.

K[i] = X − j − S[i]
j = X
Swap(S[i], S[j])

Verify that [S[0], . . . , S[A− 1]] = [SA[0], . . . , SA[A− 1]]

The number of times this algorithm will perform an iteration is bounded by
Aλ+1, where λ if the number of values 0 ≤ x < A where SA[x] < A. Because λ
is typically quite small, this algorithm is typically efficient.

An algorithm with a better run time lower bound could be given by using
the values of SA[A], . . . , SA[N − 1].
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Abstract. SSC2 is a stream cipher that operates by XORing the output
of two “half-ciphers”. The first half-cipher is constructed from a linear
feedback shift register (LFSR) with a non-linear filter. The second half-
cipher is constructed from a lagged Fibonacci generator (LFG) and a
multiplexor that chooses values from the Fibonacci register. The second
half-cipher has a small cycle length π ≈ 252. The initial state of the
LFSR is derived by performing a fast correlation attack on the sequence
resulting when XORing the key-stream at an interval of π words (thus
cancelling the effect of the LFG). This attack requires around 225 words
of this sequence and a few hours of computation. The initial state of the
LFG is then derived from around 15300 outputs using around one second
of computation.

Keywords: SSC2, fast correlation attack.

1 Introduction

SSC2 is a stream cipher proposed by Zhang, Carroll and Chan [2]. The cipher
is designed for software implementation and is very fast. This paper describes
a practical cryptanalysis of SSC2 that requires around 225 words of known key-
stream (from a run of 252 words) and a few hours work on a 250 MHz processor
with 100 MB of memory.

SSC2 is based on a linear feedback shift register (LFSR) and a lagged Fibonacci
generator (LFG). An LFSR consists of a register that stores a set of bits called
the state, and a function that is linear modulo 2. This function updates the state
bit-by-bit. An LFG consists of a register which stores a set of integers modulo
N (once again called the state) and a function that is linear modulo N . This
function updates the state integer-by-integer. In SSC2, the modulus is N = 232,
and the integers are stored as 32-bit blocks called words.

SSC2 achieves its speed by using 32-bit operations. The stream is derived
from a 127-bit LFSR, a 17-word LFG and a multiplexor that chooses values
from the register of the LFG. The 127-bit register for the LFSR is stored in four
32-bit words (the extra bit is forced to 1 in the filter function). After the states
of the LFSR and LFG are initialised, the following steps are repeated to produce
each word of output:

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 25–37, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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1. 32-bits of the LFSR state are updated simultaneously. A non-linear filter
(NLF) computes a 32-bit output Ni from the four words in the state of the
LFSR.

2. The LFG state is updated. The upper 16-bits and lower 16-bits of the LFG
output are swapped to form Li.

3. The multiplexor uses the four most significant bits (MSBs) of the updated
word to choose one of 16 values in the LFG state to be the output Mi.

4. The output of the cipher is Zi = (Li +Mi mod 232)⊕ Ni, where ⊕ denotes
XOR.

The value Ni is called the output of the LFSR half-cipher, while Vi = (Li +
Mi mod 232) is called the output of the LFG half-cipher.

Previous Results. In the rump session of Crypto 2000, Rose and Hawkes [6]
reported on correlations between the least significant bits (LSBs) of certain words
output from SSC2. They also noted that the LFG has a small period π = 17·231 ·
(217 − 1) ≈ 252. Computing Z ′

i
def= Zi ⊕ Zi+π = Ni ⊕ Ni+π, allows the LFSR to

be attacked in isolation. The correlation in the LSBs of Z ′
i allows an attacker to

distinguish the output of SSC2 from a random bit stream. Another analysis by
Hawkes and Rose [7] found an attack on the LFSR half-cipher in isolation that
requires 382 words and around 242 time. Bleichenbacher and Meier [1] found an
attack on the entire cipher that finds the initial state of the LFSR using around
252 words of known key-stream with around 275 time. This attack exploits the
small period π. Following this, the initial state of the LFG is found using around
232 known outputs of the LFG half-cipher with around 275 time.

Concurrent Results. Independently, Fluhrer, Crowley and Harvey had also
identified a number of correlations in the LFSR half-cipher [4], and give other at-
tacks. They noticed that there are actually two different correlations, apparently
equally valid, with the LSB of the Ni.

New Results. The first part of the attack in this paper exploits the small
period of the LFG by performing a fast correlation attack on the stream Z ′

i,
based on the correlation noted in [6]. This part of the attack requires around
225 words of known key-stream (from a run of 252 words) with a few hours of
processing time on a 250 MHz Sun UltraSPARC (see Section 3). The attack
applies simple techniques that increase the accuracy and speed of any fast cor-
relation attack. After the output of the LFSR half-cipher is removed, the attack
exploits properties of the LFG noted in [1] to identify when the multiplexor has
selected specific words in the LFG register. This information is used to recon-
struct the initial state of the LFG (Section 4). This part of the attack requires
around 15300 known outputs of the LFG half-cipher (presumed already known
from the previous phase) and around a second of processing on a 250 MHz Sun
UltraSPARC.

2 A Description of SSC2

LFSR half-cipher. The LFSR state is stored as four 32-bit words denoted
(Xi+3, Xi+2, Xi+1, Xi). The state is updated to (Xi+4, Xi+3, Xi+2, Xi+1) by
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computing

Xi+4 = Xi+2 ⊕ (Xi+1 << 31)⊕ (Xi >> 1),

where ‘<<’ denotes a zero-fill left shift and ‘>>’ denotes a zero-fill right shift.
The least significant bit of Xi is ignored. If this sequence were converted to a
bit-stream bt, then the bit-sequence would satisfy the linear recursion:

bt+127 = bt+63 + bt mod 2.

The corresponding characteristic polynomial is x127+x63+1. This polynomial is
irreducible modulo 2, which means that the bit sequence has a period of (2127 −
1). The LFSR is implemented using a 4-word array S[1], . . . , S[4] containing
Xi+3, . . . , Xi. At each clock, the LFSR computes A = S[2] ⊕ (S[3] << 31) ⊕
(S[4] >> 1). The values are shifted up (S[4] ← S[3], S[3] ← S[2], S[2] ← S[1])
and the value of S[1] is set to A. After the LFSR is updated, the NLF output
Ni is computed. The NLF uses a variety of operations: XOR; modular addition;
SWAP(A): swaps the upper 16-bits and lower 16-bits of A; and X̂i: which denotes
the word Xi with the LSB forced to 1.

NLF Algorithm
1 A ← Xi+3 + X̂i mod 232, with c1 ← carry;
2 A ← SWAP(A);
3 if (c1 = 0) then A ← Xi+2 +A mod 232 with c2 ← carry;
4 else A ← (Xi+2 ⊕ X̂i) +A mod 232 with c2 ← carry;
5 Ni ← (Xi+1 ⊕ Xi+2) +A+ c2 mod 232;

The LFG half-cipher. The LFG state consists of 17 words (Yi+16, . . . , Yi). The
state is updated to (Yi+17, . . . , Yi+1) using the recurrence:

Yi+17 = Yi+12 + Yi mod 232. (1)

The LFG is implemented using a 17-word array G[1], . . . , G[17]. The key schedul-
ing initialisesG[1], . . . , G[17] to the values Y16, . . . , Y0, and initialises two pointers
r and s to 17 and 5 respectively. The output Li is defined as Li = SWAP(Yi).
The LFG state is updated by computing

G[r] +G[s] = Yi + Yi+12 = Yi+17 mod 232,

and replacing the value of G[r] (which was Yi) with the value of Yi+17. The
values of r and s are then decreased by 1 (when r or s reaches 0, the value is
reset to 17). The output Mi is defined as

Mi = G[1 + (s+ (Yi+17 >> 28) mod 16)].

As a result of the reduction modulo 16, the formula for Mi in terms of the
sequence {Yi} changes according to the value of i mod 17. Now that Li, Mi

and Ni have been computed, SSC2 outputs Zi = ((Li +Mi mod 232) ⊕ Ni),
increments i and repeats the process. This paper does not address the issue of
obtaining the key from the initial states of the LFSR and LFG, so we do not
describe the key scheduling algorithm.
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3 Attacking the LFSR Half-Cipher

The attack on the LFSR half-cipher is an advanced fast correlation attack, ex-
ploiting an observed correlation between the least significant bit of the filtered
output words and five of the LFSR state bits. The attack is aided greatly by the
fact that the feedback polynomial of the LFSR is only a trinomial: x127+x63+1.
Meier and Staffelbach observed in [10] in 1989 “any correlation to an LFSR with
less than 10 taps should be avoided”.

3.1 Background: Fast Correlation Attacks

The seminal work on Fast Correlation Attacks is [10], and another paper which
explains them and explores some heuristic optimisations is [5].

Many stream ciphers have an underlying Linear Feedback Shift Register,
and produce output by applying some nonlinear function to the state of the
register; many schemes which appear different in structure are equivalent to this
formulation. SSC2’s LFSR half-cipher is such a construction.

If the nonlinear function is perfect, there should be no (useful) correlation
between the output of the generator and any linear function of the state bits.
Conversely, if there is a correlation between output bits and any linear com-
bination of the state bits, this may be used by a fast correlation attack to
recover the initial state. Consider the output bits of the generator, {Bi}, to
be outputs from an LFSR, {Ai}, modified by erroneous bits {Ei} with some
probability P < 0.5. The probability of error P is the opposite of the known
correlation. Put simply, the technique of a Fast Correlation Attack utilises the
recurrence relations obeyed by the Xi to identify particular bits in the output
stream which have a high probability of being erroneous, and correct (flip) them.
To do this, the attack computes (Bj +

∑
i∈T Bi mod 2), for each recurrence re-

lation Aj +
∑

i∈T Ai ≡ 0 (mod 2), (these are also called parity check equations).
The error probability for bit j: P (Bj 	= Aj), is computed based on the number
of recurrence relations (Bj +

∑
i∈T Bi ≡ 0 mod 2) satisfied and the number of

recurrence relations unsatisfied. If there are enough bits in the output stream
for the given P , this process will eventually converge until a consistent LFSR
output stream remains. Linear algebra is then used to recover the corresponding
initial state of the LFSR.

3.2 Fast Correlation Attack on SSC2

Recall that π = 17 ·231 ·(217−1) is the period of the Lagged Fibonacci Generator
half-cipher. If two segments of output stream π apart are exclusive-ored together,
the contributions from the LFG half-cipher cancel out, leaving the exclusive-or
of two filtered LFSR streams to be analysed.

Let Z ′
i = Zi⊕Zi+π = Ni⊕Ni+π. Ni exhibits a correlation to a linear function

of the bits of the four-word state Si. Define l(S) = S[1]15 ⊕ S[1]16 ⊕ S[2]31 ⊕
S[3]0 ⊕ S[4]16, where the subscript indicates a particular bit of the word (with
bit 0 being the least significant bit). Then P (LSB(Zi) = l(Si)) = 5/8. (Note that
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this correlation is incorrectly presented in [1]). Intuitively, three of these terms
are the bits that are XORed to form the least significant bits of Ni; the other
two terms contribute to the carry bits that influence how this result might be
inverted or affected by carry propagation. Obviously Ni+π is similarly correlated
to the state Si+π, but because the state update function is entirely linear, the
bits of Si+π are in turn linear functions of the bits of Si. So LSB(Z ′

i) exhibits a
correlation to L(Si) = l(Si)⊕ l(Si+π).

Fluhrer [4] shows that there is actually a second linear function l′(S) =
S[4]15 ⊕ S[1]16 ⊕ S[2]31 ⊕ S[3]0 ⊕ S[4]16 with the same correlation. We find it
interesting that in all the test data sets we have used, admittedly a limited
number, our program always “homes in” on l(S) and not l′(S). The existence
of this second correlation makes it harder for the program to converge to the
correct correlation and explains why more input data is required than would be
inferred from previous results such as [5]. We are continuing to explore this area.

The words of the LFSR state are updated according to a bitwise feedback
polynomial, but since the wordsize (32 bits) is a power of two, entire words of
state also obey the recurrence relation, being related by the 32nd power of the
feedback polynomial.

If the two streams Zi and Zi+π were independent, then the correlation proba-
bility would be P (LSB(Z ′

i) = L(Si)) = 17/32. However these streams are clearly
not independent and, experimentally, we have determined that there is a “second
order” effect and in practice the error probability is approximately 0.446, rather
than the expected 0.46875. This fortuitous occurrence makes the fast correlation
attack more efficient, and counters to some extent the confusion caused by the
existence of two correlation functions.

The attack on the LFSR half-cipher proceeds by first gathering approxi-
mately 32,000,000 words Z ′

i, of which only the least significant bits are utilised
in the attack. This requires two segments of a single output stream, separated
by π. We then perform fast correlation calculations, to attempt to “correct” the
output stream, on different amounts of input varying between 29,000,000 bits
and 32,000,000 bits. Empirically, about 2/3rds of these trials will terminate and
produce the correct output L(Si); some of the trials might give an incorrect
answer, while others will “bog down”, performing a large number of iterations
without correcting a significant number of the remaining errors. The sections
below describe the fast correlation attack itself in some detail. If the attack is
thought to have corrected the output, linear algebra is used to relate this back
to the initial state S0. The sequence Z ′

i = Zi ⊕ Zi+π can be reconstructed from
the initial state to verify that S0 is correct. If S0 is incorrect or the attack “bogs
down”, then a different number of input bits will be tried. Thanks to the numer-
ous optimisations discussed below, a single fast-correlation computation when
successful takes about an hour on a 250MHz Sun UltraSPARC (not a particu-
larly fast machine by today’s standards) and uses about 70MB of memory. When
a computation “bogs down” it is arbitrarily terminated after 1000 rounds, and
this takes a few hours. For a particular output set, the full initial state is often
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recovered in as little as one hour, and it is very unlikely that the correct state
will not be found within a day.

3.3 Increasing the Accuracy of Fast Correlation Attacks

The discussion below applies mostly to LFSRs with low weight feedback, in
particular where a trinomial feedback is in use.

A number of papers have been written since [9] applying heuristic techniques
to speeding up or increasing the accuracy of the basic technique of fast correlation
attacks. These include [3,5,8,11]. We first spent a lot of time examining some
of these techniques, and variation in their basic parameters, to gain an intuitive
understanding of what is useful and what is not.

The original technique of [9] distinguished between “rounds” and “itera-
tions”, where a round started with each of the bits having the same a priori
error probability. A new probability was calculated for each bit based on the
probabilities of the other bits involved in parity check equations. Subsequent
iterations performed the same calculations based on the updated probabilities,
until enough bits had error probabilities exceeding some threshhold, or a pre-
determined number of iterations had been exceeded. We found the arguments
in favour of performing iterations unsatisfying, since it seemed that the new
probabilities were just self-reinforcing. Eventually, we made structural changes
to our program which made it impossible to do iterations, and found an overall
increase in accuracy.

The basic correlation algorithm has the error probability P as an input pa-
rameter; P is kept constant throughout the computation, and the bit probabil-
ities are reset to P at the beginning of each round. In reality, the error prob-
abilities decrease with each round (at least initially), so this approach results
in inaccurate estimates for the bit probabilities. We found that as the real er-
ror probability approaches 0.5, then a constant value of P is unlikely to result
in a successful attack. The computation is more likely to be successful if P is
estimated at each round. For a given P , it is straightforward to calculate the
proportion of parity check equations expected to be satisfied by the data. This
process is easily reversible, too; having observed the proportion α of parity check
equations satisfied, it is easy to calculate the error probability P :1

δ = 1− 2α, P = 1
2 (1− δ1/3).

Since each round begins by counting parity check equations, it is a simple mat-
ter to calculate P for that round. This technique essentially forbids the use of
iterations, and obviates techniques like “fast reset”, but nevertheless speeds up
the attack and increases the likelihood of success.

We felt that having the greatest possible number of parity check equations
for each bit was important to the operation of the algorithm, so we performed a
one-time brute force calculation to look for low-weight multiples of the feedback

1 This formula is based on the check equations being trinomials.
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polynomial other than the obvious ones (the powers of the basic polynomial).
We found a number of them. As well as x127 + x64 + 1, the attack uses

x16129 + x4033 + 1, x12160 + x4159 + 1, x12224 + x8255 + 1,
x16383 + x12288 + 1, x24384 + x12351 + 1.

and all possible powers of these polynomials. For each bit, the parity checks with
that bit at the left, in the middle, and at the right, were all used. For 30,000,000
input bits, an average of 200 parity check equations applied to each bit.

Lastly, we made the observation that relatively early in the computation, a
significant number of bits satisfied all of the available parity check equations.
We called these fully satisfied bits. Experimentally we determined that when
more than a few hundred such bits were available, and if the computation was
eventually successful, they were almost all correct, so that any subset of 127 of
them had a high probability of forming a linearly independent set of equations
in the original state bits, which could then be solved in a straightforward man-
ner. Computationally, taking this early opportunity to calculate the answer is
a significant performance improvement. In a typical run with 30,000,000 bits of
input, 5,040 fully satisfied bits were available after 16 rounds, all of which turned
out to be correct, while the full computation required 64 rounds. This is not as
great an optimisation as it sounds, because the rounds get faster as the number
of bits corrected decreases (see below).

3.4 Increasing the Speed of Fast Correlation Attacks

At the same time as we were analysing the theoretical basis for improvements
in the algorithm, we also looked at purely computational optimisations to the
algorithm. When the probability of error of individual bits is variable, probability
computations are complex and require significant effort for each bit, as well as
the requirement to store floating-point numbers for each bit. When the error
probability P is assumed the same for all bits at the beginning of a round,
the computation is significantly eased. More importantly, the likelihood that
a particular bit is in error can be expressed as a threshhold of the number
of unsatisfied parity check equations, given the total number of parity check
equations for that bit, and the probability P .

The number of parity check equations available for a particular bit is least
near the edges of the data set, and increases toward the middle. During the
first pass over the data, the number of equations available for each bit is simply
counted (this is computationally irrelevant compared to actually checking the
equations) and the indexes where this total is different to that for the previous bit
is stored. Thus, it requires very little memory to derive the total number of parity
checks for a particular bit in subsequent passes. In each round, the first pass over
the data calculates (and stores) the number of unsatisfied checks for each bit.
From the total proportion of parity checks unsatisfied, P is calculated for this
round, and from that, threshhold values above which a bit will be considered to
be in error are calculated for each number of parity check equations. When P <
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0.4 it is approximately correct that more than half of the parity checks unsatisfied
implies that the probability of the bit being erroneous is greater than 0.5, and
the bit should be corrected. However, when P > 0.4, more equations need to be
unsatisfied before flipping a bit is theoretically justified. The algorithm’s eventual
success is known to be very dependent on these early decisions.

A pass is then made through the data, flipping the bits that require it. For
each bit that is flipped, the count of unsatisfied parity checks is corrected, not
only for that bit, but for each bit involved in a parity check equation with it.
The correction factor is accumulated in a separate array so that the correction
is applied to all bits atomically. Bits which have no unsatisfied parity checks are
noted. In the early rounds, this incremental approach doesn’t save very much,
but as fewer bits are corrected per round the saving in computation becomes
very significant.

Typically another 50% of the overall computation is then saved when the
count of fully satisfied bits significantly exceeds the length of the register, and
the answer is derived from linear algebra. The net effect of the changes described
in this and the previous section is a factor of some hundreds in the time required
for data sets of about 100,000 bits over a straightforward implementation. We
did not have time to find the speedup for larger data sets, as it would have
required too long to run the original algorithm.

4 Attacking the LFG Half-Cipher

This attack derives the initial state IV = (Y16, . . . , Y0) of the LFG from outputs
of the LFG-half cipher: Vi = Li +Mi mod 232 = Zi ⊕Ni . Much of the analysis
is based on dividing the 32-bit words into two 16-bit blocks: A = A′′‖A′. Note
that

Y ′
i+17 − Y ′

i+12 − Y ′
i ≡ 0 mod 216,

Y ′′
i+17 − Y ′′

i+12 − Y ′′
i ≡ fi mod 216,

where fi ∈ {0, 1}, denotes the carry bit to the upper half in the sum (Yi+Yi+12).
The value µi = (Yi+17 >> 28) chooses Mi from the set {Yi+1, . . . , Yi+17}:

Mi = G[1 + (s + µi mod 16)]. The value αi such that Mi = Yi+αi , is the
multiplexor difference. We always write µi in hexadecimal form, and αi in decimal
form. The particular word chosen depends on µi and s, where s is directly related
to value of i ≡ i mod 17. For example, if µi = 0, then αi = 12 unless i ∈ {4, 5},
in which case αi = 11.

4.1 Motivation

The attack exploits a property of outputs (Vi, Vi+12) with αi = αi+12 = 12.
These are called good pairs; all other pairs (Vi, Vi+12) are bad pairs. The initial
state can be derived from good pairs using the following observations.
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1. If (Vi, Vi+12) is good, then Mi = Yi+12, and Mi+12 = Yi+24, so

V ′
i+12 − V ′′

i ≡ (Y ′
i+24 + Y ′′

i+12)− (Y ′′
i+12 + Y ′

i + gi)
≡ Y ′

i+24 − Y ′
i − gi mod 216,

where gi ∈ {0, 1} is the carry bit from the lower half to the upper half in
the sum Vi = Li +Mi. Note that if an attacker is given a good pair, then
(Y ′

i+24 − Y ′
i ) can be derived from (V ′

i+12 − V ′′
i ) by guessing gi.

2. Every 16-bit half-word Y ′
i is a linear function (mod 216) of the half-word

initial state IV ′ = (Y ′
16, . . . , Y

′
0). Thus (Y

′
i+24 − Y ′

i ) is also a linear function
(mod 216) of IV ′. We say that the values (Y ′

i+24−Y ′
i ) are linearly independent

(LI) if the linear equations for (Y ′
i+24 − Y ′

i ) are linearly independent. If the
attacker knows a set of 17 LI values (Y ′

i+24 − Y ′
i ) then the values of IV

′ can
be determined by solving the system of linear equations.

3. Now, having obtained IV ′, all values Y ′
i in the sequence {Y ′

i } can be com-
puted. For each of the 17 good pairs, the value of Y ′

i+12 allows

Y ′′
i ≡ V ′

i − Y ′
i+12 mod 2

16

to be computed. Computing Y ′
i completes the word Yi = Y ′′

i ‖Y ′
i . The 17

equations for Yi (in terms of the complete initial state IV ) will also be LI, so
this system can be solved to find the initial state, and the attack is complete.

There remain two problems: guessing the 17 carry bits gi and identifying
good pairs.

4.2 Guessing the Carry Bits

The attack will have to try various combinations of values for gi before the
correct carry bits are found. The attack avoids trying all 217 combinations by
computing an accurate prediction pi for the value of gi. Note that if V ′

i < 215

then the carry from the sum (Y ′′
i +Y ′

i+12 mod 2
16) is more likely to be one than

zero. That is, we can predict that gi = 1. Conversely, if V ′
i ≥ 215 then the carry

gi is more likely to be zero than one. Based on this, the attack either sets pi = 1
when V ′

i < 215 or sets pi = 0 when V ′
i ≥ 215. Hence, rather that guessing the

carry bits gi, the attack guesses the 17 errors εi = pi⊕gi. The attack first guesses
that there are no errors (all εi = 0), then one error (one value of εi = 1), two
errors, and so forth. The accuracy of the prediction, P (pi = gi), depends on V ′

i .
Experimental results are shown in Table 1.

Table 1. Experimental approximation to the accuracy of the prediction, P (pi = gi),
as a function of the four MSBs of V ′

i .

The 4 MSBs of V ′
i 0,1 2,3 4,5 6,7 8,9 A,B C,D E,F

P (pi = gi) 0.96 0.83 0.7 0.56 0.56 0.69 0.8 0.93
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If all the pairs are good then there will be only a small number of errors.
When choosing the 17 LI values (Y ′

i+24 − Y ′
i ), the attack gives preference to

values with accurate predictions as there are fewer errors, and the attack will
be faster. As shown below, the attack has a small probability of choosing one
or more bad pairs. If the correct initial state is not found while the number of
errors is small, then this suggests that one of the pairs is bad, so our attack
chooses another set of 17 LI values (Y ′

i+24 − Y ′
i ).

4.3 Identifying Good Pairs

There are 16 possible values for αi, so we expect good pairs to occur every 162 =
256 words (on average). The problem is identifying good pairs. The trick is to
identify triples (Vi, Vi+12, Vi+17) with αi = αi+12 = αi+17 = 12. Bleichenbacher
and Meier [1] noted that if αi = αi+12 = αi+17, then

∆i
def≡ Vi+17 − Vi+12 − Vi mod 232 ∈ {0, 1,−216, 1− 216} = A.

A triple of outputs (Vi, Vi+12, Vi+17) that results in ∆i ∈ A is said to be valid,
because αi = αi+12(= αi+17) with probability close to one, (which fulfills part
of the requirement for a good pair).

Note that µi+17 ≡ µi+12 + µi + c (mod 16), where c ∈ {0, 1}, due to the
recurrence (1). Hence, the possible combinations for (µi, µi+12, µi+17) that result
in αi = αi+12 = αi+17 are those given in Table 2 (these are also noted in [1]).

Table 2. The possible combinations for (µi, µi+12, µi+17) that result in αi = αi+12 =
αi+17

(µi, µi+12, µi+17) (0,0,0) (0,F,0) (1,0,1) (F,0,F) (F,F,F)
Values of i i /∈ {4, 5, 9, 10} i = 9 i ∈ {9, 10} i= 4 i /∈ {4, 9}

αi 12 12 11 12 13

A valid triple that corresponds to a good pair is also said to be good; oth-
erwise the triple is said to be bad. If i = 4, then all valid triples are good, and
they are used in the attack. If i ∈ {5, 10}, then all valid triples are bad so these
triples are ignored. We currently do not have an efficient method of distinguish-
ing between the cases when (µi, µi+12, µi+17) = (0,F, 0) and (µi, µi+12, µi+17) =
(1, 0, 1), so the attack also ignores triples with i = 9.

If i /∈ {4, 5, 9, 10}, then a valid triple is equally likely to be either good or
bad: good when (µi, µi+12, µi+17) = (0, 0, 0), and bad when (µi, µi+12, µi+17) =
(F,F,F). Most of the bad triples are filtered out by examining the values of V ′

i

and

δi
def≡ V ′′

i+17 − V ′′
i+12 − V ′′

i mod 216,

νi
def= ((V ′′

i+12 − V ′
i mod 216) >> 12)

= the 4 MSBs of (V ′′
i+12 − V ′

i mod 216).
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Table 3. The probabilities of certain properties being satisfied in the two cases where
(µi, µi+12, µi+17) ∈ {(0, 0, 0), (F,FF)}

(µi, µi+12, µi+17) P (νi ∈ {0, 1,F}) P (δi ∈ {0, −1}) P (V ′
i ≥ 215 : δi = 0)

(0,0,0) 1 0.99 0.85
(F,F,F) 3

16 0.51 0.15

The attack discards valid triples with i /∈ {4, 5, 9, 10}, if
– νi /∈ {0, 1,F}, or
– δi /∈ {0, 1}, or
– V ′

i < 215 and δi = 0.

Following this, 0.99 × 0.85 = 0.84 of the good triples remain, while only 3
16 ×

0.51 × 0.15 = 0.024 of the bad triples remain. Thus, 0.024/0.84 = 0.028 (one in
36) of the remaining valid triples are bad. The bound on V ′

i (when δi = 0) can be
increased to further reduce the fraction of bad triples to good triples. However,
this will also reduce the number of good triples that remain so the attack would
require more key-stream.

LFG Half-Cipher Attack Algorithm

1. Find a set of triples with i /∈ {5, 9, 10} and ∆i ∈ A (valid triples). For i 	= 4,
discard triples if
– νi /∈ {0, 1,F},
– δi /∈ {0, 1}, or if
– δi = 0 and V ′

i < 215.
For each remaining triple, set pi = 1 if V ′

i < 215; else set pi = 0.
2. From these triples, find 17 LI values (Y ′

i+24 − Y ′
i ), for which P (pi = gi) is

high.
3. Guess the errors εi. If the number of errors gets large, then return to Step 2.
4. Compute IV ′ from (Y ′

i+24 − Y ′
i ) ≡ V ′

i+12 − V ′′
i − (pi ⊕ εi) mod 216.

5. Compute Y ′′
i ≡ V ′

i − Y ′
i+12 mod 2

16, to obtain Yi.
6. Compute the entire state IV from Yi. Return to Step 3 if IV produces the

incorrect output.

4.4 Complexity

The number of outputs required for the attack is affected by three factors.

1. The probability that a triple is valid. Recall that µi+17 ≡ µi+12 + µi +
c (mod 16). To obtain (µi, µi+12, µi+17) = (0, 0, 0), it is sufficient to have µi =
0, µi+12 = 0 and c = 0, so the combination (0,0,0) occurs with probability
2−9. Similarly, (µi, µi+12, µi+17) = (F,0,F) and (µi, µi+12, µi+17) = (F,F,F)
occur with probability 2−9 each.
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2. The probability that a valid triple is good. Of the good triples with
i /∈ {4, 5, 9, 10}, only 0.84 proceed to Step 2, while all of the good triples
with i = 4 proceed to Step 2. So the probability of a good triple getting to
Step 2 is 2−9 × ( 1317 × 0.84 + 1

17 × 1).
3. Finding 17 LI values of (Y ′

i+24 −Y ′
i ) from the good triples. Assuming

that 17 good triples get to Step 2 there is no guarantee that the values
(Y ′

i+24 −Y ′
i ) are LI. However, we found that a set of 21 values of (Y

′
i+24 −Y ′

i )
is typically sufficient to find 17 that are LI.

Therefore, the average number of outputs required for the attack on the LFG
half-cipher is around

21 ·
[(

13
17

× 0.84 +
1
17

× 1
)

× 2−9
]−1

= 15300.

There is a large variation in the time/process complexity, as the attacker will
have to return to Step 2 if a bad triple has been selected. Our implementation
of the attack on a 250MHz Sun UltraSPARC typically takes between 0.1 and 10
seconds.

5 Conclusion

We have demonstrated that attacks on SSC2 are computationally feasible, given
a sufficient amount of key-stream. The attack requires portions from a (currently)
prohibitive amount of continuous key-stream (around 252 continuous outputs).
However, we suggest that the existence of this attack indicates that SSC2 is not
sufficiently secure for modern encryption requirements.
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Abstract. The encryption system E0, which is the encryption system
used in the Bluetooth specification, is examined. In the current paper,
a method of deriving the cipher key from a set of known keystream bits
is given. The running time for this method depends on the amount of
known keystream available, varying from O(284) if 132 bits are available
to O(273), given 243 bits of known keystream.
Although the attacks are of no advantage if E0 is used with the rec-
ommended security parameters (64 bit encryption key), they provide an
upper bound on the amount of security that would be made available by
enlarging the encryption key, as discussed in the Bluetooth specification.

1 Introduction

We give algorithms for deriving the initial state of the keystream generator
used within E0 given some bits of keystream with less effort than exhaustive
search. From this, we derive a method for reconstructing the session encryption
key used by E0 based on some amount of keystream output. E0 uses a two level
rekeying mechanism, using the key to initialialize the level 1 keystream generator
to produce the initial state for the level 2 keystream generator, which produces
the actual keystream used to encrypt the data.

We use a known keystream to reconstruct the initial state for the level 2
keystream generator, which we then use to reconstruct the initial state for the
level 1 keystream generator, from which we can directly deduce the encryption
key. Reconstructing the state of the level 2 keystream generator takes an ex-
pected O(276) to O(284) work effort (based on the amount of known keystream
available). Another attack with even more keystream available takes O(272)
work.

By reconstructing the state from either 1 or 2 packets that are encrypted
during the same session, we can reconstruct the state of the level 1 keystream
generator in an expected O(281) or O(251) time, which gives a total of O(273)
to O(284) work effort.

This paper is structured as follows. In Section 2, the E0 keystream genera-
tor, and how it is used within the Bluetooth system is described. In Section 3,
previous analysis and results are summarized. Section 4 presents our base attack
against the keystream generator, Section 5 describes how to use it against the

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 38–48, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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level 2 generator. Section 6 deals with another approach to attack the keystream
generator and the second level, if a huge amount of known keystream is available.
Section 7 describes the basic attack on the first level of E0 , given one state of
the level 2 generator, while Section 2 deals with an attack given two such states.
Section 9 comments on attacking the full E0 system. Section 10 concludes and
discusses the ramifications on the Bluetooth system.

2 Description of E0

E0 is an encryption protocol that was designed to provide privacy within the
Bluetooth wireless LAN specification. When two Bluetooth devices need to com-
municate securely, they first undergo a key exchange protocol that completes
with each unit agreeing on a shared secret, which is used to generate the en-
cryption key (KC). To encrypt a packet, this private key (KC) is combined with
a publicly known salt value (EN RAND) to form an intermediate key (K ′

C)
1.

Then, K ′
C is used in a linear manner, along with the publicly known values, the

Bluetooth address, and a clock which is distinct for each packet, to form the
initial state for a two level keystream generator.

The keystream generator consists of 4 LFSRs with a total length of 128 bits,
and a 4 bit finite state machine, refered to as the blender FSM. For each bit
of output, each LFSR is clocked once, and their output bits are exclusive-or’ed
together with one bit of output from the finite state machine. Then, the 4 LFSR
outputs are summed together. The two most significant bits of this 3-bit sum
are used to update the state of the finite state machine. We will refer to the 25
bit LFSR as LFSR1, the 31 bit LFSR as LFSR2, the 33 bit LFSR as LFSR3 and
the 39 bit LFSR as LFSR4. We will also refer to the finite state machine as the
blender FSM. The generator is shown in Figure 1. Note that the least significant
bit (LSB) of the sum of the four LFSRs is their bit-wise XOR.

There are logically two such keystream generators. The key of the first level
keystream generator is shifted into the LFSRs, while clearing the blender FSM.
Then, 200 bits are generated and discarded. Then, the output of this keystream

Fig. 1. The E0 keystream generator.

1 The attacks in the current paper actually provide the value of K′
C .



40 Scott Fluhrer and Stefan Lucks

generator is collected, and is used to initialize the LSFRs of what we call the
second level keystream generator, which is structurally identical to the first level
keystream generator. This initialization is done by collecting 128 output bits,
parallel loading them into the LSFRs, and making the initial second level FSM
state be the final first level FSM state.

This output of this second generator is then used as an additive stream cipher
to encrypt the packet.

3 Description of Previous Work

In a sci.crypt.research posting [6], Markku-Juhani O. Saarinen showed an attack
that rederived the session key. This attack consisted of guessing the states of the
3 smaller LFSRs and the blender FSM, and using those states and the observed
keystream to compute whether there is a consistent output from LFSR4 that is
consistent with that assumption.

In the original posting, he estimated the attack to have overall complexity
of O(2100). However, he assumed that only 125 bits of keystream were available,
and so he assumed a significant amount of time would be spent checking false
hits. Since significantly more keystream is available within a packet, the true
complexity is closer to O(293) expected.

Our attacks can be viewed as refinements of Saarinen’s attack by taking
the same basic approach of guessing the initial states of part of the cipher,
and checking for consistency. However, our attacks take advantage of additional
relationships within E0 and use them to gain some performance.

Ekdahl and Johansson have shown in [2] how to extract the initial state
from the keystream generator used in E0 given O(261) time and O(250) known
keystream. Their attack works by exploiting some weak linear correlations be-
tween the outputs of the LFSRs and the keystream output to verify if a guess on
one of the LFSRs is accurate. Previous to that, Hermelin and Nyberg published
in [4] an attack which recovered the initial state with O(264) work and O(264)
known keystream. However, these are theoretical attacks as they require a far
larger amount of consecutive keystream output than is available.

A time-spaces tradeoff attack has been described by Jakobsson and Wetzel
[5]. Given N key streams and running time T , it is possible to recover one of
the N keys if N ∗ T > 2132. A similar attack on the A5 keystream generator has
been previously described by Golic [3].

Our attacks resemble a general type of attack, the linear consistency attack,
which has been described as early as 1989 by Zeng, Yang, and Rao [7].

4 Base Attack on the E0 Keystream Generator

The base attack rederives the initial settings of the LFSRs, given a limited
(132 or so bits) keystream output. We will later show how this attack can be
separately optimized for both levels of the keystream generators. For this attack,
you assume the initial settings of the blender FSM and the contents of LFSR1
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and LFSR2, and maintain for each state the current settings of the blender
FSM, and a set L of linear equations on the LFSR3 and LFSR4 output bits.
We will refer to those output bits as LFSR3n and LFSR4n.

First, you initialize the set L to empty. Then, you perform the below depth-
first search:

1. Call the state we are examining n. Compute the exclusive-or of the output
n of LFSR1 and LFSR2, the next output of the blender FSM (based on
the current state), and the known keystream bit Zn. If our assumptions are
correct to this point, this must be equal to the exclusive-or of the outputs
of LFSR3 and LFSR4.

2. If the exclusive-or is zero, then we branch and consider the cases that both
LFSR3 and LFSR4 output a zero here, and that they both output a one.
When we assume a zero, we include in L the two linear equations LFSR3n =
0 and LFSR4n = 0, and when we assume a one, we include in L the two
linear equations LFSR3n = 1 and LFSR4n = 1.

3. If the exclusive-or is one, then we include in L the single linear equation
LFSR3n �= LFSR4n

4. If n ≥ 33, then we include in L the linear equation implied by the LFSR3
tap equations. If n ≥ 39, then we include in L the linear equation implied
by the LFSR4 tap equations. In both cases, we check to see if the new
equations are inconsistent with the equations already in L. If they are, then
some assumption we made is incorrect and we backtrack to consider the next
case.

5. Compute the next state of the blender FSM. This is always possible, as the
next state depends on the current state (which we know) and the number of
LFSRs that output a one, which we know.

6. If n is more than 132, then we have found with high probability the initial
state of the encryption engine. If not, then we continue this search for state
n + 1

There are two ideas behind this algorithm. The first is that the next state
function for the blender FSM depends only on the number of LSFRs that output
a one. So, when we assume that the outputs of LFSR3 and LFSR4 differ, we
need not decide which one outputs a zero and which one outputs a one – instead,
we can just note the fact that they differ and continue the search.

The other idea is that systems of linear equations in GF (2) can be quite
efficiently examined for contradictions.

How efficient is this attack? We provide some heuristic arguments. First,
consider the case that all the assumed bits of LFSRs 1 and 2 and the blender
state are correct.

With every step we learn if the sum S of the two output bits is either (a)
S ∈ {0, 2} or (b) S = 1. Both cases (a) and (b) are equally likely.

Note Prob[S = 1] = 0.5, and Prob[S = 0] = Prob[S = 2] = 0.25. If S = 1,
we learn one linear equation on the state bits of LFSRs 3 and 4 (namely the
XOR of the two current output bits). If S ∈ {0, 2}, we branch and consider both
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S = 0 and S = 2. Both S = 0 and S = 2 provide us with two linear equations
on the state bits of LFSRs 3 and 4.

On the average, we expect to learn 1.5 linear equations and branch 0.5 times
for each step. Once we have learned in total 33+39=72 equations, we are in a leaf
of the branch tree and know or “have guessed” all bits in the system. The number
of such leaves describes the amount of work. (Note that this analysis is based on
the heuristic assumption that no equations are redundant or contradictory, or
rather, that the effects of redundant and contradictory equations on the amount
of work cancel out.)

So, our branch tree has an “average” size determined by 272/3 = 224 leaves.
We initially assumed 60 bits and can expect to have made a correct assumption
after trying 259 times, which gives us a running time of O(259+24) = O(283) on
the average.

Experiments demonstrate that our heuristic arguments on the efficiency of
the attack are reasonable, though perhaps a bit optimistic. For a random incor-
rect guess of initial state, the procedure examines an average of approximately 60
million (226) states before terminating. Thus we can reconstruct the encryption
engine state in

O(285) expected time.

However, for both the first level and the second level keystream generator, we
can take advantage of special conditions that allow us to further optimize the
attack.

5 Attack on the Second Level E0 Keystream Generator

To optimize the attack against the second level keystream generator (which
produces the observed keystream directly), we note that the base attack is more
efficient if the outputs of LFSR3 and LFSR4 exclusive-or’ed together happens
to have a high hamming weight. To take advantage of this, we extend the attack
by assuming that, at a specific point in the keystream, the next n + 1 bits of
LFSR3 exclusive-or’ed with LFSR4 are n ones followed by a zero, where n will
be less than the length of the LFSRs. Since LFSR outputs are effectively random
and independent with such a length (since both LFSRs can generate any n + 1
bit pattern at any time with approximately equal probability if n < 32), the
probability a n + k length output contains such a sequence is approximately
k · 2−n (for k 	 2n).

If the assumption that the LFSRs produce such an output at the specific point
in the keystream is false, we will fail to discover the internal state. However, the
amount of work required to make that determination turns out to be rather less
than O(285−n), and so if we have 2n or more starting places to test out, we
will find a place where the above procedure discovers the initial state with high
probability.

The expected amount of time the base attack will take when we precondition
the assumed outputs of LFSR3 and LFSR4 can be experimentally obtained. The
results are given in Table 1, together with the expected time for the full search.
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Table 1. The expected complexity and plaintext required for various values of n. Base
Search Time is the expected number of nodes traversed in a single run of the base
attack. Expected Plaintext Required is the expected amount of plaintext we need to
prosecute the attack. Expected Search Time is the expected total search time taken.

n Base Search Time Expected Plaintext Required Expected Search Time
5 224.8 165 bytes 283.8

10 223.5 1157 bytes 282.5

15 222.1 33k 281.1

20 220.5 1M 279.5

25 218.8 32M 277.8

30 217.1 1G 276.1

Looking through this table, we can see that modest amounts of keystream reduce
the expected work somewhat, however, vast quantities of keystream reduce the
expected work only slightly further.

Formally, the algorithm is:

1. Select a position in the known keystream that is the start of more than 132
consecutive known bits.

2. Cycle through all possible combinations of 4 bits of blender FSM state, 25
bits of LFSR1 state and the last 30 − n bits of LFSR2 state

3. Compute the initial n + 1 bits of LFSR2 state that is consistent with the
exclusive-or of LFSR3 and LFSR4 consisting of n ones and then zero.

4. Run the base attack on that setting. Stop if it finds a consistant initial
setting.

The above algorithm runs the base attack 259−n times and has a 2−n prob-
ability of success for a single location.

Note that, even though a single packet has a payload with a maximum of
2745 bits, we can have considerably more than 2745 bits of known keystream,
if we know the plaintext of multiple packets. All the next phase of the attack
needs to know is the initial state of the second level keystream generator for a
packet – it does not matter which. If we have multiple packets, we can try all of
them, and we will be successful if we manage to find the initial state for any of
them.

6 Another Attack on the Second Level Generator

Given a huge amount of known keystream, there is another technique to attack
the second level keystream generator more efficiently. The basic attack requires
to assume the blender state and the states of both LFSR1 and LFSR2 (i.e.
4 + 25 + 31 bits = 60 bits). Now, we start with assuming only the blender and
LFSR1 states (29 bits), at the beginning of the attack. During the course of the
attack, we continue to make assumptions on how the blender state is updated.
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Denote the sum of the outputs of LFSR2, LFSR3, and LFSR4 by S. Obvi-
ously, S ∈ {0, 1, 2, 3}. Since we always know (based on previous assumptions) the
current blender and LFSR1 state, we only need to know S in order to compute
the next blender state. The current output bit tells if S is odd or not. Thus, we
know if either (a) S in {0, 2} or (b) S in {1, 3}.

Both cases (a) and (b) are equally likely. And in both cases we learn one
linear equation, namely we learn the XOR of the output bits of the LFSRs 2–4.

Now consider the conditional probabilities Prob[S=2|(a)] and Prob[S=1|(b)].
Assuming the three output bits are independent uniformly distributed random
bits (which they are, approximately), we get

Prob[S = 2|(a)] = Prob[S = 1|(b)] = 0.75.

Instead of branching, as we did in the base attack, we simply assume the likely
case S ∈ {1, 2}, ignoring S = 0 and S = 3.

We need 31 + 33 + 39 = 103 linear equations to entirely restore the states of
the LFSRs 2–4. The assumptions we get here are linearily independent. If both
our initial assumptions on the 29 state bits of blender and LFSR1 and our 103
assumptions on the sum S are correct, we have found restored the correct state.
We can check so by computing δ output bits (with δ > 29) and comparing the
output stream we get by our assumed E0 state with the true output stream.

Within these 103 clocks the random variable S takes 103 values S1, S2, . . . ∈
{0, 1, 2, 4} with Prob[Si ∈ {1, 2} = 0.75]. The attack works if S1 ∈ {1, 2} and
S2 ∈ {1, 2} and . . . and S103 ∈ {1, 2}. Making the heuristic (but apparently
plausible) argument that the Si behave like 103 independent random variables,
the probability p = Prob[S1 ∈ {1, 2} and . . . andS103 ∈ {1, 2} ] is

p = 0.75103 ≈ 1.35 ∗ 10−13 ≈ 2−42.7.

If the initially assumed 29 bits are correct, the attack requires less than 243 bits
of known keystream and less than 243 steps (each step means to solve a system
of 103 linear equations). Thus the entire attack needs

less than 243 bits of known keystream

and
less than 272 steps.

7 Attack on the First Level E0 Keystream Generator

To attack the first level keystream generator (which produces the initial LFSR
and blender FSM states), we first note that the key setup sets the FSM state of
the second level keystream generator to be the final contents of the FSM state
after the first level generator has produced the last bit for the LFSR state. We
also note that the next-state function of the cipher is invertible – the LFSRs
can be run backwards as easily as forwards, and the FSM next state function is
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invertible given a current LFSR state. We can also test the base attack, and find
that it works essentially as well on the backwards cipher as it does the forward
cipher.

This suggests this attack: when given one state of the level 2 generator, cycle
through all possible combinations of 25 bits of LFSR1 state and 31 bits of LFSR2
state, and use the base attack on the reversed cipher, using as the initial FSM
contents the initial contents of the phase 2 FSM. Because we are cycling through
an expected O(255) LFSR states, and each check is expected to take O(226) time,
we should expect to find the first level initial position in O(281) time.

8 Attack on the First Level E0 Keystream Generator
Given Two Second Level Keystreams

Now, let us consider a possible attack if the attacker has the first level output
for two distinct packets that were sent with the same key. In this case, we first
note that both keystreams have a clock associated with it, and that the clock is
the only thing that differs. We further note that the method of combination is
linear, hence if we know the xor differential in the clock (which we do, because
we know the actual clock values), we know the xor differential of the first level
LFSRs.

We can use this to optimize the attack further, as follows, where we will
indicate the two known sides with as xA and xB , and where L is a set of linear
equations on the outputs of LFSR2A, LFSR3A, LFSR4A.

Assume the contents of LFSR1A (which also gives you LFSR1B , because of
the known differential between the two).

Initialize the set L to empty.
Perform the following depth-first search

1. Call the state we are examining n. Compute the output nA, nB of
LFSR1A, LFSR1B , the previous output of the blender FSMs based
on the current state), and the known keystream bit Zn

A, Zn
B . If our as-

sumptions are correct to this point, this must be equal to the exclusive-
or of the outputs of LFSR2A, LFSR3A, LFSR4A and of LFSR2B ,
LFSR3B , LFSR4B .

2. Check the known differential in LFSR2A, LFSR3A, LFSR4A, LFSR2B ,
LFSR3B , LFSR4B to see if there is a setting of those bits that satisifies
both the known xors and the known differentials. If there is not, then
backtrack to consider the next case.

3. If we reach here, there are four possible settings of the outputs of LFSR2A,
LFSR3A, LFSR4A which are consistent with known xors and differen-
tials. At least two of those settings will also update both blender FSMs
identically, and will differ in precisely two bits. Here, we branch and
consider three cases: one case that corresponds to the two settings which
updates both blender FSMs identically, and the other two cases corre-
sponding to the other two settings. For the first case, we include in L
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the linear equation implied by the two bits that differ, and the linear
equation implied by the third bit setting. For the other two cases, we
include in L three linear equations giving the three bit settings.

4. If n ≥ 31, then we include in L the linear equation implied by the
LFSR2A tap equations.

5. If n ≥ 33, then we include in L the linear equation implied by the
LFSR3A tap equations. If n ≥ 39, then we include in L the linear
equation implied by the LFSR4A tap equations. In all three cases, we
check to see if the new equations are inconsistent with the equations
already in L. If they are, then some assumption we made is incorrect
and we backtrack to consider the next case.

6. Compute the previous state of the blender FSMs. This is always possible,
as the next state depends on the current state (which we know) and the
number of LFSRs that output a one, which we know.

7. If n is more than 128, then we have found with high probability the initial
states of the encryption engines. If not, then we continue this search for
state n + 1

Experiments show that the above procedure examines an expected O(251) nodes
during the search.

9 Attack Against Full E0

Below is how we can combine these attacks into an attack on the full E0 encryp-
tion system.

Assume we have an amount of known keystream generated with an unknown
session key, which may be from a single packet or it may be from multiple
packets. We select n based on the amount of known keystream. We can then
use the attack shown in Section 5 to find the initial LFSR and blender FSM
settings for a packet generated by that session key. If the cost of finding the
initial LFSR and blender FSM settings for a second packet is less than O(281),
then we find a second one. Then, we either use the attack shown in Section 7 to
find all possible initial LFSR settings that generated that initial setting (if we
have one initial LFSR setting), or we use the attack shown in Section 8 if we have
two initial LFSR settings. Once we find the initial LFSR settings that generates
the observed output, we can step the LFSRs back 200 cycles, and use linear
transformations to eliminate the Bluetooth address and the block to reconstruct
the session key K ′

C , and verify that potential key by using to to decrypt other
packets.

If we denote the amount of effort to find a LFSR and blender setting given
n bytes of known keystream as F (n) (see table 1), then the total effort for this
attack is

O(min(F (n) + 281, 2F (n/2) + 251))work.

This is O(284) if you have barely enough keystream to uniquely identify the
session key (eg., 140 bits), and drops to O(277) if you have a gigabit of known
keystream.



Analysis of the E0 Encryption System 47

86

82

78

74

72

80

84

70

76

L
og

2 
E

xp
ec

te
d 

W
or

k 
E

ff
or

t

30 40 5020100

Log2 Available Keystream

Fig. 2. Expected work effort required to recover session key, versus known keystream.

We can further reduce the effort down to

O(273)work,

if about 14 000 gigabit bits of keystream are available. We simply use the attack
from Section 6 twice, to recover two states of the level 2 generator, and then
continue with the attack from Section 8.

These results are summarized in Figure 2.

10 Conclusions and Open Problems

We described methods for rederiving the session key for E0 given a limited
amount of known keystream. This session key will allow the attacker to decrypt
all messages in that session. We showed that the real security level of E0 is
no more than 73–84 bits (depending the amount of keystream available to the
attacker), and that larger key lengths suggested by the Bluetooth specification2

would not provide additional security.
2 “For the encryption algorithm, the key size may vary between 1 and 16 octets (8-128
bits). The size of the encryption key shall be configurable for two reasons. [First is
export provisions]. The second reason is to facilitate a future upgrade path for the
security without a costly redesign of the algorithms and the encryption hardware;
increasing the effective key size is the simplest way to combat increased computing
power at the opponent side. Currently (1999) it seems that an encryption key size of
64 bits gives satisfying protection for most applications.” [1, Section 14, page 148]
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We empicically observed that the technique from Section 6 (assume the
blender state and LFSR1 only, and build up a set of equations based on the
states of LFSR2, LFSR3 and LFSR4) posed some practical problems, because
the equations created are rather complex. Also, the technique requires a huge
amount of known keystream. It would be interesting to develop improved tech-
niques to handle the set of linear equations more efficiently. Also, it would be
interesting to reduce the required amount of known keystream.

Another approach for more practical attacks on E0 and Bluetooth would be
to exploit the weak mixing of the clock into the first level LFSRs, which will, at
attacker known times, leave three of the LFSRs with zero differential.
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Abstract. Cryptographic Boolean functions should have large distance
to functions with simple algebraic description to avoid cryptanalytic at-
tacks based on successive approximation of the round function such as
the interpolation attack. Hyper-bent functions achieve the maximal min-
imum distance to all the coordinate functions of all bijective monomials.
However, this class of functions exists only for functions with even num-
ber of inputs. In this paper we provide some constructions for Boolean
functions with odd number of inputs that achieve large distance to all
the coordinate functions of all bijective monomials.

Key words. Boolean functions, hyper-bent functions, extended Hadamard
transform, Legendre sequences, nonlinearity.

1 Introduction

Several cryptanalytic attacks on block ciphers are based on approximating the
round function (or S-box) with a simpler one. For example, linear cryptanaly-
sis [13] is based on approximating the round function with an affine function.
Another example is the interpolation attack [10] on block ciphers using simple
algebraic functions as S-boxes and the extended attack in [11] on block ciphers
with probabilistic nonlinear relation of low degree.

Thus, cryptographic functions used in the construction of the round func-
tion should have a large distance to functions with simple algebraic description.
Along this line of research , Gong and Golomb [9] introduced a new S-box de-
sign criterion. By showing that many block ciphers can be viewed as a non
linear feedback shift register with input, Gong and Golomb proposed that S-
boxes should not be approximated by a bijective monomial. The reason is that,
for gcd(c, 2N −1) = 1, the trace functions Tr(ζxc) and Tr(λx), x ∈ GF (2N ), are
both m-sequences with the same linear span.
For Boolean functions with even number of input variables, bent functions
achieve the maximal minimum distance to the set of affine functions. In other
words, they achieve the maximal minimum distance to all the coordinate func-
tions of affine monomials (i.e., functions in the form Tr(λx)+e) ). However, this
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doesn’t guarantee that such bent functions cannot be approximated by the co-
ordinate functions of bijective monomials (i.e., functions in the form Tr(λxc) +
e, gcd(c, 2N − 1) = 1). At Eurocrypt’ 2001, Youssef and Gong [19] introduced a
new class of bent functions which they called hyper-bent functions. Functions
within this class achieve the maximal minimum distance to all the coordinate
functions of all bijective monomials.

In this paper we provide some constructions for Boolean functions with odd
number of inputs that achieve large distance to all the coordinate functions
of all bijective monomials. Unlike the N even case, bounding the nonlinearity
(NL) for functions with odd number of inputs, N , is still an open problem.
For N = 1, 3, 5 and 7, it is known that max NL = 2N−1 − 2(N−1)/2. However,
Patterson andWiedemann [15], [16] showed that forN = 15, maxNL ≥ 16276 =
16384 − 27

322
15−1

2 . It should be noted that our task, i.e., finding functions with
large distance to all the coordinate functions of all bijective monomials, is far
more difficult than finding functions with large nonlinearity. For example, while
the (experimental) average nonlinearity for functions with N = 11 and 13 is
about 941 and 3917 respectively, the (experimental) average minimum distance
to the coordinate functions of all bijective monomials is about 916 and 3857
respectively.

We conclude this section with the notation and concepts which will be used
throughout the paper.

- F = GF (2).
- E = GF (2N ).
- TrN

M (x),M |N , represents the trace function from F2N to F2M , i.e., TrN
M (x) =

x+ xq + · · ·+ xql−1
where q = 2M and l = N/M . If M = 1 and the context

is clear, we write it as Tr(x).
- a = {ai}, a binary sequence with period s|2N − 1. Sometimes, we also use
a vector of dimension s to represent a sequence with period s. I.e., we also
write a = (a0, a1, · · · , as−1).

- Per(b), the period of a sequence b.
- a(t) denotes the sequence obtained by decimating the sequence a by t,i.e.,

a(t) = {atj}j≥0 = a0, at, a2t, · · · .
- w(s): the number of 1’s in one period of the sequence s or the number of
1’s in the set of images of the function s(x) : GF (2N ) → GF (2). This is the
so-called the Hamming weight of s whether s is a periodic binary sequence
or a function from GF (2N ) to GF (2).

- S denotes the set of all binary sequences with period r|2N − 1.
- F denotes the set of all (polynomial) functions from GF (2N ) to GF (2).

2 Preliminaries

The trace representation of any binary sequence with period dividing 2N − 1 is
a polynomial function from GF (2N ) to GF (2). Any such polynomial function
corresponds to a Boolean function in N variables. This leads to a connection
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among sequences, polynomial functions and Boolean functions. Using this con-
nection, pseudo-random sequences are rich resources for constructing functions
with good cryptographic properties.

Any non-zero function f(x) ∈ F can be represented as

f(x) =
s∑

i=1

Tr
mti
1 (βix

ti), βi ∈ GF (2mti )∗, (1)

where 1 ≤ s ≤ |Ω(2N − 1)|, Ω(2N − 1) is the set of coset leaders modulo 2N − 1,
ti is a coset leader of a cyclotomic coset modulo 2N − 1, and mti |N is the size of
the cyclotomic coset containing ti. For any sequence a = {ai} ∈ S, there exists
f(x) ∈ F such that

ai = f(αi), i = 0, 1, · · · ,
where α is a primitive element of E. f(x) is called the trace representation of a.
( a is also referred to as an s-term sequence.) If f(x) is any function from E to
F, by evaluating f(αi), we get a sequence over F with period dividing 2N − 1.
Thus

δ : a ↔ f(x) (2)

is a one-to-one correspondence between F and S through the trace representation
in (1). We say that f(x) is the trace representation of a and a is the evaluation of
f(x) at α. In this paper, we also use the notation a ↔ f(x) to represent the fact
that f(x) is the trace representation of a. The set consisting of the exponents
that appear in the trace terms of f(x) is said to be the null spectrum set of f(x)
or a.

If s = 1, i.e.,
ai = TrN

1 (βα
i), i = 0, 1, · · · , β ∈ E

∗,

then a is an m-sequence over F of period 2N − 1 of degree N . (For a detailed
treatment of the trace representation of sequences, see [14]).

3 Extended Transform Domain Analysis
for Boolean Functions

The Hadamard transform of f : E → F is defined by [1]

f̂(λ) =
∑
x∈E

(−1)f(x)+T r(λx), λ ∈ E. (3)

The Hadamard transform spectrum of f exhibits the nonlinearity of f . More
precisely, the nonlinearity of f is given by

NL(f) = 2N−1 − 1
2
max
λ∈E

|f̂(λ)|,

which indicates that the absolute value of f̂(λ) reflects the difference between
agreements and disagreements of f(x) and the linear function Tr(λx). Only bent
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functions [17] have a constant spectrum of their Hadamard transform. Gong
and Golomb [9] showed that many block ciphers can be viewed as a non linear
feedback shift register with input. In the analysis of shift register sequences [4],
all m-sequences are equivalent under the decimation operation on elements in a
sequence. The same idea can be used to approximate Boolean functions, i.e., we
can use monomial functions instead of linear functions to approximate Boolean
functions.

Gong and Golomb [9] introduced the concept of extended Hadamard trans-
form (EHT) for a function from E to F. The extended Hadamard transform is
defined as follows.

Definition 1. Let f(x) be a function from E to F. Let

f̂(λ, c) =
∑
x∈E

(−1)f(x)+T r(λxc) (4)

where λ ∈ E and c is a coset leader modulo 2N − 1 co-prime to 2N − 1. Then we
call f̂(λ, c) an extended Hadamard transform of the function f .

Notice that the Hadamard transform of f , defined by (3), is f̂(λ, 1). The numer-
ical results in [9] show that, for all the coordinate functions fi, i = 1, · · · , 32 of
the DES s-boxes, the distribution of f̂i(λ, c) in λ is invariant for all c.

Thus a new generalized nonlinearity measure can be defined as

NLG(f) = 2N−1 − 1
2

max
λ ∈ E,

c : gcd(c, 2N − 1) = 1

|f̂(λ, c)|.

This leads to a new criterion for the design of Boolean functions used in
conventional cryptosystems. The EHT of Boolean functions should not have any
large component.

In what follows we will provide constructions for Boolean functions with large
distance to all the coordinate functions of bijective monomials. The construction
method depends on whether N is a composite number or not.

4 Case 1: N Is a Composite Number

Let N = nm where n,m > 1. Let b = {bj}j≥0 be a binary sequence with
per(b) = d = qn−1

q−1 , q = 2m, and w(b) = v. Let g(x) ↔ b. In the following, we
derive some bounds on NLG(g) in terms of v.

Write ai = Trnm
1 (αi), i = 0, 1, · · · . Thus a = {ai} is an m-sequence of period

2N − 1. Let
δ(τ) = |{0 ≤ i < d|bi = 1, T rN

m(α
i+τ ) = 0}|.

Lemma 1. With the above notation, we have

w(Tr(ατxr) + g(x)) = 2nm−1 − v + qδ(τ). (5)
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Proof. Throughout the proof, we will write δ(τ) as δ for simplicity. The sequence
a can be arranged into a (q − 1, d)-interleaved sequence [8]. Thus a can be
arranged into the following array

A =




a0 a1 · · · ad−1
ad ad+1 · · · a2d−1
...

...
...

...
ad(q−2) vd(q−2)+1 · · · v(q−1)d−1


 = [A0, A1, · · · , Ad−1],

where Ai’s are columns of the matrix. Similarly we can arrange the sequence b
in the following array

B =




b0 b1 · · · bd−1
bd bd+1 · · · b2d−1
...

...
...

...
bd(q−2) bd(q−2)+1 · · · b(q−1)d−1


 .

Note that w(A) = |{(i, j)|aij = 1}, 0 ≤ i < q − 1, 0 ≤ j < d}|. Thus

w(A+B) =
∑
bi=0

w(Ai) +
∑
bi=1

w(Ai + 1)

=
∑
bi=0

w(Ai) +
∑
bi=1

(q − 1− w(Ai)).

In the array A, there are

r =
qn−1 − 1
q − 1

(6)

zero columns (See Lemma 1 in [18]). If there are δ zero columns corresponding
to the indices of the 1’s in {bi}, then they contribute δ(q − 1) 1’s. Thus we have

w(A+B) =
∑

bi=0,Ai �=0

w(Ai)+
∑

bi=0,Ai=0

w(Ai)+
∑

bi=1,Ai �=0

(d−w(Ai))+
∑

bi=1,Ai=0

(q−1−w(Ai)).

Since Ai’s arem-sequences, then for all the non-zero Ai’s we have w(Ai) = 2m−1.
Let

Nij = |{bk = i, char(Ak) = j, 0 ≤ k < d}|,
where i, j ∈ {0, 1} and

char(Ai) =
{
0 if Ai = 0,
1 if Ai 
= 0.

Note that
N1,0 = δ,
N1,0 +N0,0 = r,
N0,0 = r − δ.

(7)
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Hence we have

N1,0 +N1,1 = v ⇒ N1,1 = v − N1,0 = v − δ,

N0,1 +N1,1 = d − r ⇒ N0,1 = d − r − N1,1 = d − r − (v − δ) = d − r − v − δ.

Thus

w(A+B) = 2m−1N0,1 + 0N0,0 + (2m−1N1,1 + (2m − 1)N1,0
= 2m−1(d − r − v) + δ2m−1 + v(2m−1 − 1)− δ2m−1 + δ + 2mδ − δ
= 2m−1(d − r)− v2m−1 + v2m−1 − v + 2mδ
= 2m−1(d − r)− v + 2mδ = 2m−1(d − r)− v + 2mδ.

(8)
By noting that d − r = qn−1 then we have

w(A+B) = 2nm−1 − v + 2mδ,

which proves the lemma.

Theorem 1. With the notation above, if v = d−1
2 then

NLG(g) ≥ 2nm−1 − d − 1
2

.

Proof.

ĝ(0, c) =
∑
x∈E

(−1)g(x) = 1 +
∑

x∈E∗
(−1)g(x) = 1 + (q − 1)

d−1∑
k=0

(−1)bk

= 1 + (q − 1)(d − 2wt(b)) = q.

For λ 
= 0,

ĝ(λ, c) =
∑

x∈E
(−1)T r(λxc)+g(x) = 1 +

∑2nm−1
i=0 (−1)ai+bi

= 2nm − 2wt(A+B).
(9)

Note that δ ≤ r = qn−1−1
q−1 . Thus

w(A+B) ≤ 2nm−1 − d − 1
2

,

and

w(A+B) ≥ −2nm−1 − d − 1
2

+ q
qn−1 − 1
q − 1

= −2nm−1 +
d − 1
2

.

By noting that n > 1 then d − 1 > q and hence

|ĝ(λ, c)| ≤ (d − 1)

which proves the theorem.

Using the construction above for N = 9, m = n = 3 we get NLG = 220. It is
clear that, in order to maximize NLG, we should minimize d = 2nm−1

2m−1 . Thus
we should choose m to be the large factor of N = n × m. For example, let
N = 15 = 3 × 5. If we choose m = 5, then we have NLG = 15856. However, if
we picked m = 3, then we get NLG = 14044.
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5 Case 2: N Is a Prime Number

If N is a prime number then the above sub-field construction is not applicable.
This case is further divided into two cases depending on whether 2N − 1 is a
prime number or not.

5.1 Case 2.1: 2N − 1 Is a Prime Number

In this case, we base our construction on the Legendre sequence. Let γ be a
primitive root of a prime p, then the Legendre sequence (also called quadratic
residue sequence) of period p, p ≡ 3 (mod 4),is defined by

ai =



1 or 0, if i = 0
1, i is a residue (i ≡ γ2s mod p
0, i is a non-residue (i 
≡ γ2s mod p)

Note that for N ≥ 2 we always have 2N − 1 ≡ 3 mod 4. The properties of
Legendre sequences have been extensively studied (e.g., [2], [5], [6], [12]). In here
we are concerned with the following fact:

Fact 1 If a Legendre sequence of period p ≡ 3 mod 4 is decimated with d then
the original sequence is obtained if d is a quadratic residue mod p, and the reverse
sequence is obtained if d is non-quadratic residue mod p.

This fact can be easily explained by noting that the Boolean function corre-
sponding to Legendre sequence has the following trace representation [12]

f(x) =
∑

c∈QR

Tr(xc),

where QR denotes the set of quadratic residue mod 2N − 1.

Example 1. Let p=7, then a = {1110100} The sequences a(d) obtained by deci-
mating a with d are given by

a(1) = {1110100},
a(2) = {1110100},
a(3) = {1001011},
a(4) = {1110100},
a(5) = {1001011},
a(6) = {1001011}.

(10)

Note that a(1) = a(2) = a(3) since 1, 2, 4 are quadratic residue mod 7. Also
a(3) = a(5) = a(6) are the same since since 3, 5, 6 are quadratic non-residue mod
7.

The following property follows directly from Fact 1.
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Property 1. Let f ↔ a where a is a Legendre sequence. Then we have

NLG(f) = min {NL(f), NL(g)}, (11)

where g ↔ a(c) and c is any quadratic non-residue modulo 2N − 1.

Example 2. For N = 5, b = {1110110111100010101110000100100}. If we let
f ↔ b with f(0) = 1 then we have f̂(λ, c) ∈ {−2,−6,−10, 2, 6, 10} for c ∈ set
of quadratic residue mod 31. f̂(λ, c) ∈ {−2,−6, 2, 10} for c /∈ set of quadratic
residue mod 31. Thus we have NLG(f) = 11.

Table 1 shows NLG of the functions obtained from this construction. In this
case, we set f(0) = 1. If we set f(0) = 0 then we obtain balanced functions for
which NLG is 1 less than the values shown in the table.

Table 2 shows NLG versus NL distribution for N = 5. It is clear that our
Legendre sequence construction achieves the maximum possible NLG. Table 3
shows the same distribution for balanced functions. For N = 7 we searched all
functions in the form [7]

f(x) =
∑

c∈Ω(2N −1)

Trnc
1 (xc),

where Ω(2N − 1) is the set of coset leaders mod 2N − 1 and nc is the size of the
coset containing c. Table 4 shows NLG versus NL distribution for this case. Table
5 shows the same distribution for the balanced functions of the same form. Again,
it’s clear that the construction above achieves the best possible NLG. For larger
values of N , our construction is no longer optimum. For example, for N = 13,
g(x) ↔ b = {i mod 2 , i = 0, 1, · · · } have NLG = 3972.

Table 1.

N 3 5 7 13 17 19
NLG 1 11 55 3964 64816 259882

Table 2. N = 5

NLG 0 1 2 3 4 5 6 7 8 9 10 11

NL

0 64 0 0 0 0 0 0 0 0 0 0 0

1 0 2048 0 0 0 0 0 0 0 0 0 0

2 0 0 31744 0 0 0 0 0 0 0 0 0

3 0 0 0 317440 0 0 0 0 0 0 0 0

4 0 0 0 0 2301440 0 0 0 0 0 0 0

5 0 0 0 0 0 12888064 0 0 0 0 0 0

6 0 0 0 0 13020 0 57983268 0 0 0 0 0

7 0 0 0 7440 0 3919392 0 211487952 0 0 0 0

8 0 0 2790 0 2396610 0 74021180 0 571246300 0 0 0

9 0 620 0 923180 0 39040780 0 544800200 0 777687700 0 0

10 62 0 149668 0 8474160 0 189406218 0 1022379070 0 191690918 0

11 0 9300 0 606980 0 19419516 0 232492250 0 302968890 0 911896

12 248 0 1302 0 263810 0 3803018 0 20035610 0 3283148 0
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Table 3. N = 5 balanced case

NLG 0 2 4 6 8 10

NL
0 62 0 0 0 0 0
2 0 15872 0 0 0 0
4 0 0 892800 0 0 0
6 0 0 6200 19437000 0 0
8 0 1550 1074150 27705010 167500130 0
10 62 77128 3274220 62085560 276057170 34259588
12 248 682 109430 1536050 6312220 735258

Table 4. N = 7

NLG 0 2 8 14 16 22 28 30 36 42 44 46 48 50 52 54

NL

2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 72 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 306 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 306 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 3264 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 90 0 6030 0 0 0 0 0 0 0 0 0

30 0 0 0 90 0 0 1269 4761 0 0 0 0 0 0 0 0

36 0 0 72 0 0 3156 4032 2916 23088 0 0 0 0 0 0 0

42 0 6 0 280 460 2448 4715 4408 12927 7012 0 0 0 0 0 0

44 6 0 0 460 280 2448 6696 2427 12927 6248 764 0 0 0 0 0

46 0 0 0 4 1 121 157 174 326 119 0 8 0 0 0 0

48 0 0 1 25 46 578 1232 757 2486 1052 3 0 50 0 0 0

50 0 0 326 918 948 10187 16267 9632 32340 16288 33 90 401 742 0 0

52 0 1 120 549 504 4746 6409 4236 12167 5781 15 25 170 272 5 0

54 2 10 46 228 164 1281 2557 1295 4548 1727 1 21 5 84 1 1

56 10 0 47 47 108 619 1270 570 2241 926 15 0 13 27 0 1

5.2 Case 2.2: N Is a Prime Number
and 2N − 1 Is a Composite Number

Let 2N − 1 = dr, d > r > 1. In this case we a use construction similar to case
1, i.e., we let f ↔ b where per(b) = d and w(b) = d−1

2 . However, unlike case 1,
there is no easy way to determine the weight distribution of Ai’s because they
are no longer m-sequences. Using this approach for N = 11, d = 89 we obtained
several functions with NLG(f) = 980 = 2N−1 − d−1

2 .
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Table 5. N = 7 balanced case

NLG 0 2 14 16 28 30 42 44 52 54

NL
0 1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
14 0 0 81 0 0 0 0 0 0 0
16 0 0 0 81 0 0 0 0 0 0
28 0 0 0 54 1242 0 0 0 0 0
30 0 0 54 0 561 681 0 0 0 0
42 0 6 160 232 2144 1997 2517 0 0 0
44 6 0 232 160 3067 1074 2510 7 0 0
46 0 0 4 1 66 76 28 0 0 0
48 0 0 21 39 904 561 747 3 0 0
50 0 0 82 115 1220 544 908 1 0 0
52 0 1 549 504 6409 4236 5781 15 5 0
54 2 10 228 164 2557 1295 1727 1 1 1
56 10 0 47 108 1270 570 926 15 0 1

6 Conclusions and Open Problems

In this paper we presented some methods to construct functions with odd num-
ber of inputs which achieve large minimum distance to the set of all bijective
monomials. However, since a a general upper bound on NLG is not known, it is
interesting to search for other functions that outperform the constructions pre-
sented in this paper. Finding NLG of functions corresponding to the Legendre
sequences is another interesting open problem.
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Abstract. In this paper we provide a new generalized construction
method of highly nonlinear t-resilient functions, F : F

n
2 �→ F

m
2 . The

construction is based on the use of linear error correcting codes together
with multiple output bent functions. Given a linear [u, m, t + 1] code
we show that it is possible to construct n-variable, m-output, t-resilient
functions with nonlinearity 2n−1 − 2� n+u−m−1

2 � for n ≥ u + 3m. The
method provides currently best known nonlinearity results.

Keywords: Resilient functions, Nonlinearity, Correlation Immunity,
Stream Ciphers, Linear Codes.

1 Introduction

A well known method for constructing a running key generator exploits several
linear feedback shift registers (LFSR) combined by a nonlinear Boolean function.
This method is used in design of stream cipher system where each key stream
bit is added modulo two to each plaintext bit in order to produce the ciphertext
bit. The Boolean function used in this scenario must satisfy certain properties
to prevent the cipher from common attacks, such as Siegenthaler’s correlation
attack [18], linear synthesis attack by Berlekamp and Massey [14] and different
kinds of approximation attacks [7]. If we use multiple output Boolean function
instead of single output one, it is possible to get more than one bits at each
clock and this increases the speed of the system. Such a multiple output func-
tion should possess high values in terms of order of resiliency, nonlinearity and
algebraic degree.

Research on multiple output binary resilient functions has received atten-
tion from mid eighties [6,1,8,19,2,9,21,12,11,4,5]. The initial works on multiple
output binary resilient functions were directed towards linear resilient functions.
The concept of multiple output resilient functions was introduced independently
by Chor et al [6] and Bennett et al [1]. A similar concept was introduced at
the same time for single output Boolean functions by Siegenthaler [17]. Besides
its importance in random sequence generation for stream cipher systems, these
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resilient functions have applications in quantum cryptographic key distribution,
fault tolerant distributed computing, etc.

The nonlinearity issue for such multiple output resilient functions was first
discussed in [20]. After that, serious attempts towards construction of nonlinear
resilient functions have been taken in [21,12,11,5]. We here work in that direction
and provide better results than the existing work. For given number of input
variables n, number of output variables m, and order of resiliency t, we can
construct functions F : F

n
2 �→ F

m
2 that achieve higher nonlinearity values than

existing constructions for almost all choices of n,m and t.
The paper is organized as follows. Section 2 provides basic definitions and

notations both for 1-output and m-output functions, m > 1. In Section 3, we
review some important techniques and results used towards the new construction
of t-resilient functions. Section 4 provides the new construction based on the use
of linear error-correcting codes together with bent functions. Some numerical
values for the constructed functions and comparison with previous constructions
are presented in Section 5. Section 6 concludes this paper.

2 Preliminaries

For binary strings S1, S2 of the same length λ, we denote by #(S1 = S2) (respec-
tively #(S1 �= S2)), the number of places where S1 and S2 are equal (respectively
unequal). The Hamming distance between S1, S2 is denoted by d(S1, S2), i.e.,

d(S1, S2) = #(S1 �= S2).

Also the Hamming weight or simply the weight of a binary string S is the number
of ones in S. This is denoted by wt(S).

By F
n
2 we denote the vector space corresponding to the finite field F2n . The

addition operator over F2 is denoted by ⊕ (the XOR operation, which is basically
addition modulo 2). By Vn we mean the set of all Boolean functions on n-
variables, i.e., Vn corresponds to all possible mappings F

n
2 �→ F2. We interpret a

Boolean function f(x1, . . . , xn) as the output column of its truth table, that is,
a binary string of length 2n,

[f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

An n-variable function f is said to be balanced if its output column in the truth
table contains equal number of 0’s and 1’s (i.e., wt(f) = 2n−1).

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a mul-
tivariate polynomial over F2. This polynomial can be expressed as a sum of
products representation of all distinct k-th order product terms (0 ≤ k ≤ n) of
the variables. More precisely, f(x1, . . . , xn) can be written as

f(x1, . . . , xn) = a0 ⊕ (
i=n⊕
i=1

aixi)⊕ (
⊕

1≤i �=j≤n

aijxixj)⊕ . . .⊕ a12...nx1x2 . . . xn,
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where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representation of f is
called the algebraic normal form (ANF) of f . The number of variables in the
highest order product term with nonzero coefficient is called the algebraic degree,
or simply degree of f .

Functions of degree at most one are called affine functions. An affine function
with constant term equal to zero is called a linear function. The set of all n-
variable affine (respectively linear) functions is denoted by An (respectively Ln).
The nonlinearity of an n variable function f is

nl(f) = ming∈An(d(f, g)),

i.e., the distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belong to F

n
2 . The dot product

of x and ω is defined as

x · ω = x1ω1 ⊕ . . .⊕ xnωn.

For a Boolean function f ∈ Vn the Walsh transform of f(x) is a real valued
function over F

n
2 that can be defined as

Wf (ω) =
∑

x∈F
n
2

(−1)f(x)⊕x·ω.

Next we define correlation immunity in terms of the characterization provided
in [10]. A function f(x1, . . . , xn) is m-th order correlation immune (CI) iff its
Walsh transform Wf satisfies

Wf (ω) = 0, for all ω ∈ F
n
2 s.t. 1 ≤ wt(ω) ≤ m.

If f is balanced then Wf (0) = 0. Balanced m-th order correlation immune func-
tions are calledm-resilient functions. Thus, a function f(x1, . . . , xn) ism-resilient
iff its Walsh transform Wf satisfies

Wf (ω) = 0, for all ω ∈ F
n
2 s.t. 0 ≤ wt(ω) ≤ m.

Given all these definitions we now start the definitions with respect to the
multiple output Boolean functions F

n
2 �→ F

m
2 . That is, in this case we provide

the truth table of m different columns of length 2n. Let us consider the function
F (x) : F

n
2 �→ F

m
2 such that F (x) = (f1(x), . . . , fm(x)). Then the nonlinearity of

F is defined as,

nl(F ) = min
τ∈F

m
2

∗ nl(
m⊕

j=1

τjfj(x)).

Here, F
m
2

∗ = F
m
2 \0 and τ = (τ1, . . . , τm). Similarly the algebraic degree of F is

defined as,

deg(F ) = min
τ∈F

m
2

∗ deg(
m⊕

j=1

τjfj(x)).
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Now we define an n-variable, m-output, t-resilient function, denoted by (n,m, t),
as follows. A function F is an (n,m, t) resilient function, iff

⊕m
j=1 τjfj(x) is

an (n, 1, t) function (n variable, t-resilient Boolean function) for any choice of
τ ∈ F

m
2

∗. Since we are also interested in nonlinearity, we provide the notation
(n,m, t, w) for an (n,m, t) resilient function with nonlinearity w. In this paper we
concentrate on the nonlinearity value. Thus, for given size of input parameters
n,m, t, we construct the functions with currently best known nonlinearity.

3 Useful Techniques

In this section we will describe a few existing techniques that will be used later.
First we recapitulate one result related to linear error correcting codes. The
following lemma was proved in [11]. We will use it frequently in our construction,
and therefore it is stated with the proof.

Proposition 1. Let c0, . . . , cm−1 be a basis of a binary [u,m, t+ 1] linear code
C. Let β be a primitive element in F2m and (1, β, . . . , βm−1) be a polynomial
basis of F2m . Define a bijection φ : F2m �→ C by

φ(a0 + a1β + · · · am−1β
m−1) = a0c0 + a1c1 + · · · am−1cm−1.

Consider the matrix

A∗ =




φ(1) φ(β) . . . φ(βm−1)
φ(β) φ(β2) . . . φ(βm)

...
...

. . .
...

φ(β2
m−2) φ(1) . . . φ(βm−2)


 .

For any linear combination of columns (not all zero) of the matrix A∗, each
nonzero codeword of C will appear exactly once.

Proof. Since φ is a bijection, it is enough to show that the matrix


1 β . . . βm−1

β β2 . . . βm

...
...

. . .
...

β2
m−2 1 . . . βm−2




has the property that each element in F
∗
2m will appear once in any nonzero linear

combination of columns of the above matrix.
Any nonzero linear combination of columns can be written as

(c0 + c1β + · · ·+ cm−1β
m−1)




1
β
...

β2
m−2


 ,

for some c0, c1, . . . , cm−1 ∈ F2, and this gives the proof. �




64 Enes Pasalic and Subhamoy Maitra

There are 2m − 1 rows in the matrix A∗. Let us only concentrate on the first
2m−1 rows of this matrix. That is, we consider each column to be of length 2m−1.
It is clear that for any nonzero linear combination of the columns, a nonzero
codeword of C will appear exactly once in it. Hence, in the resulting column
of length 2m−1, no codeword will appear more than once. In this direction, we
update Proposition 1 with the following result.

Proposition 2. Let c0, . . . , cm−1 be a basis of a binary [u,m, t+ 1] linear code
C. Let β be a primitive element in F2m and (1, β, . . . , βm−1) be a polynomial
basis of F2m . Define a bijection φ : F2m �→ C by

φ(a0 + a1β + · · · am−1β
m−1) = a0c0 + a1c1 + · · · am−1cm−1.

For 0 ≤ q ≤ m− 1, consider the matrix

D =




φ(1) φ(β) . . . φ(βm−1)
φ(β) φ(β2) . . . φ(βm)

...
...

. . .
...

φ(β2
q−1) φ(β2

q

) . . . φ(β2
q+m−2)


 .

For any linear combination of columns (not all zero) of the matrix D, each
nonzero codeword of C will either appear exactly once or not appear at all.

Note that the entries of D are elements from F
u
2 . For convenience, we use a

standard index notation to identify the elements of D. That is, di,j denotes the
element in i-th row and j-th column of D, for i = 1, . . . , 2q, and j = 1, . . . ,m.

Throughout the paper we consider C to be a binary linear [u,m, t + 1]
code with a set of basis vectors c0, c1, . . . , cm−1. To each codeword ci ∈ C,
i = 0, . . . , 2m − 1, we can associate a linear function lci

∈ Lu, where

lci = ci · x =
u⊕

k=1

ci,kxk.

This linear function is uniquely determined by ci. Since the minimum distance
of C is t+ 1, any function lci for ci ∈ C will be nondegenerate on at least t+ 1
variables, and hence t-resilient.

According to Proposition 1, any column of the matrix A∗ can be seen as a
column vector of 2m −1 distinct t-resilient linear functions on u variables. In [11],
it was proved that the existence of a set C of linear [u,m, t+ 1] nonintersecting
codes of cardinality |C| = �2n−u/2m−1� was sufficient and necessary requirement
in construction of an (n,m, t, 2n−1 − 2u−1) function. A set of linear [u,m, t+ 1]
codes C = {C1, C2, . . . , Cs} such that Ci ∩ Cj = {0}, 1 ≤ i < j ≤ s, is called a
set of linear [u,m, t+ 1] nonintersecting codes.

The results in [11] were obtained using a computer search for the set C. Good
results could be obtained only for small size of n ≤ 20, thus not providing a good
construction for arbitrary n.
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In this initiative our approach is different. We do not try to search for non-
intersecting linear codes. We only consider a single linear code with given pa-
rameters and use a repetition of the codewords in a specific manner. If we look
into the matrix D of Proposition 2, and consider each column as concatenation
of 2q (0 ≤ q ≤ m− 1) linear functions on u variables, then each column can be
seen as a Boolean function on u+ q variables, i.e., gj ∈ Vu+q, j = 1, . . . ,m. In
the ANF notation the functions gj ∈ Vu+q will be given by,

gj(y, x) =
⊕
τ∈F

q
2

(y1 ⊕ τ1) · · · (yq ⊕ τq)(d[τ ]+1,j · x),

where [τ ] denotes the integer representation of vector τ . Once again note that we
have denoted the elements ofD matrix as di,j , for i = 1, . . . , 2q, and j = 1, . . . ,m.
Since each of the constituent linear functions is nondegenerate on t+1 variables,
they are all t-resilient. Thus, each of the (u+ q)-variable Boolean function gj is
t-resilient. Next we have the following result on nonlinearity.

Proposition 3. Any nonzero linear combination of the functions g1, . . . , gm has
the nonlinearity 2u+q−1 − 2u−1.

Proof. From [16], we have, nl(gj) = 2u+q−1 − 2u−1 for j = 1, . . . ,m. Moreover,
from Proposition 2, it is clear that any nonzero linear combination of these
functions g1, . . . , gm will have the same property. �


Hence we get the following result related to multiple output functions.

Proposition 4. Given a [u,m, t+1] linear code, it is possible to construct (u+
q,m, t, 2u+q−1 − 2u−1) resilient functions, for 0 ≤ q ≤ m− 1.

A simple consequence of Proposition 4 is that for given m and t our goal is
to use a linear code of minimum length, i.e., u should be minimized, since the
nonlinearity is maximized in that case. Throughout this paper the functions
constructed by means of Proposition 4 will be denoted by gj . We immediately
get the following corollary concerning the construction of 1-resilient functions.

Corollary 1. It is possible to construct an (n = 2m,m, 1, nl(F ) = 2n−1 − 2
n
2 )

function F (x).

Proof. It is possible to construct [m + 1,m, 2] linear code. Putting u = m + 1
and q = m− 1, we get (n,m, 1, 2n−1 − 2m) resilient functions. �


Thus, using Corollary 1 with m = 16, we can construct 1-resilient function
F (x) : F

32
2 �→ F

16
2 with nonlinearity NF = 2n−1 − 2

n
2 = 231 − 216. This function

can be used in a stream cipher system where at each clock it is possible to get
2-byte output.

Next we look into a more involved technique. For this we need a set of m
bent functions such that any nonzero linear combination of these bent functions
will also be a bent function.

The following proposition is well known and therefore stated without proof
(for proof see [16]).
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Proposition 5. Let h(y) ∈ Vk and g(x) ∈ Vn1 . Then the nonlinearity of
f(y, x) = h(y)⊕ g(x) is given by, nl(f) = 2knl(g) + 2n1nl(h)− 2nl(g)nl(h).

Next we present the following Corollaries which will be useful in the sequel.

Corollary 2. Let h(y) be a bent function on Vk, k = 2m. Let g(x) ∈ Vn1 with
nl(g) = 2n1−1 −2u−1, for u ≤ n1. Then the nonlinearity of f(y, x) = h(y)⊕g(x)
is given by, nl(f) = 2n1+k−1 − 2

k
2 2u−1.

Proof. Put nl(h) = 2k−1 − 2
k
2 −1 in Proposition 5. �


Corollary 3. Let h′(y′) be a bent functions on Vk, k = 2r, and let h(y) be a
function on Vk+1 given by h(y) = xk+1 ⊕ h′(y′). Let g(x) ∈ Vn1 with nl(g) =
2n1−1 −2u−1, for u ≤ n1. Then the nonlinearity of f(y, x) = h(y)⊕g(x) is given
by, nl(f) = 2n1+k−1 − 2

k+1
2 2u−1.

Proof. Put nl(h) = 2k−1 − 2
k+1

2 −1 in Proposition 5. �


Corollary 4. Let h(y) be a constant function on Vk, k > 0. Let g(x) ∈ Vn1 with
nl(g) = 2n1−1 −2u−1, for u ≤ n1. Then the nonlinearity of f(y, x) = h(y)⊕g(x)
is given by, nl(f) = 2n1+k−1 − 2k2u−1.

Proof. Put nl(h) = 0 in Proposition 5. �


Thus, using the composition of bent functions with resilient functions, one
may construct highly nonlinear resilient Boolean functions on higher number of
variables. The question is if we may use the same technique for construction of
multiple output functions. In other words, we want to find a set of bent functions
of cardinality 2m − 1, say B = {b1, . . . , b2m−1}, with basis b1, . . . , bm, such that⊕m

j=1 τjbj ∈ B, for τ ∈ F
m
2

∗.
Now we discuss the construction in more detail [15]. Let A be of size 2m ×m

given by A = ( 0
A∗ ), where A∗ is a matrix constructed by means of Proposition 1

using c0, . . . , cm−1, that spans an [m,m, 1] code C with the unity matrix I as
the generator matrix. Now consider each column of the matrix A, which can
be seen as concatenation of 2m distinct linear functions on m variables. This is
a Maiorana-McFarland type bent function in 2m-variables. Also using Proposi-
tion 1, it is clear that any nonzero linear combination of these bent functions
will provide a bent function. The algebraic degree of this class of bent functions
is equal to m. Thus, we have the following result.

Proposition 6. It is possible to get m distinct bent functions on 2m-variables,
say b1, . . . , bm, such that any nonzero linear combination of these bent functions
will provide a bent function. Also, deg(

⊕m
i=1 τibi) = m, for τ ∈ F

m
2

∗.
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Example 1. Let m = 2 and c0 = (01), c1 = (10). We use an irreducible polyno-
mial p(z) = z2 + z + 1 to create the field F22 . Then it can be shown that the
matrix A is given by,

A =




0 0
c0 c1
c1 c0 + c1

c0 + c1 c0


 .

In the truth table notation, let us consider the 4-variable bent function g1(x)
as the concatenation of the 2-variable linear functions 0, x1, x2, x1 ⊕x2 and simi-
larly, g2(x) as concatenation of 0, x2, x1⊕x2, x1. Then the function g1(x)⊕g2(x)
is also bent, which is a concatenation of 0, x1 ⊕ x2, x1, x2.

Also note the following updation of Proposition 6.

Proposition 7. It is possible to get m distinct bent functions on 2p-variables
(p ≥ m), say b1, . . . , bm, such that any nonzero linear combination of these bent
functions will provide a bent function. Also, deg(

⊕m
i=1 τibi) = p, for τ ∈ F

m
2

∗.

With these results we present our construction method in the following sec-
tion.

4 New Construction

In this section we will first provide the general construction idea using a [u,m, t+
1] linear code and then we will use specific codes towards construction of resilient
functions of specific orders. Let us first discuss the idea informally. We take the
matrix D as described in Proposition 2. Now it is clear that each column of D
can be seen as a u+q variable function with order of resiliency t and nonlinearity
2u+q−1 − 2u−1. Let us name these functions as g1, . . . gm. From Proposition 4,
it is known that any nonzero linear combination of these functions will provide
u+q variable function g with order of resiliency t and nonlinearity 2u+q−1−2u−1.

Now we concentrate on n-variable functions. It is clear that the (u + q)-
variable function need to be repeated 2n−u−q times to make an n-variable func-
tion. We will thus use an (n − u − q)-variable function and XOR it with the
(u+q)-variable function to get an n-variable function. Also to get the maximum
possible nonlinearity in this method, the (n − u − q)-variable function must be
of maximum possible nonlinearity. We will use m different functions h1, . . . , hm

and use the compositions f1 = h1 ⊕ g1, . . . , fm = hm ⊕ gm, to get m different
n-variable functions. Thus any nonzero linear combination of f1, . . . , fm can be
seen as the XOR of linear combinations of h1, . . . , hm and linear combinations of
g1, . . . , gm. In order to get a high nonlinearity of the vector output function we
will need high nonlinearity of the functions h1, . . . , hm and also high nonlinearity
for their linear combinations.

If (n− u− q) is even, we can use bent functions h1, . . . , hm. Importantly, we
require m different bent functions (as in Proposition 6) such that the nonzero
linear combinations will also produce bent functions. For this we need n−u−q ≥
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2m (see Proposition 7). If (n − u − q) is odd, we can use bent functions bj of
(n − u − q − 1) variables and take hj = xn ⊕ bj . This requires the condition
n− u− q − 1 ≥ 2m to get m distinct bent functions as in Proposition 7.

It may very well happen that the value of n − u − q may be less than 2m
and in such a scenario it may not be possible to get 2m bent functions with
desired property. In such a situation we may not get very good nonlinearity. We
formalize the results in the following theorem.

Theorem 1. Given a linear [u,m, t+1] code, for n ≥ u it is possible to construct
(n,m, t, nl(F )) function F = (f1, . . . , fm), where

nl(F ) =




2n−1 − 2u−1, u ≤ n < u+m; (1)
2n−1 − 2n−m, u+m ≤ n < u+ 2m; (2)
2n−1 − 2u+m−1, u+ 2m ≤ n < u+ 3m; (3)
2n−1 − 2

n+u−m−1
2 , n ≥ u+ 3m− 1, n− u−m+ 1 even; (4)

2n−1 − 2
n+u−m

2 , n ≥ u+ 3m, n− u−m+ 1 odd. (5)

Proof. We consider different cases separately. We will use functions g1, . . . , gm on
u+q variables which are basically concatenation of q distinct linear functions on
u variables. These linear functions are nondegenerate on at least t+1 variables.
From Proposition 3, we get that for any τ ∈ F

m
2

∗, nl(
⊕m

j=1 τjgj) = 2u+q−1 −
2u−1. Next we consider m different functions h1, . . . , hm on (n−u−q) variables.
We will choose those functions in such a manner so that, for any τ ∈ F

m
2

∗,
nl(

⊕m
j=1 τjhj) is high. Mostly we will use bent functions as in Proposition 6 and

Proposition 7 in our construction. Now we construct the vector output function
F = (f1, . . . , fm) where, fj = hj ⊕ gj . For any τ ∈ F

m
2

∗,
⊕m

j=1 τjfj(x) can be
written as

⊕m
j=1 τjhj ⊕ ⊕m

j=1 τjgj . This can be done since the set of variables
are distinct. The input variables of gj ’s are x1, . . . , xu+q and the input variables
of hj ’s are xu+q+1, . . . , xn.

1. Here, u ≤ n < u+m. By Proposition 4, we construct (n = u+q,m, t, 2n−1−
2u−1) function F .

2. Let u + m ≤ n < u + 2m. Here we take q = m − 1 in Proposition 2.
The functions gj ’s are of u+m− 1 variables. Thus we need to repeat each
function 2n

2u+m−1 times. We will use functions hj ’s of (n−u−m+1) variables
which are constant functions. We know, nl(gj) = 2u+m−2 − 2u−1. Hence,
nl(fj) = 2n−u−m+1(2u+m−2 − 2u−1) = 2n−1 − 2n−m as in Corollary 4.

3. Let u + 2m ≤ n < u + 3m. We take q such that n − u − q = 2m. In
this case gj ’s are of u + q variables. We take m bent functions hj ’s, each
of 2m-variables as in Proposition 6. We know, nl(gj) = 2u+q−1 − 2u−1 and
nl(hj) = 22m−1 − 2m−1. Thus, if we consider the function F = (f1, . . . , fm),
we get, nl(F ) = 2n−1 − 2u+m−1 as in Corollary 2.

4. For n ≥ u+3m− 1, n− u−m+1 even, we use q = m− 1 and a set of bent
functions on n− u−m+1 variables. Note that in this case n− u−m+1 ≥
2m. Thus we will get a set of m bent functions as in Proposition 7. Here,
nl(gj) = 2u+m−1 − 2u−1 and nl(hj) = 2(n−u−m+1)−1 − 2

n−u−m+1
2 −1. Thus

we get, nl(F ) = 2n−1 − 2
n+u−m−1

2 as in Corollary 2.



Linear Codes in Constructing Resilient Functions with High Nonlinearity 69

5. For n ≥ u + 3m, n − u − m + 1 odd, we use q = m − 1 and a set of bent
functions on n − u − m variables, say b1, . . . , bm as in Proposition 7. Note
that in this case, n− u−m ≥ 2m. We construct hj = xn ⊕ bj . Thus we get,
nl(gj) = 2u+m−1 − 2u−1 and nl(hj) = 2(n−u−m+1)−1 − 2 (n−u−m+1)−1

2 . In this
case, the nonlinearity is nl(F ) = 2n−1 − 2

n+u−m
2 as in Corollary 3. �


Note that Corollary 1 in Section 3 is a special case of the item 1 in the
above theorem. Next we consider the algebraic degree of functions constructed
by means of Theorem 1.

Theorem 2. In reference to Theorem 1, the algebraic degree of the function F
is given by,

2 ≤ deg(F ) ≤ n− u+ 1, u ≤ n < u+m; (1)

2 ≤ deg(F ) ≤ m, u+m ≤ n < u+ 2m; (2)

deg(F ) =



m, u+ 2m ≤ n < u+ 3m; (3)
n−u−m+1

2 , n ≥ u+ 3m− 1, n− u−m+ 1 even; (4)
n−u−m

2 , n ≥ u+ 3m, n− u−m+ 1 odd. (5)

Proof. Let us consider any nonzero linear combination f of (f1, . . . , fm). Also
we denote any nonzero linear combination of hj ’s as h and that of gj ’s as g. It
is clear that deg(F ) = deg(f) = max(deg(h), deg(g)), as h, g are functions on
distinct set of input variables.

1. Here f can be seen as the concatenation of 2q linear functions (0 ≤ q < m) of
u variables each. The exact calculation of algebraic degree will depend in a
complicated way on the choice of the codewords from C. However, it is clear
that the function is always nonlinear and hence the algebraic degree must
be ≥ 2. Also the function f will have degree at most q + 1. Here q = n− u,
which gives the result.

2. In this case q = m− 1. Now f can be seen as the 2n−u−q times repetition of
function g, where g is the concatenation of 2q linear functions (0 ≤ q < m) of
u variables each. The exact calculation of algebraic degree will depend in a
complicated way on the choice of the codewords from C. However, it is clear
that the function is always nonlinear and hence deg(f) ≥ 2. Furthermore,
the function g will have degree at most q + 1. Thus the result.

3. In this case deg(f) = max(deg(h), deg(g)). Now, deg(h) = m as we consider
2m variable bent functions with property as described in Proposition 6. Also,
deg(g) is at most q + 1. Now, u + 2m ≤ n < u + 3m, which gives q < m.
Hence deg(f) = m.

4. In this case deg(h) = n−u−m+1
2 (from Proposition 7) and deg(g) ≤ q+1 = m.

Here n ≥ u+ 3m− 1, i.e., n− u−m+ 1 ≥ 2m, which gives n−u−m+1
2 ≥ m.

Thus deg(f) = n−u−m+1
2 .

5. In this case deg(h) = n−u−m
2 and deg(g) ≤ q + 1 = m. Here n ≥ u + 3m,

i.e., n− u−m ≥ 2m, which gives n−u−m
2 ≥ m. Thus deg(f) = n−u−m

2 . �
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At this point, let us comment on construction of resilient functions of order
1 and 2. First we concentrate on 1-resilient functions. Let C1 be an [m+1,m, 2]
linear code in systematic form, i.e., C1 = (I|1), where I is an identity matrix of
size m×m, and 1 is a column vector of all ones. In this case, we have u = m+1.
Then we can apply Theorem 1 on this [m+ 1,m, 2] code.

Next we look into the construction of 2-resilient functions. From the theory
of error correcting codes we know that for any l ≥ 3 there exists a linear [u =
2l − 1,m = 2l − l − 1, 3] Hamming code. The codewords from such a code
provide the construction of (n,m, 2, nl(F )) nonlinear resilient functions F . Also,
given l, it is possible to obtain a sequence of linear codes of different length and
dimension. In other words, given a linear [2l − 1, 2l − l− 1, 3] Hamming code the
generated sequence of codes is [2l −1−j, 2l −l−1−j, 3], for j = 0, 1, . . . , 2l−1−1.
This code with Theorem 1 can be used to construct 2-resilient functions with
high nonlinearity. Note that this construction of 2-resilient functions is not the
best using this technique due to the existence of better linear [n,m, 3] codes than
those provided by the Hamming design.

The construction of resilient functions using simplex code has been discussed
in [5]. A simplex code [13] is a [2m − 1,m, 2m−1] linear code, whose minimal
distance is maximal. By concatenating each codeword v times, one can get a
[v(2m − 1),m, v2m−1] linear code. Given Theorem 1, one can use such codes for
construction of functions with order of resiliency v2m−1 − 1.

Given a linear [u,m, t+1] code, where fixing u,m the maximum possible t+1
value can be achieved, will obviously be the most well suited for our construction
as this will maximize the order of resiliency. Such table for u,m ≤ 127 is available
in [3].

5 Results and Comparison

In this section we compare the results obtained using the techniques presented
in the previous section with the existing results. It was demonstrated that for a
low order of resiliency and a moderate number of input variables the construc-
tion in [11] was superior to the other constructions, namely the constructions
in [12,21]. However, the main disadvantage of the construction in [11] is the
necessity of finding a set of nonintersecting linear codes of certain dimension.
This may cause a large complexity for the search programs, since there is no
theoretical basis for finding such a set. Next we show that our results are supe-
rior in comparison to [21,12,5]. Note that the construction of [12] gives higher
nonlinearity than [21], whereas the construction of [21] provides larger order of
resiliency than [12].

Theorem 3. [21, Corollary 6] If there exists a linear (n,m, t) resilient function,
then there exists a nonlinear (n,m, t, 2n−1 − 2n− m

2 ) whose algebraic degree is
m− 1.

Note that given any [u,m, t+1] code, it is easy to construct a linear (u,m, t)
function. Thus, using the method of [21] it is possible to construct a nonlinear
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(u,m, t) function also. Consequently, for n = u, the result of [21] provides the
presently best known parameters. Note that there are some cases (when the value
of n is very close to u, which falls under item 1 of Theorem 1) where the results
of [21] are better than ours. This is when u − 1 > n − m

2 , i.e., n < u + m
2 − 1.

However, if we fix the values of m, t, then for the values of n that falls under
items 2, 3, 4 and 5 of Theorem 1 (and also under item 1 when n ≥ u+ m

2 − 1),
our nonlinearity supersedes that of [21]. Hence, as we choose n comparatively
larger than u, n ≥ u + m

2 − 1, the advantage of [21] decreases and our method
provides better result. Moreover, the items 3, 4, 5 of Theorem 2 show that the
algebraic degree of our construction is better than (m − 1) given in [21]. We
present an example here for the comparison.

We know the existence of a [36, 8, 16] linear code. Hence, it is easy to get a
linear (36, 8, 15) resilient function. Using the method of [21] it is possible to get
a (36, 8, 15, 236−1−236− 8

2 = 235−232) function. Moreover, it has been mentioned
in [12, Proposition 19] how to get a (36, 8, 15, 235 − 231) function using the tech-
nique of [21]. Our method can not provide a function with these parameters. Let
us now construct a function on larger number of input variables, say n = 43,
for same m and t. For n = 43 and t = 15 the best known linear code have the
parameters [43, 12, 16]. Then, with construction in [21], it is possible to construct
a (43, 12, 15, 242 − 237) and consequently a (43, 8, 15, 242 − 237) function using
less number of output columns. In our construction we start with a [36, 8, 16]
code and applying item 1 of Theorem 1 we obtain a (43, 8, 15, 242 −235) function
which provides better nonlinearity.

Theorem 4. [12, Theorem 18] For any even l such that l ≥ 2m, if there ex-
ists an (n− l,m, t) function Φ(x), then there exists an (n,m, t, 2n−1 − 2n− l

2 −1)
resilient function.

Note that if there exists a linear [u = n − l,m, t + 1] code, then by the
above theorem [12] it is possible to get the nonlinearity 2n−1 − 2n− n−u

2 −1 =
2n−1 − 2

n+u
2 −1. Items 4 and 5 of our Theorem 1 provide better nonlinearity

than [12]. Also a closer look reveals that our construction outperforms the result
of [12] for any n > u, with same quality result for n = u+ 2m.

Next we compare our result with a very recent work [5].

Theorem 5. [5, Theorem 5] Given a linear [u,m, t + 1] code (0 < m ≤ u),
for any nonnegative integer ∆, there exists a (u+∆+ 1,m, t) resilient function
with algebraic degree ∆, whose nonlinearity is greater than or equal to 2u+∆ −
2u�

√
2u+∆+1�+ 2u−1.

Thus it is clear that given a linear [u,m, t+1] code, the above construction pro-
vides (n,m, t, 2n−1−2n+2u

2 +2u−1) resilient function. Note that the construction
provides some nonlinearity only when n− 1 ≥ n+2u

2 , i.e., n ≥ 2u+ 2. It is very
clear that our construction of (n,m, t, 2n−1 − 2
 n+u−m−1

2 �) resilient functions for
n ≥ u + 3m presents much better nonlinearity than that of [5]. However, com-
paring our result in Theorem 2 with [5, Theorem 5], it is clear that in terms of
algebraic degree the result of [5] is superior to our result. It will be of interest to
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construct functions with nonlinearity as good as our results with better algebraic
degree as given in [5].

5.1 Examples

Next we compare the results with specific examples. Let us start with the
construction of a (24, 4, 2, nl(F )) function F (x). Given m = 4, it is possi-
ble to construct a nonlinear function F (x) using the technique in [21] with
nl(F ) ≥ 223 − 222. We know the existence of [7, 4, 3] linear Hamming code [13].
This gives (7, 4, 2) resilient function. Using the construction in [12], we obtain a
function F (x) with nl(F ) > 223 − 215.

In our notation, u = 7,m = 4, t = 2. In this case, n−u−m+1 = 24−7−4+1 =
14 and n = 24 ≥ u+3m−1 = 18. Thus from Theorem 1, we get the nonlinearity
223 − 213. Thus, our technique provides the currently best known nonlinearity.

Starting with a [7, 4, 3] code, if we use the construction of [5], we will get
(24, 4, 2, 223−219+26) resilient function. To obtain the same value of nonlinearity
using the construction in [11], one is forced to find |C| = �2n−u′

/(2m − 1)� =
�210/15� nonintersecting linear [14, 4, 3] codes, and this is computationally an
extremely hard problem to solve.

In [12] the construction of a (36, 8, 5, nl(F )) function was discussed. Using
a linear [18, 8, 6] code the authors proved the existence of (36, 8, 5, nl(F )) func-
tion, where nl(F ) ≥ 235 − 226. We use a linear [17, 8, 6] code [3] to construct
a (36, 8, 5, 235 − 224) function (here n ≥ u + 2m) by means of Theorem 1. Us-
ing the same linear code, we can obtain a (40, 8, 5, 239 − 224) function (here
n ≥ u+ 3m− 1).

Nonlinearity of (36, 8, t) resilient functions has been used as important ex-
amples in [12,11]. We here compare our results with existing ones.

In this table the results of [12] are the existing best known construction re-
sults and our results clearly supersede these [12]. The results of [11] are not
the construction results. They show that resilient functions with such parame-
ters exist. However, the construction of functions with such parameters are not
available in [11]. Note that, for resiliency of orders 3, 2 and 1 our construction
provides better results than the existential bound in [11]. In the last row of Table
1, we describe the linear codes [3] which we use for our construction.

Table 1. Nonlinearity of (36, 8, t) resilient functions.

Order of resiliency t 7 5 4 3 2 1
Nonlinearity of [12] 235 − 227 235 − 226 235 − 225 235 − 224 235 − 223 235 − 222

Nonlinearity of [11] 235 − 222 235 − 223 235 − 222 235 − 222 235 − 221 235 − 221

Our nonlinearity 235 − 227 235 − 224 235 − 223 235 − 220 235 − 219 235 − 218

The codes [20, 8, 8] [17, 8, 6] [16, 8, 5] [13, 8, 4] [12, 8, 3] [9, 8, 2]
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6 Conclusion

A new generalized construction of highly nonlinear resilient multiple output
functions has been provided. The construction is based on the use of linear codes
together with a specific set of bent functions. We show that our construction
outperforms all previous constructions for almost all choices of input parameters
n, m, t. Many examples are provided demonstrating the better nonlinearity
attained using this new construction in comparison to the previous ones. It will
be of interest to construct functions with better nonlinearity than our method
or to show that some of our constructions provide optimized nonlinearity which
can not be improved further.
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Abstract. In stream ciphers, we should use a t-resilient Boolean func-
tion f(X) with large nonlinearity to resist fast correlation attacks and
linear attacks. Further, in order to be secure against an extension of
linear attacks, we wish to find a t-resilient function f(X) which has a
large distance even from low degree Boolean functions. From this point
of view, we define a new covering radius ρ̂(t, r, n) as the maximum dis-
tance between a t-resilient function f(X) and the r-th order Reed-Muller
code RM(r, n). We next derive its lower and upper bounds. Finally, we
present a table of numerical bounds for ρ̂(t, r, n).

Keywords: Nonlinearity, t-resilient function, Reed-Muller code, cover-
ing radius, stream cipher.

1 Introduction

Nonlinearity and resiliency are two of the most important cryptographic criteria
of Boolean functions which are used in stream ciphers and block ciphers. The
nonlinearity of a Boolean function f(X), denoted by nl(f), is the distance be-
tween f(X) and the set of affine (linear) functions. It must be large to avoid
linear attacks.

f(X) is said to be balanced if #{X | f(X) = 0} = #{X | f(X) = 1} = 2n−1,
where X = (x1, . . . , xn). Suppose that f(X) is balanced even if any t variables
xi1 , . . . , xit

are fixed to any t values bi1 , . . . , bit
. Then f(X) is called a t-resilient

function. f(X) should be t-resilient for large t to resist fast correlation attacks in
stream ciphers such as combination generators and nonlinear filter generators.

Therefore, f(X) should satisfy both large nonlinearity nl(f) and large re-
siliency. Recently, Sarkar and Maitra derived an upper bound on nl(f) of t-
resilient functions [5].

We further observe that f(X) should not be approximated even by low degree
Boolean functions g(X) in order to be secure against an extension of linear
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attacks [3]. Note that the set of n variable Boolean functions g(X) such that
deg(g) ≤ r is identical to an error correcting code known as the r-th order
Reed-Muller code RM(r, n).

Consequently, we wish to find a t-resilient function f(X) which has a large
distance even from RM(r, n) for small r. On the other hand, the covering radius
of RM(r, n), denoted by ρ(r, n), is defined as the maximum distance between
f(X) and RM(r, n), where the maximum is taken over all n variable Boolean
functions f(X). That is,

ρ(r, n) def= max
f(X)

d(f(X), RM(r, n)).

In this paper, we introduce a new definition of covering radius of RM(r, n)
from this point of view. We define t-resilient covering radius of RM(r, n), denoted
by ρ̂(t, r, n), as the maximum distance between a t-resilient function f(X) and
RM(r, n), where the maximum is taken over all t-resilient functions f(X). That
is,

ρ̂(t, r, n) def= max
t-resilient f(X)

d(f(X), RM(r, n)).

We then derive lower bounds and upper bounds on ρ̂(t, r, n). The result of
Sarkar and Maitra [5] is obtained as a special case of one of our upper bounds.
Finally, we present a table of numerical bounds for ρ̂(t, r, n) which are derived
from our bounds.

2 Preliminaries

Let X = (x1, . . . , xn).

2.1 Nonlinearity of Boolean Functions

Define the distance between two Boolean functions f(X) and g(X) as

d(f(X), g(X)) def= #{X | f(X) �= g(X)} .

Define the weight of f(X) as

w(f) def= #{X | f(X) = 1} .

A Boolean function such that a0 ⊕ a1x1 ⊕ · · · ⊕ anxn is called an affine function.
Let An denote the set of n variable affine functions. That is,

An
def= {a0 ⊕ a1x1 ⊕ · · · ⊕ anxn} .

The nonlinearity of f(X), denoted by nl(f), is defined as the distance between
f(X) and An. That is,

nl(f) def= min
g(X)∈An

d(f(X), g(X)) .
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Cryptographically secure Boolean functions should have large nonlinearity to
resist linear attacks. Then the following upper bound is known.

nl(f) ≤ 2n−1 − 2
n
2 −1 .

It is tight if n = even. f(X) which satisfies the above equality is called a bent
function.

2.2 t-Resilient Function and its Nonlinearity

f(X) is said to be balanced if

#{X | f(X) = 1} = #{X | f(X) = 0} = 2n−1 .

Suppose that f(X) is balanced even if any t variables xi1 , . . . , xit are fixed to any
values bi1 , . . . , bit . Then f(X) is called a t-resilient function. Boolean functions
used in stream ciphers should be t-resilient for large t to resist fast correlation
attacks.

Therefore, f(X) should satisfy both large nonlinearity nl(f) and large re-
siliency. Sarkar and Maitra derived an upper bound on nl(f) of t-resilient func-
tions [5].

Proposition 2.1. Let f(X) be a t-resilient function and l(X) be an affine func-
tion. Then

d(f(X), l(X)) ≡ 0 mod 2t+1.

Proposition 2.2. Suppose that f(X) is a t-resilient function. If n = even, then

nl(f) ≤
{

2n−1 − 2t+1 if t + 1 > n/2 − 1
2n−1 − 2

n
2 −1 − 2t+1 if t + 1 ≤ n/2 − 1

They derived a similar bound for n = odd.

3 Reed-Muller Code and Its Covering Radius

Any Boolean function is written as the algebraic normal form such that

g(X) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj ⊕ · · · ⊕ a1,2,...,nx1x2 · · · xn

The degree of g(X), denoted by deg(g), is the degree of the highest degree term
in the algebraic normal form. The r-th order Reed-Muller code RM(r, n) is
identical to the set of n-variable Boolean function g(X) such that deg(g) ≤ r.

The covering radius of RM(r, n), denoted by ρ(r, n), is defined as the max-
imum distance between f(X) and RM(r, n), where the maximum is taken over
all n variable Boolean functions f(X). That is,

ρ(r, n) def= max
f(X)

d(f(X), RM(r, n)),



78 Tetsu Iwata, Takayuki Yoshiwara, and Kaoru Kurosawa

where
d(f(X), RM(r, n)) def= min

deg(g)≤r
d(f(X), g(X)).

Note that ρ(1, n) is equal to the maximum nonlinearity of n-variable Boolean
functions.

In the following table, the best known numerical bounds for ρ(r, n) with
n ≤ 7 are presented.

n 1 2 3 4 5 6 7
r = 1 0 1 2 6[4] 12 28 56
r = 2 0 1 2 6[4] 18[6] 40[1]-44[2]

r = 3 0 1 2 8[4] 20[1]-23[1]

r = 4 0 1 2 8[4]

r = 5 0 1 2
r = 6 0 1
r = 7 0

It is easy to see the following propositions.

Proposition 3.1. Any Boolean function f(x1, . . . , xn) such that deg(f) ≤ r is
written as

f(X) = f1(x1, . . . , xn−1) ⊕ xn · f2(x1, . . . , xn−1) ,

where deg(f1) ≤ r and deg(f2) ≤ r − 1.

Proposition 3.2. d(f, g ⊕ h) ≥ d(f, g) − w(h).

Proof.

d(f, g ⊕ h) = w(f ⊕ g ⊕ h)
≥ w(f ⊕ g) − w(h)
= d(f, g) − w(h)

��

4 New Covering Radius for t-Resilient Functions

4.1 New Covering Radius

Boolean functions f(X) used in stream ciphers and block ciphers should not be
approximated by affine (linear) functions to resist linear attacks. This leads to
the notion of the nonlinearity nl(f) which is defined as the distance between
f(X) and the set of affine (linear) functions.

We also observe that f(X) should not be approximated even by low degree
Boolean functions to resist an extension of linear attacks [3]. Remember that
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RM(r, n) is identical to the set of g(X) such that deg(g) ≤ r, and the covering
radius of RM(r, n) is the maximum distance between f(X) and RM(r, n). That
is,

ρ(r, n) = max
f(X)

d(f(X), RM(r, n)).

Further, f(X) should be t-resilient to be secure against fast correlation attacks
in stream ciphers.

In this section, we introduce a new definition of covering radius of RM(r, n)
from this point of view. We define t-resilient covering radius of RM(r, n), denoted
by ρ̂(t, r, n), as the maximum distance between a t-resilient function f(X) and
RM(r, n), where the maximum is taken over all t-resilient functions f(X). That
is,

ρ̂(t, r, n) def= max
t-resilient f(X)

d(f(X), RM(r, n)).

Note that ρ̂(t, r, n) = 0 if n − t − 1 ≤ r. This follows immediately from
Siegenthalar’s inequality on resilient functions [7].

We then derive lower bounds and upper bounds on ρ̂(t, r, n).

4.2 Lower Bounds on ρ̂(t, r, n)

In this subsection, we derive lower bounds on ρ̂(t, r, n).

Theorem 4.1.

ρ̂(t, r, n) ≥
{

2ρ(r, n − 1) if t = 0
2ρ̂(t − 1, r, n − 1) if t ≥ 1

Proof. (1) t = 0. Suppose that ρ(r, n−1) is achieved by f ′(x1, . . . , xn−1). That
is,

d(f ′, RM(r, n − 1)) = ρ(r, n − 1) .

Let f(x1, . . . , xn) = f ′(x1, . . . , xn−1) ⊕ xn. Then it is easy to see that
f(x1, . . . , xn) is balanced. Therefore, f(X) is a 0-resilient function. Further,

ρ̂(t, r, n) ≥ d(f, RM(r, n))
= d(f ′, RM(r, n − 1)) + d(f ′, RM(r, n − 1))
= 2ρ(r, n − 1)

(2) t ≥ 1. Suppose that ρ̂(t−1, r, n−1) is achieved by a (t−1)-resilient function
f ′(x1, . . . , xn−1). That is,

d(f ′, RM(r, n − 1)) = ρ̂(t − 1, r, n − 1) .

Let f(x1, . . . , xn) = f ′(x1, . . . , xn−1) ⊕ xn. Then it is easy to see that
f(x1, . . . , xn) is a t-resilient function. The rest of the proof is similar to
the above.

��
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Corollary 4.1. ρ̂(t, r, n) ≥ 2t+1ρ(r, n − t − 1).

Theorem 4.2. Suppose that there exists f(x1, . . . , xn) such that

d(f, RM(r, n)) ≥ k

and
f(x1, . . . , xn) = f1(x1, . . . , xm) ⊕ f2(xl, . . . , xn)

for some f1 and f2, where 1 ≤ m ≤ n − 1, 2 ≤ l ≤ n − 1. Let

t = min(n − m − 1, l − 2).

Then
ρ̂(t, r + 1, n + 1) ≥ k.

Proof. Let {
h1(x1, . . . , xn) def= f1(x1, . . . , xm) ⊕ xm+1 ⊕ · · · ⊕ xn

h2(x1, . . . , xn) def= x1 ⊕ · · · ⊕ xl−1 ⊕ f2(xl, . . . , xn)

It is easy to see that h1(X) is (n − m − 1)-resilient and h2(X) is (l − 2)-resilient.
Then define

h(X, xn+1)
def= h1(X) ⊕ xn+1 · (h1(X) ⊕ h2(X)) ,

where X = (x1, . . . , xn).
We first show that h is t-resilient. For xn+1 = 0,

h(X, 0) = h1(X)

which is (n − m − 1)-resilient. For xn+1 = 1,

h(X, 1) = h2(X)

which is (l − 2)-resilient. Therefore, h(X, xn+1) is t-resilient, where t = min(n −
m − 1, l − 2).

We next prove that d(h, RM(r +1, n+1)) ≥ k. Choose g(X, xn+1) such that
deg(g) ≤ r + 1 and

d(h, g) = d(h, RM(r + 1, n + 1)) .

From Proposition 3.1, g is written as

g(X, xn+1) = g1(X) ⊕ xn+1 · g2(X)

for some g1 ∈ RM(r + 1, n) and g2 ∈ RM(r, n). Then from Proposition 3.2,

d(h, g) = d(h, g)|xn+1=0 + d(h, g)|xn+1=1

= d(h1, g1) + d(h2, g1 ⊕ g2)
= d(h1, g1) + d(h1 ⊕ h2, h1 ⊕ g1 ⊕ g2)
≥ d(h1, g1) + d(h1 ⊕ h2, g2) − w(h1 ⊕ g1)
= d(h1 ⊕ h2, g2)
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Let l(X) def= x1 ⊕ · · · ⊕ xl−1 ⊕ xm+1 ⊕ · · · ⊕ xn. Then

d(h, g) ≥ d(h1 ⊕ h2, g2)
= d(f1 ⊕ f2 ⊕ l, g2)
= d(f1 ⊕ f2, g2 ⊕ l)
≥ d(f, RM(r, n))

because g2 ∈ RM(r, n) and g2 ⊕ l ∈ RM(r, n). Hence

d(h, RM(r + 1, n + 1)) = d(h, g)
≥ d(f, RM(r, n))
≥ k

��

Corollary 4.2. ρ̂(0, 3, 7) ≥ 18.

Proof. Let

f(x1, . . . , x6) = (x1x2x3 ⊕ x1x4x5) ⊕ (x2x3x6 ⊕ x2x4x6 ⊕ x3x5x6) .

Then it is known that [6]

d(f, RM(2, 6)) = 18 .

Let r = 2, n = 6, m = 5 and l = 2 in Theorem 4.2. Then we obtain this
corollary. ��

Corollary 4.3. Suppose that n = 4k + s, where 0 ≤ s ≤ 3 and k ≥ 1. Let
t = 2k − 1. Then

ρ̂(t, 2, n + 1) ≥
{

2n−1 − 2
n
2 −1 if n = even

2n−1 − 2
n−1

2 if n = odd

Proof. For n = even, let

f(x1, . . . , xn) = x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn .

Then it is known that

d(f, RM(1, n)) = 2n−1 − 2
n
2 −1

(f is a bent function). In Theorem 4.2, let{
f1(x1, . . . , x2k) = x1x2 ⊕ · · · ⊕ x2k−1x2k,
f2(x2k+1, . . . , xn) = x2k+1x2k+2 ⊕ · · · ⊕ xn−1xn

Then m = 2k and l = 2k + 1. Hence

t = min(n − 2k − 1, 2k + 1 − 2)
= min(4k + s − 2k − 1, 2k − 1)
= 2k − 1

because s ≥ 0.
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For n = odd, let

f(x1, . . . , xn) = x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−2xn−1 .

Then for any g(x1, . . . , xn) such that deg(g) ≤ 1,

d(f, g) = d(f, g)|xn=0 + d(f, g)|xn=1

≥ d(f, RM(1, n − 1)) + d(f, RM(1, n − 1))

= 2
(
2n−2 − 2

n−1
2 −1

)

= 2n−1 − 2
n−1

2

Hence
d(f, RM(1, n)) ≥ 2n−1 − 2

n−1
2 .

Finally similarly to n = even, we have t = 2k − 1.
Therefore, this corollary holds from Theorem 4.2. ��

4.3 Upper Bounds on ρ̂(t, r, n)

In this subsection, we derive upper bounds on ρ̂(t, r, n).

Theorem 4.3. For t ≥ 1,

ρ̂(t, r, n) ≤ ρ̂(t − 1, r, n − 1) + ρ(r − 1, n − 1) .

Proof. Any f(x1, . . . , xn) and g(x1, . . . , xn) are written as
{

f(x1, . . . , xn) = f1(x1, . . . , xn−1) ⊕ xn · f2(x1, . . . , xn−1),
g(x1, . . . , xn) = g1(x1, . . . , xn−1) ⊕ xn · g2(x1, . . . , xn−1).

Then

d(f, g) = d(f, g)|xn=0 + d(f, g)|xn=1

= d(f1, g1) + d(f1 ⊕ f2, g1 ⊕ g2)
= d(f1, g1) + d(f1 ⊕ f2 ⊕ g1, g2)

Now let f be any t-resilient function such that

d(f, RM(r, n)) = ρ̂(t, r, n) . (1)

Choose g1 such that deg(g1) ≤ r and

d(f1, g1) = d(f1, RM(r, n − 1))

arbitrarily. Choose g2 such that deg(g2) ≤ r − 1 and

d(f1 ⊕ f2 ⊕ g1, g2) = d(f1 ⊕ f2 ⊕ g1, RM(r − 1, n − 1))

arbitrarily. Then
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(1). deg(g) ≤ r. Therefore,

d(f, g) ≥ d(f, RM(r, n)) = ρ̂(t, r, n) .

(2). f1 is (t − 1)-resilient. Therefore,

d(f1, g1) = d(f1, RM(r, n − 1)) ≤ ρ̂(t − 1, r, n − 1) .

(3). It is easy to see

d(f1 ⊕ f2 ⊕ g1, g2) ≤ ρ(r − 1, n − 1) .

Therefore,

ρ̂(t, r, n) ≤ d(f, g)
= d(f1, g1) + d(f1 ⊕ f2 ⊕ g1, g2)
≤ ρ̂(t − 1, r, n − 1) + ρ(r − 1, n − 1) .

��

Lemma 4.1. Suppose that f(X) is balanced and deg(g(X)) ≤ n − 1, where
X = (x1, . . . , xn). Then

d(f, g) ≡ 0 mod 2 .

Proof. Note that
d(f, g) = w(f) + w(g) − 2w(f × g) .

Since deg(g) ≤ n − 1, it holds that w(g) ≡ 0 mod 2. Therefore, it holds that
d(f, g) ≡ 0 mod 2. ��

We finally generalize Proposition 2.1 [5] and Proposition 2.2 [5].

Theorem 4.4. Let 1 ≤ r ≤ n − 2 and 0 ≤ t ≤ n − r − 2. If f(x1, . . . , xn) is a
t-resilient function, then

d(f, RM(r, n)) ≡ 0 mod 2� t
r �+1 .

Proof. We show that

d(f(X), g(X)) ≡ 0 mod 2� t
r �+1 (2)

for any g(X) such that deg(g) ≤ r, where X = (x1, . . . , xn). Let α(g, r) be the
number of degree r terms xi1 · · · xir involved in g.

Base step on r. If r = 1, then the theorem follows from Proposition 2.1.
Inductive step on r. Assume that (2) is true for r = r0. We will show

that it is true for r = r0 + 1.
Base step on α(g, r0 + 1). If α(g, r0 + 1) = 0, then g(x1, . . . , xn) ∈

RM(r0, n). By an induction hypothesis on r, we have

d(f, g) ≡ 0 mod 2� t
r0

�+1

≡ 0 mod 2� t
r0+1 �+1 .
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Inductive step on α(g, r0+1). Assume that (2) is true for α(g, r0+1) ≤ α0.
We show that (2) is true for α(g, r0 + 1) = α0 + 1. Without loss of generality,
we assume that

g(x1, . . . , xn) = x1 · · · xr0+1 ⊕ g∗(x1, . . . , xn)

for some g∗ such that α(g∗, r0 + 1) = α0.
Define 


fb1...br0+1

def= f(b1, . . . , br0+1, xr0+2, . . . , xn)

g∗
b1...br0+1

def= g∗(b1, . . . , br0+1, xr0+2, . . . , xn)

db1...br0+1

def= d(fb1...br0+1 , g∗
b1...br0+1

)

Then we have{
d(f, g∗) = d0...0 + · · · + d1...10 + d1...1 = 2� t

r0+1 �+1k
d(f, g) = d0...0 + · · · + d1...10 + 2n−(r0+1) − d1...1

for some integer k by an induction hypothesis on α(g, r0 +1). Therefore we have

d(f, g) = 2� t
r0+1 �+1k + 2n−(r0+1) − 2d1...1 .

From our condition on the parameters, it holds that

t ≤ n − (r0 + 1) − 2 .

Therefore, we have

n − (r0 + 1) ≥ t + 2 ≥ � t

r0 + 1
� + 1

Hence
2n−(r0+1) ≡ 0 mod 2� t

r0+1 �+1 .

Further, from the induction hypothesis on α(g, r0 + 1), we have

d1...1 ≡ 0 mod 2� t−(r0+1)
r0+1 �+1

≡ 0 mod 2� t
r0+1 � .

since f1...1 is a (t−(r0+1))-resilient function and α(g∗
1...1, r0+1) ≤ α0. Therefore,

2d1...1 ≡ 0 mod 2� t
r0+1 �+1 .

Finally, putting all things together, we have

d(f, g) ≡ 0 mod 2� t
r �+1

for any g such that deg(g) ≤ r. Therefore, this Theorem holds. ��
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Corollary 4.4. If r ≤ n − t − 2, then

ρ̂(t, r, n) ≤ ρ(r, n) −
(

ρ(r, n) mod 2� t
r �+1

)
.

Proof. It is clear that ρ̂(t, r, n) ≤ ρ(r, n). Then apply Theorem 4.4 ��

Corollary 4.5. Let Y
def= ρ̂(t − 1, r, n − 1) + ρ(r − 1, n − 1). Then

ρ̂(t, r, n) ≤ Y −
(

Y mod 2� t
r �+1

)
.

Proof. From Theorem 4.3 and Theorem 4.4. ��

5 Numerical Result

We present a table of numerical values of ρ̂(t, r, n) which are obtained from our
bounds and the previous bounds. The entry α-β means that α ≤ ρ̂(t, r, n) ≤ β.

n 1 2 3 4 5 6 7
r = 1 0 2a 4a,b 12a 24a-26b 56a

r = 2 0 2a 6c 12a-18 36a-44
t = 0 r = 3 0 2a 4a-8 18d-22e

r = 4 0 2a 4a-8
r = 5 0 2a

r = 6 0
n 1 2 3 4 5 6 7

r = 1 0 4a,g 8a-12 24a,b 56a

r = 2 0 6f 12a-18 28f -44
t = 1 r = 3 0 4a-8 8a-22e

r = 4 0 4a-8
r = 5 0

n 1 2 3 4 5 6 7
r = 1 0 8a,g 16a-24g 48a-56

t = 2 r = 2 0 12a-16e 24a-44
r = 3 0 8a-22e

r = 4 0

(a) is obtained from Theorem 4.1, (b) is obtained from Proposition 2.2, (c) is
obtained from Theorem 4.2, (d) is obtained from Corollary 4.2, (e) is obtained
from Corollary 4.4, (f) is obtained from Corollary 4.3, and (g) is obtained from
Proposition 2.1. Unmarked values are obtained from ρ(r, n).
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Abstract. In this paper we show some efficient and unconditionally se-
cure oblivious transfer reductions. Our main tool is a class of functions
that generalizes the Zig-zag functions, introduced by Brassard, Crepéau,
and Sántha in [6]. We show necessary and sufficient conditions for the
existence of such generalized functions, and some characterizations in
terms of well known combinatorial structures. Moreover, we point out
an interesting relation between these functions and ramp secret sharing
schemes where each share is a single bit.

Keywords: Oblivious Transfer, Zig-zag Functions, Ramp Schemes.

1 Introduction

The oblivious transfer is a well known cryptographic primitive. Introduced by
Rabin in [24], and subsequently defined in different forms in [16,5], it has found
many applications in cryptographic studies and protocol design. One of the most
common forms in which the oblivious transfer is used is the following1 [5]: Let
S, the Sender, and let R, the Receiver, be two players. Assume that S holds n
secrets of � bits and R is interested in one of them, say the i-th one. An oblivious
transfer protocol enables R to receive the i-th secret out of the n S holds in such
a way that

- S does not know which of the n secrets R has received
- R does not receive any information on the other secrets S holds.

We will refer to such a protocol as to an
(

n
1

)
-OT�. All the oblivious transfer

definitions [24,16,5] were shown to be equivalent [12,4,13,6]. Moreover, Kilian,
in [21], showed that the oblivious transfer is complete; in other words, it can
be used to construct any other cryptographic protocol. Due to the importance
of the oblivious transfer many papers [6,12,11,13,14,22,23], assuming that an

1 Recently, it has been pointed out that Wiesner independently developed a similar
concept in 1970, unpublished until [27].

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 87–102, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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(
n
1

)
-OT� is available, have been focusing on designing protocols that realize an(

N
1

)
-OTL, where N ≥ n and L ≥ �, using in an efficient way the given

(
n
1

)
-OT�.

Such kind of protocols are usually referred to as oblivious transfer reductions.
In [14], unconditionally secure oblivious transfer reductions have been stud-

ied. Lower bounds on the number of times an
(

n
1

)
-OT� oblivious transfer protocol

must be called to realize an
(

N
1

)
-OTL one, as well as on the number of random

bits needed to implement such a reduction, have been proven. The bounds were
shown to be tight when the parameter L = �. Unfortunately, when L > �, the
trivial extension of the described protocol leaks some information. Actually, a
cheating receiver is able to obtain pieces of different secrets.

In this paper we focus our attention on unconditionally secure reductions of(
N
1

)
-OTL to

(
n
1

)
-OT� . We show how to modify the protocol proposed in [14] in

order to avoid information leakage. To this aim, we investigate the properties
of a class of functions that generalizes the Zig-zag function class introduced by
Brassard, Crepéau, and Sántha in [6] in order to reduce in an unconditionally
secure way

(2
1

)
-OT� to

(2
1

)
-OT1. Using these generalized Zig-zag functions we

set up an unconditionally secure oblivious transfer reduction of
(

N
1

)
-OTL to(

n
1

)
-OT�, which is optimal up to a small multiplicative constant with respect to

the number of invocations of the smaller oblivious transfer needed to implement
such a reduction [14].

Zig-zag functions have been deeply studied in the last years. The authors
of [6] showed that linear Zig-zag functions are equivalent to a special class of
codes, the self-intersecting codes [9]. Moreover, they described several efficient
methods to construct these codes. On the other hand, Stinson, in [25], found
bounds and combinatorial characterizations both for linear and for non-linear
Zig-zag functions. Applying techniques developed in [25,26], we show necessary
and sufficient conditions for the existence of generalized Zig-zag functions, and
some characterizations in terms of orthogonal arrays and large set of orthogonal
arrays as well.

Then, we show that the reduction presented in [14] can be viewed as a two-
stage process, and using a ramp secret sharing scheme [1] in the first stage, we
set up a reduction of

(
N
1

)
-OTL to

(
n
1

)
-OT�, which is optimal with respect to the

number of invocations of the available
(

n
1

)
-OT�, up to a factor 2.

Finally, we point out an interesting relation between generalized Zig-zags and
ramp secret sharing schemes where the size of each share is exactly one bit.

2 Oblivious Transfer

The following definitions were given by Brassard, Crepéau, and Sántha in [6]
and were used, in a slightly simplified form2 in [14]. We refer the reader to [6]
for more details.

2 The goal of that paper was to find out lower bounds and the awareness condition
does not influence them in any way
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Assume that S and R hold two programs, S and R respectively, which specify
the computations to be performed by the players to achieve

(
N
1

)
-OTL. These

programs encapsulate, as black box, ideal
(

n
1

)
-OT�. Hence, during the execution,

S and R are able to carry out many times unconditionally secure
(

n
1

)
-OT�. In

order to model dishonest behaviours, where one of the player tries to obtain
unauthorized information from the other, we assume that a cheating S (resp.
R) holds a modified version of the program, denoted by S (resp. R).

Let [P0,P1](a)(b) be the random variable representing the output obtained
by S and R when they execute together their own programs, P0 held by S and P1
held by R, with private inputs a and b, respectively. Moreover, let [P0,P1]∗(a)(b)
be the random variable that describes the total information acquired during
the execution of the protocol on input a and b, and let [P0,P1]∗S(a)(b) (resp.
[P0,P1]∗R(a)(b)) be the random variable obtained by restricting [P0,P1]∗(a)(b)
to S (resp. to R). These restrictions are the view each player has while running
the protocol.

Finally, let W be the set of all length N sequences of L-bit secrets, and,
for any w ∈ W , let wi be the i-th secret of the sequence. Denoting by W the
random variable that represents the choice of an element in W , and by T the
random variable representing the choice of an index i in T = {1, . . . , N}, we can
define the conditions that an

(
N
1

)
-OTL oblivious transfer protocol must satisfy

as follows:

Definition 1. The pair of programs [S,R] is correct for
(

N
1

)
-OTL if for each

w ∈ W and for each i ∈ T

P([S,R](w)(i)) �= (ε, wi)) = 0, (1)

and, for any program S, there exists a probabilistic program Sim such that, for
each w ∈ W and i ∈ T

([S,R](w)(i)|R accepts ) = ([S,R](Sim(w))(i)|R accepts ). (2)

Notice that condition (1) means that two honest players always complete
successfully the execution of the protocol. More precisely, R receives wT , the
secret in which he is interested, while S receives nothing. The output pair (ε, wi),
where ε denotes the empty string, describes this situation. On the other hand,
condition (2), referred to as the awareness condition, means that, when R does
not abort, a dishonest S cannot induce on R’s output a distribution that he could
not induce by changing the input (Sim(w)) and being honest. As explained in
[6], this condition is necessary for future uses of the output of the protocol.

Assuming that both S and R are aware of the joint probability distribution
PW,T on W and T , the probability with which S chooses the secrets in W and R
chooses an index i ∈ T , and using the mutual information3 between two random
variables, the privacy property of

(
N
1

)
-OTL can be defined as follows:

3 The reader is referred to Appendix A for the definition and some basic properties of
the concept of mutual information.
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Definition 2. The pair of programs [S,R] is private for
(

N
1

)
-OTL if for each

w ∈ W and i ∈ T , for any program S

I(T; [S,R]∗S(w)(i)|W) = 0, (3)

while, for any program R, there exists a random variable T = f(T) such that

I(W; [S,R]∗R(w)(i)|T,WT ) = 0. (4)

These two conditions ensure that a dishonest S does not gain information
about R’s index; and a dishonest R infers at most one secret among the ones
held by S.

3 Unconditionally Secure Reductions

In the literature can be found many unconditionally secure reductions of more
“complex” OT to “simpler” ones [11,12,4,14]. The efficiency of such reductions
has been careful analyzed in [14]. Therein, the authors considered two types of
reductions: reductions for strong

(
N
1

)
-OTL, where condition (4) of Definition 2

holds, and reductions for weak
(

N
1

)
-OTL, where condition (4) is substituted by

the following condition:

for any program R and i ∈ T , it holds that

I(W; [S,R]∗R(w)(i)) ≤ L. (5)

Roughly speaking, in a weak reduction, a dishonest R can gain partial infor-
mation about several secrets, but at most L bits overall. Besides, they termed
natural reductions the reductions where the receiver R sends no messages to
the sender S. This automatically implies that condition (3) of Definition 2 is
satisfied. Using the above terminology, they showed the following lower bounds
on the number α of invocations the

(
N
1

)
-OTL protocol must do of the ideal

(
n
1

)
-

OT� sub-protocol, and on the number of random bits required to implement the(
N
1

)
-OTL.

Theorem 1. [14] Any information-theoretical secure reduction of weak
(

N
1

)
-

OTL to
(

n
1

)
-OT� must have α ≥ L

� · N−1
n−1

Theorem 2. [14] In any information-theoretic natural reduction of weak
(

N
1

)
-

OTL to
(

n
1

)
-OT� the sender must flip at least L(N−n)

n−1 random bits.

When L = �, the bounds are tight both for the strong and the weak case, since
they showed a protocol realizing

(
N
1

)
-OT� where N > n which makes exactly

N−1
n−1 invocations of the

(
n
1

)
-OT� and flips exactly L(N−n)

n−1 random bits [14].
However, for the case L > �, they gave a protocol (see Table 1), which is optimal
with respect to condition (5), but which does not meet condition (4). The idea is



Generalized Zig-zag Functions and Oblivious Transfer Reductions 91

Table 1. Basic protocol for a weak reduction

Protocol weakly reducing
(

N
1

)
-OTL (with L > �) to

(
n
1

)
-OT�.

Assume that �|L.
- Let w = w1, . . . , wN be the length N sequence of secrets S holds. For each

i = 1, . . . , N , wi is a string of L bits.

- Split the strings into L
�
pieces. More precisely, let wi = w1

i , . . . , w
L
�

i , where,
wj

i ∈ {0, 1}�, for each j = 1, . . . , L
�
.

- For j = 1, . . . , L
�
, execute an

(
N
1

)
-OT � oblivious transfer of the j-th piece of

w = w1, . . . , wN . In other words, compute(
N

1

)
-OT � on (wj

1, . . . , wj
N )

where the
(

N
1

)
-OT � is the reduction of

(
N
1

)
-OT� to

(
n
1

)
-OT� described in [14].

simply to split each of the N secret strings in L/� pieces of � bits, and to run the
available

(
N
1

)
-OT�, optimal with respect to the use of the

(
n
1

)
-OT� black box,

exactly L
� times.

An honest R always obtains the secret in which he is interested in, recovering
the “right” pieces at each execution. On the other hand, a cheating R is able to
recover L

� pieces of possibly different secrets among w = w1, . . . , wN . We would
like to modify this basic construction in order to achieve condition (4) without
losing too much in efficiency.

Brassard, Crepéau, and Sántha solved a similar problem in [6]. They stud-
ied how to reduce

(2
1

)
-OT� to

(2
1

)
-OT1 in an information theoretic secure way.

Starting from the observation that trivial serial executions of �
(2
1

)
-OT1 oblivi-

ous transfer, one for each bit of the two secret strings w0 and w1, didn’t work,
they pursued the idea of finding a function f where, given x0 and x1 such that
f(x0) = w0 and f(x1) = w1, from two disjoint subsets of bits of x0 and x1 it is
possible to gain information on at most one of w0 and w1. Using such a (public)
function, the reduction would have been simple to implement (see Table 2).

Table 2. Protocol for two secrets of � bits

Protocol strongly reducing
(

2
1

)
-OT� to

(
2
1

)
-OT1

- S picks random x0, x1 ∈ {0, 1}n such that f(x0) = w0 and f(x1) = w1

- For i = 1, . . . , n, S performs a
(

2
1

)
-OT1 on the pair (xi

0, xi
1)

- R recovers w0 or w1 by computing f(x0) or f(x1).
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The property of f ensures that an honest receiver is always able to recover
one of the secrets, while a dishonest receiver can obtain information on at most
one of the secrets. They called such functions Zig-zag functions.

Notice that we have to solve a very close problem: in our scenario, a cheating
receiver is able to obtain partial information about many secrets. Our aim is
to find out a class of functions where disjoint subsets of strings x1, x2, ... give
information about at most one of the secrets w1, w2, ...

4 Generalized Zig-zag Functions

Let X = GF (q), and let Xn = {(x1, . . . , xn) : xi ∈ X, for 1 ≤ i ≤ n}. More-
over, for each I = {i1, . . . , i|I|} ⊆ {1, . . . , n}, denote by xI = (xi1 , . . . , xi|I|) the
subsequence of x ∈ Xn indexed by I. Finally, let XI be the set of all possible
subsequences xI for a given I.

A function is unbiased with respect to a subset I if the knowledge of the
value of xI does not give any information about f(x). More formally, we have
the following definition

Definition 3. Suppose that f : Xn → Xm, where n ≥ m. Let I ⊆ {1, . . . , n}.
We say that f is unbiased with respect to I if, for all possible choices of xI ∈
XI , and for every (y1, . . . , ym) ∈ Xm, there are exactly qn−m−|I| choices for
x{1,...,n}\I such that f(x1, . . . , xn) = (y1, . . . , ym).

This concept has been introduced in [6]. Actually, the form in which it is
stated here is the same as [25]. Since we are going to follow the same approach
applied in [25] to study the properties of linear and nonlinear Zig-zag functions,
we prefer this definition. The definition of Zig-zag functions relies on the unbiased
property.

Definition 4. A function f : Xn → Xm is said to be a Zig-zag function if,
for every I ⊆ {1, . . . , n}, f is unbiased with respect to at least one of I and
{1, . . . , n} \ I.

We would like some “generalized” Zig-zag property, holding for different dis-
joint subsets of indices. Roughly speaking, a generalized Zig-zag function should
be unbiased with respect to at least s − 1 of the subsets I1, . . . , Is into which
{1, . . . , n} is partitioned (for all possible partitions). More formally, we can state
the following

Definition 5. Let s be an integer such that 2 ≤ s ≤ n. A function f : Xn → Xm

is said to be an s-Zig-zag function if, for every set of s subsets I1, . . . , Is ⊆
{1, . . . , n}, such that ∪iIi = {1, . . . , n}, and Ij ∩ Ij = ∅ if i �= j, f is unbiased
with respect to at least s− 1 of I1, . . . , Is.

In an s-Zig-zag function, if R collects information about s xi’s, for some s,
then he can get information on at most one wi. If the above property is satisfied
for every 2 ≤ s ≤ n, then we say that f is fully Zig-zag (see Appendix B for
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an example of such a function). Fully Zig-zag functions enable us to apply the
same approach developed in [6] in order to substitute the real secrets wi with
some pre-images xi of wi. The generalized property of the function ensures the
privacy of the transfer.

Note: The functions f : Xn → Xm we are looking for must be efficient to
compute. Moreover, there must exist an efficient procedure to compute a random
pre-image x ∈ f−1(y), for each y ∈ Xm.

4.1 Zig-zag and Fully Zig-zag Functions

We briefly review some definitions and known results about Zig-zag. A Zig-zag
(resp. s-Zig-zag, fully Zig-zag) function is said to be linear if there exists anm×n
matrix M with entries from GF (q) such that f(x) = xMT for all x ∈ GF (q)n.

The following results have been shown in [25] and are recalled here since they
will be used in the following subsection. The next lemma shows an upper bound
on the size of the set of index I with respect to a function can be unbiased.

Lemma 1. [25] If f : Xn → Xm is unbiased with respect to I, then |I| ≤ n−m.
As a consequence, it is possible to show a lower bound on the size n of the

domain of the function, given the size m of the codomain.

Lemma 2. [25] If f : Xn → Xm is a Zig-zag function, then n ≥ 2m− 1.

The following theorem establishes that a Zig-zag function is unbiased with
respect to all the subsets of size m− 1.

Theorem 3. [25] If f : Xn → Xm is a Zig-zag function, then f is unbiased
with respect to I for all I such that |I| = m− 1.

Moreover, notice that it is not difficult to prove the following result

Lemma 3. If f : Xn → Xm is unbiased with respect to I, then f is unbiased
with respect to all I

′ ⊆ I.

Using the above results, we can prove our main result of this section: an
equivalence between certain fully Zig-zag functions and Zig-zag functions.

Theorem 4. Let n ≥ 2m− 1. Then f : Xn → Xm is a fully Zig-zag function if
and only if f is a Zig-zag function.

Proof. We give the proof for n = 2m− 1. The if part is straightforward. Indeed,
if f is fully Zig-zag, then for each partition I1, . . . , Is of {1, . . . , n} f is unbiased
with respect to at least s − 1 subsets out of the s in the partition. Hence, it is
unbiased with respect to at least 1 subset out of the 2 for any possible bipartition
of {1, . . . , n}. Therefore, f is Zig-zag.

Assume now that f is Zig-zag. Hence, by definition, for each I ⊆ {1, . . . , n},
f is unbiased with respect to at least one of I and {1, . . . , n} \ I.

Let I1, . . . , Is be a partition of {1, . . . , n}. We can consider two cases.
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a) There exists a subset Ii of the partition such that |Ii| > n − m. Consider
this subset. Since f is Zig-zag, by Lemma 1, f is unbiased with respect to
{1, . . . , n} \ Ii. But {1, . . . , n} \ Ii = ∪j 
=iIj . Hence, applying Lemma 3, we
can conclude that f is unbiased with respect to all Ij , for j �= i.

b) For each i = 1, . . . , s, |Ii| ≤ n−m. Notice that, since n = 2m− 1,

|Ii| ≤ n−m ⇔ |Ii| ≤ 2m− 1 −m ⇔ |Ii| ≤ m− 1.

Since f is a Zig-zag function, applying Theorem 3, we can say that f is
unbiased with respect to all Ii : |Ii| = m − 1. Therefore, by Lemma 3, we
can conclude that f is unbiased with respect to all of I1, . . . , Is.

Therefore, f is fully Zig-zag. ��

The proof for n > 2m− 1 is similar. Therefore, we can conclude saying that
Zig-zag and fully Zig-zag definitions define the same class of functions. Therefore,
the known constructions for Zig-zag functions enable us to improve the protocol
described in Table 1 by substituting the secrets with the pre-images of a Zig-
zag functions, as done in the protocol described in Table 2 for two secrets. A
complete description of our protocol can be found in Table 3. Moreover, since
both in [6] and in [25], has been shown that for each m there exist functions
f : Xn → Xm, where n = Θ(m) and the asymptotic notation hides a small
constant, the modified protocol is still efficient and optimal with respect to the
bound obtained in [14] up to a small multiplicative constant 4.

Table 3. General protocol, depending on f .

Protocol strongly reducing
(

N
1

)
-OTL to

(
n
1

)
-OT�

Let f : XP → XL be a fully Zig-zag function such that �|P .
- S picks random x0, x1, . . . , xN−1 ∈ {0, 1}P such that, for i = 0, . . . , N − 1,

f(xi) = wi.
- S performs the protocol described in Table 1, using x0, x1, . . . , xN−1 instead
of the real secrets w0, . . . , wN−1.

- R recovers xi, and computes wi = f(xi).

4.2 On the Existence of s-Zig-zags

A question coming up to mind now is the following: Zig-zag functions are equiva-
lent to fully Zig-zag functions. But these functions, according to Lemma 2, exist
4 After the submission of this extended abstract to the conference, we found out that
Dodis and Micali, working on the journal version of the paper presented at Eurocrypt
’99, have independently obtained the same reduction, which will appear in the full
version of their paper.
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only if n ≥ 2m− 1. Do s-Zig-zag functions exist when n < 2m− 1? The example
reported in Appendix C shows that the answer is again affirmative. It is inter-
esting to investigate some necessary and sufficient conditions for the existence
of such generalized functions. The following lemma extends Lemma 2:

Lemma 4. If an s-Zig-zag function f : Xn → Xm exists, then

n ≥
{

2m− s+ 2, if n and s are both odd or both even
2m− s+ 1, otherwise.

Proof. Notice that, by definition, f must be unbiased with respect to at least
s − 1 subsets of each possible s-partition. It is not difficult to check that the
worst case we have to consider is when a partition has s − 2 subsets of size 1
and two subsets of essentially the same size. Therefore, f must be unbiased with
respect to at least one of the two “big” subsets. Hence, applying Lemma 1, it
follows that

	n − (s − 2)
2


 ≤ n − m. (6)

The result follows by simple algebra. ��

An interesting relation between s-Zig-zag and t-Zig-zag, where t ≥ s, is stated
by the following lemma, whose proof can be obtained essentially noticing that a
t-partition is a refinement of an s-partition.

Lemma 5. If f : Xn → Xm is s-Zig-zag, then f is t-Zig-zag for every s < t ≤
n.

4.3 A Combinatorial Characterization

Let t be an integer such that 1 ≤ t ≤ k and v ≥ 2. An orthogonal array
OAλ(t, k, v) is a λvt ×k array A of v symbols, such that within any t columns of
A, every possible t-tuple of symbols occurs in exactly λ rows of A. An orthogonal
array is simple if it does not contain two identical rows. A large set of orthogonal
arrays OAλ(t, k, v), denoted LOAλ(t, k, v), is a set of vk−t/λ simple OAλ(t, k, v),
such that every possible k-tuple occurs as a row in exactly one of the orthogonal
arrays in the set (see [20] for the theory and applications of these structures).

Theorem 5. If f : Xn → Xm is an s-Zig-zag function where n and s have
different parity, and m > � n

2 � + � s−2
2 � then f is unbiased with respect to all the

subsets of size � n−(s−2)
2 �.

Proof. Notice that, our assumptions imply � n−(s−2)
2 � > � n−(s−2)

2 �. By definition,
f is unbiased with respect to at least s−1 subsets of each s-partition of {1, . . . , n}.
Suppose there exists a subset Ii such that |Ii| = � n−(s−2)

2 � with respect to f is
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biased. Then, it would be possible to define an s-partition having s− 2 subsets
of size 1, the subset Ii, and a subset R having size

|R| = n− (s− 2) − �n− (s− 2)
2

� = �n− (s− 2)
2

�.

Since f is biased with respect to Ii, then f must be unbiased with respect to
R. This is possible only if

|R| = �n− (s− 2)
2

� ≤ n−m ⇐⇒ m ≤ n− �n− (s− 2)
2

�.

Since � n−(s−2)
2 � = � n

2 � − � s−2
2 � the above inequality is satisfied only if m ≤

� n
2 � + � s−2

2 �. But m > � n
2 � + � s−2

2 � and, hence, we have a contradiction. ��
The following theorem establishes a necessary and sufficient condition for the

existence of certain s-Zig-zag functions.

Theorem 6. An s-Zig-zag function f : Xn → Xm, where n and s have different
parity, and m > � n

2 �+� s−2
2 � exists if and only if a large set of orthogonal arrays

LOAλ(� n−(s−2)
2 �, n, q) with λ = qn−m−� n−(s−2)

2 � exists.

Proof. The necessity of the condition derives from Theorem 5, analyzing the
arrays containing the pre-images of f , as done in [25]. The sufficiency can be
proved as follows: label each of the qm arrays of the large set with a different
element of y ∈ Xm. Denote such array with Ay. Then, define a function f :
Xn → Xm as

f(x1, . . . , xn) = y ⇐⇒ (x1, . . . , xn) ∈ Ay.

The properties of the arrays and the condition m > � n
2 � + � s−2

2 � assure that f
is s-Zig-zag. ��

On the other hand, using the same proof technique, it is possible to show a
sufficient condition for the existence of an s-Zig-zag for any n and 2 ≤ s ≤ n.
More precisely, we can state the following

Theorem 7. If a large set of orthogonal arrays LOAλ(� n−(s−2)
2 �, n, q) with λ =

qn−m−� n−(s−2)
2 � exists, then an s-Zig-zag function exists.

5 Towards a General Reduction

The protocol described before can be conceptually divided in two phases: a first
phase in which xi is split into several pieces and R needs all the pieces to retrieve
xi; and a second phase where, once having obtained xi, R recovers the secret
by computing yi = f(xi) for some function f . Since each piece gives partial
knowledge of xi, f needs to hide the value of yi according to the definition of
a correct and private reduction (i.e., the Zig-zag property). In this section, we
show that using in the first phase an appropriate ramp secret sharing scheme [1]
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(see Appendix D for a brief review of the definition and some basic properties) to
share xi then, in the second phase the function f needs weaker requirements than
the Zig-zag property. In this case, the pieces that R recovers from each transfer
are not substrings of the value xi he needs to compute the real secret yi = f(xi),
but shares that he has to combine according to the given ramp scheme in order
to recover xi.

Actually, notice that the splitting of the strings can be seen as a sharing
according to a (0, p

� ,
p
� )-RS, where p is |xi| and � is the size of each share/piece.

The questions therefore are: is it possible to design an overall better protocol,
using in the first phase some non trivial ramp scheme to share xi. Does there
exist a trade-off between what we pay in the first phase and what we pay in
the second phase? Using a generic (t1, t2, n)-RS, what properties does f need
to satisfy in order to hide yi from partial knowledge of xi as required by our
problem? It is not difficult to check that the condition f needs is the following.

Definition 6. A function f : X → Y realizes an unconditionally secure obliv-
ious transfer reduction if and only if, for each set of shares {x1, . . . , xn} for a
secret x ∈ X generated by a given (t1, t2, n)-RS, for every sequence of subsets
I1, . . . , Is ⊆ {1, . . . , n}, such that ∪iIi = {1, . . . , n}, and Ii ∩ Ij = ∅ if i �= j, it
holds that

H(Y |XIi
) = H(Y )

for at least s− 1 of I1, . . . , Is.

The definition means that at most one subset of shares can give information
about f(x).

It is easy to see that, when the ramp secret sharing scheme used in the
first phase of the protocol is the trivial (0, p, p)-RS (shares/pieces of one bit),
Definition 6 is equivalent to fully Zig-zag functions.

An Almost Optimal Reduction. Using a ( n
2 , n, n)-RS it is immediate to see that,

to acquire information on xi, the adversary needs at least n
2 + 1 shares. Hence,

recovering partial information on one secret rules out the possibility of recov-
ering partial information on another secret. Notice that with such a scheme, if
each secret has size p and � divides p, the bound on the size of the shares (see
Appendix D) implies n ≥ 2p

� (number of invocations of the given
(

N
1

)
-OT�). An

implementation meeting the bound for several values of p and � can be set up
using, for example, the protocol described in [17]. In this case the function f
used in the second phase can be simply the identity function!

6 Ramp Secret Sharing Schemes with Shares of One Bit

Fully Zig-zag, s-Zig-zag and Zig-zag functions give rise to ramp secret sharing
schemes with shares of one bit. The idea is the following: the dealer, given one
of these functions, say f : Xn → Xm, chooses a secret y ∈ Xm and computes a
random pre-image x ∈ f−1(y). Then, he distributes the secret among the set of
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n participants giving, as a share, a single bit of the pre-image x to each of them.
It is immediate to see that

- some subsets of participants do not gain any information about the secret,
even if they pool together their shares. These subsets are the subsets of
{1, . . . , n} with respect to the function f is unbiased.

- some subsets of participants are able to recover partial information about
the secret. These are the subsets of {1, . . . , n} with respect to f is biased

- all the participants are able to recover the whole secret.

The idea of such constructions was recently described in [8] (see Remark 9) as
an application of �-AONT transforms. In that construction, however, the dealer
distributes among the participants the bits of the image of the secret while we
distribute the bits of a pre-image of the secret.

7 Conclusions

In this paper we have shown how to achieve efficient unconditionally secure re-
ductions of

(
N
1

)
-OTL to

(
n
1

)
-OT�, proving that Zig-zag functions can be used to

reduce
(

N
1

)
-OTL to

(
n
1

)
-OT� for each N ≥ n and L ≥ �. Finally, we have studied

a generalization of these functions, identifying a combinatorial characterization
and a relation with ramp schemes with shares of one bit. Some interesting ques-
tions arise from this study. To name a few:

– The constructions presented before are almost optimal but do not meet the
bounds of Theorems 1 and 2 by equality. Hence, the question of how to reach
(if it is possible) these bounds is still open.

– Do cryptographic applications of s-Zig-zag exist? We have pointed out the
interesting relation with efficient ramp schemes, where each share is a single
bit. Is it possible to say more?

– Linear Zig-zag are equivalent to self-intersecting codes. Is there any charac-
terization in terms of codes for s-Zig-zag functions? And what about some
efficient constructions? Is it possible, along the same line of [6], to set up
any deterministic or probabilistic method?
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A Information Theory Elements

This appendix briefly recalls some elements of information theory (the reader is
referred to [10] for details).

Let X be a random variable taking values on a set X according to a proba-
bility distribution {PX(x)}x∈X . The entropy of X, denoted by H(X), is defined
as

H(X) = −
∑
xεX

PX(x) logPX(x),

where the logarithm is to the base 2. The entropy satisfies

0 ≤ H(X) ≤ log |X|,

where H(X) = 0 if and only if there exists x0 ∈ X such that Pr(X = x0) = 1;
whereas, H(X) = log |X| if and only if Pr(X = x) = 1/|X|, for all x ∈ X. The
entropy of a random variable is usually interpreted as

– a measure of the equidistribution of the random variable
– a measure of the amount of information given on average by the random

variable

Given two random variables X and Y taking values on sets X and Y , re-
spectively, according to the joint probability distribution {PXY(x, y)}x∈X,y∈Y

on their cartesian product, the conditional entropy H(X|Y) is defined as

H(X|Y) = −
∑
y∈Y

∑
x∈X

PY(y)PX|Y(x|y) logPX|Y(x|y).

It is easy to see that
H(X|Y) ≥ 0.
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with equality if and only if X is a function of Y . The conditional entropy is a
measure of the amount of information that X still has, once given Y.

The mutual information between X and Y is given by

I(X; Y) = H(X) −H(X|Y),

and it enjoys the following properties,

I(X; Y) = I(Y; X), and I(X; Y) ≥ 0.

The mutual information is a measure of the common information between X
and Y.

B A Fully Zig-zag Function

In this section, we show an example of a fully Zig-zag function. Let X = GF (2),
and let f : X6 → X3 be the function defined by f(x) = xMT where

M =


 1 0 1 1 0 0

1 1 0 0 1 0
0 1 1 0 0 1




To prove that f is fully Zig-zag it is necessary to show that, for any 1 < s ≤ 6,
for each partition of {1, . . . , 6} into s parts, f is unbiased with respect to at least
s−1 of them. An easy proof can be obtained using the following theorem, which
can be found in [25].

Theorem 8. Let M be a generating matrix for an [n,m] q-ary code, C, and let
H be a parity-check matrix for C. The function f(x) = xMT is unbiased with
respect to I ⊆ {1, . . . , n} if and only if the columns of H indexed by I are linearly
independent.

The parity-check matrix H for the generating matrix M is

H =


 1 0 0 1 1 0

0 1 0 0 1 1
0 0 1 1 0 1




Applying the above theorem, it is not difficult to see that f is unbiased with
respect to

a) any subset of size 1.
b) any subset of size 2.
c) any subset of size 3, except {1, 2, 5}, {1, 3, 4}, {2, 3, 6}, and {4, 5, 6}.

Therefore, for any 2 ≤ s ≤ 6, and for any s-partition, f is unbiased with
respect to at least s− 1 subsets of the s subsets.
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C An Example of an s-Zig-zag

In this Appendix we show an example of a 3-Zig-zag function (where n < 2m−1).
Let X = GF (2), and let f : X4 → X3 be the function defined by f(x) = xMT

where

M =


 1 0 0 1

0 1 0 1
0 0 1 1




In this case, the parity-check matrix H for the generating matrixM is simply

H =
[

1 1 1 1
]

Applying Theorem 8, it is easy to see that f is unbiased with respect to each
subset of size 1. Since any 3-partition contains 2 subsets of size 1 and a subset
of size 2, it follows that f is unbiased with respect to exactly 2 subsets.

Hence, s-Zig-zag functions can exist where Zig-zag functions and fully Zig-zag
functions cannot exist.

D Ramp Secret Sharing Schemes

A ramp secret sharing schemes ((t1, t2, n)-RS, for short) is a protocol by means
of which a dealer distributes a secret s among a set of n participants P in such a
way that subsets of P of size greater than or equal to t2 can reconstruct the value
of s, any subset of P of size less than or equal to t1 cannot determine anything
about the value of the secret, while a subset of size t1 < t < t2 can recover some
information about the secret [1]. Using information theory, the three properties
of a (linear) (t1, t2, n)-RS can be stated as follows. Assuming that P denotes
both a subset of participants and the set of shares these participants receive
from the dealer to share a secret s ∈ S, and denoting the corresponding random
variables in bold, it holds

– Any subset of participants of size less than or equal to t1 has no informa-
tion on the secret value: Formally, for each subset P ∈ P of size |P | ≤ t1,
H(S|P) = H(S).

– Any subset of participants of size t1 < |P | < t2 has some information on
the secret value: Formally, for each subset P ∈ P of size t1 < |P | < t2,
H(S|P) = |P |−t1

t2−t1
H(S).

– Any subset of participants of size greater than t2 can compute the whole
secret: Formally, for each subset P ∈ P of size |P | ≥ t2, H(S|P) = 0.
In a (t1, t2, n)-RS, the size of each share must be greater than or equal to

H(S)
t2−t1

(see [7,19]).
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Abstract. We show that there is a very straightforward closed algebraic
formula for the Rijndael block cipher. This formula is highly structured
and far simpler then algebraic formulations of any other block cipher we
know. The security of Rijndael depends on a new and untested hardness
assumption: it is computationally infeasible to solve equations of this
type. The lack of research on this new assumption raises concerns over
the wisdom of using Rijndael for security-critical applications.

1 Introduction

Rijndael has been selected by NIST to become the AES. In this paper we look
at the algebraic structure in Rijndael. After RC6, Rijndael is the most elegant
of the AES finalists. It turns out that this elegant structure also results in an
elegant algebraic representation of the Rijndael cipher.

We assume that the reader is familiar with Rijndael. We will concentrate on
the version with 128-bit block size and 128-bit keys, and occasionally mention the
versions with larger key sizes. Unless otherwise noted all formulae and equations
will be in the GF(28) field used by Rijndael.

2 Algebraic Formulae for Rijndael

In [DR98, section 8.5] the Rijndael designers note that the S-box can be written
as an equation of the form

S(x) = w8 +
7∑

d=0

wdx255−2d

for certain constants w0,. . . ,w8.

† Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under Contract DE-
AC04-94AL85000.

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 103–111, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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The first simplification that we make is to get rid of the constant w8 in that
formula. In a normal round the output of four S-boxes is multiplied by the MDS
matrix and then four key bytes are added to the result. As the key addition and
the MDS matrix are linear, we can replace the w8 constant in the S-box by the
addition of a suitable constant to the key bytes [MR00]. In the last round there
is no MDS matrix but there is still a key addition, so the same trick works. This
gives us the following formula for the S-box

S(x) =
7∑

d=0

wdx255−2d

and we have to keep in mind that we now work with a modified key schedule
where a suitable constant is added to each expanded key byte.

The next simplification is to rewrite the equation as

S(x) =
7∑

d=0

wdx−2d

which is nearly equivalent as x255 = 1 for all x except x = 0. For the remainder of
the paper we introduce the convention that a/0 := 0 for any value a in GF(28).
This makes the new equation equivalent to the previous one.1

The form of this equation can be explained from the structure of the S-box.
The S-box consists of an inversion in GF(28) with 0 mapped to 0, followed by
a bit-linear function, followed by the addition of a constant. As noted earlier,
we can move this last constant into the key schedule, so we will ignore it. Any
bit-linear function can be expressed in GF(28) by a polynomial where all expo-
nents are powers of two. The easiest way to see this is to observe that squaring
in GF(28) is a bit-linear operation. After all, (a+b)2 = a2+b2 in GF(28). There-
fore any polynomial whose exponents are powers of two implements a bit-linear
operation. None of these polynomials implements the same function, and the
number of polynomials of this form equals the number of bit-linear functions.
Therefore, any bit-linear function can be written as a polynomial with exponents
that are powers of two.

2.1 One-Round Equation

We use the notation from [FKL+00] to discuss the internal values of a Rijndael
encryption. Let a

(r)
i,j be the byte at position (i, j) at the input of round r. As

usual, state values in Rijndael are represented as a 4 × 4 square of bytes with
the coordinates running from 0 to 3. For convenience we will assume that all
coordinates are reduced modulo 4 so that for example a

(r)
8,4 = a

(r)
0,0.

1 Handling the case x = 0 correctly might not even be important, depending on
the way we use these equations later. A single Rijndael encryption uses 160 S-box
lookups. For random plaintexts there is a less than 50% chance that the case x = 0
will occur during the encryption. So even if we do not handle the case x = 0 well,
the result still applies to more than half the plaintext/ciphertext pairs.
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The first step in a normal round is to apply the S-box to each byte of the
state in the ByteSub step. We get

s
(r)
i,j = S[a(r)i,j ] =

7∑
dr=0

wdr
(a(r)i,j )

−2dr

where s
(r)
i,j is the state after ByteSub. The next step is the ShiftRow operation

which we can write as

t
(r)
i,j = s

(r)
i,i+j =

7∑
dr=0

wdr (a
(r)
i,i+j)

−2dr

The third step in each round is the MixColumn. We can write this as

m
(r)
i,j =

3∑
er=0

vi,er t
(r)
er,j

where the vi,j are the coefficients of the MDS matrix. Simple substitution now
gives us

m
(r)
i,j =

3∑
er=0

vi,er

7∑
dr=0

wdr (a
(r)
er,er+j)

−2dr

=
3∑

er=0

7∑
dr=0

wi,er,dr
(a(r)er,er+j)

−2dr

for some suitable constants wi,j,k. The final step of the round is the key addition,
and results in the input to the next round.

a
(r+1)
i,j = m

(r)
i,j + k

(r)
i,j

= k
(r)
i,j +

3∑
er=0

7∑
dr=0

wi,er,dr (a
(r)
er,er+j)

−2dr

where k
(r)
i,j is the round key of round r at position (i, j). We now have a fairly

simple algebraic expression for a single round of Rijndael. We can write this
formula in a couple of interesting ways.

a
(r+1)
i,j = k

(r)
i,j +

∑
er∈E
dr∈D

wi,er,dr (a
(r)
er,er+j)

−2dr
(1)

a
(r+1)
i,j = k

(r)
i,j +

31∑
fr=0

wi,fr (a
(r)
�fr/8�,�fr/8�+j)

−2fr
(2)

a
(r+1)
i,j = k

(r)
i,j +

31∑
fr=0

wi,fr (a
(r)
fr,fr+j)

−2�fr/4�
(3)
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Equation (1) is a more compact rewrite of the one we already had. We define
E := {0, . . . , 3} and D := {0, . . . , 7} to get the same ranges. Equation (2) is
derived by setting fr := 8er + dr. The wi,j are suitable constants. Note that
we do not need to reduce fr modulo 8 when using it as an exponent as this is
done automatically. In GF(28) we have that for all k and all x, xk = xk mod 255.
The exponent 2fr can thus be taken modulo 255, which makes the exponent 28

be equivalent to 20. In other words, only the (fr mod 8) part of fr can affect
the result and we do not need to take the modulo ourselves. Equation (3) is
derived in a similar manner by setting fr = 4dr + er, and requires a suitable
rearrangements of the constants wi,j . We find (1) the most elegant and will use
that in the rest of the paper. However, one of the other formulae could also have
been used with similar results.

Finally there is one more interesting way to rewrite equation (1).

a
(r+1)
i,j = k

(r)
i,j +

∑
er∈E
dr∈D

wi,er,dr

(a(r)er,er+j)
2dr

The reason that this is interesting becomes clear when we start to consider the
formula for two or more rounds. Then a

(r)
er,er+j is replaced by a formula with

several terms, and it in turn is raised to an even power. As the field we are
working in has characteristic 2 we can use the Freshman’s Dream: (a + b)2 =
a2+ b2. This generalises to exponents that are powers of two, and thus it allows
the exponent 2dr to be applied to each term individually instead of to the sum
of terms. If we ever want to write out the full expression without the use of
summation symbols this prevents the creation of many cross-product terms and
thus keeps the size of the expression under control.

2.2 Multiple-Round Equations

Expressions for multiple rounds of Rijndael are easily derived by substitution.
For simplicity we choose an actual value for r. For two rounds of Rijndael we
get

a
(3)
i,j = k

(2)
i,j +

∑
e2∈E
d2∈D

wi,e2,d2(
k
(1)
e2,e2+j +

∑
e1∈E
d1∈D

we2,e1,d1

(a(1)e1,e1+e2+j)
2d1

)2d2
(4)

and the three-round version is

a
(4)
i,j = k

(3)
i,j +∑

e3∈E
d3∈D

wi,e3,d3


k
(2)
e3,e3+j +

∑
e2∈E
d2∈D

we3,e2,d2(
k
(1)
e2,e2+e3+j +

∑
e1∈E
d1∈D

we2,e1,d1

(a(1)e1,e1+e2+e3+j)
2d1

)2d2




2d3
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Applying the Freshman’s Dream to equation 4 gives us

a
(3)
i,j = k

(2)
i,j +

∑
e2∈E
d2∈D

wi,e2,d2

(k(1)e2,e2+j)
2d2 +

∑
e1∈E
d1∈D

w2d2

e2,e1,d1

(a(1)e1,e1+e2+j)
2d1+d2

in which all exponentiations are on individual terms. This formula still looks
rather complicated, but most of the complications are not essential to the struc-
ture of the formula. The subscripts get more complex the deeper into the re-
cursion we go, but all subscripts are known and are independent of the key or
plaintext. The same holds for the exponents, they are known and independent
of the plaintext and key. We therefore introduce a somewhat sloppy notation
which clarifies the structure. We write K for any expanded key byte, with the
understanding that the exact position of that key byte in the key schedule is
known to us. All constants are written as C even though they might not be all
the same value. We replace the remaining subscripts and powers by a ∗. Again,
each ∗ stands for a value that we can compute and that is independent of the
plaintext and key. Finally, we use the fact that we can write the inputs to the
first round by a

(1)
i,j = p4j+i + k

(0)
i,j where the pi’s are the plaintext bytes. All in

all this gives us

a
(3)
i,j = K +

∑
e2∈E
d2∈D

C

K∗ +
∑
e1∈E
d1∈D

C

p∗
∗ +K∗

We can now write the five-round formula

a
(6)
i,j = K +

∑
e5∈E
d5∈D

C

K∗ +
∑
e4∈E
d4∈D

C

K∗ +
∑
e3∈E
d3∈D

C

K∗ +
∑
e2∈E
d2∈D

C

K∗ +
∑
e1∈E
d1∈D

C

K∗ + p∗
∗

(5)

Keep in mind that every K is some expanded key byte, each C is a known
constant, and each ∗ is a known exponent or subscript, but that these values
depend on the summation variables that enclose the symbol.

Equation 5 gives us the intermediate values in an encryption after five rounds
as a function of the plaintext and the expanded key. It is possible to write a
similar formula for the value after five rounds as a function of the ciphertext
and the expanded key. The S-box is constructed from an inversion in GF(28)
followed by a bit-linear function. The inverse S-box is constructed from a bit-
linear function followed by an inversion. The inverse of the MixColumn operation
is another MixColumn operation with different constants. The inverse cipher is
thus constructed from the same components, and leads to a formula similar
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to equation 5. (For simplicity we ignore the fact that there is no MixColumn
operation in the last round which makes the last round simpler than all other
rounds.)

As the results from equation 5 and the inverse equation must agree, we get
a closed algebraic equation which consists of two formulae similar to equation 5.
Alternatively we can write out the 10-round equation which will be about twice
the size.

2.3 Fully Expanded Equations

If we try to write out equation 5 without summation symbols then we get a
very large formula. Instead of a summation we simply write out 32 copies of
the equation that we are summing, and substitute the appropriate summation
variable values in each copy. As there are 5 summations, we end up with about
225 individual terms of the form C/(K∗ + p∗

∗). This formula would be too large
to include here, but it would fit in the memory of a computer. Even the full 10-
round formula would require only 250 terms or so, which is certainly computable
within the workload allowed for an attack on a 128-bit cipher. The 256-bit key
version of Rijndael has 14 rounds. The expanded equation for half the cipher
would have about 235 terms, and the expanded formula for the full cipher about
270 terms.

3 Other Ciphers

We know of no other ‘serious’ block cipher that has an algebraic description
that is anywhere near as simple as the one for Rijndael. There are some general
techniques that work for any block cipher, but these do not lead to practical
attacks.

For example, any block cipher can be written as a boolean circuit, and then
translated to a set of equations with one equation per boolean gate. However,
this results in a system of equations and not a closed algebraic formula. It is
equivalent to rewriting the problem of finding the cipher’s key as an instance of
SAT [Meh84], for which no efficient algorithms are known.

If one tries to rewrite the equations into a closed formula there is an explosion
of terms. For example, in DES each output bit of the round function depends
on 6 input bits. The boolean expressions for the S-boxes are fairly complicated
[Kwa00], and each input bit will be used at least 16 times on average in the full
boolean expressions for the output bits. A fully expanded boolean formula for
DES therefore has at least around 1616 = 264 terms, and due to the ‘random’
structure of the S-boxes this formula has no neat structures to take advantage
of. Quite clearly this will not result in an attack that is faster than exhaustive
search.

Another idea is to write the formula for the cipher in conjunctive normal
form. This results in a simple formula: the entire function can be written using
some constants and a few summation-type operators. Of course, the underlying
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problem formulation for an attack is still SAT. Furthermore, a direct evaluation
of this formula is impossible. First of all, the constants cannot be determined
without the entire plaintext/ciphertext mapping. Even if the constants were
known, the direct evaluation would cost in the order of 2b+k steps where b is the
block size and k the key size. This is obviously slower than an exhaustive search
which requires 2k steps.

4 An Algebraic Attack?

The real question is of course whether we can turn these formulae for Rijndael
into an attack. At this moment we do not have an attack on Rijndael that uses
this algebraic representation.

If the formula was a simple polynomial it would be trivial to solve, but this is
nothing new. To make the formula a polynomial we would have to eliminate the
1/x function in the S-box. If we simply throw the 1/x away it makes the entire
cipher affine, and there are easier ways of attacking an affine cipher. Using the
equivalence 1/x = x254 and converting the formula to a polynomial leads to a
polynomial with too many terms to be useful.

Another idea would be to write the formula as the quotient of two polynomi-
als. Again, the number of terms grows very rapidly which makes this approach
unpromising.

We feel that an algebraic attack would have to handle equations of the form
of equation 5 directly. The form of this equation is similar to that of continued
fractions, and can be seen as a generalisation. There is quite a lot of knowledge
about “solving” continued fraction, but it is unclear to us whether that can be
applied to these formulae. This is outside the area of expertise of the authors.
We therefore have to leave this as an open problem: is there a way of solving for
the key bytes K in equation 5 given enough plaintext/ciphertext pairs?

We can give a few observations. A fully expanded version of equation 5 has
225 terms. If we ignore the fact that some of the key bytes in the formula must be
equal we can write it as a formula in about 225 individual key bytes. Computing
the same intermediate state from the ciphertext gives us another formula of
similar size, and setting the two equal gives us an equation in about 226 expanded
key bytes. From a purely information-theoretical standpoint this would require
at least 222 known plaintext/ciphertext pairs, but this is not a problem. The
attack can even afford an algorithm of order O(n4) in the number of terms
of the equation before the workload exceeds the 128-bit key size limit. Larger
key sizes are even more advantageous to the attacker in finding an attack with
complexity less than that of exhaustive key search. The 256-bit key version uses
14 rounds, so each equation for half the cipher would have about 235 terms. An
algebraic equation solver with a workload in the order of O(n7) in the number
of terms might very well lead to an attack.

If the attack were to use an expanded formula for the full cipher it would
have about 250 terms. Again, the required plaintext/ciphertext pairs are not a
problem, and an algorithm that is quadratic in the number of terms is good
enough. For 256-bit keys an O(n3) algorithm would even be good enough.
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Any algorithm to solve these equations can also use the fact that many of
the expanded key bytes in the formula must be equal. After all, there are only
176 expanded key bytes overall, and all the key bytes in the formula are chosen
from that set. As we know exactly which key value in the formula corresponds
to which key byte in the expanded key, we can derive these additional equations.
The Rijndael key schedule also introduces many linear equations between the
various expanded key bytes which might be used.

Note that adding more rounds to Rijndael does not help as much as one would
think. Each extra round adds a factor of 25 to the size of the fully-expanded
equation. Compare this to other attacks where attacking an extra round very
often involves guessing a full round key, which corresponds to a factor of 2128.

5 Conclusions

The Rijndael cipher can be expressed in a very neat and compact algebraic for-
mula. We know of no other cipher for which it is possible to derive an algebraic
formula that is anywhere near as elegant. This implies that the security of Rijn-
dael relies on a new computational hardness assumption: it is computationally
infeasible to solve algebraic equations of this form. As this problem has not been
studied, we do not know whether this is a reasonable assumption to make.

This puts us in a difficult situation. We have no attack on Rijndael that uses
these formulae, but there might very well exist techniques for handling this type
of formula that we are unaware of, or somebody might develop them in the next
20 years or so. This is a somewhat disingenuous argument; any cipher could be
attacked in the future. Yet our experience teaches us that in cryptography it is
best to be cautious. A system that uses Rijndael automatically bases its security
on a new hardness assumption, whereas this new assumption can be avoided by
using a different block cipher. In that light we are concerned about the use of
Rijndael in security-critical applications.
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Abstract. In [15], Keliher et al. present a new method for upper bound-
ing the maximum average linear hull probability (MALHP) for SPNs, a
value which is required to make claims about provable security against
linear cryptanalysis. Application of this method to Rijndael (AES) yields
an upper bound of UB = 2−75 when 7 or more rounds are approximated,
corresponding to a lower bound on the data complexity of 32

UB = 280 (for
a 96.7% success rate). In the current paper, we improve this upper bound
for Rijndael by taking into consideration the distribution of linear proba-
bility values for the (unique) Rijndael 8×8 s-box. Our new upper bound
on the MALHP when 9 rounds are approximated is 2−92, corresponding
to a lower bound on the data complexity of 297 (again for a 96.7% suc-
cess rate). [This is after completing 43% of the computation; however,
we believe that values have stabilized—see Section 7.]

Keywords: linear cryptanalysis, maximum average linear hull proba-
bility, provable security, Rijndael, AES

1 Introduction

The substitution-permutation network (SPN) [9,1,12] is a fundamental block ci-
pher architecture based on Shannon’s principles of confusion and diffusion [22].
These principles are implemented through substitution and linear transforma-
tion (LT), respectively. Recently, SPNs have been the focus of increased atten-
tion. This is due in part to the selection of the SPN Rijndael [6] as the U.S.
Government Advanced Encryption Standard (AES).

Linear cryptanalysis (LC) [18] and differential cryptanalysis (DC) [4] are
generally considered to be the two most powerful cryptanalytic attacks on block
ciphers. In this paper we focus on the linear cryptanalysis of SPNs. As a first
attempt to quantify the resistance of a block cipher to LC, the expected linear
characteristic probability (ELCP) of the best linear characteristic often is eval-
uated. However, Nyberg [21] showed that the use of linear characteristics can
underestimate the success of LC. To guarantee provable security, a block cipher

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 112–128, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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designer needs to consider linear hulls instead of linear characteristics, and the
maximum average linear hull probability (MALHP) instead of the ELCP of the
best linear characteristic.

Since the MALHP is difficult, if not infeasible, to compute exactly, researchers
have adopted the approach of upper bounding it [2,13,15]. In [15], Keliher et al.
present a new general method for upper bounding the MALHP for SPNs. They
apply their method to Rijndael, obtaining an upper bound on the MALHP
of UB = 2−75 when 7 or more rounds are approximated, corresponding to a
lower bound on the data complexity of 32

UB = 280 (for a 96.7% success rate—see
Table 1).1

The current paper is based on the following observation: the general method
of Keliher et al. in [15] can potentially be improved by incorporating specific
information about the distribution of linear probability (LP) values for the SPN
s-boxes. Due to the fact that Rijndael has only one (repeated) s-box, and because
of the structure of this s-box, this observation applies readily to Rijndael, and
allows us to improve the upper bound on the MALHP to UB = 2−92 when
9 rounds are approximated, for a lower bound on the data complexity of 297

(again for a 96.7% success rate). (This value is based on completion of 43%
of the computation, although we believe that the values have stabilized—see
Section 7.

Conventions
The Hamming weight of a binary vector x is written wt(x). If Z is a random
variable, E [Z] denotes the expected value of Z. And we use #A to indicate the
number of elements in the set A.

2 Substitution-Permutation Networks

A block cipher is a bijective mapping from N bits to N bits (N is the block size)
parameterized by a bitstring called a key, denoted k. Common block sizes are
64 and 128 bits (we consider Rijndael with a block size of 128 bits). The input
to a block cipher is called a plaintext, and the output is called a ciphertext.

An SPN encrypts a plaintext through a series of R simpler encryption steps
called rounds. (Rijndael with a key size of 128 bits consists of 10 rounds.) The
input to round r (1 ≤ r ≤ R) is first bitwise XOR’d with an N -bit subkey, de-
noted kr, which is typically derived from the key, k, via a separate key-scheduling
algorithm. The substitution stage then partitions the resulting vector into M sub-
blocks of size n (N = Mn), which become the inputs to a row of bijective n× n
substitution boxes (s-boxes)—bijective mappings from {0, 1}n to {0, 1}n. Finally,
the permutation stage applies an invertible linear transformation (LT) to the
output of the s-boxes (classically, a bitwise permutation). Often the permuta-
tion stage is omitted from the last round. A final subkey, kR+1, is XOR’d with

1 In [15], the value 280 was incorrectly given as 278 due to an error in the table
corresponding to Table 1. See Remark 2 for clarification.
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the output of round R to form the ciphertext. Figure 1 depicts an example SPN
with N = 16, M = n = 4, and R = 3.

We assume the most general situation for the key, namely, that k is an
independent key [3], a concatenation of (R + 1) subkeys chosen independently
from the uniform distribution on {0, 1}N —symbolically, k =

〈
k1,k2, . . . ,kR+1

〉
.

We use K to denote the set of all independent keys.

Invertible Linear Transformation

Invertible Linear Transformation

round 3

round 2

round 1

s-boxes

k1

k2

k4

k3

Fig. 1. SPN with N = 16, M = n = 4, R = 3

3 Linear Probability

In this section, and in Section 4, we make use of some of the treatment and
notation from Vaudenay [23].

Definition 1. Suppose B : {0, 1}d → {0, 1}d is a bijective mapping. Let a,b ∈
{0, 1}d be fixed, and let X ∈ {0, 1}d be a uniformly distributed random variable.
The linear probability LP(a,b) is defined as

LP(a,b) def= (2 · ProbX {a • X = b •B(X)} − 1)2
. (1)

If B is parameterized by a key, k, we write LP(a,b;k), and the expected LP
(ELP) is defined as

ELP(a,b) def= E [LP(a,b;K)] ,

where K is a random variable uniformly distributed over the space of keys.

Note that LP values lie in the interval [0, 1]. A nonzero LP value indicates
a correlation between the input and output of B, with a higher value indicat-
ing a stronger correlation (in fact, LP(a,b) is the square of entry [a,b] in the
correlation matrix for B [5]).
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The values a/b in Definition 1 are referred to as input/output masks. For our
purposes, the bijective mapping B may be an s-box, a single encryption round,
or a sequence of consecutive encryption rounds.

The following lemma derives immediately from Parseval’s Theorem [20].

Lemma 1. Let B : {0, 1}d → {0, 1}d be a bijective mapping parameterized by a
key, k, and let a,b ∈ {0, 1}d. Then

∑
x∈{0,1}d

LP(a,x;k) =
∑

x∈{0,1}d

LP(x,b;k) = 1

∑
x∈{0,1}d

ELP(a,x) =
∑

x∈{0,1}d

ELP(x,b) = 1.

3.1 LP Values for the Rijndael S-box

Consider the (unique) Rijndael 8×8 s-box (see the Rijndael reference code [7]) as
the bijective mapping B in Definition 1. A short computation yields the following
interesting fact.

Lemma 2. Let the bijective mapping under consideration be the 8 × 8 Rijndael
s-box. If a ∈ {0, 1}8 \ 0 is fixed, and b varies over {0, 1}8, then the distribution
of values LP(a,b) is constant, and is given in the following table (ρi is the
LP value, and φi is the number of times it occurs, for 1 ≤ i ≤ 9). The same
distribution is obtained if b ∈ {0, 1}8 \ 0 is fixed, and a varies over {0, 1}8.

i 1 2 3 4 5 6 7 8 9

ρi

( 8
64

)2 ( 7
64

)2 ( 6
64

)2 ( 5
64

)2 ( 4
64

)2 ( 3
64

)2 ( 2
64

)2 ( 1
64

)2 0

φi 5 16 36 24 34 40 36 48 17

4 Linear Cryptanalysis of Markov Ciphers

It will be useful to consider linear cryptanalysis (LC) in the general context of
Markov ciphers [17].

4.1 Markov Ciphers

Let E : {0, 1}N → {0, 1}N be an R-round cipher, for which round r is given by
the function y = εr(x;kr) (x ∈ {0, 1}N is the round input, and kr ∈ {0, 1}N is
the round-r subkey). Then E is a Markov cipher with respect to the XOR group
operation (⊕) on {0, 1}N if, for 1 ≤ r ≤ R, and any x, ∆x, ∆y ∈ {0, 1}N ,

ProbK {εr(x;K) ⊕ εr(x ⊕∆x;K) = ∆y} =
ProbK,X {εr(X;K) ⊕ εr(X ⊕∆x;K) = ∆y} (2)
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(where X and K are uniformly distributed and independent). That is, the proba-
bility over the key that a fixed input difference produces a fixed output difference
is independent of the round input.

It is easy to show that the SPN model we are using is a Markov cipher, as
are certain Feistel ciphers [10], such as DES [8].

Remark 1. The material in the remainder of Section 4 applies to any Markov
cipher. Although we are dealing with LC, which ostensibly does not involve
the ⊕ operation, the relevance of the Markov property given in (2) is via an
interesting connection between linear probability and differential probability (see,
for example, equations (3) and (4) in [23]).

4.2 Linear Cryptanalysis

Linear cryptanalysis (LC) is a known-plaintext attack (ciphertext-only in some
cases) introduced by Matsui [18]. The more powerful version is known as Al-
gorithm 2 (Algorithm 1 extracts only a single subkey bit). Algorithm 2 can be
used to extract (pieces of) the round-1 subkey, k1. Once k1 is known, round 1
can be stripped off, and LC can be reapplied to obtain k2, and so on.

We do not give the details of LC here, as it is treated in many papers [18,3,14,15].
It suffices to say that the attacker wants to find input/output masks a,b ∈
{0, 1}N for the bijective mapping consisting of rounds 2 . . . R, for which LP(a,b;k)
is maximal. Based on this value, the attacker can determine the number of known
〈plaintext, ciphertext〉 pairs, NL (called the data complexity), required for a suc-
cessful attack. Given an assumption about the behavior of round-1 output [18],
Matsui shows that if

NL =
c

LP(a,b;k)
,

then Algorithm 2 has the success rates in Table 1, for various values of the
constant, c. Note that this is the same as Table 3 in [18], except that the constant
values differ by a factor of 4, since Matsui uses bias values, not LP values.

Remark 2. The table in [15] corresponding to Table 1 has an error, in that the
constants have not been multiplied by 4 to reflect the use of LP values.

Notational Issues. Above, we have discussed input and output masks and
the associated LP values for rounds 2 . . . R of an R-round cipher. It is useful to
consider these and other related concepts as applying to any T ≥ 2 consecutive

Table 1. Success rates for LC Algorithm 2

c 8 16 32 64

Success rate 48.6% 78.5% 96.7% 99.9%
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“core” rounds (we say that these are the rounds being approximated). For Algo-
rithm 2 as outlined above, T = R − 1, and the “first round,” or “round 1,” is
actually round 2 of the cipher.

We use superscripts for individual rounds, so LP t(a,b;kt) and ELP t(a,b)
are LP and ELP values, respectively, for round t. On the other hand, we use t
as a subscript to refer to values which apply to the first t rounds as a unit, so,
for example, ELP t(a,b) is an ELP value over rounds 1 . . . t.

4.3 Linear Characteristics

For fixed a,b ∈ {0, 1}N , direct computation of LPT (a,b;k) for T core rounds
is generally infeasible, first since it requires encrypting all N -bit vectors through
rounds 1 . . . T , and second because of the dependence on an unknown key. The
latter difficulty is usually handled by working instead with the expected value
ELPT (a,b). The data complexity of Algorithm 2 for masks a and b is now taken
to be

NL =
c

ELPT (a,b)
. (3)

The implicit assumption is that LPT (a,b;k) is approximately equal to ELPT (a,b)
for almost all values of k (this derives from the Hypothesis of Stochastic Equiv-
alence in [17]).

The problem of computational complexity is usually treated by approximat-
ing ELPT (a,b) through the use of linear characteristics (or simply character-
istics). A T -round characteristic is a (T + 1)-tuple Ω =

〈
a1,a2, . . . ,aT ,aT +1

〉
.

We view at and at+1 as input and output masks, respectively, for round t.

Definition 2. Let Ω =
〈
a1,a2, . . . ,aT ,aT +1

〉
be a T -round characteristic. The

linear characteristic probability (LCP) and expected LCP (ELCP) of Ω are
defined as

LCP(Ω;k) =
T∏

t=1

LP t(at,at+1;kt)

ELCP(Ω) =
T∏

t=1

ELP t(at,at+1).

4.4 Choosing the Best Characteristic

In carrying out LC, the attacker typically runs an algorithm to find the T -round
characteristic, Ω, for which ELCP(Ω) is maximal; such a characteristic (not nec-
essarily unique) is called the best characteristic [19]. If Ω =

〈
a1,a2, . . . ,aT ,aT +1

〉
,

and if the input and output masks used in Algorithm 2 are taken to be a = a1

and b = aT +1, respectively, then ELPT (a,b) (used to determine NL in (3)) is
approximated by

ELPT (a,b) ≈ ELCP(Ω) . (4)
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The approximation in (4) has been widely used to evaluate the security of block
ciphers against LC [12,14]. Knudsen calls a block cipher practically secure if
the data complexity determined by this method is prohibitive [16]. However, by
introducing the concept of linear hulls, Nyberg demonstrated that the above
approach can underestimate the success of LC [21].

4.5 Linear Hulls

Definition 3 (Nyberg). Given N -bit masks a,b, the corresponding linear hull,
denoted ALH(a,b),2 is the set of all T -round characteristics (for the T rounds
under consideration) having a as the input mask for round 1 and b as the output
mask for round T , i.e., all characteristics of the form

Ω =
〈
a,a2,a3, . . . ,aT ,b

〉
.

Theorem 1 (Nyberg). Let a,b ∈ {0, 1}N . Then

ELPT (a,b) =
∑

Ω∈ALH(a,b)

ELCP(Ω) .

It follows immediately from Theorem 1 that (4) does not hold in general, since
ELPT (a,b) is seen to be equal to a sum of terms ELCP(Ω) over a (large) set of
characteristics, and therefore, in general, the ELCP of any characteristic will be
strictly less than the corresponding ELP value. This is referred to as the linear
hull effect. An important consequence is that an attacker may overestimate the
number of 〈plaintext, ciphertext〉 pairs required for a given success rate.

Remark 3. It can be shown that the linear hull effect is significant for Rijndael,
since, for example, the ELCP of any characteristic over T = 8 rounds is upper
bounded by 2−300 [6],3 but the largest ELP value has 2−128 as a trivial lower
bound.4

The next lemma follows easily from Theorem 1 and Definition 2 (recall the
conventions for superscripts and subscripts).

Lemma 3. Let T ≥ 2, and let a,b ∈ {0, 1}N . Then

ELPT (a,b) =
∑

x∈{0,1}N

ELPT −1(a,x) · ELPT (x,b) .

2 Nyberg [21] originally used the term approximate linear hull, hence the abbreviation
ALH, which we retain for consistency with [15].

3 Any 8-round characteristic, Ω, has a minimum of 50 active s-boxes, and the maxi-
mum LP value for the Rijndael s-box is 2−6, so ELCP(Ω) ≤ (2−6)50 = 2−300.

4 This follows by observing that Lemma 1 is contradicted if the maximum ELP value
is less than 2−d.
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4.6 Maximum Average Linear Hull Probability

An SPN is considered to be provably secure against LC if the maximum ELP,

max
a,b∈{0,1}N \0

ELPT (a,b), (5)

is sufficiently small that the resulting data complexity is prohibitive for any
conceivable attacker.5 The value in (5) is also called the maximum average linear
hull probability (MALHP). We retain this terminology for consistency with [15].

Since evaluation of the MALHP appears to be infeasible in general, re-
searchers have adopted the approach of upper bounding this value [2,13,15].
If such an upper bound is sufficiently small, provable security can be claimed.

5 SPN-Specific Considerations

In the current section, we adapt certain results from Section 4 to the SPN model.
Note that where matrix multiplication is involved, we view all vectors as column
vectors. Also, if M is a matrix, M′ denotes the transpose of M.

Lemma 4. Consider T core SPN rounds. Let 1 ≤ t ≤ T , and a,b,kt ∈ {0, 1}N .
Then LP t(a,b;kt) is independent of kt, and therefore

LP t(a,b;kt) = ELP t(a,b).

Proof. Follows by observing the interchangeable roles of the round input, x, and
kt, and from a simple change of variables x̂ = x ⊕ kt when evaluating (1).

Corollary 1. Let Ω be a T -round characteristic for an SPN. Then LCP(Ω) =
ELCP(Ω).

Definition 4. Let L denote the N -bit LT of the SPN represented as a binary
N ×N matrix, i.e., if x,y ∈ {0, 1}N are the input and output, respectively, for
the LT, then y = Lx.

Lemma 5 ([5]). If b ∈ {0, 1}N and a = L′b, then a • x = b • y for all N -bit
inputs to the LT, x, and corresponding outputs, y (i.e., if b is an output mask
for the LT, then a = L′b is the (unique) corresponding input mask).

It follows from Lemma 5 that if at and at+1 are input and output masks
for round t, respectively, then the resulting input and output masks for the
substitution stage of round t are at and bt = L′at+1. Further, at and bt determine
input and output masks for each s-box in round t. Let the masks for St

i be

5 For Algorithm 2 as described above, this must hold for T = R − 1. Since variations
of LC can be used to attack the first and last SPN rounds simultaneously, it may
also be important that the data complexity remain prohibitive for T = R − 2.
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denoted at
i and bt

i, for 1 ≤ i ≤ M (we number s-boxes from left to right). Then
from Matsui’s Piling-up Lemma [18] and Lemma 4,

ELP t(at,at+1) =
M∏

i=1

LPSt
i (at

i,b
t
i). (6)

From the above, any characteristic Ω ∈ ALH(a,b) determines an input and an
output mask for each s-box in rounds 1 . . . T . If this yields at least one s-box for
which the input mask is zero and the output mask is nonzero, or vice versa, the
linear probability associated with that s-box will trivially be 0, and therefore
ELCP(Ω) = 0 by (6) and Definition 2. We exclude such characteristics from
consideration via the following definition.

Definition 5. For a,b ∈ {0, 1}N , let ALH(a,b)∗ consist of the elements Ω ∈
ALH(a,b) such that for each s-box in rounds 1 . . . T , the input and output masks
determined by Ω for that s-box are either both zero or both nonzero.

Remark 4. In [23], the characteristics in ALH(a,b)∗ are called consistent.

Definition 6 ([3]). Any T -round characteristic, Ω, determines an input and
an output mask for each s-box in rounds 1 . . . T . Those s-boxes having nonzero
input and output masks are called active.

Definition 7. Let v be an input or an output mask for the substitution stage of
round t. Then the active s-boxes in round t can be determined from v (without
knowing the corresponding output/input mask). We define γv to be the M -bit
vector which encodes the pattern of active s-boxes: γv = γ1γ2 . . . γM , where γi = 1
if the ith s-box is active, and γi = 0 otherwise, for 1 ≤ i ≤ M .

Definition 8 ([15]). Let γ, γ̂ ∈ {0, 1}M . Then

W [γ, γ̂] def= #
{
y ∈ {0, 1}N : γx = γ, γy = γ̂, where x = L′y

}
.

Remark 5. Informally, the value W [γ, γ̂] represents the number of ways the LT
can “connect” a pattern of active s-boxes in one round (γ) to a pattern of active
s-boxes in the next round (γ̂).

We now proceed to our improved method for upper bounding the MALHP for
Rijndael.

6 Improved Upper Bound on MALHP for Rijndael

6.1 Technical Lemmas

Lemma 6 ([15]). Let m ≥ 2, and suppose {ci}m
i=1, {di}m

i=1 are sequences of

nonnegative values. Let {ċi}m
i=1,

{
ḋi

}m

i=1
be the sequences obtained by sorting

{ci} and {di}, respectively, in nonincreasing order. Then
∑m

i=1 cidi ≤ ∑m
i=1 ċiḋi.
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Lemma 7 ([15]). Suppose {ċi}m
i=1, {c̈i}m

i=1, and
{
ḋi

}m

i=1
are sequences of non-

negative values, with
{
ḋi

}
sorted in nonincreasing order. Suppose there exists

m̃, 1 ≤ m̃ ≤ m, such that
(a) c̈i ≥ ċi, for 1 ≤ i ≤ m̃
(b) c̈i ≤ ċi, for (m̃+ 1) ≤ i ≤ m
(c)

∑m
i=1 ċi ≤ ∑m

i=1 c̈i

Then
∑m

i=1 ċiḋi ≤ ∑m
i=1 c̈iḋi.

6.2 Distribution of LP Values for Multiple Active S-boxes

Definition 9. Let a ∈ {0, 1}128 \ 0 be a fixed input mask for the substitution
stage of Rijndael, and let b be an output mask which varies over {0, 1}128, with
the restriction that γa = γb. If A is the number of s-boxes made active (A =
wt(γa)), define DA to be the set of distinct LP values produced as b varies, and
let DA = #DA. Define

〈
ρA

1 , ρ
A
2 , . . . , ρ

A
DA

〉
to be the sequence obtained by sorting

DA in decreasing order, and let φA
j be the number of occurrences of the value

ρA
j , for 1 ≤ j ≤ DA.

Note that if A = 1, then DA = 9, and ρ1
j and φ1

j are as given in Lemma 2.

Lemma 8. For A ≥ 2,

DA =
{
ρ1

s · ρA−1
t : 1 ≤ s ≤ D1, 1 ≤ t ≤ DA−1

}
,

and for each j, 1 ≤ j ≤ DA = #DA,

φA
j =

∑ {
φ1

s · φA−1
t : ρ1

s · ρA−1
t = ρA

j , 1 ≤ s ≤ D1, 1 ≤ t ≤ DA−1
}
.

Proof. Follows easily from Lemma 4 and (6).

Definition 10. For A ≥ 1 and 1 ≤ J ≤ DA, we define the partial sums

ΦA
J =

J∑
j=1

φA
j

ΛA
J =

J∑
j=1

ρA
j · φA

j .

Also, we define SA to be the sequence

ρA
1 , . . . , ρ

A
1︸ ︷︷ ︸

φA
1 terms

, ρA
2 , . . . , ρ

A
2︸ ︷︷ ︸

φA
2 terms

, . . . , ρA
DA
, . . . , ρA

DA︸ ︷︷ ︸
φA

DA
terms

.

Remark 6. For 1 ≤ A ≤ M , ΛA
DA

= 1 by Lemma 1.
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6.3 Derivation of Improved Upper Bound

Convention: In this subsection, whenever we deal with values of the form
ELP t(a,b) or ELP t(a,b) (1 ≤ t ≤ T ), we omit the LT from round t. This
is simply a technical matter that simplifies the proofs which follow.

Let T ≥ 2. As in [15], our approach is to compute an upper bound for each
nonzero pattern of active s-boxes in round 1 and round T—that is, we compute
UBT [γ, γ̂], for γ, γ̂ ∈ {0, 1}M \ 0, such that the following holds:

UB Property for T. For all a,b ∈ {0, 1}N \ 0, ELPT (a,b) ≤ UBT [γa, γb].

If the UB Property for T holds, then the MALHP is upper bounded by

max
γ,γ̂∈{0,1}M \0

UBT [γ, γ̂].

The case T = 2 is handled in Theorem 2, and the case T ≥ 3 in Theorem 3.

Theorem 2. Let the values UB2[γ, γ̂] be computed using the algorithm in Fig-
ure 2. Then the UB Property for 2 holds.

Proof. In this proof, “Line X” refers to the Xth line in Figure 2. Let γ, γ̂ ∈
{0, 1}M \ 0 be fixed, and let a,b ∈ {0, 1}N \ 0 such that γa = γ and γb =
γ̂. We want to show that ELP2(a,b) ≤ UB2[γ, γ̂]. There are W = W [γ, γ̂]
ways that the LT can “connect” the f active s-boxes in round 1 to the " active
s-boxes in round 2. Let x1,x2, · · · ,xW be the corresponding output masks for
the substitution stage of round 1 (and therefore the input masks for the round-1
LT), and let y1,y2, · · · ,yW be the respective output masks for the round-1 LT
(and therefore the input masks for the substitution stage of round 2). So γxi

= γ
and γyi

= γ̂, for 1 ≤ i ≤ W . Let ci = ELP1(a,xi) and di = ELP2(yi,b), for
1 ≤ i ≤ W . It follows from Lemma 3 that ELP2(a,b) =

∑W
i=1 cidi.

Without loss of generality, f ≤ ", so Amin = f and Amax = ". Let {ċi} ({ḋi})
be the sequence obtained by sorting {ci} ({di}) in nonincreasing order. Then∑W

i=1 cidi ≤ ∑W
i=1 ċiḋi by Lemma 6. Let {c̈i} ({d̈i}) consist of the first W terms

of Sf (S�). Since the terms ċi (ḋi) are elements of Sf (S�), it follows that ċi ≤ c̈i

(ḋi ≤ d̈i), for 1 ≤ i ≤ W , so

ELP2(a,b) =
W∑

i=1

cidi ≤
W∑

i=1

ċiḋi ≤
W∑

i=1

c̈id̈i .

It is not hard to see that the value UB2[γ, γ̂] computed in Figure 2 is exactly∑W
i=1 c̈id̈i. For computational efficiency, we do not sum “element-by-element”

(i.e., for each i), but instead take advantage of the fact that {c̈i} has the form

ρf
1 , . . . , ρ

f
1︸ ︷︷ ︸

φf
1 terms

, ρf
2 , . . . , ρ

f
2︸ ︷︷ ︸

φf
2 terms

, ρf
3 , . . . , ρ

f
3︸ ︷︷ ︸

φf
3 terms

, . . . ,
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14.

15.

18.

17.

16.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

13.

11.

12.

∆λ ←
(

ΛAmax
J − λ

)
−

[(
ΦAmax

J − Z
)

∗ ρAmax
J

]J ← min
{

j : 1 ≤ j ≤ DAmax , ΦAmax
j ≥ Z

}Function NextTerm2 (Z)

λ ← λ + ∆λ

return
(

ρ
Amin
h ∗ ∆λ

)

For each γ ∈ {0, 1}M \ 0

For each γ̂ ∈ {0, 1}M \ 0

W ← W [γ, γ̂]

Amin ← min{f, �}, Amax ← max{f, �}
f ← wt(γ), � ← wt(γ̂)

λ ← 0, Sum ← 0

h ← 1

While (h ≤ DAmin ) and (ΦAmin
h ≤ W )

Sum ← Sum + NextTerm2 (ΦAmin
h )

h ← h + 1

UB2[γ, γ̂] ← Sum

Sum ← Sum + NextTerm2 (W )

If (h ≤ DAmin ) and (ΦAmin
h > W )

Fig. 2. Algorithm to compute UB2[ ]

and similarly for {d̈i} (replace f with "). Viewing these sequences as “groups”
of consecutive identical elements, the algorithm in Figure 2 proceeds “group-by-
group.” The variable h is the index of the current group in {c̈i}. The function
NextTerm2() identifies the corresponding elements in {d̈i}, and computes the
equivalent of the element-by-element product, which is added to the growing
sum in Line 9. The situation in which {c̈i}W

i=1 is a truncated version of Sf is
handled by the conditional statement in Lines 11–12.

Theorem 3. Let T ≥ 3. Assume that the values UBT −1[γ, γ̂] have been com-
puted for all γ, γ̂ ∈ {0, 1}M \ 0 such that the UB Property for (T − 1) holds. Let
the values UBT [γ, γ̂] be computed using the algorithm in Figure 3. Then the UB
Property for T holds.

Proof. Throughout this proof, “Line X” refers to the Xth line in Figure 3. Let
a,b ∈ {0, 1}N \ 0. It suffices to show that if γ = γa in Line 1 and γ̂ = γb in
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

24.

23.

22.

21.

20.

For each γ ∈ {0, 1}M \ 0

For each γ̂ ∈ {0, 1}M \ 0

� ← wt(γ̂)

Γ ← {
ξ ∈ {0, 1}M \ 0 : W [ξ, γ̂] 
= 0

}

Order the H = #Γ elements of Γ as γ1, γ2, . . . , γH such that

UBT −1[γ, γ1] ≥ UBT −1[γ, γ2] ≥ · · · ≥ UBT −1[γ, γH ]

Uh ← UBT −1[γ, γh], for 1 ≤ h ≤ H

Wh ← W [γh, γ̂], for 1 ≤ h ≤ H

Ψ ← 0, λ ← 0, Wtotal ← 0, Sum ← 0

h ← 1

Wtotal ← Wtotal + Wh

Sum ← Sum + NextTermT (Wtotal)

While (h ≤ H) and (Uh > 0) and (Ψ + (Uh ∗ Wh) ≤ 1) and (λ < 1)

h ← h + 1

If (h ≤ H) and (Uh > 0) and (Ψ + (Uh ∗ Wh) > 1) and (λ < 1)

Wtotal ← Wtotal + (1 − Ψ)/Uh

Sum ← Sum + NextTermT (Wtotal)

UBT [γ, γ̂] ← Sum

Function NextTermT (Z)

return
(

ρ
Amin
h ∗ ∆λ

)λ ← λ + ∆λ

Ψ ← Ψ + (Uh ∗ Wh)

∆λ ← (
Λ	

J − λ
) − [(

Φ	
J − Z

) ∗ ρ	
J

]
J ← min

{
j : 1 ≤ j ≤ D	, Φ	

j ≥ Z
}

Fig. 3. Algorithm to compute UBT [ ] for T ≥ 3

Line 2, then the value UBT [γ, γ̂] computed in Figure 3 satisfies ELPT (a,b) ≤
UBT [γ, γ̂]. Enumerate the elements of {0, 1}N \0 as y1,y2, . . . ,y2N −1. We view
these as input masks for round T , and hence as output masks for the LT of
round (T −1). For each yi, let xi be the corresponding input mask for the LT. It
follows from Lemma 3 that ELPT (a,b) =

∑2N −1
i=1 ELPT −1(a,xi) ·ELPT (yi,b).

If γyi �= γb (= γ̂), then ELPT (yi,b) = 0 (this follows from (6)), so we remove
these yi from consideration, leaving ȳ1, ȳ2, . . . , ȳL (for some L), and correspond-
ing input masks, x̄1, x̄2, . . . , x̄L, respectively.

Let ci = ELPT −1 (a, x̄i) and di = ELPT (ȳi,b), for 1 ≤ i ≤ L. Then
ELPT (a,b) =

∑L
i=1 cidi. Note that

∑
ci ≤ 1,

∑
di ≤ 1 by Lemma 1. Let
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{ċi} ({ḋi}) be the sequence obtained by sorting {ci} ({di}) in nonincreasing
order. Then

∑L
i=1 cidi ≤ ∑L

i=1 ċiḋi by Lemma 6. If {d̈i} consists of the first L
terms of S� (" = wt(γ̂) as in Line 3), then ḋi ≤ d̈i, for 1 ≤ i ≤ L (since the ḋi

are elements of S�), so
∑L

i=1 ċiḋi ≤ ∑L
i=1 ċid̈i.

Let ui = UBT −1[a, x̄i], for 1 ≤ i ≤ L, and let {u̇i} be obtained by sorting
{ui} in nonincreasing order. Clearly ċi ≤ u̇i, for 1 ≤ i ≤ L. Using notation from
Lines 4–8, {u̇i} has the form

U1, . . . , U1︸ ︷︷ ︸
W1 terms

, U2, . . . , U2︸ ︷︷ ︸
W2 terms

, U3, . . . , U3︸ ︷︷ ︸
W3 terms

, . . . . (7)

If
∑L

i=1 u̇i ≤ 1, let {c̈i} be identical to the sequence {u̇i}. If
∑L

i=1 u̇i > 1, let Lu

(1 ≤ Lu ≤ L) be minimum such that
∑Lu

i=1 u̇i > 1, and let {c̈i} consist of the
first L terms of

u̇1, u̇2, . . . , u̇Lu−1,

(
1 −

Lu−1∑
i=1

u̇i

)
, 0, 0, 0, . . . . (8)

It follows that
∑L

i=1 ċid̈i ≤ ∑L
i=1 c̈id̈i by Lemma 7 (with {d̈i} playing the role

of {ḋi} in the statement of the lemma). Combining inequalities gives

ELPT (a,b) ≤
L∑

i=1

c̈id̈i . (9)

The value
∑L

i=1 c̈id̈i in (9) is exactly the upper bound computed in Figure 3. We
argue similarly to the T = 2 case. Since {c̈i} and {d̈i} are derived from sequences
which consist of groups of consecutive identical elements (the sequence in (7)
and S�, respectively), the algorithm operates group-by-group, not element-by-
element. Beginning at Line 10, the variable h is the index of the current group
in {c̈i} (having element value Uh and size Wh). Function NextTermT() identifies
the corresponding elements in {d̈i}, and computes the equivalent of the element-
by-element product.

If the terms in {c̈i} (resp. {d̈i}) shrink to 0 because the corresponding terms in
(7) (resp. S�) become 0, the check (Uh > 0) (resp. (λ < 1)) in Line 11 or Line 15
will fail, and the algorithm will exit. The check (Ψ + (Uh ∗Wh) > 1) in Line 15
detects the case that in the derivation of {c̈i} from {u̇i} above,

∑L
i=1 u̇i > 1,

and therefore {c̈i} is based on the truncated sequence in (8).

7 Computational Results

We estimate that running the above algorithm to completion will take up to
200,000 hours on a single Sun Ultra 5. We are currently running on about 50
CPUs, and have completed 43% of the computation for 2 ≤ T ≤ 10.
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It is worth noting that in progressing from 11% to 43% of the computation,
there was no change in the upper bound for 2 ≤ T ≤ 10. Combined with our
experience in running the algorithm of [15], for which the numbers also stabilized
quickly, we expect that the final results will be the same as those presented below.

In Figure 4, we plot our improved upper bound against that of [15] for 2 ≤
T ≤ 10. Note that the new bound is noticeably superior to that of [15] for
T ≥ 4. When T = 9 rounds are being approximated, the upper bound value is
UB = 2−92. For a success rate of 96.7%, this corresponds to a data complexity
of 32

UB = 297 (Table 1). The corresponding upper bound value from [15] is 2−75,
for a data complexity of 280. This represents a significant improvement in the
calculation of the provable security of Rijndael against linear cryptanalysis.

We also plot very preliminary results for 11 ≤ T ≤ 15, in order to gain a sense
of the behavior of the upper bound (for these values of T , we have completed only
1.5% of the necessary computation, hence the label “Extrapolation”). Unlike the
upper bound in [15], the new upper bound does not appear to flatten out, but
continues a downward progression as T increases.
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log2
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Bound from [15]

Extrapolation

Fig. 4. Improved upper bound on MALHP for Rijndael

7.1 Presentation of Final Results

Upon completion of computation, we will post our final results in the IACR
Cryptology ePrint Archive (eprint.iacr.org) under the title Completion of
Computation of Improved Upper Bound on the Maximum Average Linear Hull
Probability for Rijndael.
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8 Conclusion

We have presented an improved version of the algorithm given in [15] (which com-
putes an upper bound on the maximum average linear hull probability (MALHP)
for SPNs) in the case of Rijndael. The improvement is achieved by taking into
account the distribution of linear probability values for the (unique) Rijndael
s-box. When 9 rounds of Rijndael are approximated, the new upper bound is
2−92, which corresponds to a lower bound on the data complexity of 297, for a
96.7% success rate. (This is based on completion of 43% of the computation.
However, we expect that the values obtained so far for 2 ≤ T ≤ 10 core rounds
will remain unchanged—see Section 7.) This is a significant improvement over
the corresponding upper bound from [15], namely 2−75, for a data complexity
of 280 (also for a 96.7% success rate). The new result strengthens our confidence
in the provable security of Rijndael against linear cryptanalysis.
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Abstract. Cryptography and Coding Theory are closely knitted in
many respects. Recently, the problem of Decoding Reed Solomon Codes
(aka Polynomial Reconstruction) was suggested as an intractability as-
sumption upon which the security of cryptographic protocols can be
based. This has initiated a line of research that exploited the rich al-
gebraic structure of the problem and related subproblems of which in
the cryptographic setting. Here we give a short overview of recent works
on the subject and the novel applications that were enabled due to this
development.

1 Background

The polynomial reconstruction (PR) problem with parameters n, k, t is a natural
way of expressing the problem of (list-)decoding Reed Solomon Codes: given a
set of n points over a finite field, it asks for all polynomials of degree less than
k that “fit” into at least t of the points. Translated to the coding theoretic
context, PR asks for all messages that agree with at least t positions of the
received codeword, for a Reed Solomon code of rate k/n.

Naturally, PR received a lot of attention from a “positive” side, i.e. how to
solve it efficiently. When t ≥ n+k

2 then PR has only one solution and it can be
found with the algorithm of Berlekamp and Welch [BW86] (n+k

2 is the error-
correction bound of Reed-Solomon codes). The problem has been investigated
further for smaller values of t ([Sud97,GS98,GSR95]). These works have pointed
to a certain threshold for the solvability of PR. Specifically, the problem appears
to be hard if t is smaller than

√
kn, (the best algorithm known, by Guruswami

and Sudan [GS98], finds all solutions when t ≥ √
kn).

We note here that apart from any direct implications of efficient list-decoding
methods in the context of coding theory, these algorithms have proved instru-
mental in a number of computational complexity results such as the celebrated
PCP theorem. There are numerous other works in computational complexity
that utilize (list-)decoding techniques such as: the average-case hardness of the
permanent [FL92,CPS99], hardness amplification [STV99], hardness of predict-
ing witnesses for NP-predicates [KS99] etc.
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Perhaps the most notable work which applies the “negative” side of error-
correction decoding (i.e., its inherent hardness for certain parameters) is the
McEliece’s cryptosystem [McE78]. Recently, in the work of Naor and Pinkas
[NP99], the above well-studied Reed-Solomon list-decoding problem (namely:
PR) has been looked at from a “negative” perspective, i.e. as a hard problem
which cryptographic applications can base their security on.

It is important to stress that from a cryptographic perspective we are not
interested in the worst-case hardness of PR but rather on the hardness of PR
on the average. It is easy to see that PR on the average (termed also noisy PR)
has only one solution with very high probability (note that we consider PR in a
large prime finite field). It is believed that the noisy PR is not easier than the
PR. This is because given an instance of the PR it is possible to randomize the
solution polynomial (but it is not known how to randomize the noise, only to
k-wise randomize it). This justification was presented by [NP99] who gave the
basic suggestion to exploit the cryptographic intractability of this problem.

2 The Work of [NP99]

In [NP99] the PR problem is first exploited in concrete and efficient crypto-
graphic protocol design. They presented a useful cryptographic primitive termed
“Oblivious Polynomial Evaluation” (OPE) that allowed the secure evaluation of
the value of a univariate polynomial between two parties. In their protocol the
security of the receiving party was based on closely related problem to PR (later,
due to the investigation of [BN00], the protocol of OPE was easily modified to
be based directly on the PR problem [BN00,NP01]). We note here that a related
intractability assumption appeared independently in [MRW99].

Various useful cryptographic applications based on OPE, were presented in
[NP99] such as password authentication and secure list intersection computation.
OPE proved to be a useful primitive in other settings, see e.g. [Gil99,KWHI01].

The assumption of [NP01] is essentially the following: given a (random) in-
stance of PR, the value of the (unique with high probability) solution polyno-
mial over 0 is pseudorandom for every polynomially bounded observer. Under
this “pseudorandomness” assumption it can be easily shown that the receiving
party in the OPE protocol is secure. Note that this assumption appears to be
stronger than merely assuming hardness on the average.

3 Structural Investigation of PR

In [KY01b] we investigate cryptographic hardness properties of PR. The main
theme of this work is outlined below.

Given a supposedly computationally hard problem, it is important to identify
reasonable related (sub)problems upon which the security of advanced crypto-
graphic primitives such as semantically-secure encryption and pseudorandom
functions can be based. This practice is ubiquitous in cryptography, e.g. the
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Decision-Diffie-Hellman problem is a subproblem related to the discrete-loga-
rithm problem upon which the semantic security of ElGamal encryption is based;
the Quadratic Residuosity Problem is a subproblem related to Factoring (and
modular square roots) upon which the semantic security of [GM84] is based, etc.
In [KY01b] a similar route is followed: first a suitable related subproblem of PR
is identified and then advanced cryptographic primitives based on this problem
are extracted. The problem is related to distinguishing one of the indices that
correspond to the polynomial points in a PR-instance. Distinguishing between
the points of the polynomial solution and the random points in a PR-instance
appears to be naturally related to the supposed hardness of PR. The correspond-
ing assumption is called Index-PR-Assumption (IPR). Subsequently under this
assumption, we show

1. A PR instance conceals its solution in a semantic level: any algorithm that
computes a function on a new value of the polynomial-solution (which is not
given in the input) that is distributed according to an adversarially chosen
probability distribution has negligible advantage.

2. The PR-Instances are pseudorandom.

Regarding the Polynomial Reconstruction Problem itself as the assumption,
we show that it has interesting robustness properties under the assumption of
almost everywhere hardness. In particular, solving PR with overwhelming prob-
ability of success is shown to be equivalent to:

1. Computing a value of the solution-polynomial at a new point with non-
negligible success for almost all PR-instances.

2. Computing the least-significant-bit of a new value with non-negligible ad-
vantage for almost all PR-instances.

These results suggest that PR and its related subproblem are very robust
in the cryptographic sense and seem to be suitable problems for further crypto-
graphic exploitation. A direct application of our work is that the OPE protocol
of [NP99,NP01] can be shown semantically secure (based on the IPR assumption
instead).

4 Multisample Polynomial Reconstruction

A straightforward way to generalize PR so that additional cryptographic applica-
tions are allowed is the following: we can associate with any PR instance a set of
indices (called the index-set) that includes the indices of the “good” points that
correspond to the graph of the (with high probability unique) polynomial that
“fits into” the instance. In the Multisample Polynomial Reconstruction (MPR)
Problem, the given instance contains a set of r (random) PR-instances with the
same index-set. The challenge is to solve all PR-instances.

MPR was defined in [KY01a] and further investigated in [BKY01]. This lat-
ter work points to a hardness threshold for the parameter r. Specifically MPR
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appears to be hard when r is smaller than n/t. MPR has similar robustness
properties as PR and is likewise sensitive to partial information extraction.
These properties are investigated in [KY01c] under the corresponding Index-
MPR-Assumption.

5 Cryptographic Applications

In [KY01a] a general family of two-player games was introduced together with an
efficient protocol construction that allowed a variety of novel applications, such as
a deterministically correct, polylogarithmic Private Information Retrieval (PIR)
protocol. The security of these games, that involved the composition of many
multivariate polynomials, bilaterally contributed by the two parties, was based
on the hardness of MPR. Other applications of this work include: secure com-
putation of the Lists’ Intersection Predicate (a stringent version of the List In-
tersection Problem [NP99] where the two parties want to securely check if the
two private lists have a non-empty intersection without revealing any items) and
Settlement Escrows and Oblivious Bargaining/Negotiations, which are protocol
techniques that are useful in the e-commerce setting.

In [KY01b,KY01c] PR and MPR are employed in the setting of symmetric
encryption to produce stream/block ciphers with novel attributes including:

– Semantic Security.
– Error-Correcting Decryption.
– The capability of sending messages that are superpolynomial in the security
parameter (namely, a cryptosystem with a very short (sublinear) key size).

– Double homomorphic encryption over the underlying finite field operations
(with bounded number of multiplications).

6 Conclusion

The rich algebraic structure of Polynomial Reconstruction (PR), its related prob-
lem (IPR) and its multisample version (MPR), has proved valuable in the cryp-
tographic setting. On the one hand, PR and its variants appear to be robust in
the cryptographic sense and can be used as a basis for advanced cryptographic
primitives (as exemplified in [KY01b,KY01c]). On the other hand, several inter-
esting cryptographic protocols that take advantage of the algebraic properties
of the problem have been introduced together with their applications in secure
computing and e-commerce (as seen in [NP99,KY01a]).
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Abstract. Here we provide a comparison of several projective point
transformations of an elliptic curve defined over GF (2n) and rank their
performance. We provide strategies to achieve improved implementations
of each. Our work shows that under certain conditions, these strategies
can alter the ranking of these projective point arithmetic methods.

1 Introduction

In [9,17], Koblitz and Miller independently proposed to use elliptic curves over
a finite field to implement cryptographic primitives. One important primitive
is the Diffie-Hellman key exchange (the elliptic curve version of the protocol is
called the elliptic curve Diffie-Hellman key exchange, abbreviated as ECDH).
The underlying task is computing the scalar multiple kP of a point P , where k
is the user’s private key.

The focus of this paper will be with elliptic curves (EC) defined over fields
GF (2n). For the finite field GF (2n), the standard equation or Weierstrass equa-
tion for a non supersingular elliptic curve is:

y2 + xy = x3 + ax2 + b

where a, b ∈ GF (2n). The points P = (x, y), where x, y ∈ GF (2n), that satisfy
the equation, together with the point O, called the point of infinity, form an
additive abelian group G. Here addition in G is defined by: for all P ∈ G
– P + O = P ,
– for P = (x, y) �= O, −P = (x, x+ y)
– and for all P1 = (x1, y1) , P2 = (x2, y2), both not equal to the identity and
P1 �= −P2, P1 + P2 = P3 = (x3, y3) where x3, y3 ∈ GF (2n) and satisfy:

x3 =




(
y1 + y2
x1 + x2

)2

+
y1 + y2
x1 + x2

+ x1 + x2 + a if P1 �= P2

x21 + b
x2

1
if P1 = P2

(1)
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y3 =




(
y1 + y2
x1 + x2

)
(x1 + x3) + x3 + y1 if P1 �= P2

x21 +
(
x1 +

y1
x1

)
x3 + x3 if P1 = P2

(2)

The computation of a scalar multiple of a point kP can be performed by
expressing k in binary form k = krkr−1 . . . k1k0 and applying the “double and
add” method. That is,

kP = 2(· · · 2((2krP ) + kr−1P ) + · · ·) + k0P.

The “add” operation requires 2 field multiplications, 1 square, and 1 inverse. The
“double” operation requires 2 field multiplications, 1 square, and 1 inverse1.

An alternate method to computing kP is to use projective point coordinates.
The use of projective point arithmetic on an elliptic curve, rather than the
standard affine arithmetic is such that in projective point arithmetic one delays
the computation of an inverse until the very end of the process of computing
kP . By doing so one will naturally see a rise in the number of required field
multiplications. That is, one inverse will take place during the computation of
the key kP , whereas in the affine method, one inverse takes place for each “add”
function invoked (and as well, for each “double” function invoked).

The decision “affine arithmetic” vs. “projective point arithmetic” should be
decided based on the ratio

time to compute an inverse
time to multiply

.

The larger this ratio, the more attractive it is to implement projective point
arithmetic. Although there exists improved methods to compute inverses [21,7],
the computation of an inverse will take significantly more time than a multipli-
cation. For example, our implementation of field operations in GF (2163), using
generating polynomial x163 + x7 + x6 + x3 + 1, was such that the performance
of an inverse was over 10 times the time it took to perform a multiplication.
This would be equivalent to “add” and “ double” functions which requires ap-
proximately 13 multiplications each. This led us to investigate projective point
arithmetic.

In the following, we discuss alternate methods to develop projective point
arithmetic, in an effort to determine the optimal method. We include benchmarks
to illustrate which is the optimal method, ranking the methods by performance.
We propose strategies which can lead to further improvement in performance,
and in some cases lead to different conclusions with regard to such rankings.

2 Some Implementation Strategies
That Improve Efficiency

There are a number of resources that discuss efficiency improvements for elliptic
curve implementations. Some examples of efficiency improvements include: im-
1 These requirements reflect the most efficient “add” and the most efficient “double”.
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proved key representations [2,24], improved field multiplication algorithms [18,6],
the use of projective point coordinates [1,4,14], the use of a halving a point al-
gorithm [22,13], and using the Frobenius map to improve efficiency [8,19,23].
Two resources that provide excellent overviews are [5,3]. For a review of ECC
implementations in literature see [15]. In this section we provide a limited list of
strategies. This list incorporates strategies considered in our implementations.

2.1 Field Multiplication Using a Lookup Table

In [6], Hasan described a method which uses lookup tables to improve perfor-
mance of the field multiplication. The idea is to precompute all 2g possible g-bit
multiples of a multiplicand, and place them in a lookup table. Then you compute
the multiplication by sliding over all � n

g � many non overlapping g-bit windows
of the other multiplicand. In all of our implementations, we use a four-bit win-
dow. This precomputation is placed into a lookup table. The product is then
computed by sliding over the � n

4 � many non overlapping 4 bit windows of the
other multiplicand. Therefore each call to a field multiplication creates a lookup
table for one of the multiplicands.

2.2 Alternate Key Representations When Computing kP

Express k in NAF form
To reduce the number of “additions”, one may express k in NAF (non ad-

jacent form) form (see [3,23,2,6,5]. The NAF representation of an integer is a
“signed” binary representation such that no two consecutive bits are nonzero.
For example, 30 = 16 + 8 + 4 + 2 = 111102, a NAF form for 30= 1000102, we
use 1 to represent −1. In [2], it was shown that the expected weight of a NAF
of length l is approximately l/3.
Use a windowing technique on k

Rather than computing kP using the binary representation of k = kr . . . k1k0.
One could precompute the first b − 1 multiples of P , then express k in base b
(see [18,12,3]).

2.3 Koblitz Curves

In [11], Koblitz suggested using anomalous binary curves (or Koblitz curves),
which possess properties that can lead to improvements in efficiency. A curve
described by the equation y2+xy = x3+ax2+b, where b = 1 and either a = 0 or
a = 1, describes a Koblitz curve. In this setting, the Frobenius map, denoted by
τ , is such that τ : (x, y) �→ (x2, y2) and satisfies the equation 2 = τ − τ2. Using
this equation, we express the key k in τ -adic form. That is, since k ∈ Z[τ ], k
which is (ki)2 can be expressed as k = (tj)τ . For example, 0102 = 110τ describes
the equation 2 = τ − τ2 (we use 1 to represent −1). This allows one to compute
kP , as

∑
tiτP , allowing us to use a “τ and add” method rather than a “double

and add” method [11,19,8]. The efficiency improvement is accomplished because
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we are replacing the required 2 multiplications, 1 inverse and 1 square in the
“double” by 2 squares (the “τ” of a point). Observe that in the “τ and add”
method, the time-consuming operation is the “add”.

2.4 Other Implementation Issues

The goal is to make relevant comparisons between different projective point rep-
resentations. In particular, we would like to determine the most efficient repre-
sentations and strategies for both Koblitz curves and “Random” curves. To make
these comparisons, we will be using two curves contained in the WAP/WTLS
list of curves [26]. One, a Koblitz curve with Weierstrass equation y2 + xy =
x3 + x2 + 1, where the field is GF (2163) defined by generating polynomial
x163 + x7 + x6 + x3 + 1 (this curve has been included in many standards, and
is identified in the WTLS standard as Curve 3). The other curve is defined by
y2 + xy = x3 + ax2 + b 2 and the underlying field is GF (2163) defined by the
generating polynomial x163 + x8 + x2 + x+ 1 (this is identified in WTLS stan-
dard by Curve 5). Further assumptions, we will express the key in a NAF form
(τ -NAF when the curve is a Koblitz curve). We will not apply any windowing
techniques to the key. Our implementation of the field multiplication is such
that it will create a four bit lookup table of one of the multiplicands (all possible
four bit products of this multiplicand). Remember, the intent of this work is
two-fold. To provide an overview of projective point methods, and secondly, to
discuss efficiency improvements when using a projective coordinates with a field
multiplication which uses lookup tables. The intention is to use benchmarking
as a comparison between methods, and the effect of different strategies on these
methods.

All benchmarks were created on a HP 9000/782 with a 236 MHz Risc pro-
cessor (32 bit). The table belows illustrates the performance of the basic field
operations in GF (2163) with generating polynomial x163 + x7 + x6 + x3 + 1 on
this platform.

Operation Time to compute
inverse 6.493 microsec
multiply 0.540 microsec
square 0.046 microsec

3 Projective Point Arithmetic

A projective plane over a field F , can be defined by fixing positive integers α, β
and creating an equivalence relation where (x, y, z) ∼ (x′, y′, z′) if (x′, y′, z′) =
2 where in hexadecimal EC parameter

a is 072546B5435234A422E0789675F432C89435DE5242 and
b is 00C9517D06D5240D3CFF38C74B20B6CD4D6F9DD4D9
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(λαx, λβy, λz) where λ ∈ F , λ �= 0. An equivalence class is called a projective
point in F . Each affine point (x′, y′) ∈ F × F can be associated with the equiva-
lence class (x′, y′, 1). All ordered triples (x, y, z) within this class satisfy x′ = x

zα

and y′ = y
zβ . The projective plane can be thought of as the union of the affine

plane together with all equivalence classes for which z = 0.
Each affine point (x, y) can be mapped into the projective plane by φ :

(x, y) → (x, y, 1). This map allows us to make a natural transformation from the
affine plane to the projective plane. Then the Image(φ) consist of all equivalence
classes such that z �= 0. Each equivalence class (x, y, z) in the Image(φ) can be
mapped to the affine plane by x′ = x

zα and y′ = y
zβ , let us call this map ψ.

Observe then that (ψ ◦ φ)(x, y) = (x, y).
Recall that we are considering an elliptic curve E given by y2 + xy = x3 +

ax2 + b defined over GF (2n). The set of affine points satisfying this equation
form an additive abelian group G, and we have denoted this addition by +.
Together Equations (1) and Equations (2) describe the addition operation in G.
(Altogether we have four equations, two to describe x′

3 and two to describe y′
3).

The projective point addition will be denoted by +∗. That is, for all P,Q ∈ EC,
there exists a ζ ∈ φ(E), such that ζ = φ(P ) +∗ φ(Q), and ψ(ζ) = P + Q. The
goal is to describe +∗ using the projective point coordinates φ(P ) and φ(Q) so
that a field inverse operation in GF (2n) is not required. For a brief discussion
on how to generate alternate projective point representations see the Appendix.

In practice the concern is to compute kP , where P is a fixed affine point
(x2, y2). (In fact if the intention is to compute the ECDH key, then P represents
the other user’s public key.) This point P is transformed to the projective point
(x2, y2, 1). Q will represent a projective point (x1, y1, z1), and will represent the
partial computation of kP as we parse the key k. Thus we assume that P is
of the form P = (x2, y2, 1), that is, z2 = 1. This assumption is adopted for all
projective point formulas described here (this assumption is referred to as using
mixed coordinates). From now on we will always make this assumption, and we
introduce all projective point arithmetic operations under this assumption. Do
note that when adding two EC points one needs to test the cases: are the two
points equal, is one point equal to the point at infinity, and is one point the
negative of the other. However, our intention is to consider the computation of
kP where P is a point in a subgroup of prime order. Thus except for the case
when k = subgroup order -1, these cases will never arise. So when discussing the
“add”, we omit testing for these cases.

3.1 The Homogeneous Projective Point Representation

The Homogeneous projective point transformation [1,16,10] is such that the rela-
tionship between affine points (x′, y′) and projective point (x, y, z), where z �= 0,
is given by x′ = x

z and y′ = y
z . For this setting, the projective point (x, y, z)

which belongs to φ(E) must satisfy zy2 + zxy = x3 + azx2 + bz3.
Assume Q is a projective point (x1, y1, z1) and P is (x2, y2, 1), further we

assume both P and Q �= O and that P �= −Q. There are two cases two consider:
the “add” (when P �= Q )and the “double” (when Q = P ). If P �= ±Q, then
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P +∗ Q = (x3, y3, z3)
x3 = AD

y3 = CD +A2(Bx1 +Ay1)
z3 = A3z1

(3)

A = x2z1 + x1, B = y2z1 + y1, C = A+B and D = A2(A+ az1) + z1BC. In the
case where P = Q, 2Q = (x3, y3, z3)

x3 = AB

y3 = x41A+B(x21 + y1z1 +A)
z3 = A3

(4)

where A = x1z1 and B = bz41 + x41.

3.2 The Jacobian Projective Point Representation

In [4], G. Chudnovsky and D. Chudnovsky described the Jacobian projective
point representation. The IEEE working group P1363 [25] is developing a public-
key cryptography standard and has incorporated the Jacobian transformation
as their recommended manner to perform elliptic curve arithmetic when using
projective point representation. The Jacobian transformation is given by x′ = x

z2

and y′ = y
z3 to perform elliptic curve addition when using projective point

coordinates. For this projective to affine transformation, the projective point
(x, y, z) which belongs to φ(E) must satisfy y2 + zxy = x3 + az2x2 + bz6.

To compute P +∗ Q = (x3, y3, z3), with Q = (x1, y1, z1) and P = (x2, y2, 1)
where both P and Q �= O: if P �= ±Q

U1 = x1 S2 = y2z
3
1 z3 = Lz1

S1 = y1 R = S1 + S2 T = R+ z3

U2 = x2z
2
1 L = z1W x3 = az23 + TR+W 3

W = U1 + U2 V = Rx2 + Ly1 y3 = Tx3 + V L2.

(5)

In the case where P = Q, 2Q = (x3, y3, z3)

c = b2
n−2

U = z3 + x21 + y1z1

z3 = x1z
2
1 y3 = x41z3 + Ux1.

x3 = (x1 + cz21)4
(6)

Here c =
√
b in GF (2n). The equations collectively numbered (5) are performed

columnwise left to right, top to bottom.

3.3 Lopez & Dahab

In [14], Lopez and Dahab described an alternate projective point representation.
Here the relationship between affine point (x′, y′) and projective point (x, y, z)
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is x′ = x
z2 and y′ = y

z . Then all projective points (x, y, z) satisfy y2 + xyz =
zx3 + az2x2 + bz4. To compute P +∗ Q = (x3, y3, z3), with Q = (x1, y1, z1) and
P = (x2, y2, 1) where both P and Q �= O: if P �= ±Q

A = y2z
2
1 + y1 z3 = C2 G = x3 + y2Z3

B = x2z1 + x1 E = AC y3 = EF + z3G

C = z1B x3 = A2 +D + E

D = B2(C + az21) F = x3 + x2z3

(7)

In the case where P = Q, 2Q = (x3, y3, z3)

z3 = z21x
2
1

x3 = x41 + bz41
y3 = bz41z3 + x3(az3 + y21 + bz41)

(8)

3.4 A Comparison of the Projective Point Representations

Table 1 describes the computational requirements for each of the projective
point methods. Note, if the EC parameter a is “sparse” and if it has to be
multiplied to the field element t, then the time to compute at is not equivalent
to a field multiplication of two arbitrary elements. In many sources, for example
[14], they disregard the number of field multiplications performed with the EC
parameters a and b, assuming that one can choose an elliptic curve with sparse
parameters. However, in practice one may have to implement curves which have
been defined in standards (although it maybe possible to make a transformation
so that one or more of the transformed EC parameters is sparse). For example
as the WAP/WTLS standard developed, there were initially only two strong
elliptic curves defined over GF (2n), one a Koblitz curve (Curve 3) which has
parameters a = b = 1, and the other a random curve (Curve 5) where both a and
b are not sparse. And so to disregard field multiplications with EC parameters
is not realistic. In Table 1 we have counted all field multiplications.

Table 1.

no. of mult. no. of squares
Homogeneous Add 13 1

Double 7 5
Jacobian Add 11 4

Double 5 5
Lopez& Dahab Add 10 5

Double 5 5
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3.5 Are There More Efficient Projective Point Representations?

Of the three primary field operations in GF (2n) needed to perform projective
point arithmetic: add, multiply and square; the field multiply is the time con-
suming operation. Although algebraically, a square is a field multiplication, as
an implementation, the square can be performed very efficiently in GF (2n). For
example, if you are using a normal basis, a square is a cyclic shift. If you are using
a polynomial basis, then the square can be implemented by inserting 0’s between
terms (see [3,21]), then reducing. That is, if ζ = (ζ0, . . . , ζn−1) ∈ GF (2n) then
ζ2 = (ζ0, 0, ζ1, 0, . . . , ζn−1, 0, ζn). The representation of ζ2 uses n+n−1 = 2n−1
terms, so a significant reduction needs to take place. But this can be achieved
very efficiently.

Our interest in efficient projective point representations, led us to pursue
alternate equations in an effort to reduce the time-consuming field multiplication.
Consider the set of equations described by the Jacobian transformation, although
they are algebraically efficient, the equations force an increase in the number of
multiplications by the choice of an odd power. That is, to compute ζ raised to an
odd power ensures the need of a multiplication, whereas, if one needs to compute
ζ raised to 2,4, 8, . . . all that is required is a series of squares.

Consider the projective point to affine point transformation x′ = x
zα and y′ =

y
zβ . In the Jacobian, α = 2 and β = 3. The odd power in the denominator for y′

forces additional field multiplications. In the Homogeneous transformation, both
α and β are 1. This is inefficient in that both of the affine equations that generate
y′, Equation (2), include the term x′. Hence β should be greater than α. (This
is why the Homogeneous representation has so many more field multiplications
than the Jacobian.) It would appear that the “best” implementation of ECC
using projective point arithmetic with fields of the form GF (2n) would satisfy
α, β and β − α are powers of 2. A solution is to have α = 2j and β = 2j+1

for non-negative integer j. This incorporates the suggestion that β > α and the
observation that the computation of z2

j

and z2
j+1

can be done by performing a
series of squares. Of course this selection criteria determines a family of projective
point representations. It is trivial to show that the most efficient of this family
of projective point representations is the case when j = 0, which is the Lopez
& Dahab representation. Also note that the number of field multiplications3 for
the case j = 1 is equal to the number of field multiplications for the case j = 0
(the case j = 1 will require one more square operation than the j = 0 case).
This observation could have been generated solely from manipulating the Lopez
& Dahab representation.

4 Efficiency Improvements

Clearly Table 1 shows that the most efficient projective point representation is
the one developed by Lopez & Dahab, next the Jacobian, and last the Homo-
geneous projective point representation. However we have found that there can
3 Our count refers to the number of field operations required to perform an “add” and
a “double” when you use this projective point representations.
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be other factors that may influence performance, in addition to the number of
field operations. Further, one must consider the type of curve that one is imple-
menting. For example, if the curve is a Koblitz curve, then only the “add” must
be gauged. Whereas, if the curve is a random curve then both the “double” and
the “add” must be gauged. In this case, further factors that may play a role are
whether the EC parameters a and/or b are sparse?

4.1 Create a Pipeline Effect–Reusing Constructed Lookup Table

A technique used to speed up computations is to pipeline common instructions
together. Recall that our field multiplication is utilizing lookup tables to generate
the product. To achieve a pipeline effect we examined all products and looked
for similar multiplicands, allowing us to share lookup table for more than one
multiply. We applied this technique to all three projective point methods. There
are various strategies, the first strategy we employed was to allow at most one
lookup table to be created in RAM at a time.

We illustrate the multiplications that would take place in the “add” of a
Koblitz curve using the Lopez & Dahab method. Each rectangle represents a
lookup table to be generated.

z2
1 · y2 z1 · x2

√
z3 · (x1 + z1x2)2

z1 · (x1 + z1x2)
√

z3 · (y1 + z2
1y2)

z3 · x2 (z3 · (y1 + z2
1y2)) · (z3 · x2 + x3)

z3 · y2

z3 · (x3 + z3y2)

The result is that the nine required field multiplications within the “add” can
be arranged so that only 5 lookup tables are required. A word of warning, the
existence of common multiplicands does not imply that a lookup table reduction
can take place, for there may be a dependency between two multiplications. We
have implemented a pipe which allowed us to add an output with a field element
and take it as the next input (which is why we used the same lookup table for
z3 · y2 and z3(x3 + z3 · y2) ). All our piping was restricted to allowing at most
one field addition.

In our implementation, we saw a dramatic improvement (in proportion to
the previous benchmark) when we incorporated a pipelined multiplication (which
minimizes the number of multiplication lookup tables created within the “add”).
The following table highlights our benchmarks for the pipelined version of the Ja-
cobian, Homogeneous, and Lopez & Dahab. We point out that the Homogeneous
transformation performed slightly better than the Jacobian transformation (a re-
verse of what one may infer from Table 1). Within the Jacobian transformation
we found many of the multiplications were dependent upon each other which
limited our reduction of lookup tables.
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Table 2. For a Koblitz curve

VERSION Number of Compute Lookup Compute Improvement
mult. kP tables kP

nonpipeline pipeline-add pipeline
Lopez & Dahab 9 3.550ms 5 2.982ms 16%
Jacobian 10 3.926ms 7 3.525ms 10%
Homogeneous 12 4.240ms 6 3.486ms 18%

4.2 Applying the Pipelining to a Random Curve

We then applied the technique of pipelining multiplications with a common
multiplicand in our implementation when using a random curve. To achieve a
minimal amount of lookup tables, the piping choices made for a random curve
will differ with the choices made for a Koblitz curve. For example, pipelines for
lookup tables for the “add” and “double”, respectively, using the Lopez and
Dahab implementation is such that the “add” required 5 lookup tables and the
“double” required 4 lookup tables. (See the appendix for an illustration of how
to construct a minimum number of lookup tables for the add and the double of
a Random curve).

Table 3. For a Random curve

VERSION Number of Number of Compute Lookup Lookup Compute
mult. mult. kP tables tables kP
add double nonpipeline pipeline pipeline pipeline

add double
L & D 10 5 7.987ms 5 4 6.908ms
Jacobian 11 5 8.276ms 8 5 7.910ms
Homog. 13 7 10.445 ms 6 4 8.259ms

As expected the Lopez & Dahab method performed the best. Again we see a
dramatic improvement in the Homogeneous method when we pipeline like mul-
tiplicands together. Although it doesn’t in this case, out-perform the Jacobian
method. When implementing all three methods on a Koblitz curve, the time to
compute “τ” of a point is the same for all three methods. Thus the comparison
of the three methods for a Koblitz curve is really a comparison of the “add”
for each. Whereas in the implementation for the Random curve, the “double” is
computed for each bit of the key, and so this comparison illustrates how “double”
affects performance.

5 Other Strategies

Although we have achieved an implementation which requires a minimum num-
ber of lookup tables for both the “double” and “add”, there are further improve-
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ments that can be achieved, however some may require more memory. That is,
presently we have created a elliptic curve implementation over binary fields which
will utilize lookup tables for field multiplications such that only one lookup table
will exist in RAM at a time. We can improve on this implementation slightly at
a cost of memory by allowing more than one lookup table to exist.

Choices we made earlier were based on the requirement that only one lookup
table existed at a given time. Thus the RAM requirement for this implementa-
tion is the same as the RAM requirement for a nonpipelined implementation of
the computation of kP . The pipeline was developed to meet this requirement and
minimize the number of lookup tables generated. Suppose we relax this require-
ment and allow multiple lookup tables to exist at a given time. Observe that a
number of field multiplications will contain an EC parameter as a multiplicand
(i.e. a and/or b). Consequently, we can generate lookup tables for both a and b
during the initial stage and save them throughout the computation. Normally a
lookup table represent all 4 bit multiples of the field element. A field element in
GF (2163) requires at most 21 bytes. The size of a lookup table is at least 336
bytes. (In practice our lookup tables were such that each multiple was expressed
using 6 words requiring 384 bytes). Because a table for a and/or b is such that it
is used throughout the entire kP computation, the expected number of times a
4-bit multiple of a is used (say from the “add”) is heuristically 160· 12 · 1

24 for each
occurrence of a multiply of an a in an “add” and 160 · 1

24 for each occurrence of
a multiply of an a in the “double”. A similar analysis is true for multiples of b.
Thus one finds an argument for increasing the window size from 4-bit to 6-bit
or 8-bit, consequently we generated larger lookup tables for a and b, saved them
and used these tables throughout the computation of kP .

Note that in the “add”, there exist products which have a multiplicand x2
and/or y2, where P of the kP computation is such that P = (x2, y2). Fortunately,
we were not implementing any windowing. However, because we are working with
a NAF form, we will utilize both P and −P . Consequently, there are two possible
y2 and one possible x2. Again we can generate lookup tables for x2 and both y2
of P and the y2 of −P during the initial stage, save them and use these tables
throughout the computation of kP . (Do note that if one uses a b-bit window
in their implementation, and opts for the strategy of generating a precomputed
lookup table for y2 and saving it throughout the computation, then it is required
to compute and save 2b − 1 lookup tables.)

Lastly, observe that in the Lopez & Dahab method when we compute the
“add”, a required multiplication is z3x3 (this is required to compute y3). Further
note that a required computation in the “double” is x1z1. Of course in every
case, but the case when we are processing the last bit of the key, a “double” will
follow an “add”. Also, in every such case the product x3z3 in the “add” is the
same as x1z1 in the following “double”. Consequently, if we save the product
x3z3 from the “add” workspace and use it in the following “double”, then we
reduce the number of field multiplications for the “double” by one. Note we are
suggesting saving a computation from a workspace, thus if we are computing the
“double” after a “double” we will not have this product saved and so we must
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compute x1z1. Consequently when we discuss the number of field multiplications
for the “double”, we must use “expected number of field multiplications”. This
“expected number” is of course correlated to the Hamming weight of the key.
Perhaps a better way to incorporate this reduction of multiplications is to report
this reduction for a multiplication as a reduction in the “add” (even though it
occurs in the “double,” the following table reports this reduction as a reduction
within the “add” function).

In the table that follows, we have included the before and after benchmark
performance of our Lopez & Dahab implementation (here the after refers to the
use of the above strategies).

One can opt for any or all of the RAM increasing pipelining strategies. How-
ever, it is redundant to try to utilize all three strategies to improve performance.
In fact for a Koblitz curve, only strategy 2 is relevant (precomputing lookup
tables for x2 and/or y2). For a Random curve, we suggest strategies 1 and 3 and
to increase the lookup table window for parameters a and b. In the appendix
we describe an implementation for an “add” and a “double” which utilizes only
strategy 1. The following table describes an implementation of a Random curve
utilizes strategies 1 and 3, and uses an increased window for the lookup tables
for a and b.

Random Curve using RAM increasing pipelining strategies

VERSION Number of Lookup Compute Compute
mult. tables kP kP

add/double add/double pipeline improved
pipeline

Lopez & Dahab 9 / 5 4 / 3 6.908 ms 6.342 ms

Thus by using the Lopez & Dahab method, pipelining, and using the RAM
increasing pipeline strategies that we have outlined, we have reduced a scalar
multiplication from the original time of 7.983 ms to 6.342 ms. (Note that in table
above we have reduced the number of multiplies in an “add” by one due to the
strategy of saving the computation of x3z3 in an “add” and using it as the x1z1
in the following “double”.)

6 A Suggestion on Squaring in GF (2m)

Let µ ∈ GF (2m), then µ = µ0 + µ1x + µ2x
2 + · · · + µm−1x

m−1. We will also
use (µ0, . . . , µm−1) to represent µ. Further, if µi = 0 for all i > j then we may
represent µ by (µ0, . . . , µj). Let xm + p(x) represent the generating polynomial
of the field.

Several sources [21,3], have observed that a square can be computed by in-
serting 0’s between terms and reducing. That is, µ2 = µ0 + µ1x

2 + µ2x
4 + · · · +
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µm−1x
2(m−1) = (µ0, 0, µ1, 0, µ2, . . . , 0, µm−1, 0). which needs to be reduced to

compute the square. The required reduction can be inefficient, for it involves
performing a series of shifts and adds. The shifts are determined by the terms
of the generating polynomial, and they are performed on the terms of µ2. This
inefficiency exists because every other term of µ2 is zero, thus performing an xor
(an add in GF (2m)) with a shift can be a waste. For example if the shift was an
even length, we will see that we are wastefully computing an xor of a 0 with a
0. If the shift is an odd length then we are performing an xor with a value and
a zero, rather than simply resetting a term.

Our suggestion involves using the odd and even “parts” of a polynomial and
performing the shifting and adds in place. That is, performing shifts and adds
on either the odd or even “parts” of a polynomial.

Consider the calculation of µ2. Let A = (µ0, 0, µ1, . . . , µm−1
2

) and B = (0,
µm−1

2 +1, 0, µm−1
2 +2, 0, . . . , 0, µm−1), then both A and B are of degree m−1. Here

A is an even polynomial and B is an odd polynomial. Note that µ2 = A+xmB.
So what remains is to reduce xmB.

We will explain our algorithm using an example. Consider the field GF (2m)
with generating polynomial x163 + x7 + x6 + x3 + 1 (i.e. m = 163). So

xmB = p(x)B = (x7 + x6 + x3 + 1)B = x7B + x6B + x3B + 1B.

Since odd · odd is even and odd · even is odd, we see that x6B and 1B are odd
polynomials, and x7B and x3B are even polynomials. However, x6B, x7B, and
x3B are of degree greater than 162 (so they will require a multiplication with
p(x) but only for a few coefficients).

Next observe that A and B have alternating zeros, as well x6B, x7B, and
x3B. We can efficiently encode this representation: encode A by A = (µ0, µ1, . . . ,
µn−1

2
)EV EN = (µ0, µ1, . . . , µ81)EV EN and encodeB by B =(µn+1

2
, . . . ,µn−1)ODD

= (µ82, . . . ,µ162)ODD. The subscript EV EN and ODD refer to whether the
polynomials are even or odd. Also note that A and B have different lengths
(although we may view them as the same length but that the coefficient of the
leading term of B is 0). Multiplication of B by xi is a right shift, introducing
zeros on the left and possibly generating a polynomial of degree > m − 1 (i.e.
in this case m − 1 = 162). If this latter case occurs then we will call it an
“overflow”, the result is that these terms will need to be multiplied by p(x).
We will use SHi to represent this right shift caused by multiplying by xi. Then
xB = SH(B) = (0, µ82, µ83, . . . , µ162)EV EN . x2B = (0, µ82, µ83, . . . , µ161)ODD +
µ162p(x) = SH2(B)+µ162p(x). x3B = (0, 0, µ82, µ83, . . . , µ161)EV EN +µ162xp(x)
= SH3(B) + µ162xp(x), and so forth. Note x6B=(0,0,0,0,µ82,µ83, . . . ,µ159)ODD

+ (µ162x4 + µ161x
2 + µ160)p(x) = SH6(B) + (µ162x4 + µ161x

2 + µ160)p(x),
and x7B = (0, 0, 0, 0, µ82, µ83, . . . , µ159)EV EN + (µ162x4 + µ161x

2 + µ160)p(x) =
SH7(B) + (µ162x5 + µ161x

3 + µ160x)p(x).
We can compute µ2 by computing the even part, the odd part and the over-

flow part.
even part = A + SH3(B) + SH7(B)

odd part = B + SH6(B)
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We write the overflow as:

overflow = p(x)
(
µ162(x5 + x4 + x+ 1) + µ161(x3 + x2) + µ160(x+ 1)

)
The overflow is not decomposed in odd and even form.

What remains is to transfer even part and odd part to correct form. If f rep-
resents some algorithm which takes as input even part and odd part polynomial
and outputs the polynomial, then µ2 = overflow + f(even part, odd part). This
algorithm f is very similar to the algorithm which inserts zeros between terms,
except it will insert odd coefficients between even coefficients.

Consider the algorithm to determine a square by the method of inserting
zeros between terms and reducing. The reduction consists of a multiplication of
the generating polynomial to the higher degree terms, and creates a series of
xor (addition) operations (1 less than the number of terms in the generating
polynomial). When performing the xor operation, one would perform the oper-
ation on the entire multi precision integer, however every other bit is zero. Thus
one does not need to perform the xor operation on the entire multi precision
integer, and if one is, then they are performing twice the number of bitwise-xor
operations then what is really needed. Our algorithm computes the square with-
out performing the wasted bitwise-xor operations (essentially it will halve the
number of bitwise-xor operations performed). However, in our algorithm there
still is a need to compute the polynomial given its even and odd parts (this is
comparable to inserting zeros between terms).

In practice one should find that this algorithm will perform better than
the method that inserts zeros and reduces. Although the improvement will be
marginal for small field sizes.

7 Conclusion

Our work has provided a survey and comparison of several projective point
representations. In addition we have provided strategies that lead to efficiency
improvements, and these stratgies may alter the comparison rankings of these
projective point representations. We have provided further strategies that one
can implement at a cost of memory. Lastly we have illustrated how to utilize
the odd and even “parts” of a polynomial, to compute a square in GF (2n).
The author wishes to thank the reviewers for their valuable and constructive
suggestions.
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8 Appendix

Using the strategies discussed concerning precomputing and saving lookup ta-
bles, one has great flexibility in deriving the “add” and “double” formula. In the
following, we provide an example of a pipelined “add” and a pipelined “double”.
We utilize strategy 1, and require precomputed lookup tables for EC parameter
a and EC parameter b.

Random curve: Lookup tables – add

z1x2 z2
1y2 z1(x1 + z1x2) · (y1 + z2

1y2)
z1(x1 + z1x2) z1(x1 + z1x2) · (x1 + z1x2)2

z3x2 [z1(x1 + z1x2) · (y1 + z2
1y2)](z3x2 + x3)

z3(y2 + a)
z3 · (x3 + z3y2))

z3a

Random curve: Lookup tables – double

z1x1 z4
1b (y1 + x2

1)x3

(z1x1) · (bz4
1)

(z1x1) · (z1x1(bz4
1 + (y1 + x2

1)x3

Example of a pipelined add for a Random curve

(1) D ←− z21 (12) z3 ←− z23
(2) make LT(z1) (13) x3 ←− az3 NO LT
(3) A ←− z1x2 (14) x3 ←− x3 +D
(4) z3 ←− z1(A+ x1) (15) x3 ←− x3 +A+B
(5) B ←− a ·D NO LT (16) make LT(z3)
(6) B ←− B + y1 (17) x3 ←− z3x2
(7) A ←− A2 (18) B ←− z3y2
(8) make LT(z3) (19) B ←− S(B + x3)
(9) D ←− z3B (20) y3 ←− x3 + y3
(10) A ←− z3A (21) y3 ←− y3 ·D
(11) B ←− B2 (22) y3 ←− y3 +B
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Example of a pipelined double for a random curve

(1) B ←− z21 (8) C ←− y21
(2) A ←− x21 (9) C ←− C +B
(3) z3 ←− A ·B (10) y3 ←− az3 NO LT
(4) B ←− B2 (11) y3 ←− y3 + C
(5) B ←− bB NO LT (12) y3 ←− y3 · x3B
(6) x3 ←− A2 (13) C ←− z3 ·B
(7) x3 ←− x3 + b (14) y3 ←− y3 + C

As stated earlier each multiplication requires a lookup table. For those cases
where we share lookup table we have indicated the creation of a lookup table (by
Make LT( ) ). Otherwise, the creation of the lookup table is generated within the
multiplication algorithm. However, in line (5) we refer to NO LT. The implication
is that no lookup table needs to be generated here. That is, b is a coefficient of
the Weierstrass equation. One can create the lookup table for b at the start of
the computation of kP , and save it.

8.1 How to Generate Alternate Projective Point Representations
We continue with the notation described in section 3.

Often there are more than one set of equations which describe +∗. Recall
that (x′, y′, 1) ∼ (x, y, z) implies x′ = x

zα and y′ = y
zβ . Fix positive integers α

and β. Let P = (x′
1, y

′
1) and Q = (x′

2, y
′
2). Step one, replace xi and yi found in

Equations (1) by the ratios xi

zα
i

and yi

zβ
i

, respectively for i=1,2 (these equation

determine x′
3). Step two, in Equations (2) replace xi and yi by the ratios xi

zα
i

and
yi

zβ
i

, respectively (i=1,2) and replace x3 by the correct case of the two equations

described in step one. The result will be, after simplification, four rational equa-
tions in the variables x1, y1, z1, x2, y2, z2, one set of equations for x′

3 (the case
where P �= Q and the other case for P = Q) and another set of equations for
y′
3 (one case for P �= Q and the other case for P = Q). To provide an example,

choose z3 to be the least common multiple of all four denominators (which is
a polynomial in x1, y1, z1, x2, y2, z2). Set x3 = zα

3 x
′
3, as α is a positive integer,

the denominator will cancel out (in both cases P �= Q and P = Q), and that x3
is equal to a polynomial in x1, y1, z1, x2, y2, z2. Set y3 = zβ

3 y
′
3 and for a similar

reason y3 is equal to a polynomial in x1, y1, z1, x2, y2, z2. The result is four equa-
tions, two which describe x3 and two which describe y3. The pair of equations
that describe z3 are identical (the least common multiple) . For two projective
points (x1, y1, z1) and (x2, y2, z2), both not equal to the identity, we describe
the equations that define +∗ as: (x1, y1, z1) +∗ (x2, y2, z2) = (x3, y3, z3), where
z3 was chosen to be least common multiple of all four denominators, and where
x3 = zα

3 x
′
3 and y3 = zβ

3 y
′
3. If one of the points was the origin, then the sum

would be the other point. The goal was to describe the equations so that the
inverse did not need to be employed. The result +∗ is a binary operation on the
Image(φ(E)) such that ψ(φ(P ) +∗ φ(Q)) = P + Q. This argument illustrates
how to define +∗ on φ(E). Most important, we are able to achieve the addition
without the use of a field inverse.
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Abstract. We propose a method for increasing the speed of scalar mul-
tiplication on binary anomalous (Koblitz) elliptic curves. By introducing
a generator which produces random pairs (k, [k]P ) of special shape, we
exhibit a specific setting where the number of elliptic curve operations is
reduced by 25% to 50% compared with the general case when k is chosen
uniformly. This generator can be used when an ephemeral pair (k, [k]P )
is needed by a cryptographic algorithm, and especially for Elliptic Curve
Diffie-Hellman key exchange, ECDSA signature and El-Gamal encryp-
tion. The presented algorithm combines normal and polynomial basis
operations to achieve optimal performance. We prove that a probabilis-
tic signature scheme using our generator remains secure against chosen
message attacks.

Key words: Elliptic curve, binary anomalous curve, scalar multiplica-
tion, accelerated signature schemes, pseudo-random generators.

1 Introduction

The use of the elliptic curves (EC) in cryptography was first proposed by Miller
[8] and Koblitz [4] in 1985. Elliptic curves provide a group structure, which can be
used to translate existing discrete logarithm-based cryptosystems. The discrete
logarithm problem in a cyclic group G of order n with generator g refers to the
problem of finding x given some element y = gx of G. The discrete logarithm
problem over an EC seems to be much harder than in other groups such as
the multiplicative group of a finite field, and no subexponential-time algorithm
is known for the discrete logarithm problem in the class of non-supersingular
EC which trace is different from zero and one. Consequently, keys can be much
smaller in the EC context, typically about 160 bits.

Koblitz described in [5] a family of elliptic curves featuring several attractive
implementation properties. In particular, these curves allow very fast scalar mul-
tiplication, i.e. fast computation of [k]P from any point P belonging to the curve.
The original algorithm proposed by Koblitz introduced an expansion method
based on the Frobenius map to multiply points on elliptic curves defined over
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F2, F4, F8 and F16. An improvement due to Meier and Staffelbach was proposed
in [6] and later on, Solinas introduced in [19] an even faster algorithm.

Many EC cryptographic protocols such as the Elliptic Curve Diffie-Hellman
for key exchange [13], and the ECDSA for signature [13] require the production
of fresh pairs (k, [k]P ) consisting of a random integer k and the point [k]P . A
straightforward way of producing such pairs is to first generate k at random and
then compute [k]P using an efficient scalar multiplication algorithm. Another
possiblity, introduced and analysed in [16,18,17,14,15], consists in randomly gen-
erating k and [k]P at the same time, so that fewer elliptic curve operations are
performed.

In this paper we focus on Koblitz (or anomalous) elliptic curves in F2n . By
introducing a generator producing random pairs (k, [k]P ), we are able to exhibit
a specific setting where the number of elliptic curve additions is significantly
reduced compared to the general case when k is chosen uniformly. The new
algorithm combines normal and polynomial basis operations to achieve optimal
performance. We provide a security proof for probabilistic signature schemes
based on this generator.

The paper is organized as follows: in section 2 we briefly recall the basic
definitions of elliptic curves and operations over a finite field of characteristic
two. In section 3 we recall the definition of binary anomalous (Koblitz) curves
for which faster scalar multiplication algorithms are available. We also recall
the specific exponentiation techniques used on this type of curves. In section 4
we introduce the new generator of pairs (k, [k]P ). Section 6 provides a security
proof for (k, [k]P )-based probabilistic signature schemes, through a fine-grained
analysis of the distribution of probability of the generator (theorem 2), and
using a new result on the security of probabilistic signature schemes (theorem 1).
Finally, we propose in section 7 a choice of parameters resulting in a significant
increase of speed compared to existing algorithms, with a proven security level.

2 Elliptic Curves on F2n

2.1 Definition of an Elliptic Curve

An elliptic curve is the set of points (x, y) which are solutions of a bivariate cubic
equation over a field K [7]. An equation of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (1)

where ai ∈ K, defines an elliptic curve over K.
In the field F2n of characteristic 2, equation (1) can be reduced to the form:

y2 + xy = x3 + ax2 + b with a, b ∈ F2n .

The set of points on an elliptic curve, together with a special point O called
the point at infinity, has an abelian group structure and therefore an addition
operation. The formula for this addition is provided in [13].
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2.2 Computing a Multiple of a Point

The operation of adding a point P to itself d times is called scalar multiplication
by d and denoted [d]P . Scalar multiplication is the basic operation for EC proto-
cols. Scalar multiplication in the group of points of an elliptic curve is analog to
the exponentiation in the multiplicative group of integers modulo a fixed integer
p.

Computing [d]P is usually done with the addition-subtraction method based
on the nonadjacent form (NAF) of the integer d, which is a signed binary ex-
pansion without two consecutive nonzero coefficients:

d =
�−1∑
i=0

ci2i ,

with ci ∈ {−1, 0, 1} and ci · ci+1 = 0 for all i ≥ 0. The NAF is said to be optimal
because each positive integer has a unique NAF, and the NAF of d has the fewest
nonzero coefficients of any signed binary expansion of d [2]. An algorithm for
generating the NAF of any integer in described in [9].

3 Anomalous Binary Curves

3.1 Definition and Frobenius Map

The anomalous binary curves or Koblitz curves [5] are two curves E0 and E1
defined over F2 by

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} . (2)

We define Ea(F2n) as the set of points (x, y) which are solutions of (2) over F2n .
Since the anomalous curves are defined over F2, if P = (x, y) is in Ea(F2n),

then the point (x2, y2) is also in Ea(F2n). In addition, it can be checked that:

(x4, y4) + 2(x, y) = (−1)1−a(x2, y2) , (3)

where + holds for the addition of points in the curve. Let τ be the Frobenius
map over F2n × F2n

τ(x, y) = (x2, y2) .

Equation (3) can be rewritten for all P ∈ Ea(F2n) as

τ2P + [2]P = (−1)1−aτP .

This shows that the squaring map is equivalent to a multiplication by the com-
plex number τ satisfying

τ2 + 2 = (−1)1−aτ ,

and we say that Ea has a complex multiplication by τ [5]. Consequently, a point
on Ea can be multiplied by any element of the ring Z[τ ] = {x+ y · τ |x, y ∈ Z}.
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3.2 Faster Scalar Multiplication

The advantage of using the multiplication by τ is that squaring is very fast
in F2n . Consequently, it is advantageous to rewrite the exponent d as a signed
τ -adic NAF

d =
n+1∑
i=0

eiτ
i mod (τn − 1) ,

with ei ∈ {−1, 0, 1} and ei · ei+1 = 0. This representation is based on the fact
that Z[τ ] is an euclidian ring. An algorithm for computing the τ -adic NAF is
given in [19]. This encoding yields the following scalar multiplication algorithm:

Algorithm 1 : Addition-substraction method with τ-adic NAF

Input:P
Output:Q
Q ← [en+1]P
for i ← n to 0 do

Q ← τQ
if ei = 1 then Q ← Q+ P
if ei = −1 then Q ← Q − P

return Q

The algorithm requires approximately n/3 point additions instead of n dou-
bles and n/3 additions for the general case [19]. If we neglect the cost of squarings,
this is four times faster.

As in the general case, it is possible to reduce the number of point additions
by precomputing and storing some “small” τ -adic multiples of P . [19] describes
an algorithm which requires the storage of

C(ω) =
2ω − (−1)ω

3
points ,

where ω is a trade-off parameter. Precomputation requires C(ω) − 1 elliptic
additions, and the scalar multiplication itself requires approximately

n

ω + 1
elliptic additions ,

which gives a total workload of

� 2ω

3
+

n

ω + 1
elliptic additions .

For example, for the 163-bit curve E1(F2163) and ω = 4, a scalar multiplication
can be performed in approximately 35 additions, instead of 52 without precom-
putation.

When P is known in advance, as is the case for protocols such as Elliptic
Curve Diffie-Hellman or ECDSA, it is possible to precompute and store the
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“small” τ -adic multiples of P once for all. The real time computation that re-
mains is the scalar multiplication itself, which requires around n/(ω+1) opera-
tions when C(w) points are stored. For example, for the 163-bit curve E1(F2163),
a scalar multiplication can be performed with ω = 7 in about 19 additions if 43
points are stored.

In the next section we describe an algorithm for producing random pairs
(k, [k]P ) which requires even fewer additions for approximately the same num-
ber of points stored in memory. This algorithm appears to be well-suited for
constrained environments such as smart-cards.

4 Fast Generation of (k, [k]P )

4.1 A Simple Generator

Many EC cryptographic protocols such as Elliptic Curve Diffie-Hellman for key
exchange [13] and ECDSA for signature [13] require to produce pairs (k, [k]P )
consisting of a random integer k in the interval [0, q − 1] and the point [k]P ,
where q is a large prime divisor of the order of the curve, and P is a fixed point
of order q.

For ECDSA this is the initial step of signature generation. The x coordinate
of [k]P is then converted into an integer c modulo q and the signature of m is
(c, s) where s = (H(m) + d · c)/k mod q and d is the private key associated to
the public key Q = d.P .

[1] describes a simple method for generating random pairs of the form (x, gx).
This method can be easily adapted to the elliptic curve setting for computing
pairs (k, [k]P ), where P is a point of order q.

Preprocessing:
Generate t integers k1, . . . , kt ∈ Zq.
Compute Pj = kj .P for each j and store the kj ’s and the Pj ’s in a table.

Pair generation:
Randomly generate S ⊂ [1, t] such that |S| = κ.
Let k =

∑
i∈S kj mod q.

Let Q =
∑

i∈S Pj and return (k,Q).

The algorithm requires κ−1 elliptic curve additions. Of course, the generated
k is not uniformly distributed and the parameters have to be chosen with great
care so that the distribution of the generated k is close to the uniform random
distribution.

4.2 The New Generator

We consider the generator of figure 1 which produces random pairs of the form
(k, [k]P ) on a Koblitz curve defined over F2n .
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Preprocessing:
Generate t integers k1, . . . , kt ∈ Zq.
Compute Pj = kj .P for each j
Store the kj ’s and the Pj ’s in a table.

Pair generation:
Generate κ random values si = ±1
Generate κ random integers ei ∈ [0, n − 1].
Generate κ random indices ri ∈ [1, t].

Let k =
κ∑

i=1
si · τei · kri mod q.

Let Q =
κ∑

i=1
si · τei · Pri .

Return (k,Q).

Fig. 1. Generation of (k, [k]P ) pairs on Koblitz curves

The difference with the previous generator is the use of the Frobenius map
τ , which increases the entropy of the generated k. The new generator requires
κ− 1 elliptic curve additions and t points stored in memory. In the next section
we describe an efficient implementation of the new generator.

4.3 Implementing the Generator

The new generator uses the Frobenius map τ extensively, as on average κ · n/2
applications of τ are performed for each generated pair, which represents κ · n
squarings.

Squaring comes essentially for free when F2n is represented in terms of a
normal basis: a basis over F2n of the form

{θ, θ2, θ22
, . . . , θ2

n−1} .

Namely, in this representation, squaring a field element is accomplished by a
one-bit cyclic rotation of the bitstring representing the element.

Elliptic curve additions will be performed using a polynomial basis represen-
tation of the elements, for which efficient algorithms for field multiplication and
inversion are available. A polynomial basis is a basis over F2n of the form

{1, x, x2, . . . , xn−1} .

The points Pj are stored using a normal basis representation. When a new pair
is generated, the point τei · Pri is computed by successive rotations of the coor-
dinates of Pri

. Then τei ·Pri
is converted into a polynomial basis representation

and it is added to the accumulator Q. To convert from normal to polynomial
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Preprocessing:
Generate t random integers k1, . . . , kt ∈ Zq.
Compute Pj = kj .P for each j
Store the kj ’s and the Pj ’s in normal basis.

Pair generation:
Generate κ random integers ei ∈ [0, n − 1]
Sort the ei: e1 ≥ e2 ≥ . . . ≥ eκ

Set eκ+1 ← 0
Set Q ← O and k ← 0.
For i ← 1 to κ do:
Generate a random integer r ∈ [1, t]
Generate a random s ← ±1
Compute R ← s · τei · Pr in normal basis.
Convert R into polynomial basis.
Compute Q ← Q+R
Compute k ← τei−ei+1 · (s · kj + k) in Z[τ ].

Convert k into an integer.
Return (k,Q).

Fig. 2. Algorithm for implementing the generator of (k, [k]P ) pairs for Koblitz curves

basis, we simply store the change-of-base matrix. The conversion’s time is then
approximately equivalent to one field multiplication, and this method requires
to store O(n2) bits.

Before a new pair (k, [k]P ) is computed, the integers ei’s are sorted: e1 ≥
e2 ≥ . . . ≥ eκ, so that k can be rewritten as

k = τeκ
(
sκ · krκ + τeκ−1−eκ

(
sκ−1 · krκ−1 + . . .

))
.

The integer k is computed in the ring Z[τ ] as k = k′ +k′′ ·τ where k′, k′′ ∈ Z.
The element k ∈ Z[τ ] is finally converted into an integer by replacing τ by an
integer T in Zq solution of the equation

T 2 + 2 = (−1)1−aT mod q ,

so that for any point Q, we have τ(Q) = [T ]Q.
The implementation of the generator is summarized in figure 2.

5 Lattice Reduction Attacks and Hidden Subsets

When the generator is used in ECDSA, each signature (c, s) of a message m
yields a linear equation

k · s = H(m) + d · c mod q ,
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where d is the unknown secret key and k is a sum of the hidden terms ±τ i · ki.
The generator of [1] described in section 4.1 for which k is a sum of the

hidden terms ki has been attacked by Nguyen and Stern [11]. However, the attack
requires the number of hidden ki to be small (around 45 for a 160-bit integer k).
The security of the generator relies on the difficulty of the hidden-subset sum
problem studied in [11]: given a positive integer M and b1, . . . , bm ∈ ZM , find
α1, . . . , αn ∈ ZM such that each bi is some subset sum of α1, . . . , αn modulo M .

For the new generator, if one simply considers all τ i · ki to be hidden, this
yields a large number of hidden terms (n · t, where n is the field size and t the
number of stored points) which can not be handled by [11]. We did not find any
way of adapting [11] to our new generator.

6 Security Proof for Signature Schemes
Using the New Generator

Since the generated integers k are not to be uniformly distributed, the security
might be considerably weakened when the generator is used in conjunction with
a signature scheme, a key-exchange scheme or an encryption scheme. In this
section, we provide a security proof in the case of probabilistic signature schemes.

In the following, we relate the security of a signature scheme using a truly
random generator with the security of the same signature scheme using our
generator. Resistance against adaptive chosen message attacks is considered.
This question has initially been raised by [12], and we improve the result of [12,
p. 9].

Let S be a probabilistic signature scheme. Denote by R the set of ran-
dom elements used to generate the signature. In our case of interest, R will
be {0, . . . , q − 1}. Let G be a random variable on R. Define SG as the signature
scheme identical to S, except that its generation algorithm uses G as random
source instead of a truly random number generator.

The following theorem shows that if a signature scheme using a truly random
number generator is secure, the corresponding signature scheme using G will be
secure if the distribution of G is sufficiently close to the uniform distribution.
The proof is given in appendix.

If X is a random variable on a set Ω, we denote by δ2(X) the statistical

distance defined by δ2(X) :=
(∑

ω∈Ω

∣∣∣Pr(X = ω) − 1
|Ω|

∣∣∣2
)1/2

. In the same way,

we define δ1(X) :=
∑

ω∈Ω

∣∣∣Pr(X = ω) − 1
|Ω|

∣∣∣.

Theorem 1. Let AG be an adaptive chosen message attack against the signature
scheme SG, during which at most m signature queries are performed. Let A be the
corresponding attack on the signature scheme S. The probabilities of existential
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forgery satisfy

|Pr (A succeeds) − Pr (AG succeeds) | ≤

(1 + |R|δ2(G)2)m/2 − 1
(1 + |R|δ2(G)2)1/2 − 1

√
|R|Pr (A succeeds)δ2(G) .

Note that asymptotically for |R|δ2(G)2 � 1, the bound of theorem 1 yields
the inequality

|Pr (A succeeds) − Pr (AG succeeds) | ≤ m
√

|R|Pr (A succeeds)δ2(G) , (4)

which has to be compared to the inequality of [12],

|Pr (A succeeds) − Pr (AG succeeds) | ≤ mδ1(G) .

In the following, we consider our generator of pairs (k, [k]P ) of section 4,
which we denote by k, and compute its statistical distance δ2(k) to the uniform
distribution. Using the previous theorem with G = k and R = {0, . . . , q − 1},
this will provide a security proof for a signature scheme using our generator.

The following theorem is a direct application of a result exposed in [12]. It
gives a bound on the expectation of δ2(k)2, this expectation being considered on
a uniform choice of k1, . . . , kt.

Theorem 2. If the ki are independent random variables uniformly distributed
in {0, . . . , q−1}, then the average of δ2(k)2 over the choice of k1, . . . , kt satisfies

E[δ2(k)2] ≤ 1
(2n)κ

(
t
κ

) .

In order to use this inequality, we have to link δ2(k) to E[δ2(k)2]; a simple
application of Markov’s inequality yields:

Theorem 3. Let ε > 0. With probability at least 1 − ε (this probability being
related to a uniform choice of k1, . . . , kt), we have

δ2(k) ≤
√

E[δ2(k)2]
ε

.

Theorem 1 shows that the parameter which measures the security of the
signature scheme using our generator is

√|R|δ2(G) =
√
q · δ2(k). In table 1 we

summarize several values of the bound on
√
q · E[δ2(k)2] of theorem 2, which

using theorem 3 provides an upper bound for
√
q · δ2(k). We stress that the

number κ of points to be stored has to be corrected by the amount of data that
are required to convert from normal to polynomial basis. Roughly, one must add
to κ the equivalent amount of n/2 points of the curve, to obtain the total amount
of storage needed.

For example, consider the ECDSA signature scheme using our generator with
a field size n = 163, κ−1 = 15 point additions and t = 100 precomputed points.
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Table 1. log2

√
q · E[δ2(k)2] for various values of κ and t for n = 163

κ/t 25 50 100 150 200

10 31 26 21 18 16
14 15 7 0 -4 -6
16 6 -2 -10 -15 -18
18 -1 -10 -19 -25 -28
20 -9 -19 -29 -35 -39
25 -27 -40 -53 -60 -65

Assume that up to m = 216 messages can be signed by the signer. Using table 1,
we have

√
q · E[δ2(k)2] ≈ 2−10. Using the inequality of theorem 3, we know that,

except with probability 2−10, we have
√
qδ2(k) ≤ 2−10/2−5 = 2−5. Assume that

for a given time bound, the probability of any attack A breaking the ECDSA
signature scheme with a truly random generator after m = 213 signature queries,
is smaller than 2−60 for n = 163. Then the probability of breaking the ECDSA
signature scheme with our generator in the same time bound is smaller than

Pr (AG succeeds) ≤ 213 ·
√
2−60 · 2−5 = 2−19 .

This shows that the ECDSA signature scheme remains secure against chosen
message attacks when using our generator for this set of parameters.

7 Parameters and Performances

We propose two sets of parameters for the field size n = 163. The first one is
κ = 16 and t = 100 (which corresponds to 15 additions of points), the second
is κ = 11 and t = 50 (which corresponds to 10 additions). The first set of
parameters provides a provable security level according to the previous section,
whereas the second set of parameters lies in a grey area where the existing attacks
by lattice reduction do not apply, but security is not proven.

Recall that the scalar multiplication algorithm described in section 3.2 re-
quires 19 elliptic curve additions with 43 points stored. Thus, the two proposed
parameter sets induce a 21% and a 47% speed-up factor, respectively1.

8 Conclusion

We have introduced a new generator of pairs (k, [k]P ) for anomalous binary
curves. This pairs generator can be used for key exchange (ECDH), signature
(ECDSA) and encryption (El-Gamal schemes). We have shown that for an appro-
priate choice of parameters, a probabilistic signature scheme using our generator
1 If we neglect the cost of squaring the Pj ’s, converting from normal to polynomial

basis and computing k.
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remains secure against chosen message attacks. This result can be extended to
key exchange schemes and encryption schemes.

We have provided a first set of parameters which provides a speed-up factor
of 21% over existing techniques, with a proven security level. The second set of
parameters provides a speed-up factor of 47%, but no security proof is available.
However, since security is proven for slightly larger parameters, this provides a
convincing argument to show that the generator has a sound design and should
be secure even for smaller parameters.
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14. P. de Rooij. On the security of the Schnorr scheme using preprocessing. In Don-
ald W. Davies, editor, Advances in Cryptology - EuroCrypt ’91, pages 71–80, Berlin,
1991. Springer-Verlag. Lecture Notes in Computer Science Volume 547.

15. P. de Rooij. On Schnorr’s preprocessing for digital signature schemes. In Tor
Helleseth, editor, Advances in Cryptology - EuroCrypt ’93, pages 435–439, Berlin,
1993. Springer-Verlag. Lecture Notes in Computer Science Volume 765.

16. P. de Rooij. Efficient exponentiation using precomputation and vector addition
chains. In Alfredo De Santis, editor, Advances in Cryptology - EuroCrypt ’94,
pages 389–399, Berlin, 1995. Springer-Verlag. Lecture Notes in Computer Science
Volume 950.

17. C. P. Schnorr. Efficient identification and signatures for smart cards. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology - Euro-
Crypt’89, pages 688–689, Berlin, 1989. Springer-Verlag. Lecture Notes in Computer
Science Volume 434.

18. C. P. Schnorr. Efficient identification and signatures for smart cards. Journal of
Cryptology, 4:161–174, 1991.

19. J.A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves. In
Burt Kaliski, editor, Advances in Cryptology - Crypto ’97, pages 357–371, Berlin,
1997. Springer-Verlag. Lecture Notes in Computer Science Volume 1294.

A Proof of Theorem 1

Theorem 3. Let S be a probabilistic signature scheme. Let R be the set from
which the signature generation algorithm chooses a random element when gener-
ating a signature. Let G be a random variable in R, and SG the scheme derived
from S which uses G as random source instead of a random oracle for the sig-
nature generation. Let AG be an adaptative attack with m chosen messages on
SG. If A is the corresponding attack on S, then the probabilities of existential
forgery satisfy

|Pr (A succeeds) − Pr (AG succeeds) | ≤

(1 + |R|δ2(G)2)m/2 − 1
(1 + |R|δ2(G)2)1/2 − 1

√
|R|Pr (A succeeds)δ2(G) .

Proof. An adaptative attack with m chosen messages makes m queries to a
signature oracle. At each call, this oracle picks a random r in R, and uses this
r to produce a signature. If the signature scheme is S, r is chosen uniformly in
R, and is thus equal to the value of a random variable U uniformly distributed
in R. If the signature scheme is SG, r is the value of the random variable G.
Consequently, an attack with m chosen messages depends on a random variable
defined over the probability space Rm. This variable is either U = (U1, . . . , Um)
in the case of an attack against S, or G = (G1, . . . , Gm) in the case of an
attack against SG, where the Ui are pairwise independent and follow the same
distribution as U , and the Gi are pairwise independent and follow the same
distribution as G.
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The following proof is a refinement of the result that can be found in [12]
concerning accelerated signatures schemes. First note that as A and AG are
the same attacks (that is, are the same Turing machines making calls to the
same signature oracle except that they use different random sources), for all
r = (r1, . . . , rm) ∈ Rm,

Pr(A succeeds|U = r) = Pr(AG succeeds|G = r) .

Thus, using Bayes formula, we get

|Pr (A succeeds) − Pr (AG succeeds) | ≤
∑

r=(r1,...,rm)∈Rm

|Pr(G = r) − Pr(U = r)|Pr (A succeeds|U = r) .
(5)

Using the triangular inequality, the independence of the Ui and of the Gi, and
the equidistribution property, we get also that

|Pr(U = r) − Pr(G = r)| ≤

m∑
k=1


 ∏

1≤i<k

Pr(G = ri)


 |Pr(U = rk) − Pr(G = rk)|


 ∏

m≥i>k

Pr(U = ri)


 ,

(6)
with the convention that the product of zero terms is equal to 1.

Consequently, if we denote, for k = 1, . . . ,m, by ak(r) the quantity
 ∏

1≤i<k

Pr(G = ri)


 |Pr(U = rk) − Pr(G = rk)|


 ∏

m≥i>k

Pr(U = ri)


 ,

equation (5) can be rewritten as

|Pr (A succeeds) − Pr (AG succeeds) | ≤

m∑
k=1

∑
r∈Rm

ak(r) Pr(A succeeds|U = r) .

(7)

Using Cauchy’s inequality,∑
r∈Rm

ak(r) Pr(A succeeds|U = r) =

∑
r∈Rm

(
|R|m/2ak(r)

) (
|R|−m/2 Pr(A succeeds|U = r)

)
≤

( ∑
r∈Rm

|R|mak(r)2
)1/2 ( ∑

r∈Rm

|R|−mPr(A succeeds|U = r)2
)1/2

.

(8)
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And as Pr(A succeeds|U = r) ≤ 1,
∑

r∈Rm

|R|−mPr(A succeeds|U = r)2 ≤

∑
r∈Rm

|R|−m Pr(A succeeds|U = r) = Pr (A succeeds) ,

(9)

because U is uniformly distributed over R. Returning to the definition of ak(r),
and using once again the uniformity of U , one sees that

|R|mak(r)2 ≤ |R|

 ∏

1≤i<k

|R|Pr(G = ri)2


 |Pr(U = rk) − Pr(G = rk)|2 .

(10)
Now, one needs to note that

∑
ri∈R

|R|Pr(G = ri)2 =

∑
ri∈R

|R|
((

Pr(G = ri) − 1
|R|

)2

− 1/|R|2 + (2/|R|) Pr(G = ri)

)
=

|R|δ2(G)2 + 1 .

Thus, the inequality (10) becomes,
∑

r∈Rm

|R|mak(r)2 ≤

|R| (
1 + |R|δ2(G)2

)k−1 ∑
rk∈R

|Pr(U = rk) − Pr(G = rk)|2 =

|R| (
1 + |R|δ2(G)2

)k−1
δ2(G)2 .

Returning to inequality (7), and using (8) and (9), we finally get:

|Pr (A succeeds) − Pr (AG succeeds) | ≤
m∑

k=1

(
|R| (

1 + |R|δ2(G)2
)k−1

δ2(G)2
)1/2

(Pr (A succeeds))1/2 =

(|R|Pr (A succeeds))1/2 (1 + |R|δ2(G)2)m/2 − 1
(1 + |R|δ2(G)2)1/2 − 1

δ2(G) .

��
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Abstract. This paper compares different approaches for computing
power products

∏
1≤i≤k gei

i in commutative groups. We look at the con-
ventional simultaneous exponentiation approach and present an alterna-
tive strategy, interleaving exponentiation. Our comparison shows that
in general groups, sometimes the conventional method and sometimes
interleaving exponentiation is more efficient. In groups where inverting
elements is easy (e.g. elliptic curves), interleaving exponentiation with
signed exponent recoding usually wins over the conventional method.

1 Introduction

A common task in implementations of many public-key cryptosystems is multi-
exponentiation in some commutative group G, i.e. evaluating a product

∏
1≤i≤k

gei
i

where k ≥ 2 is a small integer, each gi is an element of G, and each ei is an
integer (typically a few hundred up to a few thousand bits long). We require that
the ei be non-negative (otherwise, invert gi). Example groups include (Z/nZ)∗

for some integer n, e.g. for verification of ElGamal [11] or DSA [17] signatures;
groups of rational points on elliptic curves over finite fields, e.g. for verification of
ECDSA [1] signatures; and class groups of imaginary-quadratic orders, e.g. for
verification of RDSA [2][7] signatures. We have k = 2 for DSA and ECDSA
verification and k = 3 for ElGamal and RDSA verification. Larger values of k
appear in protocols of Brands [4]. In the present paper, we allow k = 1 as well for
algorithms; efficiency considerations may ignore this case. It is well known that
in general it is unnecessarily inefficient to compute the powers gei

i separately
and then multiply them. Instead, specific algorithms for multi-exponentiation
are usually applied.

We assume that the ei consist of independent random bits up to a respective
maximum bit-length bi; i.e., ei is a uniformly distributed random integer in the
interval [0, 2bi −1]. (In practice the actual distribution may differ, but for typical
cases this simplified assumption is reasonably close.) In this setting, we consider
general algorithms for arbitrary exponents; we do not examine algorithms based
on tailor-made addition chains in Z

k for given e1, . . ., ek (cf. [3]). (Note that even
if an exponent is fixed in a cryptographic protocol, it is sometimes desirable to

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 165–180, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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perform computations using varying exponents in order to thwart side-channel
attacks that try to use timings [12] or power consumption measurements [13]
or other extra data to gain knowledge on secret exponents. To avoid constant
exponents, ge can be rewritten as gn·ord(g)+e and

∏
gei

i can be rewritten as
(
∏

gi)n
∏

gei−n
i for arbitrary integers n.)

Like window-based algorithms for single exponentiations, the algorithms that
we analyse work in two stages: First, in the precomputation stage, an auxiliary
table of group elements is computed from the elements gi; then, in the evaluation
stage, the final result is computed using these auxiliary values.

The usual approach for multi-exponentiation combines all input group ele-
ments gi with each other in the precomputation stage ([11], [20], [21]); then the
evaluation stage looks at all exponents simultaneously. In the present paper, we
discuss an alternative approach where the gi are treated separately in the pre-
computation stage. In this approach, the evaluation stage uses an interleaving
of the generators and exponents for the various i rather than handling multiple
i simultaneously.

We collectively refer to the multi-exponentiation methods described in [11],
[20] and [21] as “simultaneous exponentiation”. Section 2 describes these meth-
ods. Section 3 presents two variants of our alternative approach, which we dub
“interleaving exponentiation”: a basic method and an alternative method that
can be used in groups where inverting elements is easy. In section 4, we compare
the efficiency of simultaneous exponentiation methods and interleaving exponen-
tiation methods. Section 5 discusses variants that can be advantageous when all
bases gi are fixed.

In specific groups, additional useful efficiently computable endomorphisms
are available besides squaring and possibly inversion (see e.g. [19]); this may
lead to better multi-exponentiation algorithms for these groups. Such special
groups are out of the scope of the present paper.

1.1 Notation

We write e[j] for bit j of a non-negative integer e. For negative j, we define that
e[j] = 0. We write e[j . . . j′] for the integer consisting of the concatenation of
bits j down to j′ of e; e.g., if e = 101112 = 23, then e[3 . . . 1] = 0112 = 3 and
e[1 . . . −2] = 11002 = 12.

2 Simultaneous Exponentiation Methods

We look at two multi-exponentiation methods using simultaneous exponentiation
(as opposed to interleaving exponentiation, which is introduced in section 3):
Straus’s 2w-ary method (section 2.1) and the sliding window method of Yen,
Laih, and Lenstra (section 2.2). (The method known as “Shamir’s trick” appears
as a special case of both of these.)

As noted in the introduction, all algorithms that we consider are related and
work in two stages: First, the precomputation stage prepares an auxiliary table
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of group elements; then, the evaluation stage computes the final result using this
table. For comparing different methods, we examine the two stages separately.

When examining simultaneous exponentiation algorithms, we assume that bi

is the same for all i. Let at least one ei be non-zero, and let b be the bit-length
of the longest of the ei. Parameter w is always a positive integer, the “window
size”; larger window sizes make the precomputation stage less efficient, but speed
up the evaluation stage. It is not possible to give a general rule for selecting an
optimal w (cf. section 4).

Relevant features of the precomputation stage are the number of group op-
erations required for computing the auxiliary table, and the number of table
entries. For group operations, we differentiate between squarings and general
multiplications, since the former often can be computed more efficiently. The
precomputed tables will always contain the values g1, . . ., gk, all of which are
trivially available and hence can be neglected. It will be visible that computing
each additional table entry requires one multiplication or, for some of the table
entries in the simultaneous 2w-ary method, one squaring. In addition to this, k
squarings are needed by the simultaneous sliding window method if w > 1.

The evaluation stage requires both squarings and multiplications. For each
multi-exponentiation method, we look at the number of squarings and the ex-
pected number of general multiplications for given k, b, and w. w is assumed to
be small in comparison to b (otherwise the precomputation stage would become
unreasonably expensive).

It should be noted that a slight optimisation for the precomputation stage is
possible in all methods by first looking which table entries are actually needed
(either during the evaluation stage, or because other precomputed table entries
that are needed in the evaluation stage depend on them) and limiting precom-
putation to these. As this optimisation will usually only have a small effect in
practice, we neglect it in our comparisons.

For the number of squarings in the evaluation stage, we assume that the
following optimisation is used: As initially variable A is 1G (the neutral element
of G) in all algorithms, squarings can easily be avoided until a different value
has been assigned to A.

Formulas for the expected number of multiplications during the evaluation
stage given in the following are actually asymptotics for large b/w rather than
precise values (we do not take into account the special probability distributions
encountered at both ends of the exponents). As in practice w will be much
smaller than b, the error is negligible for our purposes.

Just as squarings can be eliminated in the evaluation stage while A is 1G, the
first multiplication of A by a table entry can be replaced by an assignment. This
minor optimisation is not used in our figures below; note that it applies similarly
to all algorithms discussed in this paper (and does not affect asymptotics), so
comparisons between different methods remain just as valid.
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2.1 Simultaneous 2w-Ary Method

The simultaneous 2w-ary exponentiation method [20] (see also [15]) looks at w
bits of each of the exponents for each evaluation stage group multiplication,
i.e. kw bits in total. The special case where w = 1 is also known as “Shamir’s
trick” since it was described in [11] with a reference to Shamir.

Precomputation Stage. Precompute
∏

1≤i≤k gEi
i for all non-zero k-tuples

(E1, . . ., Ek) ∈ {0, . . ., 2w − 1}k.
Number of non-trivial table entries: 2kw −1− k. Of these, 2k(w−1) −1 can be

computed by squaring other table entries (all the Ei are even). The remaining
2kw − 2k(w−1) − k entries require one general multiplication each.

No additional squarings are required.

Evaluation Stage.

A ← 1G

for j = �(b − 1)/w�w down to 0 step w do
for n = 1 to w do

A ← A2

if
(
e1[j + w − 1 . . . j], . . ., ek[j + w − 1 . . . j]

) 	= (0, . . ., 0) then
A ← A · ∏

i g
ei[j+w−1 ... j]
i {multiply A by table entry}

return A

Number of squarings:
⌊

b − 1
w

⌋
w.

Expected number of multiplications: b · 1 − 1
2kw

w .

2.2 Simultaneous Sliding Window Method

The simultaneous sliding window exponentiation method of Yen, Laih, and
A. Lenstra [21] is an improvement of the 2w-ary method described in section 2.1.
Due to the use of a sliding window, table entries are required only for those tu-
ples (E1, . . . , Ek) where at least one of the Ei is odd. (Note that while values g2

i

no longer appear in the precomputed table, the precomputation stage now needs
them as intermediate values unless w = 1.) Also the expected number of multi-
plications required in the evaluation stage is reduced. Like the 2w-ary method,
this method looks at w bits of each of the exponents for each evaluation stage
group multiplication (kw bits in total). For w = 1, this again is “Shamir’s trick”.
For k = 1, this is the usual sliding window method for a single exponentiation
(see e.g. [15]).

Precomputation Stage. Precompute
∏

1≤i≤k gEi
i for all k-tuples (E1, . . ., Ek)

∈ {0, . . ., 2w − 1}k where at least one of the Ei is odd.
Number of non-trivial table entries (multiplications): 2kw − 2k(w−1) − k.
Number of squarings: k if w > 1; none otherwise.
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Evaluation Stage.

A ← 1G

j ← b − 1
while j ≥ 0 do
if ∀i ∈ {1, . . ., k} : ei[j] = 0 then

A ← A2; j ← j − 1
else

jnew ← max(j − w, −1)
J ← jnew + 1
while ∀i ∈ {1, . . ., k} : ei[J ] = 0 do

J ← J + 1
{now j ≥ J > jnew}
for i = 1 to k do

Ei ← ei[j . . . J ]
while j ≥ J do

A ← A2; j ← j − 1
A ← A · ∏

i gEi
i {multiply A by table entry}

while j > jnew do
A ← A2; j ← j − 1

return A

Number of squarings: b − w up to b − 1.
Expected number of multiplications: b · 1

w +
∑

n≥1
1

2kn

= b · 1
w + 1

2k−1
.

3 Interleaving Exponentiation Methods

Here, we look at two interleaving exponentiation algorithms: A basic algorithm
suitable for arbitrary groups (section 3.1) and a special variant using signed
exponent recoding that can be applied if inverting elements is easy (section 3.2).

The comments in the introduction to section 2 apply similarly, with the
exception that we no longer assume all the bi to be identical. Instead of a single
window size w, in this section we have k possibly different window sizes wi

(1 ≤ i ≤ k) used for the respective parts of the multi-exponentiation; each wi is
a small positive integer. Again we assume that initial squarings are eliminated
while A is 1G.

Note that for the algorithms described in this section, the precomputed table
has disjoint parts for different bases gi. If multiple multi-exponentiations have
to be performed and some of the bases gi appear again, then the corresponding
parts of earlier precomputed tables can be reused.

3.1 Basic Interleaving Exponentiation Method

The basic interleaving exponentiation method is a generalization of the sliding
window method for a single exponentiation (see e.g. [15]), to which it corresponds
in case k = 1.
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Precomputation Stage. For i = 1, . . ., k, precompute gE
i for all odd E such

that 1 ≤ E ≤ 2wi − 1.
Number of non-trivial table entries (multiplications):

( ∑
1≤i≤k 2wi−1

) − k.
Number of squarings: #

{
i ∈ {1, . . ., k} | wi > 1

}
.

Evaluation Stage.

A ← 1G

for i = 1 to k do
window handlei ← nil

for j = b − 1 down to 0 do
A ← A2

for i = 1 to k do
if window handlei = nil and ei[j] = 1 then

J ← j − wi + 1
while ei[J ] = 0 do

J ← J + 1
{now j ≥ J > j − wi and J ≥ 0}
window handlei ← J
Ei ← ei[j . . . J ]

if window handlei = j then
A ← A · gEi

i {multiply A by table entry}
window handlei ← nil

return A

Number of squarings: b − maxi wi up to b − 1.
Expected number of multiplications:

∑
1≤i≤k

bi · 1
wi +

∑
n≥1

1
2n

=
∑

1≤i≤k

bi · 1
wi + 1

.

3.2 wNAF-Based Interleaving Exponentiation Method

In some groups, elements can be inverted very efficiently so that division is not
significantly more expensive than multiplication. (Inversion is cheap in case of
elliptic curves or class groups of imaginary quadratic number fields, but not in
(Z/nZ)∗.) This can be exploited for making exponentiation algorithms more effi-
cient by recoding the exponents into a signed representation. We use a technique
introduced for single exponentiations independently in [18] and in [16] and apply
it to the task of multi-exponentiation.

Given an exponent ei and a window size wi, we need a width-(wi + 1) non-
adjacent form (width-(wi +1) NAF or wNAF ) of ei, which is an array Ni[bi], . . .,
Ni[0] of integers such that

– each Ni[j] is either 0 or odd with an absolute value less than 2wi ;
– ei =

∑
0≤j≤bi

Ni[j] · 2j ;
– at most one of any wi + 1 consecutive components of the array is non-zero.
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A width-(wi + 1) NAFs always exists and is uniquely determined; it can be
computed by the following algorithm [19]:

c ← ei

j ← 0
while c > 0 do
if c[0] = 1 then

u ← c[wi . . . 0]
if u[wi] = 1 then

u ← u − 2wi+1

c ← c − u
else

u ← 0
Ni[j] ← u; j ← j + 1
c ← c/2

while j ≤ bi do
Ni[j] ← 0; j ← j + 1

return Ni[bi], . . ., Ni[0]

The maximum possible index for a non-zero component of the wNAF of a
B-bit integer is B; i.e., the length of the wNAF without leading zeros may exceed
the length of the binary expansion by one. The average density (proportion of
non-zero components) in width-(wi + 1) NAFs is 1/(wi + 2) for B → ∞ [19].

Precomputation Stage. For i = 1, . . ., k, precompute gE
i for all odd E such

that 1 ≤ E ≤ 2wi − 1. (As inversion in G is assumed to be easy, this makes g−E
i

available as well.)
Number of non-trivial table entries (multiplications):

( ∑
1≤i≤k 2wi−1

) − k.
Number of squarings: #

{
i ∈ {1, . . ., k} | wi > 1

}
.

Evaluation Stage.

A ← 1G

for i = 1 to k do
Ni[b], . . ., Ni[bi + 1] ← 0, . . ., 0
Ni[bi], . . ., Ni[0] ← width-(wi + 1) NAF of ei

for j = b down to 0 do
A ← A2

for i = 1 to k do
if Ni[j] 	= 0 then

A ← A · g
Ni[j]
i {multiply A by [inverse of] table entry}

return A

Number of squarings: b − maxi wi up to b.
Expected number of multiplications:

∑
1≤i≤k bi · 1

wi + 2.
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We can compare wNAFs with the sliding window technique of the basic inter-
leaving exponentiation algorithm. Windows can be represented by components
of an array as in the wNAF approach: In the algorithm description of section 3.1,
Ei provides component values; array indexes are given by window handlei. With
the array filled in accordingly, we can use the same evaluation stage algorithm
as in the wNAF-based method. The average density is 1/(wi + 1) (each window
covers wi bits, and the number of additional zero bits between neighbouring win-
dows is 1 on average). With wNAFs, the average density goes down to 1/(wi +2)
for exactly the same precomputation. Thus using wNAFs effectively increases
the window size by one.

4 Comparison of Simultaneous
and Interleaving Exponentiation Methods

There is no general rule for selecting window sizes for the multi-exponentiation
algorithms that we have looked at. Various factors have to be considered: First
of all, absolute memory constraints can impose limits on possible window sizes.
Second, even if a particular window size appears to minimise the total amount
of computation for a multi-exponentiation, sometimes slightly smaller windows
may improve the actual performance; this is because larger window sizes mean
larger precomputed tables, i.e. possibly additional memory allocation overhead
and less effective memory caching. Last but not least, implementations can use
different representations for group elements during different stages of the multi-
exponentiation: For instance, extra effort may be spent during the precompu-
tation stage in order to obtain representations of precomputed elements that
speed up multiplication with them in the evaluation stage (e.g. affine rather
than projective representations of points on elliptic curves [8]).

These effects, however, do not mean that we cannot compare algorithms
without looking at concrete cases: We can compare different aspects separately
(table size, precomputation stage efficiency, evaluation stage efficiency) and look
if an algorithm wins on all counts.

For the following comparisons, we assume that all maximum exponent lengths
bi are the same (an assumption that we made in section 2 on simultaneous
exponentiation methods, but not in section 3 on interleaving exponentiation
methods). As before, let b be the length of the largest of the exponents ei.

In section 4.1, we compare the simultaneous 2w-ary method with the basic
interleaving method and show that the latter is usually more efficient for k = 2 if
squarings are about as costly as multiplications. In section 4.2, we compare the
simultaneous sliding window method with the wNAF-based interleaving method
and show that the latter is more efficient for k = 2 and k = 3, assuming that
computing and storing the wNAFs is not too costly. Section 4.3 briefly discusses
the alternative multi-exponentiation method from [10] and shows that is obviated
by our interleaving exponentiation methods. Finally, in section 4.4, we look at
some concrete figures for the number of multiplications required by different
methods for example values of k and b.
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4.1 Comparison between the Simultaneous 2w-Ary Method
and the Basic Interleaving Method

While the simultaneous sliding window method is more efficient than the simul-
taneous 2w-ary method, this section focuses on the latter. The reasons is that the
2w-ary method is often used in practice (e.g. [6]), possibly because it is perceived
to be simpler to implement. The basic interleaving exponentiation method is not
too complicated (in particular, indexes into the precomputed table are easy han-
dle), and as we will see, it is often more efficient than the simultaneous 2w-ary
exponentiation method. So when the intention is to avoid the simultaneous slid-
ing window method, the basic interleaving method appears preferable for many
applications.

Assume that, given k and b, a certain w turns out to provide optimal efficiency
for the simultaneous 2w-ary exponentiation method (section 2.1) when performed
in a specific environment. Then the precomputation table requires 2kw − 1 − k
non-trivial entries, 2k(w−1) −1 of which can be computed with one squaring each
(while each of the remaining entries requires one general multiplication).

For the basic interleaving exponentiation method (section 3.1), we can use
uniform window sizes w1 = . . . = wk = kw. Then the precomputation table has
k2kw−1 −k non-trivial entries, each of which requires one general multiplication;
also k additional squarings are needed (unless k = w = 1).

Thus in case k = 2, the table grows from 22w −3 to 22w −2 non-trivial entries,
and instead of 22w − 3 group operations of which 22(w−1) − 1 are squarings,
we need 22w group operations of which only 2 are squarings. If squarings are
about as expensive as general multiplications, then for k = 2 the overall cost of
precomputation is comparable for these two multi-exponentiation methods.

The number of squarings in the evaluation stage is always nearly b for both
methods. The expected number of general multiplications in the evaluation stage
is smaller for the interleaving method (except if k = w = 1, in which case both
algorithms do exactly the same): Dividing the value for the basic interleaving
exponentiation method by the value for the simultaneous 2w-ary exponentiation
method yields

k

kw + 1
· w

1 − 1
2kw

=
kw

kw + 1
· 2kw

2kw − 1
,

and this is less than 1 for kw > 1 (the minimum is 64/75 at kw = 4).
Note that using w1 = . . . = wk = kw is not necessarily an optimal choice

of window sizes for the basic interleaving exponentiation method; using smaller
or larger windows might lead to better performance. (Indeed, if we look just at
the number of operations and ignore memory usage, then there is no reason why
window sizes should depend on k.) While the above proof only covers the case
k = 2, there are actually many other cases where the basic interleaving method
is more efficient than the simultaneous 2w-ary method, even if general multipli-
cations are much more expensive than squaring; see table 1 in section 4.4. Also
note that the precomputation effort grows exponentially in k in simultaneous
methods, but not in interleaving methods.
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4.2 Comparison between the Simultaneous Sliding Window Method
and the wNAF-Based Interleaving Method

Similarly to section 4.1, assume that a certain w provides optimal efficiency for
the simultaneous sliding window exponentiation method (section 2.2) for given
k and b. In the following analysis, we require k > 1. The precomputation table
has 2kw − 2k(w−1) − k non-trivial entries, each of which requires one general
multiplication to compute. In addition to this, k squarings are required for pre-
computation unless w = 1.

For the wNAF-based interleaving exponentiation method (section 3.2), we
can use window sizes w1 = . . . = wk = kw − 1. This leads to a precomputation
table with k2kw−2 − k non-trivial entries, requiring one general multiplication
each. In addition to this, we need k squarings unless kw = 2.

The difference between the number of non-trivial tables entries (and general
multiplications) for these two methods is

(2kw − 2k(w−1) − k) − (k2kw−2 − k) = 2kw
(
1 − 2−k − k

4

)
.

This is positive for k ≤ 3 and negative for k ≥ 4. Thus, with the wi chosen like
this, the precomputation stage of the wNAF-based interleaving exponentiation
method is more efficient if k = 2 or k = 3 (except for the case k = 3, w = 1,
where the wNAF-based interleaving exponentiation method saves one general
multiplication, but requires three additional squarings).

The evaluation stage requires close to b squarings for both methods. The
expected number of general multiplications is smaller for the wNAF-based in-
terleaving method: b/(w + 1/k) instead of b/(w + 1

2k−1 ).
The wNAF-based interleaving method with this choice of window sizes will

often provide better performance than the simultaneous sliding window method
for k ≥ 4 as well: If additional memory allocation is not a problem, then the
efficiency gain of the evaluation stage usually compensates for the growth of the
precomputed table.

Similar to the situation in the preceding section, w1 = . . . = wk = kw − 1 is
not necessarily an optimal choice, and smaller or larger window sizes might be
better (see section 4.4).

4.3 Comparison between the Dimitrov-Jullien-Miller
Multi-Exponentiation Method and Interleaving Exponentiation

A multi-exponentiation method for the case k = 2 requiring two precomputed
values (in addition to g1 and g2) if inverting is easy, or six precomputed values
if inversions have to be done during the precomputation stage, was described
by Dimitrov, Jullien, and Miller in [10]. This algorithm is related to the simul-
taneous sliding window exponentiation method of Yen, Laih, and Lenstra [21]
(section 2.2 in the present paper), but uses signed recoding of exponents in order
to reduce the size of the precomputed table. While the Yen-Laih-Lenstra method
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with a window size of 1 requires an expected number of b · 0.75 general multipli-
cations during the evaluation stage, the new method requires only about b ·0.534
multiplications according to [10] (the number of squarings stays about the same).
Yen-Laih-Lenstra with a window size of 2 needs only b · 3/7 ≈ b · 0.429 multi-
plications (table 3 of [10] erroneously assumes a value of b · 0.625), but has the
disadvantage of requiring more precomputed elements, which may be a problem
in some constrained environments.

We do not examine the algorithm of [10] in detail; note that it is outperformed
by the wNAF-based interleaving method of section 3.2 with w1 = w2 = 2 if in-
version is cheap (two precomputed values, b·0.5 multiplications) and by the basic
interleaving method of section 3.1 with w1 = w2 = 3 otherwise (six precomputed
values, b · 0.5 multiplications).

4.4 Examples

As noted before, endless variations are possible for defining optimisation goals.
In this section, we ignore memory usage and squarings and the issue of differ-
ent element representations; we make comparisons based just on the expected
number of general multiplications required by the various methods, precompu-
tation and evaluation stage combined. (Window sizes are chosen such that this
cost measure is minimised.) Note that the number of squarings is approximately
the same for the simultaneous sliding window method, the basic interleaving
method, and the wNAF-based interleaving method: No more than k squarings
are needed in the precomputation stage, and close to b squarings are needed
in the evaluation stage. The simultaneous 2w-ary method requires 2k(w−1) − 1
squarings for precomputation and again close to b evaluation stage squarings; so
ignoring the cost of squaring tends to favour this method.

Table 1 compares the number of general multiplications needed by these four
methods for various k and b values. The entries for the most efficient methods in
a particular configuration are printed in bold: For groups where inversion is easy
so that the wNAF-based method can be used, it wins in all of these examples; for
general groups, sometimes the simultaneous sliding window method and some-
times the basic interleaving method requires the least number of multiplications.
(Remember that for w = 1 there is no difference between the simultaneous 2w-
ary method and the simultaneous sliding window method; for w > 1, the former
is always less efficient.)

5 Multi-exponentiation with Fixed Bases

When many multi-exponentiations use the same bases g1, . . ., gk, it is suffi-
cient to execute the precomputation stage just once, and we can try to make
the evaluation stage more efficient by investing more work in precomputation.
We cannot easily reduce the number of general multiplications in the evaluation
stage, but we can reduce the number of squarings by using exponent splitting
(cf. [5] and [9]) or the Lim-Lee “comb” method [14]. (Which approach is the
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Table 1. Expected number of general multiplications for a multi-exponentiation∏
1≤i≤k gei

i with exponents up to b bits (c1: simultaneous 2w-ary method, c2: simultane-
ous sliding window method, c3: basic interleaving method, c4: wNAF-based interleaving
method)

k b = 160 b = 256 b = 512 b = 1024 b = 2048

1

c1 44.5 (w=4) 64.6 (w=5) 114.2 (w=5) 199.0 (w=6) 353.3 (w=7)

c2 39.0 (w=4) 57.7 (w=5) 100.3 (w=5) 177.3 (w=6) 319.0 (w=7)

c3 39.0 (wi=4) 57.7 (wi=5) 100.3 (wi=5) 177.3 (wi=6) 319.0 (wi=7)

c4 33.7 (wi=4) 49.7 (wi=4) 88.1 (wi=5) 159.0 (wi=6) 287.0 (wi=6)

2

c1 85.0 (w=2) 130.0 (w=2) 214.0 (w=3) 382.0 (w=3) 700.0 (w=4)

c2 78.6 (w=2) 119.7 (w=2) 199.6 (w=3) 353.2 (w=3) 660.4 (w=3)

c3 78.0 (wi=4) 115.3 (wi=5) 200.7 (wi=5) 354.6 (wi=6) 638.0 (wi=7)

c4 67.3 (wi=4) 99.3 (wi=4) 176.3 (wi=5) 318.0 (wi=6) 574.0 (wi=6)

3

c1 131.8 (w=2) 179.0 (w=2) 305.0 (w=2) 557.0 (w=2) 1061.0 (w=2)

c2 127.7 (w=2) 172.5 (w=2) 291.9 (w=2) 530.9 (w=2) 1008.7 (w=2)

c3 117.0 (wi=4) 173.0 (wi=5) 301.0 (wi=5) 531.9 (wi=6) 957.0 (wi=7)

c4 101.0 (wi=4) 149.0 (wi=4) 264.4 (wi=5) 477.0 (wi=6) 861.0 (wi=6)

4

c1 161.0 (w=1) 251.0 (w=1) 491.0 (w=1) 746.0 (w=2) 1256.0 (w=2)

c2 161.0 (w=1) 251.0 (w=1) 483.7 (w=2) 731.5 (w=2) 1227.0 (w=2)

c3 156.0 (wi=4) 230.7 (wi=5) 401.3 (wi=5) 709.1 (wi=6) 1276.0 (wi=7)

c4 134.7 (wi=4) 198.7 (wi=4) 352.6 (wi=5) 636.0 (wi=6) 1148.0 (wi=6)

5

c1 181.0 (w=1) 274.0 (w=1) 522.0 (w=1) 1018.0 (w=1) 2010.0 (w=1)

c2 181.0 (w=1) 274.0 (w=1) 522.0 (w=1) 1018.0 (w=1) 1994.7 (w=2)

c3 195.0 (wi=4) 288.3 (wi=5) 501.7 (wi=5) 886.4 (wi=6) 1595.0 (wi=7)

c4 168.3 (wi=4) 248.3 (wi=4) 440.7 (wi=5) 795.0 (wi=6) 1435.0 (wi=6)

6

c1 214.5 (w=1) 309.0 (w=1) 561.0 (w=1) 1065.0 (w=1) 2073.0 (w=1)

c2 214.5 (w=1) 309.0 (w=1) 561.0 (w=1) 1065.0 (w=1) 2073.0 (w=1)

c3 234.0 (wi=4) 346.0 (wi=5) 602.0 (wi=5) 1063.7 (wi=6) 1914.0 (wi=7)

c4 202.0 (wi=4) 298.0 (wi=4) 528.9 (wi=5) 954.0 (wi=6) 1722.0 (wi=6)

7

c1 278.8 (w=1) 374.0 (w=1) 628.0 (w=1) 1136.0 (w=1) 2152.0 (w=1)

c2 278.8 (w=1) 374.0 (w=1) 628.0 (w=1) 1136.0 (w=1) 2152.0 (w=1)

c3 273.0 (wi=4) 403.7 (wi=5) 702.3 (wi=5) 1241.0 (wi=6) 2233.0 (wi=7)

c4 235.7 (wi=4) 347.7 (wi=4) 617.0 (wi=5) 1113.0 (wi=6) 2009.0 (wi=6)

8

c1 406.4 (w=1) 502.0 (w=1) 757.0 (w=1) 1267.0 (w=1) 2287.0 (w=1)

c2 406.4 (w=1) 502.0 (w=1) 757.0 (w=1) 1267.0 (w=1) 2287.0 (w=1)

c3 312.0 (wi=4) 461.3 (wi=5) 802.7 (wi=5) 1418.3 (wi=6) 2552.0 (wi=7)

c4 269.3 (wi=4) 397.3 (wi=4) 705.1 (wi=5) 1272.0 (wi=6) 2296.0 (wi=6)

9

c1 661.7 (w=1) 757.5 (w=1) 1013.0 (w=1) 1524.0 (w=1) 2546.0 (w=1)

c2 661.7 (w=1) 757.5 (w=1) 1013.0 (w=1) 1524.0 (w=1) 2546.0 (w=1)

c3 351.0 (wi=4) 519.0 (wi=5) 903.0 (wi=5) 1595.6 (wi=6) 2871.0 (wi=7)

c4 303.0 (wi=4) 447.0 (wi=4) 793.3 (wi=5) 1431.0 (wi=6) 2583.0 (wi=6)

10

c1 1172.8 (w=1) 1268.8 (w=1) 1524.5 (w=1) 2036.0 (w=1) 3059.0 (w=1)

c2 1172.8 (w=1) 1268.8 (w=1) 1524.5 (w=1) 2036.0 (w=1) 3059.0 (w=1)

c3 390.0 (wi=4) 576.7 (wi=5) 1003.3 (wi=5) 1772.9 (wi=6) 3190.0 (wi=7)

c4 336.7 (wi=4) 496.7 (wi=4) 881.4 (wi=5) 1590.0 (wi=6) 2870.0 (wi=6)
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most efficient depends on details of the situation such as exponent lengths, the
permissible size of the precomputed table, the relative cost of squarings versus
general multiplications, and whether the wNAF-based interleaving exponentia-
tion method is applicable.)

Let m be an arbitrary positive integer. Assuming that fixed exponent length
bounds bi are known, we show how to evaluate power products

∏
1≤i≤k gei

i in at
most m − 1 evaluation stage squarings, using a precomputed table independent
of the specific exponents ei.

5.1 Exponent Splitting

Exponent splitting constructs a new power product representation by rewriting
each factor as follows:

gei
i =

∏
0≤j<�bi/m	

(g2jm

i )ei[jm+m−1 ... jm]

This leads to power products consisting of
∑

1≤i≤k�bi/m� factors. Any multi-
exponentiation method can be used for evaluating these power products.

It is evident that for the multi-exponentiation methods described in this
paper, exponent splitting does not help if k is already large and there are many
large exponents. (In this case, instead of using precomputation table entries for
additional bases, window sizes should be increased; then the evaluation stage will
require more squarings, but fewer general multiplications than with exponent
splitting.)

5.2 Lim-Lee Precomputation

To apply the Lim-Lee “comb” method, for every i we choose wi such that bi ≤
wim and precompute

Gi(S) := g
∑

j∈S 2j

i

for all subsets S ⊆ {0, m, 2m, . . ., (wi − 1)m}. Note that then every exponent up
to bi bits of length can be written as

ei =
∑

0≤j<m

Ni[j] · 2j

where each Ni[j] is an integer of the form
∑

j∈S 2j with S as above. Thus we
can use interleaving exponentiation with an evaluation stage algorithm similar
to section 3.2, but with a reduced number of iterations. The Ni[j] values for each
iteration need not be stored in advance, they can be extracted from the ei by
tapping their bits in comb-shaped patterns; hence the nickname of this method.

A refinement of this (also from [14]) is based on the observation that the
precomputed table can be reduced in size in exchange for additional evalua-
tion stage multiplications: Partition {0, m, 2m, . . ., (wi − 1)m} into vi subsets
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Ti,1, . . ., Ti,vi ; now each of the above sets S can be written as
⋃

1≤n≤vi
Sn with

Sn = S ∩ Ti,n, and then we have Gi(S) =
∏

1≤n≤vi
Gi(Sn). Thus it suffices

to precompute Gi(Sn) for all non-zero subsets Sn ⊆ Ti,n for all n; from this
precomputed data, Gi(S) can be computed in at most vi − 1 multiplications.

While Lim-Lee precomputation reduces the number of squarings, the ex-
pected number of general multiplications is larger than for the basic interleaving
exponentiation method with a similarly sized precomputed table. (In the basic
interleaving method, 2wi−1 − 1 non-trivial precomputed values suffice to make
sure that each evaluation stage multiplication covers wi exponent bits, and we
can skip many additional zero bits thanks to the sliding window. With Lim-Lee
precomputation, we need at least 2W − 2 non-trivial precomputed values to be
able to cover W exponent bits with each evaluation stage multiplication, and
we lose the advantage of a sliding window.) Thus if k is large, using Lim-Lee
precomputation is a disadvantage.

Note that it is possible to use Lim-Lee precomputation for some of the bases
and standard precomputation (as in section 3) for others. This does not help
for multi-exponentiation in these mixed cases, but precomputed data can then
profitably be reused for pure Lim-Lee cases.

Without going into details, we remark that the Lim-Lee method can be con-
sidered an application of exponent splitting using specific multi-exponentiation
algorithms suited for small exponents. For example, if k = 1, the simple Lim-Lee
method uses “Shamir’s trick”, i.e. simultaneous exponentiation with a window
size of 1. Further algorithmic variations are possible.

6 Conclusion

In many cases, the basic interleaving exponentiation method compares favourably
to the simultaneous 2w-ary method, in particular if k = 2 and squarings are
about as costly as general multiplications. In groups where inverting elements
is easy, the wNAF-based interleaving exponentiation method is available; its
efficiency is superior even to the sliding window variant of simultaneous expo-
nentiation both in the precomputation stage and the evaluation stage if k = 2
or k = 3, and it is usually more efficient for larger k as well. In all cases, in-
terleaving exponentiation provides the following advantages over simultaneous
exponentiation:

– Improved efficiency if the bit-lengths of the exponents ei differ significantly.
– More flexibility in choice of the size of the auxiliary table (and, hence, the

time spent on precomputation), particularly if k is large.
– Better handling of situations where one or more of the gi are fixed while

others are variable between multiple multi-exponentiation: A corresponding
part of the precomputation has to be done only once. (This is the case in
DSA, ECDSA, and RDSA signature verification if multiple signatures are
verified that are based on the same underlying parameters.)

Thus, depending on circumstances, either the simultaneous sliding window
method or one of the interleaving exponentiation methods may be advantageous.
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It is easy to implement interleaving exponentiation for variable k. As the
the special case k = 1 of the basic and wNAF-based interleaving exponen-
tiation methods yields the usual sliding windows exponentiation method and
wNAF-based exponentiation method, respectively, this makes it unnecessary to
implement these separately.
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Abstract. In this paper we address two important topics in hyperel-
liptic cryptography. The first is how to construct in a verifiably random
manner hyperelliptic curves for use in cryptography in generas two and
three. The second topic is how to perform divisor compression in the
hyperelliptic case. Hence, in both cases we generalise concepts used in
the more familiar elliptic curve case to the hyperelliptic context.

1 Introduction

Elliptic curve cryptography was co-invented in 1985 by V. Miller [13] and N.
Koblitz [11]. Cryptography based on elliptic curves is especially attractive due
to the supposed difficulty of the discrete logarithm problem in the group of
rational points on an elliptic curve. In 1989 Koblitz generalised this concept
to hyperelliptic curves [12]. In hyperelliptic cryptography the hard problem on
which the security is based is the discrete logarithm problem in the divisor class
group of the curve.

Whilst elliptic curve cryptography is starting to become commercially de-
ployed, hyperelliptic cryptography is still at the stage of academic interest. This
is mainly due to the greater complexity of the underlying arithmetic and the
fact that the protocols have been less standardised. One main problem in the
hyperelliptic case, as argued in [16], is that it is currently very hard to generate
hyperelliptic curves for use in cryptography which do not have any added extra
structure. 1 Another problem is that the supporting algorithms which exist in
1 There is a new general point counting algorithm by Kedlaya [10] for hyperelliptic
curves in small odd characteristic. However, it is believed that this algorithm can be
extended to the even characteristic case. At present the authors know of no imple-
mentation of this algorithm and so cannot we comment on its practical efficiency.
Just before submitting the final version of this paper to the conference proceedings,

Pierrick Gaudry informed us that the AGM method presented at the rump session
of EUROCRYPT 2001 can now be used to compute the group order of a Jacobian of
a hyperelliptic curve in genus two over a field of characteristic two. Indeed the AGM
method is practical for cryptographically sized Jacobians. Hence, the AGM method
for genus two should therefore be preferred to ours since it allows a truly random
curve to be used rather than one from a special family.

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 181–189, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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the elliptic curve case have not been fully developed in the hyperelliptic case. In
this paper we generalise two such techniques from the setting of elliptic curve
cryptography to the setting of hyperelliptic curves.

In the first we give a method to produce hyperelliptic curves in genus two
and three which are generated in a verifiably random manner. In the second we
give a method to perform divisor compression.

The first contribution is needed to produce suitable curves in a trusted man-
ner. In elliptic curve cryptography, one way to choose a curve is to generate
curves at random until one satisfies the correct security requirements. However,
someone else then using the system needs to trust that you did not construct a
special curve which has some weakness that only you know about. To overcome
this problem various standards bodies, e.g. [1], have proposed that the curve is
generated in the following manner:

1. Generate in any manner a 160 bit string, S.
2. Using SHA-1 on this string generate some elliptic curve E in a known de-

terministic manner.
3. Compute the group order N using either the Schoof-Elkies-Atkin algorithm

or one of the extensions to Satoh’s algorithm, see [3], [14], [15] and [18].
4. If the curve passes the known security checks then publish the triple

(S, E, N),

otherwise return to the first step.

Under the assumption that SHA-1 is a one-way function the above method
of curve generation prevents the choice of special elliptic curves with secret
weaknesses. An elliptic curve chosen in the above way is said to have been
chosen “verifiably at random” since any third party given the triple (S, E, N)
can check very quickly that not only is the group order N correct but that the
curve could not have been created with a known weakness since it would have
been computationally impossible to reverse engineer the value of S which gave
E using the above algorithm.

We show how the above algorithm can be used to generate verifiably random
hyperelliptic curves in characteristic two for use in cryptography. Our method
does not produce random hyperelliptic curves taken from the totality of all hy-
perelliptic curves but produces hyperelliptic curves which have verifiably been
constructed in a random manner from a certain well defined subset of all hy-
perelliptic curves. In other words it is computationally infeasible for us to have
created a special curve with some hidden weakness. However, we stress that
since our method produces random hyperelliptic curves from a special family it
is possible that the curves constructed by our method have a weakness which
we are not aware of. For further details of how special the families we construct
actually are the reader should consult the paper [6].

Previous attempts at generating cryptographically strong hyperelliptic curves
have been based on analogues from the elliptic case, namely generalisations of
the SEA algorithm or the CM method. In [8] a first attempt at an analogue of the
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SEA algorithm for hyperelliptic curves of genus two is reported on. The authors
manage to compute the order of a random hyperelliptic curve of genus two of
group order roughly 2126. However, this takes them many days of computing
time. In practice one would need to repeat their method a large number of
times before a suitable curve for use in cryptography was determined. Whilst
the method in [8] is to be preferred over ours, it can only be used when (and if)
the algorithms become sufficiently fast. Our method on the other hand, as we
have already stated, is practical using today’s knowledge and technology.

A number of authors have looked at using an analogue of the CM method to
generate hyperelliptic curves for use in cryptography, [17], [19] and [5]. However,
this has a number of draw backs compared to our method above. Firstly, the
existing literature on applying the CM method to hyperelliptic curves only ap-
plies to large odd characteristic and not characteristic two as our method does.
Secondly, the set of curves produced by the CM method in practice, if one could
implement it in characteristic two, would be from a far more restricted set than
the set of curves generated by our method.

Our second contribution is to give a method in all characteristics to perform
divisor compression. In the elliptic curve case it is common practice to use a
technique called point compression to reduce the sizes of the public keys being
transported by fifty percent. This is done by noticing that an elliptic curve point
(x, y) can be represented by x and a bit to decide which value of y to use. This is
particularly important when deploying ECC in an environment where bandwidth
is constrained. We will show that the elliptic curve point compression techniques
can be naturally generalised to the hyperelliptic setting.

The first author would like to thank J. Cannon for his support while this
work was in preparation.

2 Producing Hyperelliptic Curves

Our technique of producing hyperelliptic curves verifiably at random is based
on the method of Weil restriction of scalars as outlined in [9]. In this technique
one takes an elliptic curve E over the field K = Fqn , where q is a power of two
and then one constructs a hyperelliptic curve H over the subfield k = Fq. Since
the groups E(K) and Jack(H) are related by a group homomorphism one can
easily compute, in certain cases, the group order of Jack(H).

To fix notation we are trying to generate a hyperelliptic curve H over the
field Fq, of genus g and of group order N = 2lp, where p is a prime. Before giving
our technique for the generation of hyperelliptic curves we need to summarise
the main security requirements for our curve.

– p > 2160. This is to protect against Pohlig-Hellman, Pollard-rho and Baby-
Step/Giant-Step attacks.

– g < 4. This is to protect against the method of Gaudry [7].
– q = 2r, where r is prime. This is to protect against using Weil descent on
JacFq

(H).
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– The smallest s ≥ 1 such that qs ≡ 1 (mod p) should be greater than 20g.
This is to protect against the Tate-pairing attack [4].

Note, there are no other conditions which give curves with a known weakness
and all the above conditions can be easily checked given the curve and its group
order.

In [9] a method is given for finding a group homomorphism from an elliptic
curve defined over Fqn to a hyperelliptic curve H defined over Fq. The technique
given is completely deterministic, although the resulting model for H is not in
the standard form, an issue which we shall return to below. The method of [9]
uses a set of Artin-Schreier extensions, the number of distinct extensions being
given by an integer m, which satisfies 1 ≤ m ≤ n. For the exact definition of m
see [9], all that we shall require is that m = n and that the genus of the resulting
hyperelliptic curve is either 2m−1 or 2m−1 − 1. In our applications we are able
to control precisely when we obtain genus 2m−1 or genus 2m−1 − 1.

Since we wish to produce hyperelliptic curves with Jacobians of the same
group order as E(K) we need to choose elliptic curves so that

n = 2m−1 or n = 2m−1 − 1.

Since one of our security requirements on g is that it should be less than four,
these conditions are easy to satisfy.

For cryptographic purposes it is advantageous to produce a model for the
hyperelliptic curve of the form

H : Y 2 + H(X)Y = F (X)

where degH(X) ≤ g and degF (X) = 2g + 1. Such a model will be called
“reduced” and we shall now describe a deterministic method to turn the hy-
perelliptic model, produced by the method of [9], into a reduced model. This
is important, and was not addressed in [9]. If we wish to generate hyperelliptic
curves verifiably at random we require a deterministic mapping from the elliptic
curve to a reduced model of a hyperelliptic curve.

Assume that a fixed representation has been chosen for the finite fields of
size qn and q. Using this fixed representations we can define (lexicographical)
orders in the finite fields, hence orders on polynomials, matrices etc. Utilising
normalisation of polynomials, polynomial division, Hermite normal forms and
other such reduction techniques we are then able to always consider the smallest
(or the same) object having a desired property.

Taking the model for H produced by the method in [9] we then move the
smallest rational point to infinity. A reduced hyperelliptic equation is then ob-
tained by computing the minimal polynomial over the rational subfield of a
function of smallest odd pole order at infinity and with no other poles.

Since the algorithm, outlined above, to proceed from an elliptic curve to a
reduced model for a hyperelliptic curve is completely deterministic, all we need
do to produce a verifiably “random” hyperelliptic curve is to find an elliptic
curve verifiably at “random” with the required properties.
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2.1 Genus Two

Take a finite field of the form K = Fq2 where q is 2 raised to a prime exponent.
We construct, using the technique from [1] a verifiably random elliptic curve of
the form

Y 2 + XY = X3 + aX2 + b

where a, b ∈ K, with group order equal to 2p where p is a prime number. Note
that since p is a prime number and q is ‘large’, in the Weil descent we almost
always obtain m = 2 and so the resulting hyperelliptic curve will have genus
two. Then using the technique of Weil descent we can construct a hyperelliptic
curve over the field k = Fq which has group order divisible by p. Since the
Weil restriction of E and Jack(H) have the same dimension, they are therefore
isogenous. But they then have the same number of points over k and so Jack(H)
will have group order exactly 2p.

2.2 Genus Three

For genus three we need to proceed in a slightly different way. First we choose a
finite field of the form K = Fq3 where again q is 2 raised to a prime exponent.
Then we take an random 160-bit string and pass it through SHA-1 to obtain a
field element v ∈ Fq3 using the methods of [1]. Setting b = v + vq we see that

TrK/k(b) = 0.

We then compute the elliptic curve

Y 2 + XY = X3 + X2 + b

and its group order. This is repeated until we find a group order equal to 2p
where p is a prime. Then using the arguments of [9] we will obtain a hyperelliptic
curve of genus three. Although we are not choosing elliptic curves completely at
random from all elliptic curves defined over K, we are choosing them uniformly
at random from a subset of size q2. Just as before, we will have that Jack(H)
has group order exactly 2p.

Our technique for constructing hyperelliptic curves for use in cryptography is
dominated by the time needed to apply the Schoof-Elkies-Atkin (SEA) algorithm
or the algorithm of Satoh to a set of elliptic curves, until one with the correct
cryptographic properties is determined. The step of transforming the elliptic
curve into a hyperelliptic curve only takes a few seconds. Hence, to compute a
single hyperelliptic curve of genus two with the correct cryptographic properties
takes, for a Jacobian of size roughly 2190, on the order of a couple of minutes.
The main computational task is to repeatedly apply the SEA/Satoh algorithm
until a suitable elliptic curve is found. Of course, exact times depend strongly
on the details of the SEA/Satoh implementation

Finally to end this section we give a typical example:
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n=166
Elliptic Curve : K is defined by w166 + w37 + 1 = 0

S = E4D1C989A8999ED0EF8AC7D691E5D8ADDAD481F5,

a = 3951AD54028E7E3CF2D437A4186CCB53BF5DD39196,

b = 140463F3747C98BAE9D9D31EAF3FCE65ADF80AEA26,

N = 3FFFFFFFFFFFFFFFFFFFF730032E01F3184452AA1A.

Hyperelliptic Curve : k is defined by t83 + t7 + t4 + t2 + 1 = 0.

H(X) = 6C935CFDD963AD086B738X2 + 103FEA81D67CBF0210A96X

+ 47242588808C36BFBE701,

F (X) = 660212F23F5C16AE899A9X5 + 6CAEC90C545CF269FE5B1X4

+ 5A55B3786562759A427E0X3 + 32C4479705A4CEBF1FEA3X2

+ 7F018AAEC622917758194X + 2BDCB9CD696E5142054C8.

3 Divisor Compression

As noted previously point compression in the elliptic curve case is an important
tool used to save around fifty percent of the bandwidth in transferring/storing
public keys and in Diffie-Hellman key exchange. Before describing our analogous
method in the hyperelliptic setting we shall describe the exact data format nor-
mally used for divisors on hyperelliptic curves. For more details on what follows
the reader should consult the papers by Cantor [2] and Koblitz [12]. In this
section we shall work with arbitrary characteristic fields.

A hyperelliptic curve of genus g, over a field k of characteristic p, we will
assume is given by an equation of the form

Y 2 + H(X)Y = F (X),

where H(X), F (X) ∈ k[X], degH(X) ≤ g and degF (X) = 2g + 1. For appli-
cations it is common to assume that either p is very large or equal to two. If
p is large we usually assume that H(X) = 0. Notice that in characteristic two
the ramified places lying above p(X) ∈ k[X] are exactly those for which p(X)
divides H(X).

The group elements, upon which our cryptographic protocols operate, are
effective reduced divisors of degree less than or equal to g. Such a divisor can be
represented by the pair

D = (a(X), b(X)),

where a(X), b(X) ∈ k[X], deg b(X) < deg a(X) ≤ g, a(X) is monic and

b(X)2 + H(X)b(X) − F (X) ≡ 0 (mod a(X)).

The zero in the group is represented by the pair (1, 0). That the divisor is reduced
means that no ramified place occurs in the support of D with multiplicity greater
than one, and that if a place p occurs in the support of D then the image of
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p under the hyperelliptic involution does not. In many protocols one needs to
transmit divisors, naively this requires at most g elements of k to represent a(X)
and at most g elements of k to represent b(X).

However, given a(X) there are only a small number of possible values for
b(X) which could correspond to a(X). We shall show how one can recover the
correct b(X) from only a(X), and at most an additional g bits of information.

Our first task is to decide a canonical order on the irreducible polynomials of
degree less than or equal to g, which are defined over k. This is done by fixing a
field representation and using the lexicographic order used for a similar purpose
in Section 2.

When we are either compressing or decompressing we first factorize a(X)
into its irreducible factors and order them. Since factorisation of polynomials
can be performed in random polynomial time, and in applications the degree of
a(X) will be quite small (usually less than four) this factorisation stage is no
barrier to our method.

For example when g = 2 we need to factorize a degree two polynomial.
This factors either when a certain trace is zero, for the even characteristic case,
or when the discriminant is a square, for the odd characteristic case. In either
characteristic we can easily deduce the factorisation when the polynomial is
reducible using standard techniques for solving quadratic equations over finite
fields. Similar considerations apply when g = 3.

Each irreducible factor p(X) of a(X) will correspond to at most two prime
divisors on H:

Dp = (p(X), q(X)) and D′
p = (p(X), −q(X) − H(X) (mod p(X))),

where q(X) is the polynomial of least degree such that

q(X)2 + H(X)q(X) − F (X)

is divisible by p. Since the divisor we are compressing or decompressing is reduced
we know that only one of these two possibilities is in the support of D. Hence,
for each prime divisor of a(X) we need only specify one bit of information to
determine whether Dp or D′

p is in the support of D. The only questions remaining
are how to produce this bit and how to recover the correct value of b(X), given
a(X) and the resulting bits.

3.1 Compression

The basic idea is to execute the following steps for every distinct irreducible
factor p(X) of a(X), this gives the bits βp.

1. If p(X) is ramified in k(H) set βp = 0.
2. If the characteristic of k is odd, and so H(X) = 0, then let βp denote the

parity of the smallest non-zero coefficient of b(X) (mod p(X)).
3. If the characteristic of k is even then we set

t(X) = b(X)/H(X) (mod p(X)),
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notice that the inversion of H(X) modulo p(X) can be accomplished since
p(X) is unramified and so gcd(p(X), H(X)) = 1, We then let βp denote the
least significant bit of the constant term of t(X).

Hence, the compressed form of the divisor D is {a(X), s} where s is the bit string
containing the βp for each irreducible factor of a(X). The bit string is ordered
with respect to the ordering on the distinct irreducible factors of a(X).

3.2 Decompression

Suppose p(X)k exactly divides a(X), then if we can recover b(X) modulo p(X)k

for all irreducible factors p(X) of a(X) we can then recover b(X) either via the
Chinese Remainder Theorem or by adding together the local components for
each prime p(X).

Since (a(X), b(X)) is a reduced divisor, we know that if p(X) is ramified then
the value of k above is one, and recovering b(X) modulo p(X) is trivial, since it
will be equal to zero modulo p(X).

We now turn to the case where p(X) is not ramified. Then recovering b(X)
modulo p(X)k, is trivially done once we know b(X) (mod p(X)). This recovery
of b(X) modulo p(X)k from b(X) (mod p(X)) can be accomplished in one of
two ways:

1. Using Hensel’s Lemma.
2. By multiplying the divisor (p(X), b(X) (mod p(X))) by k.

So we have reduced the decompression problem to determining the value of

b(X) (mod p(X))

given p(X) and the bit βp.
Since p(X) is irreducible, the algebra k[X]/p(X) is a field and we can apply

well known techniques to solve quadratic equations in a field to determine a can-
didate value b(X) for b(X) (mod p(X)). To check whether b(X) is the correct
value we compute the value of the bit βp, as in the compression algorithm, as-
suming that b(X) is correct. If this value agrees with the supplied value then we
know that b(X) = b(X) (mod p(X)), otherwise we set b(X) = −b(X)− H(X)
(mod a(X)).

Finally, note that the above algorithms for divisor compression and decom-
pression are only slightly more complicated than those used in the elliptic curve
case.
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Abstract. SC2000 is a 128-bit block cipher with key length of 128,
192 or 256 bits, developed by Fujitsu Laboratories LTD. For 128-bit
keys, SC2000 consists of 6.5 rounds, and for 192- and 256-bit keys it
consists of 7.5 rounds. In this paper we demonstrate two different 3.5-
round differential characteristics that hold with probabilities 2−106 and
2−107. These characteristics can be used to extract up to 32 bits of the
first and last round keys in a 4.5-round variant of SC2000.

1 Introduction

SC2000 [1,5] is a 128-bit block cipher designed by Fujitsu Laboratories LTD,
and accepts keys of 128, 192 and 256 bits. The cipher has been submitted as a
candidate for the Nessie project [2], and was presented at the Nessie workshop
in Leuven in November 2000, and at FSE2001 in Yokohama in April 2001. In
the submission the designers analysed SC2000 against differential cryptanalysis
[3], and gave lower bounds on the complexities of a differential attack based
on characteristics. However, this search for differential characteristics does not
necessarily reveal those with the highest probabilities. We found two different
characteristics over 3.5 rounds, which can be used to extract 32 of the bit s in
both the first and the last round key in a 4.5-round variant (the definition of
a half round will become clear below). These characteristics have probabilities
2−106 and 2−107.

The paper is organised as follows. In Section 2 we give a brief description of
the SC2000 algorithm. In Section 3 we give the best characteristic we found for
the most complicated part of the Feistel round function, used in the cipher round
function. In Section 4 we create the different characteristics based on the findings
of Section 3. In Section 5 we extract bits from the first and last round keys by
using these characteristics, and we conclude in Section 6 with some remarks on
the design of SC2000.

� This work was supported by the European Union fund IST-1999-12324 - Nessie.
The information in this document is provided as is, and no warranty is given or
implied that the information is fit for any particular purpose. The user thereof uses
the information at its sole risk and liability.
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2 Description of SC2000

The plaintext block in SC2000 is broken into four 32-bit words. The plaintext
words are first XORed with a round key, and then passed through a layer of 32
parallel 4-bit S-boxes. We will call one of these 4-bit S-boxes S4 in this paper.
The input to S4 are the bits that are in the same position in each of the words,
see Fig. 1. After this the block is XORed with another round key. The XOR with
a round key, the 32 executions of S4, and the XOR with a different round key
is what we call one half round. The block is now broken into halves, and passed
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Fig. 1. How the 4–bit S–box works on the bits in position j.

through a two-round Feistel network. The round function in the Feistel network
is depicted in Fig. 2. Each of the two words that are sent into the round function
are first passed through a layer of two 6-bit and four 5-bit S-boxes, called S6 and
S5 respectively. To create diffusion, each word is then regarded as a vector of
length 32 over GF(2), and pre-multiplied with M , a 32x32 matrix over GF(2).
Let the two words of output from the multiplication of M be a1 and a2. These
words are now mixed in a linear function to create the two words of output from
the Feistel round function, b1 and b2, as follows.

b1 = (a1 ∧ m) ⊕ a2

b2 = (a2 ∧ m̄) ⊕ a1

m is a 32-bit constant, m̄ its bitwise complement, and the ∧ denotes the logical
AND operation. b1 and b2 are now XORed onto the two words in the other half,
and the halves are swapped. The other half is then passed through the Feistel
round function and XORed onto the first half, but there is no swap after the
second Feistel round. This concludes one round of SC2000. For 128-bit keys the
cipher consists of six full rounds, plus the first half of the seventh round. For
192- and 256-bit keys the cipher consists of seven full rounds, plus the first half
of the eighth round. The constants m used in each round are 55555555x in the
odd numbered rounds and 33333333x in the even numbered rounds. One round
of the cipher is shown in Fig. 3.

We omit the details of the key scheduling. The key schedule in SC2000 is
quite complex, and our attack does not depend on how the key schedule works.
We note however that the key schedule appears to be very strong, the knowledge
of one round key does not seem to leak any information about any other round
key, or about the key selected by the user.
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Fig. 3. The round function of SC2000.

3 Searching for Differential Characteristics

In [1] and [5] the designers have performed some differential cryptanalysis of
SC2000. However, as shown in the sequel, the designers’ search for characteristics
was not sufficient, and several differentials exist with probabilities exceeding the
bounds of the designers.

In order to explain how we found the differential used in our attack, we first
define the support of an n-bit string w = (w1, w2, . . . , wn), written χ(w) to be
the set of coordinates where w has a non-zero value.

χ(w) = {i|wi �= 0}
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We concentrated on the two first components of the F -function (see Fig. 2),
namely the layer of S5’s and S6’s, and the multiplication with M . The F -function
takes two 32-bit words as input, but they are not mixed with each other until
after these two steps are executed, so we focused on only one of the input words.
The idea was to find a differential δ with low Hamming weight that mapped to a
differential ε after the S-boxes and the M -multiplication, such that χ(ε) ⊆ χ(δ).
To help us with this we first computed the two differential distribution tables
for S5 and S6.

We searched through all 32-bit words of Hamming weight six or less, and
for each word we did the following. The word (or differential) ε was assumed
to be the output of the M -multiplication. Since this is a linear component, we
multiplied ε with M−1 to find the α that would map to ε through M . By looking
up in the two distribution tables, we then checked whether ε could be mapped
to α through the layer of the S5 and S6 S-boxes.

We found 11 differentials of Hamming weight five, which only had four of the
six S-boxes active and were mapped to themselves with some non-zero probabil-
ity. None of the ε’s of weight four or less could not be mapped to themselves, but
for each of them we checked how many of the S-boxes that failed to do the re-
quired mapping from ε to α. We found one ε of weight two, namely ε = 40200000x

that mapped to the corresponding α = f7d30017x in four of the six S-boxes. By
adding a 1-bit in the differences going into the two remaining S-boxes, we were
able to produce δ = δ0 = 40220001x of weight four that is mapped to α with
probability 2−18 (The probabilities are 2−5 for the two S6’s, and 2−4 for the two
active S5’s). In fact, there are eight different δ’s of weight four that can map to
ε. In one of the two S-boxes that require a non-zero difference we can add the
1-bit in two different ways, and in the other S-box we can add the 1-bit in four
different ways. The seven other δ’s are

δ1 = 40220004x, δ2 = 40220010x, δ3 = 40220020x, δ4 = 40300001x,

δ5 = 40300004x, δ6 = 40300010x, δ7 = 40300020x

Now the idea was to send the differentials 0 and δ into the F -function, and
have δ map to ε. In the third and last part of the F -function, the AND operation
with the fixed masks does not effect the 0 difference. The AND operation applied
to ε will turn ε into ε2 = 00200000x when the mask 33333333x or aaaaaaaax is
used, and turn ε into ε4 = 40000000 when the mask 55555555x or ccccccccx is
used. Finally, ε will be XORed onto the 0 difference and 0 will be XORed onto the
difference that is either ε2 or ε4. In total we have the differential characteristics
(δ, 0) F−→ (ε4, ε) and (0, δ) F−→ (ε, ε2) in a round where the mask 55555555x is
used, and the differential characteristics (δ, 0) F−→ (ε2, ε) and (0, δ) F−→ (ε, ε4)
when the mask 33333333x is used. Each of these characteristics have probability
2−18.
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4 Building the One-Round Characteristics

Let us now see how we can use δ and ε to create a differential characteristic
through several rounds of SC2000.

4.1 Two One-Round Differential Characteristics

The first one-round characteristic, explained below, is shown in Figure 4, where
we have omitted the additions of round keys since they do not affect the analy-
sis. s Let (δ, 0, 0, 0) be the difference in the blocks before the two Feistel rounds.

εi

εi m

m

F

F

S4

δ 000

0
0

0
0

δ
0ε

ε δ 0

0 00 δ

Fig. 4. A one–round differential characteristic with probability 2−30.

First the two rightmost words are sent through the F -function. They have dif-
ference (0, 0), so the output will have difference (0, 0) with probability 1. This
(0, 0)-difference is XORed onto the left half, and the halves are swapped so the
difference before the second Feistel round is (0, 0, δ, 0). The right halves with
difference (δ, 0) are then sent into the F -function, and with probability 2−18 the
difference after multiplication with M will be (ε, 0). After this ε will meet one of
the masks 55555555x or 33333333x, so the output of F will be (ε2, ε) or (ε4, ε).
These outputs are XORed onto the left halves, and since there is no swap, the
difference of the blocks becomes (ε2, ε, δ, 0) or (ε4, ε, δ, 0) before the S4 layer.

Since δ has weight four and χ(εi) ⊆ χ(ε) ⊆ χ(δ), there will only be four
active S-boxes in the layer of the 32 S4’s. Two of them will have input differ-
ence 2x, one will have input difference 6x, and one will have input difference
ex. All the differences 2x, 6x and ex can go to the difference 4x through S4,
each with probability 2−3. So with probability (2−3)4 = 2−12 we get the charac-
teristic (εi, ε, δ, 0) S4−→ (0, δ, 0, 0) through S4. All together, we get the following
characteristic with probability 2−18 · 2−12 = 2−30.

(δ, 0, 0, 0) F −F −S4−→ (0, δ, 0, 0)

The other useful one-round characteristic is the one that starts with the
difference (0, δ, 0, 0). After the first Feistel round with the swap the difference
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becomes (0, 0, 0, δ). With probability 2−18 the right half difference (0, δ) becomes
(0, ε) after multiplication with M . The output difference of F will then be (ε, ε2)
or (ε, ε4) and after the XOR with the left halves the difference will be (ε, εi, 0, δ).
Two of the input differences to S4 will now be 1x, one of them will be 9x and
one will be dx. The 1x and dx differences can lead to the difference 8x with
probability 2−3, and the 9x difference goes to 8x with probability 2−2. This
gives us the following one-round characteristic with probability 2−29.

(0, δ, 0, 0) F −F −S4−→ (δ, 0, 0, 0)

4.2 Concatenating the One-Round Characteristics

The differential characteristics above start and end just before the Feistel rounds.
The cipher itself begins with the application of the S4 layer, but the characteris-
tics we build by concatenating the one-round characteristics will start after the
first half of the first round. The next section explains how to use these charac-
teristics.

The characteristic (δ, 0, 0, 0) F −F −S4−→ (0, δ, 0, 0) can be concatenated with
(0, δ, 0, 0) F −F −S4−→ (δ, 0, 0, 0). By doing this, we get the following differential
characteristic through three and a half rounds with probability 2−107.

(δ,0,0,0) F −F −S4−→ (0,δ,0,0) F −F −S4−→ (δ,0,0,0) F −F −S4−→ (0,δ,0,0) F −F−→ (ε,ε4,δ,0)

The other characteristic is the one starting with input (0, δ, 0, 0).

(0,δ,0,0) F −F −S4−→ (δ,0,0,0) F −F −S4−→ (0,δ,0,0) F −F −S4−→ (δ,0,0,0) F −F−→ (ε2,ε,δ,0)

This characteristic has probability 2−106.

5 Extracting Bits from the First and Last Round Key

In this section we will explain how to extract up to 32 bits from both the first
and last round key in a 4.5-round variant of SC2000.

5.1 How to Find 16 Key Bits of the First and Last Round Key

The characteristics in the previous section do not start with the plaintext differ-
ence, but with the difference after the first S4 layer. To use these characteristics,
we create structures Σ of 216 plaintexts as follows. Fix the bits going into the 28
S4’s that are not affected by δ, and let the 16 bits going into the S4’s determined
by δ take on all 216 values. Let ∆8 = (δ, 0, 0, 0), ∆4 = (0, δ, 0, 0), Ω1 = (ε, ε4, 0, δ)
and Ω2 = (ε2, ε, δ, 0). For each plaintext P ∈ Σ, the plaintext P ⊕ ∆i is also in
Σ, for i = 4, 8. In other words, of the

(216

2

) ≈ 231 pairs in Σ there are 215 pairs
with difference ∆4 and 215 pairs with difference ∆8. Encrypting the plaintexts
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in Σ through the first S4 layer does not change the structure in any essential
way. The 112 fixed bits remain fixed, and the other 16 bits range over all 216

values. So there will be 215 pairs in Σ that have difference ∆4, and 215 pairs
that have difference ∆8 after encryption through the first S4 layer. A randomly
chosen input difference to one S4 will have the possibility to go to the output
difference 4x with probability 1/2, so the probability that a randomly chosen
pair of texts from Σ will have the possibility of having difference ∆4 after S4
is 2−4. By the same argument, the probability that a pair of texts from Σ can
have the difference ∆8 after S4 is approximately 2−4. In total, the probability
that a randomly chosen pair of texts from Σ has difference ∆4 or ∆8 after S4 is
2−3.

We call a pair of plaintexts that follows either of the two characteristics from
Section 4 a right pair, and a pair of plaintexts that does not follow any of these
characteristics a wrong pair.

The probability that a structure contains a right pair is 215 ·(2−106+2−107) =
3 ·2−92. After encrypting 293 structures, we expect to have 293 ·3 ·2−92 = 6 right
pairs among the 231 · 293 = 2124 pairs we get from the structures. We filter out
most of the wrong pairs as follows.

Find potential good pairs by inserting the 216 ciphertexts from one structure
in a hash-table according to 20 bits in the first word (see [4]). The ciphertexts in
a right pair will be inserted in the same position in the table. If a pair is a right
pair, all of the 112 bits corresponding to the inactive S4’s must be equal. This
gives a filtering factor of 2−112. If a pair of ciphertexts are equal in these 112 bits,
check the differences in the four S4’s corresponding to δ. If the pair is a right
pair, it must be possible that the output difference from the last S4-layer has
had input differences Ω1 or Ω2. As explained above, a random pair passes this
test with probability 2−3. If a ciphertext pair is a right pair, and had difference
Ω1 before the last S4, then the pair of plaintexts must have had the possibility
to get the difference ∆8 after the initial S4. A random pair passes this test with
probability 2−4. Likewise, a right pair that has difference Ω2 before the last S4
must have had difference ∆4 after the first S4, and the probability that this
holds for a random pair is 2−4.

With these steps we have a filtering factor of 2−119. After using this filtering
procedure on the 2124 different pairs we expect to be left with 2124 · 2−119 = 32
pairs, among which we expect six right pairs.

The main part of the work to generate 16 potentially right pairs comes from
the 2109 encryptions required. The memory requirements to get the 16 potentially
good pairs is small. In addition to the potential right pairs, we only need to hold
216 plaintexts and the corresponding 216 ciphertexts in memory at the same
time.

The rest of the attack follows along the lines of a standard differential attack.
For each of the ciphertexts in the 16 potentially right pairs, guess on the 16 key
bits from the last round key corresponding to the active S-boxes. For each guess,
decrypt the ciphertext bits in the active S4’s, if the decrypted values have one of
the input differences Ω1 or Ω2, suggest these bits as part of the last round key.
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The correct value will be suggested for each right pair. For each Ωi, there will
be 2 - 4 4-bit values suggested for each S-box, and the values suggested by each
S-box can be combined in 24 - 44 different ways. Since we accept both Ω1 and Ω2
as input difference, we will get 32 - 512 suggestions for the 16 key bits. The right
value will be suggested for every right pair, i.e. six times. The suggestions of the
wrong values are expected to be distributed more or less uniformly over the 216

different values, so it is highly unlikely that any wrong value will be suggested
six times. Take the most suggested value as the correct bits in the last round
key.

We find 16 bits of the first round key in the same manner. Guess on the 16 bits
corresponding to the active S4’s in the first round, and for each guess, encrypt
each pair of plaintexts through the active S4’s. If a pair gets the difference ∆4
or ∆8, suggest the value as part of the first round key. Again there will be 32 -
512 suggestions for every pair. We expect the correct value to be suggested six
times, and the incorrect values to be more or less uniformly distributed over the
216 values. Again we take the most suggested value as the correct one.

5.2 How to Find Another 16 Bits

We can repeat the attack described above for a different δ, say for δ5=40300004x,
to find 16 bits of the first and last round keys. Among the key bits we will find,
eight of them will be the same as we found using δ0, because the two active
S-boxes defined by ε will overlap in both attacks. So repeating the attack with
δ5 will only yield eight new bits in the two round keys. After this we have found
24 bits of each key. The last eight bits we can get are the ones that correspond to
the S4’s defined by 00000010x and 00000020x. They can be found by repeating
the attack with δ’s using these S-boxes, like δ2 = 40220010x and δ3 = 40220020x.
Repeating the attack four times gives an overall complexity of 2111.

6 Conclusions

For a 4.5 round variant of SC2000, we have shown how to find 32 bits of both
the first and the last round key, using 2111 chosen plaintexts. The strong key
schedule in SC2000 prevents us from actually breaking 4.5 rounds by searching
exhaustively for the remaining 96 bits in the first or last round key, since we can
not easily deduce the other round keys from them.

This paper may teach us a different lesson, though. Several places in [1], the
designers hint that SC2000 can be thought of as an advanced Feistel cipher. The
layer of 4-bit S-boxes between every other Feistel round can be regarded as a
cryptographically stronger component than the swap of halves found in ordinary
Feistel ciphers. This S-box layer certainly gives better confusion than a simple
swap, but it introduces another weakness not found in regular Feistel ciphers.

It was shown in [5] that in SC2000 it is possible to have a differential char-
acteristic that feeds every other Feistel round with a 0-difference. This is not
possible in a regular Feistel cipher. In this paper we have extended the search
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done in [5] to two-round iterative characteristics. This resulted in characteristics
with higher probabilities than what was found in [5].

Having an S-box layer instead of a swap between some rounds might be a
good idea, but one should be careful to make sure that any cryptographically
good property of the swap is not lost when replacing it. The designers state that
one of the design criteria for S4 is that except for the all-zero difference, an input
difference (α0, α1, 0, 0) can not lead to an output difference (β0, β1, 0, 0), and an
input difference (0, 0, α2, α3) can not lead to an output difference (0, 0, β2, β3).
This is to make sure that there is some form of “swap” involved when going
through S4. However, one should also demand that if αL and αR are two non-
zero 2-bit values, then the input difference (αL, αR) will always lead to an output
difference (βL, βR) where both βL and βR are non-zero.

References

1. http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/
2. http://www.cryptonessie.org/
3. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer Verlag, 1993.

4. L.R. Knudsen and T. Berson. Truncated differentials of SAFER. In Gollmann D.,
editor, Fast Software Encryption, Third International Workshop, Cambridge, UK,
February 1996, LNCS 1039, pages 15–26. Springer Verlag, 1995.

5. Shimoyama et al. The Block Cipher SC2000. Fast Software Encryption, Eighth
International Workshop, Yokohama, Japan, April 2001, preproceedings, pages 326–
340.



On the Complexity of Matsui’s Attack

Pascal Junod

Security and Cryptography Laboratory,
Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

pascal.junod@epfl.ch

Abstract. Linear cryptanalysis remains the most powerful attack
against DES at this time. Given 243 known plaintext-ciphertext pairs,
Matsui expected a complexity of less than 243 DES evaluations in 85
% of the cases for recovering the key. In this paper, we present a the-
oretical and experimental complexity analysis of this attack, which has
been simulated 21 times using the idle time of several computers. The
experimental results suggest a complexity upper-bounded by 241 DES
evaluations in 85 % of the case, while more than the half of the ex-
periments needed less than 239 DES evaluations. In addition, we give a
detailed theoretical analysis of the attack complexity.

Keywords: linear cryptanalysis, DES

1 Introduction

Linear cryptanalysis against DES [10] has been introduced by Matsui [6,7] and
remains at this time the most powerful attack against this cipher. A single exper-
imental implementation [7] has been carried out. During this attempt, Matsui
managed to break a DES key in about 50 days on 12 powerful computers, the
plaintext-ciphertext pairs generation lasting 40 days and the exhaustive search
for the remaining unknown bits taking the last 10 days. It was noticed that the
second phase performed faster than one could expect theoretically.
Although several authors have studied, generalized and applied the linear crypt-
analysis concept in several ways, little work concerning its success probability
and its complexity has been done, and while it is widely accepted that linear
cryptanalysis of DES, given 243 known plaintext-ciphertext pairs, has a success
probability of 85 % within a complexity of 243 DES evaluations, it was conjec-
tured that this value is pessimistic [9,3].
Motivated by this fact, by the parallel implementation concept of Biham [1] and
the actual 64-bit processor performances, we propose in this paper a theoretical
and experimental complexity analysis. By using a fast DES routine implemented
for the Intel MMX architecture, the production part of the attack has been run
several time, virtually breaking a total of 21 keys.
This paper is organized as follows: in §2, we recall some theoretical background
on the attack. In §3, we describe briefly the design of the fast DES routine and
the attack implementation. In §4, we discuss and complete the success probabil-
ity and complexity model. In §5, we discuss some issues on the linear expression
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biases, the piling-up approximation and the wrong-key randomization hypothe-
sis, comparing the known theoretical results to our experimental ones and finally
we give in §6 our experimental results.

2 Matsui’s Attack

In this paper, we deal with the improved attack [7] proposed by Matsui against
DES. The attack’s core is unbalanced linear expressions, i.e. equations involving
a modulo two sum of plaintext and ciphertext bits on the left and a modulo two
sum of key bits on the right. Such an expression is unbalanced if it is satisfied with
probability 1 p = 1

2+κε with 0 < ε ≤ 1
2 and κ ∈ {−1, 1} when the plaintexts and

the key are independent and chosen uniformly at random and where κ depends
on the key value.
Given some plaintext bits Pi1 , . . . ,Pir , ciphertext bits Cj1 , . . . ,Cjs and key bits
Kk1 , . . . ,Kkt

, and using the notation Xl1 ⊕ Xl2 ⊕ . . . ⊕ Xlu
= X[l1,...,lu], we can

write a linear expression L as

L : P[i1,...,ir] ⊕ C[j1,...,js] = K[k1,...,kt] (1)

Matsui’s improved attack operates on 14 rounds using two biased linear expres-
sions which collect statistical information on 26 bits out of the first and last
round subkeys. The remaining 30 unknown key bits have to be searched exhaus-
tively. The linear expression (1) involves thus two terms of F -function and can
be rewritten as

L : P[i1,...,ir] ⊕ C[j1,...,js] ⊕ F
(1)
[l1,...,lu]

(
P,K(1)

) ⊕
F

(16)
[m1,...,mv ]

(
C,K(16)

)
= K[k1,...,kt] (2)

where F (1)
[l1,...,lu]

(
P,K(1)

)
is the modulo two sum of some bits resulting from the

F -function output in the first round and K(1) is the subkey of round 1. A similar
notation is used for the last F -function.
The attack main idea is related to the following assumption:

Assumption 1 (Wrong-key randomization hypothesis [3]). For any lin-
ear expression L operating on n rounds for which

∣∣∣∣Pr
[
L = 0 | K(1) = k(1), . . . ,K(n) = k(n)

]
− 1
2

∣∣∣∣
is large for virtually all values k(1), . . . , k(n) of the round keys, the following is
true: for virtually all possible full keys (k(1), . . . , k(n)) and for all estimates k̂ of

1 In the literature, this non-linearity measure is often called linear probability, and
expressed as LPf (a, b) = (2Pr[a · x = b · f(x)] − 1)2, where a and b are the masks
selecting the plaintext and ciphertext bits, respectively. In this paper, we will refer
to the bias ε for simplicity reasons.
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the last round key,
∣∣Pr [L = 0 | K = kr]− 1

2

∣∣∣∣∣Pr [
L = 0 | K = k̂

]
− 1

2

∣∣∣ 
 1 ∀k̂ �= kr (3)

where kr is the right key.

Intuitively, the decryption of the first and the last round with wrong subkey can-
didates can be considered as two rounds more of encryption. Thus, the plaintext
and the ciphertext will be less dependent, and the linear expressions less biased.
The first linear cryptanalysis phase (see Fig. 1) consists in evaluating the bias
of both linear expressions for all possible subkey candidates and for all known
plaintext-ciphertext pairs. In a second phase (Fig. 2), the two lists of subkey
candidates corresponding each to a linear expression are sorted in a maximum-
likelihood manner, combined, and the missing bits are finally searched exhaus-
tively for each pair of subkey candidate until the right key is found.
The complexity C of the attack is then related to the number of needed DES

encryptions in the exhaustive search part while its success probability PC within
a given complexity C is also related to the success while guessing the right part
of both linear expressions.

1: N = number of known plaintext-ciphertext pairs at disposal.
2: for linear expressions L1 and L2 do
3: for all subkey candidates k̂i, 1 ≤ i ≤ 212 do
4: Ck̂i

= number of times out of N where left part of (2) is equal to 0 when
K = k̂i.

5: end for
6: end for

Fig. 1. Matsui’s algorithm 2 [7] (phase 1)

3 Implementation of the Attack

The linear cryptanalysis attack against DES, except the exhaustive search part,
has been implemented as described in [7]. After having determined the rank of
the right subkey candidate in the final list, it is not difficult to compute 2 the
expected complexity (in DES function evaluations) of the exhaustive search part:

E[Ĉ] = (r − 1) · 230 + 229
2 The strategy used to combine the two lists of 13-bit subkey candidates is Matsui’s
proposed one [7]: sort the pairs by increasing r = i · j (see lines 12-13 of Fig. 2),
where i and j are the respective ranks in the 13-bit subkey lists.
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1: for linear expressions L1 and L2 do
2: Sort the Ck̂i

’s by decreasing
∣
∣
∣N

2 − Ck̂i

∣
∣
∣ and rename them C∗

j , 1 ≤ j ≤ 212.

3: for 1 ≤ j ≤ 212 do
4: /* κ is defined in Sect. 2 (expected bias of L) */
5: if

(
C∗

j − N
2

)
κ > 0 then

6: Guess K[k1,...,kt] = 0
7: else
8: Guess K[k1,...,kt] = 1
9: end if
10: end for
11: end for
12: Form 224 (C∗

i , C∗
j )r pairs where r := i · j.

13: Sort them by increasing r and rename them Dk, 1 ≤ k ≤ 224.
14: for 1 ≤ k ≤ 224 do
15: Fix the key bits given by Dk and search exhaustively the remaining 30 bits of

K until the right key is found.
16: end for

Fig. 2. Matsui’s algorithm 2 [7] (phase 2)

where r is the rank in the list D of subkey candidates. The complexity’s estima-
tion error has thus a maximal value of 229 DES evaluations, which is negligible
almost all the time.
The computational most intensive part of the attack being data encryption, the
involved DES routine speed is a key parameter regarding the time needed to
process 243 plaintexts. We have thus implemented a very fast DES routine using
the bitslicing concept [1] and some attack-related optimizations. Our routine has
been designed for the Intel MMX architecture which has eight 64-bit registers
at disposal. Although this platform has several drawbacks regarding a bitsliced
implementation [8], it has the advantage of being very common.
Kwan’s gate representation of the S-boxes [5] builds the core of the implementa-
tion, the other parts of the cipher (key schedule, permutations, ...) being hard-
coded. By eliminating parts of the cipher unrelated to the attack and by using
advanced optimization techniques like instruction pairing, prefetching of the data
and code unrolling, we managed to get an encryption speed of 183 Mbps on an
Intel Pentium III clocked at 666 MHz. This represents 232.7 clock cycles for
encrypting one block of data. One can hardly compare this number with exist-
ing good implementations 3, because of the optimizations related to the attack;
however, using classical available implementations for our purposes would have
resulted in poorer performances.

3 A DES routine was implemented for similar purposes in [12] on other platforms;
they report 62 Mbps on a Ultra SPARC 200 MHz and 336 Mbps on a Alpha 21164A
500 MHz. The significant speed difference on the latter platform is due to the large
number of available 64-bit registers (and thus to a lesser number of slow memory
accesses).
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The attack has run 21 times, using the idle time of 8 to 16 computers; this
represents between 3 and 6 days for a single run.

4 Success Probability

In this section, we address a general way to characterize the probability distri-
bution of the rank of the right 13-bit subkey in the list of candidates given by a
linear approximation L.

4.1 Rank Probability

As the complexity C of the attack is closely related to the rank of the right
subkey in the candidates list, we address first the problem of estimating the
rank distribution.
LetW1, . . . ,Wn be n independent and identically distributed continuous random
variables having fW (x) and FW (x) as common density function and distribution
function, respectively. Let R be a continuous random variable independent of
the Wi’s and having fR(x) and FR(x) as density and distribution function. Sort
these n + 1 random variables in non-increasing order and rename them Z(1) >
Z(2) > . . . > Z(n+1). Finally, let Ψ be a discrete random variable taking values on
{1, . . . , n+1} which models the rank of R in the sorted list: Ψ = ψ ⇔ Z(ψ) = R.
The distribution of Ψ and its expected value are given by the following theorem,
whose proof is given in Appendix A.

Theorem 1. Under previous assumptions and for 1 ≤ ψ ≤ n ∈ N, the distribu-
tion function of Ψ is equal to

Pr [Ψ ≤ ψ] =
∫ +∞

−∞
Bn+1−ψ,ψ(FW (x))fR(x)dx

and

E [Ψ ] = 1 + n
(
1−

∫ +∞

−∞
fR(x)FW (x)dx

)

where

Ba,b(x) =
Γ (a+ b)
Γ (a)Γ (b)

∫ x

0
ta−1(1− t)b−1dt

is the incomplete beta function of order (a, b).

In order to be able to compute the densities of the estimated biases4, we first
have to make the following assumptions [13]; the two first ones are heuristic in
nature, while the last one is motivated by the law of large numbers. Ckr (Ckw)
will denote a random variable modeling the counter value (as defined at line 4
of Fig. 1) in the case of a right (wrong) subkey candidate and N is the number
of known plaintext-ciphertext pairs.
4 The mean and standard deviation of the counters and the respective biases of the
linear expression being linearly related, we will use in the following the bias termi-
nology.
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Assumption 2. The bias

Bw =
∣∣∣∣12 − Ckw

N

∣∣∣∣
of a linear expression evaluated with wrong subkey candidates has a distribution
independent of the key value.

Assumption 3. The bias

Br =
∣∣∣∣12 − Ckr

N

∣∣∣∣
of a linear expression evaluated with the right subkey candidates has a distribu-
tion independent of the distribution defined in Assumption 2 and independent of
the key value.

Assumption 4. The distributions of Ckr

N and Ckw

N are well approximated by a
normal law.

We denote in the following the normal law density with mean µ and variance
σ2 by φ(µ,σ2) and the corresponding cumulative distribution function by Φ(µ,σ2).
Because the cryptanalyst ignores the linear expression’s right part, she is more
interested in the absolute value of the biases. Noting that if X is a normal
law φ(µ,σ2), the density of Y = |X − a|, a ≤ µ is given by f (µ,σ2)

Y (y, a) =
φ(µ,σ2)(y + a) + φ(µ,σ2)(a − y) for 0 ≤ y ≤ +∞, the bias densities in case of
wrong and right subkey candidates are respectively given by

fW (x) = f (µw,σ2
w)(x, 12 ) (4)

fR(x) = f (µr,σ2
r)(x, 12 ) (5)

with

µr = E
[
Ckr

N

]
=
1
2
+ κεr µw = E

[
Ckw

N

]
=
1
2
+ κεw

σ2
r = Var

[
Ckr

N

]
≈ 1
4N

σ2
w = Var

[
Ckw

N

]
≈ 1
4N

where κ ∈ {−1,+1} depends of the unknown key bits and Ckr (Ckw) is the
random variable modeling the value of the counter corresponding to the (a)
right (wrong) subkey. Fig. 4 gives some numerical evaluations of Theorem 1
for these densities while the following table gives the expected rank for various
amounts of known plaintext-ciphertext pairs at disposal. Here, we assume that
εr = 1.19 · 2−21 is equal to the piling-up lemma approximation and that εw = 0.
We note that Theorem 1 gives exactly the same values as Matsui’s experimental
computations [7] regarding the cumulative rank probability of the right subkey
candidate.



On the Complexity of Matsui’s Attack 205

N 243 242.5 242 241 240

E[Ψ ] 71.3 182.5 361.9 847.3 1311.6
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Fig. 3. Rank distribution Pr [Ψ ≤ ψ] for various amounts N of plaintext-ciphertext
pairs.

4.2 Success Probability

The attack’s success probability PC within a given complexity C is also dependent
on the error probability while guessing the bit of information about K[k1,...,kt].
Using the same assumptions as during the previous computations, it is easy to
compute this error probability (in the case where κ = +1 and K[k1,...,kt] = 0, the
other ones being symmetric).

pwg = Pr
[
“K[k1,...,kt] wrongly guessed”

]
= Φ(µr,σ2

r)

(
N

2

)
(6)

The following table gives some numerical approximations for various N :
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N 243 242.5 242 241 240

pwg 0.0004 0.0023 0.0086 0.0462 0.1170

5 Experimental Linear Expressions Biases

A key parameter regarding the linear cryptanalysis success is of course the bias
of the involved linear expression(s). As it is infeasible to compute the exact bias
of a linear expression, one uses implicit assumptions, such as the wrong-key ran-
domization one and the independence of data between two successive rounds.
The incidence of these assumptions has been well discussed in the literature
[9,2,3,4]. Although several situations where these assumptions can fail have been
suggested and discussed, it is accepted that the linear expression real bias should
be well approximated in case the of DES.
The experimental results go in this direction. We have computed the sample
means of the experimental biases B̂r and B̂w, which can be compared to the
expected values of densities (4) and (5).
In case of right key, the sample mean is equal to 5.5 · 10−7 with a standard
deviation of 0.2 · 10−7. This value has to be compared with the one given by
the piling-up approximation and (5), E[Br] = 5.674 · 10−7. As a first observa-
tion, one can note that the linear hull effect [9] is not visible for DES, the mean
experimental bias being not perceptibly greater than the piling-up lemma ap-
proximation.
Our experiments provide furthermore a good opportunity to confirm the va-
lidity of Assumption 1. The sample mean in case of wrong subkey candidates,
averaged over all the wrong subkeys and all experiments, is equal to 1.38 · 10−7

with a standard deviation of 0.03 · 10−7. This value has to be compared with
E[Bw] = 1.345 · 10−7 given by εw = 0 and (4). Obviously, as one could expect,
the mean seems to be slightly greater than for a perfect cipher and thus the
plaintext and ciphertext are still correlated. However, the bias values for the
wrong candidates are not on the same scale as those for the right candidates,
confirming the validity of Assumption 1 for DES.

6 Experimental Results

It is widely accepted that linear cryptanalysis of DES, given 243 known plaintext-
ciphertext pairs, has a success probability of PCA = 85% within a complexity
of CA = 243 DES encryptions, which are values given in [7]. Our experimental
results suggest a lower complexity.

6.1 Rank and Guessing Error Probabilities

Each of the 21 experiments provides two statistical samples. Following table sum-
marizes our results about the ranks of the right subkey candidates for various
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N 243 242.5 242 241 240

ψ ≤ 5 20 (22) 13 (13.5) 7 (7.6) 0 (2.3) 0 (0.8)
ψ ≤ 10 27 (25.8) 16 (17.1) 9 (10.5) 2 (3.6) 0 (1.3)
ψ ≤ 50 33 (33.6) 26 (26.2) 18 (18.8) 5 (8.6) 2 (3.9)
ψ ≤ 150 38 (37.7) 34 (32.3) 24 (25.7) 10 (14.3) 5 (7.7)
ψ ≤ 300 42 (39.4) 39 (35.7) 31 (30.3) 17 (19.2) 14 (11.6)
ψ ≤ 600 42 (40.8) 40 (38.5) 35 (34.6) 25 (24.7) 22 (16.8)

E[ψ] 38 (71) 129 (182) 302 (362) 654 (847) 1121 (1312)

amounts N of known plaintext-ciphertext pairs and compare them to the the-
oretical expectations (values in smaller characters) given by Theorem 1. We
observe that Theorem 1 seems to give a pessimistic rank expected value. It is
difficult to explain this fact because of the small statistical sample size. Fur-
thermore, we have noticed that Theorem 1 is very sensitive numerically. For
instance, the expected rank E[Ψ ] is equal to 113 and to 39 when we assume that
εr = 1.1 · 2−21 and εr = 1.3 · 2−21, respectively.
The experimental results regarding the remaining bit guessing error probability
are summarized in the following table. The number nwg of cases where the guess-
ing phase was unsuccessful is reported, together with the theoretical expected
values given by (6) which are given in smaller characters. One can see that (6) is

N 243 242.5 242 241 240

nwg 0 (0.02) 0 (0.10) 0 (0.36) 0 (1.94) 1 (4.91)

a bit pessimistic, which can be explained a new time by the arguments developed
below. We note furthermore that the success probability PC of the linear crypt-
analysis of DES within a given complexity C seems not to be so dependent on
the guessed bit of information about the key and that the key factor regarding
PC is the given upper bound C.

6.2 Complexity of the Attack

An exhaustive table of our experimental results regarding the complexity is
given in Appendix B. Key facts (mean, median, maximal and minimal Ĉ) are
summarized in the following table where a value of x means 2x DES evaluations:
Our experimental results lead to the following observations:

– Given 243 known plaintext-ciphertext pairs, our experiments have a com-
plexity of less than 241 DES evaluation with a success probability of 86
% where more than the half of the cases have a complexity less than 239.
Furthermore, if an attacker is ready to decrease her success probability, the



208 Pascal Junod

N 243 242.5 242 241 240

µĈ 41.4144 47.1516 48.9504 50.2121 51.4154
Ĉmed 38.1267 41.8023 44.2949 48.5492 51.0533
Ĉmin 32.1699 29.0000 36.5157 43.8552 41.9750
Ĉmax 45.4059 51.2973 52.3671 52.1953 53.1000

complexity drops dramatically (less than 234 DES evaluations with a success
probability of 10 %).

– Given 242.5 known plaintext-ciphertext pairs (i.e. with 30 % less pairs), half
of the experiments have a complexity less than 242 DES evaluations.

– With only 240 pairs at disposal, the complexity is far lower than an exhaus-
tive search.

Even if we have to take these experimental results carefully because of the rela-
tive small number of statistical samples, they suggest strongly a lower complexity
than expected by Matsui in [7] and we risk the following conjecture:

Proposition 1. Given 243 known plaintext-ciphertext pairs, it is possible to re-
cover a DES key using Matsui’s linear cryptanalysis within a complexity of 241

DES evaluations with a success probability of 85 %.

7 Conclusion

The first goal of this research was to perform an experimental linear cryptanalysis
of DES as many times as possible in order to get a better insight into the real
complexity and success probability of this attack. Using a very fast DES function
developed for the Intel MMX architecture, we have simulated Matsui’s attack
21 times.
Our experimental results suggest a lower complexity than estimated by Matsui.
Given 243 known plaintext-ciphertext pairs, the complexity was upper-bounded
by 241 DES evaluations with a success probability of 85 %. This has to be
compared with the estimated 243.
We give furthermore a detailed theoretical analysis of the rank probability of the
right subkey in the list of candidates, confirming Matsui’s experimental results,
and we discuss the validity of our theoretical model towards the experimental
results, together with several issues regarding past research.
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A Proof of Theorem 1

As a first step, let’s consider the following situation: let W1,W2, . . . ,Wn be n
independent and identically distributed continuous random variables having fW

as density function and FW as distribution function. We arrange the values of
W1,W2, . . . ,Wn in strictly5 increasing order and denote them by W(1) < W(2) <
. . . < W(n). The distribution function FW(i) of W(i) is given by the following
Lemma whose proof can be found in [11].

Lemma 1. Under previous assumptions, the distribution function of the i-th
smallest random variable is

FW(i)(x) = Bi,n−i+1 (F (x))

5 The probability that equal values occur is 0.



210 Pascal Junod

where

Ba,b(x) =
Γ (a+ b)
Γ (a)Γ (b)

∫ x

0
ta−1(1− t)b−1 dt

is the incomplete beta function of order (a, b).

By using the previous Lemma and the independence between the involved ran-
dom variables, we can compute FΨ (x) as follows:

Pr [Ψ ≤ ψ] = Pr
[
W(ψ) < R

]

=

+∞∫
−∞

y∫
−∞

fW(ψ)(x)fR(y) dx dy

=
∫ +∞

−∞
Bn+1−ψ,ψ (FW (y)) fR(y) dy

By definition, we have

E [Ψ ] =
n+1∑
ψ=1

ψ · Pr [Ψ = ψ]

= Pr [Ψ = 1] +
n+1∑
ψ=2

ψ (Pr [Ψ ≤ ψ]− Pr [Ψ ≤ ψ − 1])

= n+ 1−
n∑

ψ=1

Pr [Ψ ≤ ψ]

where

n∑
ψ=1

Pr [Ψ ≤ ψ] =
n∑

ψ=1

∫ +∞

−∞
Bn+1−ψ,ψ (FW (y)) fR(y) dy

=
∫ +∞

−∞
fR(y)

n∑
ψ=1

Bn+1−ψ,ψ (FW (y)) dy

It is easy to see that

n∑
ψ=1

Bn+1−ψ,ψ (FW (y)) = n

∫ FW (y)

0

n−1∑
i=0

(
n− 1
i

)
ti(1− t)n−1−i dt

= n

∫ FW (y)

0
dt

= nFW (y)
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and we can thus conclude with

E [Ψ ] = n+ 1−
∫ +∞

−∞
fR(y)

n∑
ψ=1

Bn+1−ψ,ψ (FW (y)) dy

= n+ 1− n

∫ +∞

−∞
fR(y)FW (y) dy

= 1 + n
(
1−

∫ +∞

−∞
fR(y)FW (y) dy

)

B Complete Experimental Results

This table gives the experimental results regarding the complexity Ĉ of each run
of the attack for various amounts of plaintext-ciphertext pairs.

Exp N = 243 N = 242.5 N = 242 N = 241 N = 240

1 39.1836 38.4818 45.0307 51.3802 51.0533
2 33.2479 41.6346 43.6383 48.0928 43.1913
3 38.6055 41.8023 43.9622 48.5492 51.6012
4 38.1267 34.6147 41.3351 48.7240 51.2041
5 37.4878 29.0000 36.5157 46.1991 52.3685
6 34.0444 44.2753 46.6834 48.5221 50.1937
7 36.4676 45.5732 44.2949 47.3010 51.2913
8 36.1189 44.7722 41.4091 51.6338 52.1143
9 40.3515 47.0565 48.6184 52.1953 53.1000
10 41.6540 41.8682 45.7429 47.9120 41.9750
11 45.4059 51.2973 51.9932 51.8155 52.1972
12 36.1189 43.6633 46.7256 50.3949 49.2317
13 36.4009 36.1189 43.2183 47.0756 46.7680
14 39.0042 42.6736 44.3057 44.7116 47.3256
15 37.6330 39.8572 47.6536 49.5244 52.6439
16 38.9204 36.6653 41.5447 49.1082 49.9939
17 33.5236 38.8502 43.3128 46.1030 48.6798
18 39.8478 47.4938 52.3671 50.6770 50.3675
19 32.1699 31.8074 40.5093 43.8552 48.4968
20 40.7503 38.3729 40.3734 45.2436 52.3101
21 41.8721 44.9063 45.4147 52.0730 52.8571
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Abstract. This paper extends the analysis of Pollard’s rho algorithm
for solving a single instance of the discrete logarithm problem in a finite
cyclic group G to the case of solving more than one instance of the
discrete logarithm problem in the same group G. We analyze Pollard’s
rho algorithm when used to iteratively solve all the instances. We also
analyze the situation when the goal is to solve any one of the multiple
instances using any DLP algorithm.

1 Introduction

The security of many public-key cryptographic systems is based on the discrete
logarithm problem (DLP). Examples are the Diffie-Hellman key agreement pro-
tocol and the ElGamal encryption and signature schemes.

The DLP can be defined as follows: Let g be a generator of a finite cyclic
group G = 〈g〉 of order N . For the general DLP, we have to find an integer
x (0 ≤ x < N) such that gx = h, where h is chosen uniformly at random
from G (written h ∈R G). The integer x is called the discrete logarithm of h to
the base g, denoted logg h. If N is composite, one can compute x mod pk in the
subgroup of order pk for each prime power pk dividing N . Then, one can compute
x by application of the Chinese Remainder Theorem. Further, calculating the
discrete logarithm in the subgroup of order pk can be reduced to finding the
discrete logarithm in the group of prime order p (see [7]). For these reasons, we
only consider the DLP in groups of prime order N .

Shoup [10] gave a lower bound for the running time for computing discrete
logarithms by generic algorithms (probabilistic or deterministic) in groups of
prime order. The time needed to solve the DLP with a non-negligible probabil-
ity is c

√
N group operations for some constant c. The best algorithm known for

solving the general DLP is Pollard’s rho algorithm [8]. It does not only match
Shoup’s lower bound, but also needs very little memory and is parallelizable
with a linear speed-up (see [6]). For many groups of cryptographic interest, such
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as the multiplicative group of a finite field (see [1]), and the Jacobians of hyper-
elliptic curves of high genus (see [2]), there are subexponential-time algorithms
known for the DLP that are more efficient than Pollard’s rho algorithm. How-
ever, Pollard’s rho algorithm is the best algorithm known for solving the DLP
in some groups such as the group of points on an elliptic curve, and the Jaco-
bian of genus 2 and 3 hyperelliptic curves. Thus, the results in this paper are
particularly relevant to the DLP in elliptic curve groups and in genus 2 and 3
hyperelliptic curves.

This paper extends the analysis of Pollard’s rho algorithm for solving a single
instance of the discrete logarithm problem in a finite cyclic group G to the case
of solving more than one instance of the discrete logarithm problem in the same
group G. Pollard’s rho algorithm is reviewed in §2. In §3, we provide a runtime
analysis in an idealized model and do an exact analysis of possible time-memory
trade-offs for the parallelized version. When using Pollard’s rho algorithm to
iteratively solve all n instances of the DLP in the same group, the data that is
gathered during the calculation of a single discrete logarithms can be used to
compute subsequent discrete logarithms. Thus, the additional time needed for
every new DLP may be smaller than the time needed to solve the one before. A
careful analysis for this case is provided in §4. In §5 we consider the case where
the goal is to solve any one of a set of n DLPs in the same group using any DLP
algorithm.

2 Pollard’s Rho Algorithm

2.1 Basic Idea

Pollard’s rho algorithm is based on the birthday paradox. If we randomly choose
elements (with replacement) from a set of N numbered elements, we only need
to choose about

√
N elements until we get one element twice (called a colli-

sion). This can be applied to find discrete logarithms as follows. By choosing
a, b ∈R [0, N − 1], one obtains a random group element gahb. Such group ele-
ments are randomly selected until we get a group element twice. If gaihbi and
gajhbj represent the same group element then ai + bix ≡ aj + bjx (mod N),
whence

x = (aj − ai)(bi − bj)−1 mod N for bi 	≡ bj (mod N). (1)

Let T be the random variable describing the number of group elements chosen
until the first collision occurs. We denote the probability that T > k by pk. We
have

pk = 1
(

1 − 1
N

) (
1 − 2

N

)
· · ·

(
1 − k − 1

N

)
≈

(
1 − k − 1

2N

)k

≈ e− k2
2N . (2)

For k ∈ O(
√
N), the relative error of the above approximation is O(N−1/2).

As shown in Appendix B, the expected value of T is E(T ) ≈ √
πN/2. The first
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collision can be found by simply storing all the randomly selected group elements
until a repeat is detected. However, this simple-minded method has an expected
storage requirement of

√
πN/2 group elements.

2.2 The Single Processor Case

The question now is how to detect a collision without having to store
√
πN/2

group elements. In Pollard’s rho algorithm, this is done by means of a random
function1 f : G → G. For actual implementations, f is chosen such that it
approximates a random function as closely as possible. Further, it should be
calculated with a single group multiplication and map an element gahb to an
element gchd so that c and d can easily be computed from a and b. The originally
suggested function by Pollard (for Z

∗
p) can be generalized towards arbitrary cyclic

groups as

f(x) =



hx if x ∈ S1;
x2 if x ∈ S2;
gx if x ∈ S3.

Here, S1, S2 and S3 are three sets of roughly the same size which form a partition
of G. In [12,13], Teske shows that this function is not random enough and gives
a better function:

f(x) = x · gmshns , if x ∈ Ms for s ∈ {1, . . . , r} and r ≈ 20.

Here again, the Ms are of roughly the same size and form a partition of G. But
this time, G is partitioned into more than three subsets. For both functions, it is
of course necessary that determining the subset Mi, resp. Si, to which a group
element belongs is very efficient.

By starting at a random point ga0hb0 and iteratively applying a random
function, random points gaihbi are generated. Because the group is finite, we
eventually arrive at a point for the second time. The sequence of subsequent
points then cycle forever. From §2.1 we know that the first repeat happens after
an expected E(T ) ≈ √

πN/2 function applications. With very little time and
space overhead, it is possible to detect such a cycle with Floyd’s cycle-finding
algorithm (or with an improved variant by Brent [3]).

2.3 Parallelization of Pollard’s Rho Algorithm

Unfortunately, iteratively applying a function is an inherently serial process and
cannot efficiently be parallelized. If m processors run the Pollard-rho algorithm
as described above, the speed-up when compared to the single processor case is
only about

√
m. For, if the processors run the algorithm individually, the prob-

ability that none of them has found a collision after k steps is pm
k ≈ e−k2m/(2N).

This leads to an expected time of (
√
πN/2)/

√
m for finding the first collision.

1 A random function is a function that is chosen uniformly at random from the set of
all functions f : G → G.
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If, however, the processors communicate with each other, we can do better. If
we could detect and use any collision which occurs between two processors, the
speed-up to the single processor case would be a factor m because m processors
calculate m times as many points as a single processor does.

In [6], Wiener and van Oorschot presented a very elegant way of parallelizing
Pollard’s rho alorithm which is based on distinguished points. A distinguished
point is a group element with an easy testable property. An often used dis-
tinguishing property is whether a point’s binary representation has a certain
number of leading zeros. Each processor starts the iteration at a different ran-
dom element (but all have the same iteration function). As soon as the iteration
hits a distinguished point, this point will be sent to a central server and the
processor starts a new iteration. The server stores all collected points (ai, bi and
yi = gaihbi) in a hash table. As soon as the server has received the same point
twice, it has two representations gaihbi and gajhbj for a group element and can
calculate the discrete logarithm x of h as given in (1).

As soon as a point occurs in two iterations, the remainder of those two
iteration trails will be the same and thus lead to the same distinguished point.
Therefore, by performing the iterations, all processors calculate random group
elements of the form gahb and as soon as the same element has been calculated
twice, we are going to get the same distinguished point twice, as well. If the
two representations of the point, where the trails collided, are different, the
representations of this distinguished point are different too, and we are therefore
able to calculate x.

3 Analysis of the Parallelized Pollard’s Rho Algorithm

For our analysis, we make the following assumptions (cf. §3.3):

1. The iterative function really behaves like a random mapping and thus gen-
erates uniformly distributed random group elements.

2. All collisions are useful, i.e. the collision reveals two representations gaihbi

and gajhbj of a group element with bi 	≡ bj (mod N).
3. All trails lead to distinguished points (i.e., we neglect the existence of it-

eration paths which eventually run into a cycle that does not contain a
distinguished point).

We denote the number of processors by m. The proportion of the points that con-
stitute distinguished points is called θ (i.e., there are θN distinguished points).
Additionally, for the analysis, we assume that all processors operate at the same
speed.

3.1 Running Time

The runtime of the Pollard-rho algorithm can be divided into two statistically
independent phases. First, all processors have to calculate points until a collision
occurs. We already know that an expected

√
πN/2 points must be calculated
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for this part of the algorithm. Because all m processors calculate their points
independently, the expected time for this part is

√
πN/2/m function iterations.

After a collision, the iteration has to be continued until it arrives at a distin-
guished point. Because for each function application, the probability to come to
a distinguished point is θ, the number of steps from a collision to its detection
is a geometrically distributed random variable with expected value 1/θ.

The iteration function is such that the time for one function application is
equal to the time of one group operation plus a negligible overhead. Thus, the
overall expected value for the running time of the parallel Pollard-rho algorithm
is E(T ) = (

√
πN/2)/m+ 1/θ group operations.

3.2 Memory Requirements

Essentially, the only memory needed for the parallel version of Pollard’s rho
algorithm is that for storing the distinguished points on the server2. For ev-
ery iteration, the server has to store one distinguished point. The length of a
trail portion between distinguished points is geometrically distributed with pa-
rameter θ. Therefore, the expected length of such an iteration trail is 1

θ . This
means that for the whole duration of the algorithm, all processors will send a
distinguished point to the server every 1

θ group operations on average. There-
fore, because the time until a collision occurs and the average length of the trails
are assumed to be statistically independent, the expected space needed on the
server is E(S) = mθE(T ) = θ

√
πN/2 + m distinguished points. Note that for

each distinguished point, we have to store the group element gahb and the inte-
gers a and b. Therefore, the actual space needed to store one distinguished point
is O(logN) bits.

For the memory requirements to be as small as possible, we have to choose θ
as small as possible. But of course, if θ gets smaller, the time overhead 1

θ to detect
a collision gets bigger. In order to keep the overall running time in O(

√
N/m),

we have to choose θ in O(m/
√
N). Therefore, we choose θ as θ = αm/(

√
πN/2).

The expected values for time and space then become E(T ) = (1+ 1
α )

√
πN/2/m

and E(S) = m(1 + α). We see that there is a time-space trade-off. But even
if we choose the constant α quite big, the space requirements are still small.
Therefore, the limiting factor for solving discrete logarithms with the parallel
rho algorithm is definitely time.

Remark 1. We have assumed that all distinguished points are collected by a
single server. However, it is possible to parallelize the server side with no com-
munication overhead. Assume that k servers collect the distinguished points.
One could split up the distinguished point set D into k disjoint subsets Di of
roughly the same size. Server i would then only collect the points of Di. When
a client gets a distinguished point, it would have to check to which subset Di it
belongs and send it to the appropriate server. Checking if a new distinguished

2 All clients also need to store a description of the iteration function. This, however,
requires only O(log N) bits per client.
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point has already been computed previously can be done independently on each
server.

3.3 Assumptions of the Analysis

At the beginning of §3, we made three assumptions on which we based our time
and space analysis. We will now elaborate on how realistic these assumptions
are in an actual implementation.

Randomness of the function: For our analysis, we assumed that the iteration
function is perfectly random and therefore produces uniformly distributed group
elements. In [12,13], Teske shows that the function suggested by her behaves
practically like a truly random function if the group elements are partitioned
into about 20 subsets.

All collisions are useful: A collision reveals two representations of the form
gaihbi and gajhbj of the same group element. If bi 	≡ bj (mod N), the collision
can be used to calculate x. Because the bi are random elements of ZN , the
probability for this is 1 − 1

N . Therefore, the probability that a collision is not
useful is 1

N and thus negligible.

Each iteration reaches a distinguished point: In [9], Schulte-Geers shows
that the distinguished point set must be at least of size c

√
N while c should not

be too small. This is intuitively clear, since the only way for an iteration not
to arrive at a distinguished point is to end up in a cycle without distinguished
points, the expected length of which is

√
πN/8. The condition is certainly met

by our distinguished point set (c is αm
√

2/π in our case). Schulte-Geers also
finds that if we choose θ as described in §3.2, the proportion of starting points
with iterations that end up in distinguished points is 1/(1 + πN (0,1)2

2α2m2 ), where
N (0, 1) is a standard normally distributed random variable.

Further, Schulte-Geers shows that if θ � 1/
√
N , only a negligible number

of starting points will miss the distinguished point set. We could meet this re-
quirement by setting α to O(logN). The space requirements still remain very
small.

Additionally, van Oorschot and Wiener [6] suggest to abandon all trail por-
tions without a single distinguished point that are longer than k/θ, k times their
expected lengths. The proportion of time wasted through abandoned trails can
be estimated3 as k(1 − θ)k/θ ≈ ke−k which is very small.

3.4 Statistical Analysis

Until now, we have only considered expected values for time and space. We will
now have a look at the probability distributions of these.
3 Here, we assume the length of the trail portions between subsequent distinguished

points to be geometrically distributed. Note that this model is slightly inaccurate
since it implies that all such trail portions eventually lead to a distinguished point.
For reasonably chosen values of θ, the model will do, however, since the probability
of ending up in cycles without distinguished points is, indeed, very small.
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As already explained, the time for finding a discrete logarithm with parallel
Pollard-rho can be divided in two phases, the time until a collision occurs and
the time needed for its detection. We will first treat those phases individually. As
seen in §2.1, the probability that more than l points are needed for a collision is
pl ≈ e−l2/2N . Because in time k, mk points are calculated, the probability that

the time T1 for the first phase is longer than k is Pr{T1 > k} = pmk ≈ e− (mk)2

2N .
Because the time T2 for the second phase of detecting a collision is geometrically
distributed, the probability that T2 > k is Pr{T2 > k} = (1−θ)k. Therefore, the
probabilities that T1, resp. T2 are bigger than β times their expected values is:

Pr{T1 > (β
√
πN/2)/m} ≈ e−β2π/4 and Pr{T2 > β/θ} = (1 − θ)β/θ ≈ e−β .

(3)
For the probability for T2, given in (3), note that θ is very small and that
limx↓0(1 − x)β/x = e−β .

We want to avoid having to calculate exact probabilities for the overall time
T = T1 + T2. Therefore, we assume that α in §3.2 is chosen sufficiently large to
achieve a good running time. In this case, T1 dominates the time T and we can
approximate the probability that T > βE(T ) with Pr{T1 > βE(T1)}. Taking
Equation (3), we then get:

Pr{T > βE(T )} ≈ e−β2π/4. (4)

Table 1 gives samples of the probabilities for various values of β.

Table 1. Probabilities for the running time of Pollard’s rho algorithm.

β 1/100 1/10 1/3 1/2 1 3/2 2 3
Pr{T > βE(T )} 1.000 0.992 0.916 0.822 0.456 0.171 0.043 0.001

For space, exactly the same analysis holds. In fact, the space needed is very
close to mθT where T is the actual running time. This is because the length
of every iteration trail is geometrically distributed with parameter θ and the
lengths of different trails are statistically independent. By application of the
limit theorem, we get that the average length of the trails is very close to the
expected length.

4 Solving Multiple Instances of the DLP

In this section, we consider the situation where one wants to solve multiple, say
L, discrete logarithms in the same group (using the same generator). Hence,
we have a set of L group elements hi = gxi (where 1 ≤ i ≤ L) and we would
like to find all exponents xi. This can be done by solving each of the discrete
logarithms individually, using the rho algorithm. A better approach, however,



Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 219

is to take advantage of the distinguished points gathered during the solution of
the first k discrete logarithm problems using the rho algorithm, to speed up the
solution of the (k+1)st discrete logarithm. As soon as we find a discrete logarithm
xi = logg hi, we have a representation of the form gc for all distinguished points
gajh

bj

i that were calculated in order to find xi. The value of c is c = (aj +
xibj) mod N . If we now find a collision between a distinguished point gc and
a new one of the form gahb

k, we can calculate xk as xk = (c − a)b−1 mod N .
This method was also suggested by Silverman and Stapleton [11], although a
precise analysis has not been published. It seems obvious that the number of
operations required for solving each new logarithm will become smaller, if one
takes advantage of information gathered during previous computations. In this
section, we will provide an exact analysis for this case.

The number of points we have to calculate with the rho algorithm to find
L discrete logarithms is equal to the number of points we have to choose with
replacement out of a set with N numbers until we have chosen L numbers at
least twice (i.e. there are L collisions). We denote the expected value for the
number of draws W to find L collisions by E(W ) = EL.

Theorem 1. We have EL ≈ √
πN/2

∑L−1
t=0

(2t
t )

4t for L � 4
√
N .

Proof: Suppose that an urn has N differently numbered balls. We consider an
experiment where one uniformly draws n balls from this urn one at a time, with
replacement, and lists the numbers. It is clear that if one obtains k < n different
numbers after n draws, then n − k balls must have been drawn more than once
(counting multiplicity), i.e., n − k ‘collisions’ must have occurred. We will be
mainly interested in the probability distribution of the number of collisions as a
function of the number of draws.

Let qn,k denote the probability that one obtains exactly k differently num-
bered outcomes after n draws. For any fixed k-set, the number of ways to choose
precisely k differently numbered balls in n draws equals a(n, k), the number of
surjections from an n-set to a k-set. Hence, the number of possibilities to choose
exactly k different balls in n draws equals

(
N
k

)
a(n, k) and, therefore,

qn,k =
(
N

k

)
a(n, k)/Nn =

a(n, k)
k!Nn−k

N(N − 1) · · · (N − k + 1)
N · N · · ·N =

S(n, k)
Nn−k

pk,

where pk = (1 − 1/N)(1 − 2/N) · · · (1 − (k − 1)/N) is the probability of drawing
k differently numbered balls in k draws, and where S(n, k) := a(n, k)/k! is a
Stirling number of the second type (cf. Appendix A).

We now compute the expected number EL of draws until one obtains precisely
L collisions. Let Q+

n,n−L denote the probability that one requires more than n
draws in order to obtain L collisions. Hence

Q+
n,n−L =

L−1∑
t=0

qn,n−t. (5)
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Now, the probability that one needs exactly n draws in order to obtain L col-
lisions is given by Q+

n−1,n−1−L − Q+
n,n−L. As a result, the expected number of

draws that one needs in order to obtain L collisions is given by

EL =
∞∑

n=L

n(Q+
n−1,n−1−L − Q+

n,n−L) = (L − 1) +
∞∑

n=L−1

Q+
n,n−L.

From equation (5) we infer that Q+
n,n−(L+1) = Q+

n,n−L + qn,n−L, hence one
obtains

EL+1 − EL = 1 +
∞∑

n=L

Q+
n,n−(L+1) −

∞∑
n=L−1

Q+
n,n−L (6)

=
∞∑

n=L

qn,n−L =
∞∑

k=0

S(k + L, k)
NL

pk. (7)

Obviously, one has E0 = 0, hence we can compute EL via

EL =
L−1∑
t=0

∞∑
k=0

S(k + t, k)
N t

pk. (8)

We will now approximate EL based upon an approximation for Et+1 −Et (for
t < L). It will turn out that the relative error of our approximation is negligible
if L < cN

4
√
N (here 0 < cN < 1 is a small constant). We will use the fact that

for any fixed value of L, the Stirling number S(k + L, k) is a polynomial in k of
degree 2L. More specifically, one has (cf. Lemma 1 of Appendix A) that

S(k+L, k)=
1

2LL!

2L∑
j=0

ϕj(L)k2L−j , where ϕj(L)∈Q[x] has degree at most 2j.

A substitution in Equation (6) now yields

EL+1 − EL =
1

2LL!

2L∑
j=0

ϕj(L)√
N

j

∞∑
k=0

(
k√
N

)2L−j

pk. (9)

We will now approximate this expression, using approximations for pk and the
function ϕj(L). The inner summation can be approximated, using the approxi-
mation pk ≈ e−k2/2N and a Riemann integral. We have

∞∑
k=0

(
k√
N

)2L−j

pk ≈
∞∑

k=0

(
k√
N

)2L−j

e−k2/2N ≈
√
N

∞∫
x=0

x2L−je−x2/2dx=
√
NI2L−j ,
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where It is the value of the integral determined in Lemma 2.4 Substitution of
this approximation in Equation (9) now yields

EL+1 − EL ≈
√
N

1
2LL!

2L∑
j=0

ϕj(L)√
N

j
I2L−j

=
√
N

1
2LL!


 (2L)!
L!2L

√
π/2 +

2L∑
j=1

ϕj(L)√
N

j
I2L−j




=
√
πN/2

(2L
L

)
4L

(1 + o(1)) ≈
√
πN/2

(2L
L

)
4L

.

The latter approximation follows from the fact that ϕj(L) = 1 and that for
j > 0, ϕj(L) is a polynomial in L of degree at most 2j without a constant term
and, hence, ϕj(L)/(

√
N)j ≈ 0 if L � 4

√
N . Substituting this approximation in

Equation (8), we now find that

EL ≈
L−1∑
t=0

√
πN/2

(2t
t

)
4t

=
√
πN/2

L−1∑
t=0

(2t
t

)
4t

=
√
πN/2(2L − 1)

(2L−2
L−1

)
4L−1 ≈ (2/

√
π)

√
L

√
πN/2 =

√
2LN.

��
Remark 2. The above result gives a highly accurate estimate of the expected
time required to solve multiple instances of the discrete logarithm problem in
the same underlying group. Unfortunately, this does not give direct insight in
the probability distribution hereof. We should mention, however, that the same
techniques used above to estimate expected values can also be used to estimate
the vaiance of the probability distribution. It turns out that the variance, when
compared to the expected time, is relatively low, especially if the number L of
discrete logarithm problems one considers is not too small. Thus, the expected
value of the running time of Theorem 1 is a good approximation of practically
observed values (for L not too small). Full details will be provided in the full
paper, space permitting.

We can conclude from Theorem 1 that computing discrete logarithms itera-
tively, rather than independently, is advantageous, since the workload involved
in computing the t + 1st discrete logarithm, once the first t of these have been
solved, now becomes only 4−t

(2t
t

) ≈ 1/
√
πt times as much as the workload√

πN/2 required for computing a single discrete logarithm. Thus, we arrived
at a total workload for computing L discrete logarithms iteratively of approxi-
mately

√
2NL group operations, which is (2/

√
π) ·√L ≈ 1.128

√
L times as much

4 It turns out that the relative error of this approximation is O(() log(N)/
√

N). For
details, cf. Lemma 4 and its subsequent remark.
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as the workload for computing a single discrete logarithm. Thus, economies of
scale apply: computing L discrete logarithms iteratively comes at an average
cost per discrete logarithm of roughly

√
2N/L group operations, rather than

of approximately
√
πN/2 group operations (as is the case when computing dis-

crete logarithms independently). Our results hold for 0 < L < cN
4
√
N , where

0 < cN < 1 is some small constant.
Our extension of Pollard’s rho algorithm is a generic algorithm for solving

multiple instances of the discrete logarithm problem in finite cyclic groups. The
low average workload 5 we obtained for computing multiple discrete logarithms
seems to be counter-intuitive, since it seems to contradict Shoup’s result [10],
which gives a lower bound of Ω(

√
N) group operations required by generic al-

gorithms solving the discrete logarithm problem in groups of prime order N .
The result is explained by observing that the low average workload is due to the
fact that solving subsequent discrete logarithm problems requires relatively few
operations, once the first few discrete logarithms have been computed. Thus, the
bottleneck remains the computation of, e.g., the first discrete logarithm, which
in our case requires roughly

√
πN/2 = Ω(

√
N) group operations. It should be

noted, that Shoup’s result does not apply directly, since he addresses the sce-
nario of a single instance of the discrete logarithm problem, rather than that of
multiple instances hereof, which we address. Thus, one cannot a priori rule out
the existence of other generic algorithms that, given L instances of the discrete
logarithm problem in a group of prime order N , solve an arbitrary one of these
using only O(

√
N/L) group operations.

5 On the Complexity of DLP-like Problems

In the previous sections, we discussed the workload required for solving multiple
instances of the discrete logarithm problem with respect to a fixed generator
of a finite cyclic group of order N , using extensions of Pollard’s rho algorithm.
We found that computing discrete logarithms iteratively, rather than indepen-
dently, is advantageous. In §5.1 we will consider the problem of solving 1 out of
n instances of the discrete logarithm problem and several other relaxations of
the classical discrete logarithm problem (DLP) and consider the computational
complexity hereof. It turns out that these problems are all computationally as
hard as DLP. In particular, it follows that generic algorithms for solving each
of these relaxations of the discrete logarithm problem in a prime order group
require Ω(

√
N) group operations. In §5.2 we consider the generalization of the

classical discrete logarithm problem of solving k instances hereof (coined kDLP).
Again, we consider several relaxations of this so-called kDLP and discuss their
computational complexity. It turns out that, similar to the case k = 1, these
problems are all computationally as hard as solving kDLP. We end the section
with a conjectured lower bound Ω(

√
kN) on the complexity of generic algo-

5 The average workload per discrete logarithm is O(N3/8) group operations if one
solves L ≈ cN

4
√

N discrete logarithm problems iteratively.
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rithms for solving kDLP, which – if true – would generalize Shoup’s result for
DLP towards kDLP.

5.1 Complexity of Solving 1 of Multiple Instances of the DLP

We consider the following variations of the discrete logarithm problem:

1. (DLP-1) Solving a single instance of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group element h ∈R G.
Output: Integer x such that h = gx.

2. (DLP-2) Solving a single instance of the discrete logarithm problem (selected
arbitrarily from a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: Pair (j, xj) such that hj = gxj and such that 1 ≤ j ≤ n.

3. (DLP-3) Finding a discrete logarithm with respect to an arbitrary basis
element (selected from a set of m basis elements):

System: Cyclic group G; arbitrary generators g1, . . . , gm for G.
Input: Group element h ∈R G.
Output: Pair (i, x) such that h = gx

i and such that 1 ≤ i ≤ m.

4. (DLP-4) Finding a linear equation in terms of the discrete logarithms of all
group elements of a set of n instances of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: A linear equation

∑n
j=1 aj logg hj = b (with known values of

a1, . . . , an and b).

5. (DLP-5) Finding the differences of two discrete logarithms (selected arbi-
trarily from of a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: Triple (i, j, logg hi − logg hj), where 0 ≤ i 	= j ≤ n and where

h0 := g.

The following theorem relates the expected workloads required by optimal
algorithms for solving the discrete logarithm problem (DLP-1) and for solving
arbitrarily 1 out n instances of the discrete logarithm problem (DLP-2).
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Theorem 2. Let TDLP , resp. TDLP (1:n), be the expected workload of an optimal
algorithm for solving the discrete logarithm problem, resp. for arbitrary solving 1
out of n instances of the discrete logarithm problem. Then, one has TDLP (1:n) ≤
TDLP ≤ TDLP (1:n) + n (in group operations).

Proof: The inequality TDLP ≤ TDLP (1:n) + n follows from a reduction of an
instance of the DLP to an instance of the DLP(1:n). The other inequality follows
from the observation that DLP=DLP(1:1). Let h := gx be a problem instance
of DLP. We will reduce this to a problem instance h1, . . . , hn of DLP(1:n) as
follows: for all i, 1 ≤ i ≤ n, select the numbers ri uniformly at random from the
set {0, . . . , N − 1} and define hi := grih = gx+ri . Note that all hi are random,
since all x + ri are random and independent. Now apply an oracle that solves
DLP(1:n), to produce an output (j, xj), with xj := logg hj and with 1 ≤ j ≤ n.
Since hj = grjh and since rj is known, we get the required discrete logarithm x
as x ≡ xj − rj(mod N). ��
Corollary 1. The problem of solving arbitrarily 1 out of n instances of the
discrete logarithm is computationally as hard as solving the discrete logarithm
problem, provided n � TDLP . Moreover, any generic algorithm that solves this
problem in a group of prime order N requires at least Ω(

√
N) group operations.

Proof: The bound TDLP (1:n) = Ω(TDLP ) follows from Theorem 2 and the in-
equality n � TDLP . The lower bound on the required workload for a generic al-
gorithm that solves6 the relaxed discrete logarithm problem DLP(1:n) in groups
of prime order N follows from the corresponding result for the discrete logarithm
problem [10]. ��
Remark 3. In fact, one can show that Theorem 2 and Corollary 1 easily gener-
alize to each of the problems DLP-1, ..., DLP-5 above. In particular, one has
that each of the problems DLP-1, ..., DLP-5 is as hard as solving the discrete
logarithm problem, provided n,m � TDLP . Moreover, any generic algorithm
that solves any of the the problems DLP-1, ..., DLP-5 in a group of prime order
N requires at least Ω(

√
N) group operations.

Remark 4. One can show that each of the problems DLP-1, ..., DLP-5 can be
solved directly using Pollard’s rho algorithm, with starting points of the ran-
domized walks that are tailored to the specific problem at hand. In each case,
the resulting workload is roughly

√
πN/2 group operations.

5.2 Complexity of Solving Multiple Instances of the DLP

In the previous section, we related the workload involved in solving various
relaxations of the classical discrete logarithm problem. The main result was that
the problem of solving arbitrarily 1 out of n instances of the discrete logarithm
is computationally as hard as solving a single instance of the discrete logarithm
6 with a probability bounded away from zero
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problem. In this section, we consider the similar problem where we are faced
with solving k given instances of the discrete logarithm problem.
We consider the following variations of the discrete logarithm problem kDLP:

1. (kDLP-1) Solving k instances of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hk ∈R G.
Output: k pairs (i, xi) such that hi = gxi .

2. (kDLP-2) Solving k instances of the discrete logarithm problem (selected
arbitrarily from a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: k pairs (j, xj) such that hj = gxj , where j ∈ J and where J is

a k-subset of {1, . . . , n}.

3. (kDLP-3) Finding k discrete logarithms with respect to k arbitrary basis
elements (selected from a set of m basis elements):

System: Cyclic group G; arbitrary generators g1, . . . , gm for G.
Input: Group element h ∈R G.
Output: k pairs (i, xi) such that h = gxi

i , where i ∈ I and where I is a
k-subset of {1, . . . ,m}.

4. (kDLP-4) Finding k linear equations in terms of the discrete logarithms of
all group elements of a set of n instances of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: A set of k linear equations

∑n
j=1 aij logg hj = bi (with known

values of aij and bi).

5. (kDLP-5) Finding k differences of two discrete logarithms (selected arbitrar-
ily from of a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: A set of k triples (i, j, logg hi − logg hj), where 0 ≤ i 	= j ≤ n

and where h0 := g.

One can show that the results of the previous subsection carry over to this
section, as follows:

– Each of the problems kDLP-1, ..., kDLP-5 is as hard as solving k instances
of the discrete logarithm problem, provided kn, km, k2 � TDLP .

– Any generic algorithm for solving k instances of the discrete logarithm prob-
lem in a group of prime order N require at least Ω(

√
N) group operations.
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– Each of the problems kDLP-1, ..., kDLP-5 can be solved directly using the
extension of Pollard’s rho algorithm presented in §4, with starting points of
the randomized walks that are tailored to the specific problem at hand. In
each case, the resulting workload is roughly

√
2Nk group operations.

The proofs use constructions based on maximum distance separable codes (cf.,
e.g., [5]). Details will be included in the full paper.

The lower bound on the required workload for a generic algorithm that solves
k instances of the discrete logarithm problem is not very impressive: it derives
directly from Shoup’s lower bound Ω(

√
N) for solving a single discrete logarithm

(i.e., k = 1) . It would be of interest to find a stronger lower bound in this case.
Based on the workload involved in computing k discrete logarithm problems it-
eratively, we postulate that the ‘true’ lower bound is Ω(

√
kN). We suggest this

as an open problem.

Research Problem. Show that any generic algorithm that solves, with a prob-
ability bounded away from zero, k instances of the discrete logarithm problem
in groups of prime order N requires at least Ω(

√
kN) group operations.
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A Stirling Numbers

In this section, we introduce Stirling numbers. These numbers play an important
role in several parts of combinatorics. We mention several properties of these
numbers that will be used in the paper. For a detailed discussion, we refer to [4].

In the sequel, n and k denote non-negative integers. Let a(n, k) denote the
number of surjections from an n-set to a k-set. Obviously, one has a(n, k) = 0
if k > n and a(n, k) = n! if n = k. In general, one can use the principle of
inclusion-exclusion to show that

a(n, k) =
k∑

i=0

(−1)i

(
k

i

)
(k − i)n.

Let S(n, k) denote the number of ways to partition an n-set into k nonempty
subsets. The numbers S(n, k) are called Stirling numbers of the second kind.
Obviously, one has that S(n, k) = a(n, k)/k!. Moreover, by a simple counting
argument, one can show that

S(n, k) =
∑

1a1 + 2a2 + · · · + nan = n
a1 + a2 + · · · + an = k

n!
(1!)a1(2!)a2 . . . (n!)ana1!a2! . . . an!

. (10)

Our main interest is in those Stirling numbers S(n, k) for which n−k is relatively
small. The first few of these are

S(k, k) = 1;
S(k + 1, k) = 1

2 (k + 1)k = 1
2 (k2 + k);

S(k + 2, k) = 1
8 (k + 2)(k + 1)k(k + 1

3 ) = 1
8 (k4 + 10

3 k
3 + 3k2 + 2

3k);
S(k + 3, k) = 1

48 (k + 3)(k + 2)(k + 1)k(k2 + k)
= 1

48 (k6 + 7k5 + 17k4 + 17k3 + 6k2);
S(k + 4, k) = 1

384 (k + 4)(k + 3)(k + 2)(k + 1)k(k3 + 2k2 + 1
3k − 2

15 )
= 1

384 (k8 + 12k7 + 166
3 k6 + 616

5 k5 + 403
3 k4 + 60k3 + 4

3k
2 − 16

5 k).
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Computing S(k+L, k) for bigger values of L is quite cumbersome. Fortunately,
however, one can express S(k+L, k) as a polynomial in k with coefficients in L,
as is demonstrated by the following lemma.

Lemma 1. For all k, L ≥ 0, one has S(k + L, k) = 1
2LL!

2L∑
j=0

ϕj(L)k2L−j, where

ϕj(x) ∈ Q[x] has degree at most 2j (0 ≤ j ≤ 2L). For j > 0, one has x|ϕj(x).
The first few coefficients are

ϕ0(x) = 1, ϕ1(x) =
2
3
x2 +

1
3
x, ϕ2(x) =

2
9
x4 +

2
3
x3 − 2

1
18

x2 − 7
16

x.

Proof: To be provided in the full version of this paper. ��

B Approximations of Combinatorial Expressions

In this section, we provide approximations of some combinatorial expressions
that will be used in the paper and indicate the accuracy of these approximations.

Lemma 2. For all t ≥ 0, define It :=
∞∫

x=0
xte−x2/2dx. Then

I2t =
(2t)!
t!2t

√
π/2 and I2t−1 = (t − 1)!2t−1.

Proof: The result follows using partial integration and an induction argument.
For t > 1, one has It = (t − 1)It−2, since

It =

∞∫
x=0

xte−x2/2dx = −
∞∫

x=0

xt−1d(e−x2/2)

= [−xt−1e−x2/2]∞x=0 + (t − 1)

∞∫
x=0

xt−2e−x2/2dx = (t − 1)It−2.

Moreover, I0 =
√
π/2 and I1 = 1, since

I2
0 =




∞∫
x=0

e−x2/2dx




2

=

π/2∫
ϕ=0

∞∫
r=0

e−r2/2rdrdϕ = π/2 and

I1 = −
∞∫

x=0

d(e−x2/2) = 1.

The result now follows using induction. ��
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Lemma 3. Let N > 0, let t ∈ N. Then

1√
N

∞∑
k=0

(
k√
N

)t

e−k2/2N → It (N → ∞).

Proof: The result follows from the observation that the expression is a Riemann
sum that converges to It. ��

Lemma 4. Let N > 0, let t ∈ N, and let pk :=
k−1∏
i=0

(1 − i/N). Then

1√
N

∞∑
k=0

(
k√
N

)t

pk → It (N → ∞).

Proof: The result follows from Lemma 3, using the estimate pk ≈ e−k2/2N while
upper bounding the approximation error in the ‘tail’ of the summation. Details
will be provided in the full paper. ��
Remark 5. One can show that convergence is as follows:

1√
N

∞∑
k=0

(
k√
N

)t

pk = (1 + ε)It, where |ε| ∈ O(log(N)/
√
N).

Hence, for big values of N (as in our applications) the approximation of the
expression by It is almost precise.
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Abstract. For cryptographic applications, normal bases have received
considerable attention, especially for hardware implementation. In this
article, we consider fast software algorithms for normal basis multipli-
cation over the extended binary field GF(2m). We present a vector-level
algorithm which essentially eliminates the bit-wise inner products needed
in the conventional approach to the normal basis multiplication. We then
present another algorithm which significantly reduces the dynamic in-
struction counts. Both algorithms utilize the full width of the data-path
of the general purpose processor on which the software is to be exe-
cuted. We also consider composite fields and present an algorithm which
can provide further speed-up and an added flexibility toward hardware-
software co-design of processors for very large finite fields.

Keywords: Finite field multiplication, normal basis, software algo-
rithms, ECDSA, composite fields.

1 Introduction

The extended binary finite field GF(2m) of degree m is used in important cryp-
tographic operations, such as, key exchange, signing and verification. For today’s
security applications the minimum values of m are considered to be l60 in the
elliptic curve cryptography and 1024 in the standard discrete log based cryptog-
raphy. Elliptic curve crypto-systems use relatively smaller field sizes, but require
considerable amount of field arithmetic for each group operation (i.e., addition of
two points). In such crypto-systems, often the most complicated and expensive
module is the finite field arithmetic unit. As a result, it is important to de-
velop suitable finite field arithmetic algorithms and architectures that can meet
the constraints of various implementation technologies, such as, hardware and
software.
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For cryptographic applications, the most frequently used GF(2m) arithmetic
operations are addition and multiplication. Compared to the former, the latter
is much more complicated and time consuming operation. The complexity of
GF(2m) multiplication depends very much on how the field elements are rep-
resented. For hardware implementation of a multiplier, the use of normal bases
has received considerable attention and a number of hardware architectures and
implementations have been reported (see for example [1], [2], [7], [20]). A ma-
jority of such efforts were motivated by the fact that certain normal bases, e.g.,
optimal bases, yield area efficient multipliers, and that the field squaring, which
is heavily used in exponentiation and Frobenius mapping, is a simple cycle shift
of the field element’s coordinates and hence in hardware it is almost free of cost.
However, the task of implementing a normal basis multiplier in hardware poses a
number of challenges. For example, when one has to deal with very large fields,
the interconnections among the various parts of the multiplier could be quite
irregular which may slow down the clock speed. Also, normal basis multipliers
are not easily scalable with m. Given a normal basis multiplier designed for
GF(2233), one cannot conveniently make it usable for GF(2163) or GF(2283).
Unlike hardware, so far software implementation of a GF(2m) multiplier us-

ing normal bases has not been very efficient. This is mainly due to a number
of practical considerations. Most importantly, normal basis multiplication algo-
rithms require inner products or matrix multiplications over the ground field
GF(2). Such computations are not directly supported by most of today’s gen-
eral purpose processors. These computations require bit-by-bit logical AND and
XOR operations, which are not efficiently implemented using the instruction set
supported by the processors. Also, when a high level programming language,
such as, C is used, the cyclic shifts needed for field squaring operations, are not
as efficient as they are in hardware.
In this article, we consider algorithms for fast software normal basis multipli-

cation on general purpose processors. We discuss how the conventional bit-level
algorithm for normal basis multiplication fails to utilize the full data-path of the
processor and makes its software implementation inefficient. We then present a
vector-level normal basis multiplication algorithm which eliminates the matrix
multiplication over GF(2) and significantly reduces the number of dynamic in-
structions. We then derive another scheme for normal basis multiplication to
further improve the speed. We also consider normal basis multiplication over
certain special classes of composite fields. We show that normal basis multipli-
ers over such composite fields can provide an additional speed-up and a great
deal of flexibility toward hardware-software co-design of very large finite field
processors.

2 Preliminaries

2.1 Normal Basis Representation

It is well known that there exists a normal basis (NB) in the field GF (2m) over
GF (2) for all positive integers m. By finding an element β∈GF (2m) such that
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{β, β2, · · · , β2m−1} is a basis of GF (2m) over GF (2), any element A ∈ GF (2m)
can be represented as A =

∑m−1
i=0 aiβ

2i

= a0β + a1β
2 + · · ·+ am−1β

2m−1
, where

ai ∈ GF (2), 0 ≤ i ≤ m−1, is the i-th coordinate of A. In this article, this normal
basis representation of A will be written in short as A = (a0, a1, · · · , am−1). In
vector notation, element A will be written as A = a · βT = β · aT , where a =
[a0, a1, · · · , am−1], β = [β, β2, · · · , β2m−1

], and T denotes vector transposition.
Now, consider the following matrix

M = βT · β =
[
β2i+2j

]m−1

i,j=0
, (1)

whose entries belong to GF(2m). Writing these entries with respect to the NB,
one obtains the following.

M =M0β +M1β
2 + · · ·+Mm−1β

2m−1
, (2)

where Mi’s are m × m multiplication matrices whose entries belong to GF (2).
Let H(Mi), 0 ≤ i ≤ m − 1, be the number of 1’s (or Hamming weight) of Mi.
It is easy to verify that H(M0) = H(M1) = · · · = H(Mm−1). The number of
logic gates needed for the implementation of a NB multiplier depends on H(Mi)
which is referred to as the complexity of the normal basis. Let us denote this
complexity as CN . It was shown in [12] that CN ≥ 2m− 1. When CN = 2m− 1,
the NB is called an optimal normal basis (ONB).
Two types of ONBs were constructed by Mullin et al. [12]. Gao and Lenstra

[5] showed that these two types are all the ONBs in GF (2m). As an extension
of the work on ONBs, Ash et al. in [3] proposed low complexity normal bases of
type t where t is a positive integer. These low complexity bases are referred to as
Gaussian Normal Basis (GNB). When t = 1 and 2, the GNBs become the two
types of ONBs of [3]. A type t GNB for GF (2m) exists if and only if p = tm+1
is prime and gcd( tm

k , m) = 1, where k is the multiplicative order of 2 modulo p
[8]. More on this can be found in [3].

2.2 Conventional NB Multiplication Algorithm

Below we give the conventional normal basis multiplication algorithm as de-
scribed by NIST in [13]. This algorithm is for t even only (the reader is referred
to [8] for algorithm with t odd). The case of t even is of particular interest for
implementing high speed crypto-systems based on Koblitz curves. Such curves
with points over GF (2m) exist for m = 163, 233, 283, 409, 571, where normal
bases have t even. Note that in the following algorithm, p = tm+ 1, and A 	 i
(resp. A 
 i) denotes i-fold left (resp. right) cyclic shifts of the coordinates of
A. The algorithm requires the input sequence F (1), F (2), · · · , F (p − 1) to be
pre-computed using

F (2iuj mod p) = i, 0 ≤ i ≤ m − 1, 0 ≤ j < t, (3)

where u is an integer of order t mod p.
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Algorithm 1 (Bit-Level NB Multiplication)
Input: A, B ∈ GF (2m), F (n) ∈ [0, m − 1] for 1 ≤ n ≤ p − 1
Output: C = AB
1. Initialize C = (c0, c1, · · · , cm−1) := 0
2. For i = 0 to m − 1 {
3. For n = 1 to p − 2 {
4. ci := ci + aF (n+1)bF (p−n)
5. }
6. A 	 1, B 	 1
7. }
Software implementation of Algorithm 1 is not very efficient for the following

reasons. First, in each execution of line 4, one coordinate of each of A and
B are accessed. These accesses are such that their software implementation is
rather unsystematic and typically requires more than one instruction. Secondly,
in line 4 the mod 2 multiplication of the coordinates, which is implemented by
bit level logical AND operation, is performed m(p − 2) times in total, and the
mod 2 addition, which is implemented by bit level logical XOR operation, is
performed 1

4m(p−2) times, on average, assuming that A and B are two random
inputs. In the C programming language, these mod 2 multiplication and addition
operations correspond to aboutm(p−2) AND and 1

4m(p−2) XOR instructions1,
respectively.

3 Vector-Level NB Multiplication

In this section we discuss improvements to Algorithm 1 so that normal basis
multiplication can be efficiently implemented in software. One crucial improve-
ment is that most arithmetic operations are done on vectors instead of bits.
This enables us to use the full data-path of the processor on which the software
is executed. The assumption that t is even in Algorithm 1 is also used in the
remaining discussion of this section.

Lemma 1. For GNB of type t, where t is even, the sequence F (n) of p − 1
integers as defined above is mirror symmetric around the center, i.e., F (n) =
F (p − n), 1 ≤ n ≤ p − 1.
Proof. In (3), t is the smallest nonzero integer such that ut mod p = 1. Then
u

t
2 mod p must be equal to −1 . For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ t − 1, let

n = 2iuj mod p. Then F (n) = F (2iuj mod p) = i. Also, F (2iu
t
2+j mod p) = i.

Thus F (n) = F (2iu
t
2+j mod p) = F (−2iuj mod p) = F (p − n). ✷

From (3) and Lemma 1, one has F (1) = F (p − 1) = 0. For 1 ≤ n ≤ p − 2,
let us define

∆F (n) = F (n+ 1)− F (n) mod m. (4)

Now we have the following corollary.
1 These are dynamic instructions which the underlying processor needs to execute.
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Corollary 1. For ∆F (n) as defined above and for t even, the following holds

∆F (p − n) = m − ∆F (n − 1) mod m, 1 ≤ n ≤ p − 2.
Proof. Using (4), one obtains F (n+ 1) =

∑n
i=1∆F (i). Applying Lemma 1 into

(4), one can also write ∆F (p− n) = −∆F (n− 1) mod m, 2 ≤ n ≤ p− 1 which
results in∆F (p − n) = m − ∆F (n − 1), 2 ≤ n < p−1

2 , and ∆F (p−1
2 ) = 0. ✷

In Algorithm 1, the i-th coordinate of the product C = AB is computed in
its inner loop which can be written as follows

ci =
p−2∑
n=1

aF (n+1)+ibF (p−n)+i, 0 ≤ i ≤ m − 1. (5)

Using Lemma 1 and equation (4), one can write

ci =
p−2∑
n=1

aF (n+1)+ibF (n)+i, 0 ≤ i ≤ m − 1, (6)

=
p−2∑
n=1

aF (n)+∆F (n)+ibF (n)+i, 0 ≤ i ≤ m − 1. (7)

For a particular GNB, the values of ∆F (n), 1 ≤ n ≤ p− 2, are fixed and are
to be determined only once, i.e., at the time of choosing the basis. Additionally,
Corollary 1 implies that it is sufficient to store only half (i.e., p−1

2 ) of these
∆F (n)’s. We now state the vector-level algorithm for t even as follows. A similar
algorithm for odd values of t is given in [18].

Algorithm 2 (Vector-Level NB Multiplication)
Input: A, B ∈ GF (2m), ∆F (n) ∈ [0,m − 1], 1 ≤ n ≤ p − 1
Output: C = AB
1. Initialize SA := A, SB := B, C := 0
2. For n = 1 to p − 2 {
3. SA 	 ∆F (n)
4. R := SA � SB

5. C := C +R
6. SB 	 ∆F (n)
7. }
In line 4 of Algorithm 2, for X, Y ∈ GF (2m), X � Y denotes the bit-wise

AND operation between coordinates of X and Y , i.e., X� Y = (x0y0, x1y1, · · · ,
xm−1ym−1). In order to obtain an overall computation time for a GF (2m) multi-
plication using Algorithm 2, the coordinates of the field elements can be divided
into

⌈
m
ω

⌉
units where ω corresponds to the data-path width of the processor.

We assume that the processor can perform bit-wise XOR and AND of two ω-bit
operands using one single XOR instruction and one single AND instruction, re-
spectively. Since the loop in Algorithm 2, has p−2 iterations, the total number of
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bit-wise AND and bit-wise XOR instructions are the same and is (p − 2) ⌈
m
ω

⌉
=

(tm − 1) ⌈
m
ω

⌉
. Also, this algorithm needs 2 (p − 2) ⌈

m
ω

⌉
= 2 (tm − 1) ⌈

m
ω

⌉
cyclic

shifts. We assume that an i-fold, 1 ≤ i < ω, left/right shift can be emulated in
the C programming language using a total of ρ instructions. The value of ρ is
typically 4 when simple logical instructions, such as AND, SHIFT, and OR are
used. We can now state the following theorem.

Theorem 1. The dynamic instruction count for Algorithm 2 is given by

#Instructions ≈ 2(1 + ρ) (tm − 1)
⌈m
ω

⌉
.

4 Efficient NB Multiplication over GF (2m)

In this section, we develop another algorithm for normal basis multiplication. We
also analyze the cost of this algorithm in terms of dynamic instruction counts
and memory requirements and then compare them with those of similar other
algorithms.

4.1 Algorithm

For the normal basis {β, β21
, · · · , β2m−1}, let δj = β1+2j

, j = 1, · · · , v, where
v =

⌈
m−1
2

⌉
. Then one has the following result from [16].

Lemma 2. Let A and B be two elements of GF (2m) and C be their product.
Then

C =




∑m−1
i=0

[
aibiβ

2i+1
+

(∑v
j=1 xi,jδ

2i

j

)]
, for m odd∑m−1

i=0

[
aibiβ

2i+1
+

(∑v−1
j=1 xi,jδ

2i

j

)
+ aibv+iδ

2i

v

]
, for m even

where ai’s and bi’s are the NB coordinates of A and B, respectively. Also, indices
and exponents are reduced mod m and

xi,j = aibi+j + ai+jbi, 1 ≤ j ≤ v, 0 ≤ i ≤ m − 1. (8)

Let hj , 1 ≤ j ≤ v, be the number of 1’s in the normal basis representation
of δj . Let wj,1, wj,2, · · · , wj,hj denote the positions of 1’s in the normal basis
representation of δj , i.e.,

δj =
hj∑

k=1

β2wj,k
, 1 ≤ j ≤ v, (9)

where 0 ≤ wj,1 < wj,2 < · · · < wj,hj
≤ m − 1. Now, using (9) into Lemma 2, we

have the following for m odd.

C =
m−1∑

i=0

aibiβ
2i+1

+
m−1∑

i=0

v∑

j=1

xi,j




hj∑

k=1

β2wj,k





2i
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=
m−1∑

i=0

aibiβ
2i+1

+
m−1∑

i=0

v∑

j=1

xi,j




hj∑

k=1

β2i+wj,k





=
m−1∑

i=0

aibiβ
2i+1

+
v∑

j=1

hj∑

k=1

(
m−1∑

i=0

β2i+wj,k

)

. (10)

Also, for even values of m, one has v = m
2 and δv = δ2

m
2

v . This implies
that in the normal basis representation of δv, its i-th coordinate is equal to its
(m
2 + i mod m)-th coordinate. Thus, hv is even and one can write

δv =

hv
2∑

k=1

(β2wv,k + β2wv,k+v

), v =
m

2
. (11)

Now, using (11) into Lemma 2 (form even) and using (10), we have the following
theorem, where all indices and exponents are reduced modulo m.

Theorem 2. Let A and B be two elements of GF (2m) and C be their product.
Then

C =






∑m−1
i=0 aibiβ

2i+1
+
∑v

j=1

∑hj

k=1

(∑m−1
i=0 xi,jβ2i+wj,k

)
, for m odd

∑m−1
i=0 aibiβ

2i+1
+
∑v−1

j=1

∑hj

k=1

(∑m−1
i=0 xi,jβ2i+wj,k

)
+ F, for m even

(12)

where

F =

hv
2∑

k=1

v−1∑
i=0

xi,v(β2i+wv,k + β2i+wv,k+v

), and v =
m

2
.

Note that for a normal basis, the representation of δj is fixed and so is
wj,k, 1 ≤ j ≤ v, 1 ≤ k ≤ hj . Now, define

∆wj,k � wj,k − wj,k−1, 1 ≤ j ≤ v, 1 ≤ k ≤ hj , wj,0 = 0, (13)

where wj,k’s are as given in (9). For a particular normal basis, all wj,k’s are fixed.
Hence, all ∆wj,k’s need to be determined only at the time of choosing the basis.
Using ∆wj,k’s, below we present an efficient NB (ENB) multiplication algorithm
over GF (2m) for odd values of m. The corresponding algorithm for even values
of m is shown in [18]. Also, an efficient scheme to compute ∆wj,k’s is presented
in [18].

Algorithm 3 (ENB Multiplication for m Odd)
Input: A, B ∈ GF (2m), ∆wj,k ∈ [0,m−1], 1 ≤ j ≤ v, 1 ≤ k ≤ hj , v = m−1

2
Output: C = AB
1. Initialize C := A � B, SA := A, SB := B
2. C 
 1
3. For j = 1 to v {
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4. SA 	 1, SB 	 1
5. TA := A � SB , TB := B � SA

6. R := TA + TB

7. For k = 1 to hj {
8. R 
 ∆wj,k

9. C := C +R
10. }
11. }
In the above algorithm, shifted values of A and B are stored in SA and

SB , respectively. In line 6, R ∈ GF (2m) contains (x0,j , x1,j , · · · , xm−1,j), i.e.,∑m−1
i=0 xi,jβ

2i

. Also, right cyclic shift of R in lines 8, corresponds to∑m−1
i=0 xi,jβ

2i+wj,k
. After the final iteration, C is the normal basis representation

of the required product AB. To illustrate the operation of the above algorithm,
we present the following example.

Example 1. Consider the finite field GF (25) generated by the irreducible poly-
nomial F (z) = z5+z2+1 and let α be its root, i.e., F (α) = 0. We choose β = α5,
then {β, β2, β4, β8, β16} is a type 2 GNB. Here m = 5, and v = 5−1

2 = 2. Using
Table 2 in [12], one has

δ1 = β3 = β + β8, h1 = 2, [w1,k]h1
k=1 = [0, 3],

δ2 = β5 = β8 + β16, h2 = 2, [w2,k]h2
k=1 = [3, 4].

Let A = β2 + β4 + β8 = (01110) and B = β + β4 + β16 = (10101) be two field
elements. Table 1 shows contents of various variables of the algorithm as they
are updated. The row with j being ’-’ is for the initialization step (i.e., line 1)
of the algorithm.

Table 1. Contents of variables in Algorithm 3 for multiplication of A = (01110) and
B = (10101).

j SA SB TA TB k ∆wj,k R C

- 01110 10101 - - - - - 00010

1
11100 01011 01010 10100

1
2

0
3

11110
11110
11011

11100
00111

2
11001 10110 00110 10001

1
2

3
1

10111
11110
01111

11001
10110

As it can be seen in Algorithm 3, all ∆wj,k’s have to be pre-computed. In
the above example, they are determined by calculating δj ’s, which is essentially
a multiplication process all by itself. For this multiplication, one can use either
Algorithm 1 or Algorithm 2. However, an efficient scheme which does not need
multiplication is presented in [18].
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4.2 Cost and Comparison

In an effort to determine the cost of Algorithm 3, we give the dynamic instruction
counts for its software implementation. We also consider the number of memory
accesses to read the pre-computed values of ∆wj,k. For software implementation
of the above algorithm, one would heavily rely on instructions, such as, XOR,
AND and others which can be used to emulate cyclic shifts (in the C like pro-
gramming language). XOR instructions are needed in lines 6 and 9, which are re-
peated v and

∑v
j=1 hj times, respectively. Since v = m−1

2 and
∑v

j=1 hj = CN −1
2

[10], the total number of XOR instructions is 1
2 (CN + m − 1) ⌈ m

ω

⌉
. Because

of the � operations in lines 1 and 5, one can also see that the above algo-
rithm requires m

⌈
m
ω

⌉
AND instructions. We assume that each i-fold cyclic shift,

1 ≤ i ≤ m − 1, in lines 2, 4 and 8 needs ρ ⌈
m
ω

⌉
instructions where ρ is as de-

fined earlier. In Algorithm 3, the number of cyclic shifts in lines 2, 4 and 8 are
1, 2v and

∑v
j=1 hj , respectively. Thus, the total number of cyclic shifts in this

algorithm is 1 + 2v +
∑v

j=1 hj = 1
2 (CN + 2m − 1) and so the total number of

instructions to emulate cyclic shifts used in Algorithm 3 is ρ
2 (CN +2m−1) ⌈ m

ω

⌉
.

Based on the above discussion, we have the following theorem.

Theorem 3. The dynamic instruction count for Algorithm 3 is given by

#Instructions ≈
(
1 + ρ

2
CN +

3 + 2ρ
2

m − 2 + ρ

2

) ⌈m
ω

⌉
.

For software implementation of Algorithm 3, if the loops are not unrolled and
the values of ∆wj,k’s are not hard-coded, one needs to store all these ∆wj,k, 1 ≤
j ≤ v, 1 ≤ k ≤ hj . Since the total number of ∆wj,k’s is

∑v
j=1 hj and each

∆wj,k ∈ [0,m−1] needs 
log2m� bits of memory, a total of about CN −1
2 
log2m�

bits of memory is needed to store the pre-computed ∆wj,k’s.

Table 2. Comparison of multiplication algorithms in terms of number of instructions
and memory requirements.

Algorithms # Instructions Memory

XOR AND Others Size in bits # Accesses

Alg. 1 1
4 m (tm−1) m (tm−1) 2ρm

⌈
m
ω

⌉
(tm−1) �log2 m� 2m(tm−1)

Alg. 2 (tm−1)
⌈

m
ω

⌉
(tm−1)

⌈
m
ω

⌉
2ρ (tm−1)

⌈
m
ω

⌉
tm
2 �log2 m� tm

Alg. 3 1
2 (CN +m−2)

⌈
m
ω

⌉
m

⌈
m
ω

⌉
ρ
2 (CN +2m−1)

⌈
m
ω

⌉
CN −1

2 �log2 m� CN −1
2

Ratio of

Alg. 2 to Alg. 3
≈ 2t

t+1 ≈ t ≈ 4t
t+1 ≈ 1 ≈ 2

Table 2 compares the number of dynamic instructions of the three algorithms
we have described so far. This table also gives memory sizes and numbers of mem-
ory accesses of these algorithms. As it can be seen in Table 2, both our proposed
schemes (i.e., Algorithms 2 and 3) are superior to the conventional bit-level
multiplication scheme (i.e., Algorithm 1). The final row of Table 2 gives ap-
proximate improvement factors of Algorithm 3 to Algorithm 2. A more detailed
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comparison of these two algorithms are given in Table 3 for the five binary fields
recommended by NIST for ECDSA (elliptic curve digital signature algorithm)
[13]. We have also coded these algorithms in software using the C programming
language. Table 3 also shows timing (in µs) for these codes executed on Pen-
tium III 533 MHz PC2. Our codes are parameterized in the sense that they
can be used for various m and t without major modifications. For high speed
implementation, the codes can be optimized for special values of m and t.
Agnew et. al. in [1] have proposed a bit-serial architecture for the NB mul-

tiplication. Although their work has been targeted to hardware implementa-
tion, the main idea can be used for software implementation similar to the
vector level method proposed here. For such a software implementation of [1],
one would require (CN − 1) ⌈

m
ω

⌉
XOR instructions, m

⌈
m
ω

⌉
AND instructions,

and ρ (CN +m − 1) ⌈
m
ω

⌉
other instructions. Thus, the dynamic instruction count

would be (ρ+ 1) (CN +m − 1) ⌈
m
ω

⌉
which is about twice of that in Algorithm 3

(see Theorem 3). In [19], one can find software implementation of the NB multi-
plication for two special cases, namely, two optimal normal bases. The method
used in [19] is similar to that of the NB multiplication of [1].
Some of the recently proposed polynomial basis multiplication algorithms,

for example [6], [9], create a look-up table on the fly based on one of the inputs
(say B) and yield significant speed-ups by processing a group of bits of the other
input (i.e., A) at a time. At this point, it is not clear whether such a group-level
processing of A can be incorporated into our Algorithm 3. However, if m is a
composite number, then one can essentially achieve similar kind of group-level
processing by performing computations in the sub-fields. This idea is explored
in the following section.

Table 3. Comparison of the proposed algorithms for binary fields recommended by
NIST for ECDSA applications (ω = 32).

Algorithm 2,

Parameters Algorithm 3

# Instructions Memory Timing

m t CN XOR AND Others/ρ Total (ρ = 4) Size in bits # Accesses in µs Ratio

163 4 645
3906,

2418
3906,

978
7812,

2910
39060,

15036
2608,

2576
652,

322
307,

99
3.1:1

233 2 465
3720,

2784
3720,

1864
7440,

3720
37200,

19528
1864,

1856
466,

232
346,

126
2.75:1

283 6 1677
15273,

8811
15273,

2547
30546,

10089
152730,

51714
7641,

7542
1698,

838
1005,

318
3.16:1

409 4 1629
21255,

13234
21255,

5317
42510,

15899
212550,

82147
7362,

7326
1636,

814
1466,

473
3.1:1

571 10 5637
102762,

55854
102762,

10278
205524,

61002
1027620,

310140
28550,

28180
5710,

2818
8423,

2949
2.86:1

2 The PC has 64 M bytes of RAM, 32 K bytes of L1 cache and 512 K bytes of L2
cache.
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5 Efficient Composite Field NB Multiplication Algorithm

In this section, we consider multiplications in the finite field GF(2m) where m
is a composite number. These fields are referred to as composite fields and have
been used in the recent past to develop efficient multiplication schemes [14],
[15]. When these fields are to be used for elliptic curve crypto-systems, one must
choose m such that its factor are large enough to resist the attack described by
Galbraith and Smart [4].

Lemma 3. [11] Let gcd(m1,m2) = 1. Let N1 = {β2j

1 | 0 ≤ j ≤ m1 − 1} be
a normal basis of GF (2m1) over GF (2). Then N1 is also a normal basis of
GF (2m1m2) over GF (2m2).

Here, we consider composite fields with only two prime factors3 (i.e., bothm1
andm2 are prime). Thus, in the following we give all equations and algorithm for
odd degrees (i.e., m1 and m2). The reader can easily extend it for even degrees
using the results of the previous section. Also, the parameters, namely δj , hj , v,
β, and ∆wj,k of the previous section are used here in the context of the sub-fields
GF (2m1) and GF (2m2) by putting an extra sub/superscript for example δ(1)j for

GF (2m1) and δ(2)j for GF (2m2).
Let A and B be two elements of GF (2m1) over GF (2) and C be their product.

Then we have the following from [17].

C =
m1−1∑

i=0

aibiβ
2i

1 +
v1∑

j=1

h
(1)
j∑

k=1

(
m1−1∑

i=0

yi,jβ
2

i+w
(1)
j,k

1

)
, for m1 odd (14)

where
yi,j = (ai + ai+j)(bi + bi+j), 1 ≤ j ≤ v1, 0 ≤ i ≤ m1 − 1,

v1 =
m1 − 1
2

, β2j+1
1 =

h
(1)
j∑

k=1

β2
w

(1)
j,k

1 .

By combining Lemma 3 with (14), the following is obtained.

Lemma 4. Let A = (A0, A1, · · · , Am1−1) and B = (B0, B1, · · · , Bm1−1) be two
elements of GF (2m1m2) over GF (2m2) and C be their product. Then

C =
m1−1∑

i=0

AiBiβ
2i

1 +
v1∑

j=1

h
(1)
j∑

k=1

(
m1−1∑

i=0

Yi,jβ
2

i+w
(1)
j,k

1

)
, for m1 odd (15)

3 This is important for elliptic curve crypto-systems. For such systems in today’s
security applications, the values of m appear to be in the range of 160 to several
hundreds only (571 as given in [13]). To avoid the attack of [4], one however may like
to choose m such that it has no small factors such as 2, 3, 5, 7, 11. This basically
makes one to choose m as the product of two primes.
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where

Yi,j = (Ai +Ai+j)(Bi +Bi+j), 1 ≤ j ≤ v1, 0 ≤ i ≤ m1 − 1, (16)

and Ai = (ai,0, ai,1, · · · , ai,m2−1), Bi = (bi,0, bi,1, · · · , bi,m2−1) ∈ GF (2m2) are
sub-field coordinates of A and B.

Lemma 4 leads to an algorithm for multiplication in composite fields using
normal basis. The algorithm is stated below.

Algorithm 4 (ECFNB Multiplication of GF (2m1m2) over GF (2m2))
Input: A, B ∈ GF (2m), ∆w(1)

j,k ∈ [0,m1 − 1], 1 ≤ j ≤ v1, v1 = m1−1
2 , 1 ≤

k ≤ h
(1)
j

Output: C = AB
1. Initialize C := A ⊗ B, SA := A, SB := B
2. For j = 1 to v1 {
3. SA 	 m2, SB 	 m2
4. TA := A+ SA, TB := B + SB

5. R := TA ⊗ TB

6. For k = 1 to h(1)j {
7. R 
 m2∆w

(1)
j,k

8. C := C +R
9. }
10. }
In lines 1 and 5 of Algorithm 4, A ⊗ B = (A0B0, A1B1, · · · , Am1−1Bm1−1)

denotes parallel sub-field multiplications of A and B. This sub-field multiplica-
tion can be implemented with an extension of Algorithm 3 such that it produces
m1 sub-field multiplications over GF (2m2). This is shown in Algorithm 5 where
A ✄ i (resp. A ✁ i) 0 ≤ i ≤ m2 − 1, denotes an i-fold right (resp. left) sub-field
cyclic shift of all sub-field elements of A, i.e., A0, A1, · · · , Am1−1, respectively.

Algorithm 5 (Parallel Sub-Field Multiplication over GF (2m2))
Input: A, B ∈ GF (2m), ∆w(2)

j,k ∈ [0,m2 − 1], 1 ≤ j ≤ v2, 1 ≤ k ≤ h
(2)
j , v2 =

m2−1
2
Output: C = A ⊗ B
1. Initialize C := A � B, SA := A, SB := B
2. C ✄ 1
3. For j = 1 to v2 {
4. SA ✁ 1, SB ✁ 1
5. TA := A � SB , TB := B � SA

6. R := TA + TB

7. For k = 1 to h(2)j {
8. R ✄ ∆w

(2)
j,k

9. C := C +R
10. }
11. }
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In order to obtain the cost of Algorithm 4, we need to evaluate the cost of
Algorithm 5 which is called 1 + v1 = m1+1

2 times by the former. Like Algorithm
3, one can determine the dynamic instruction counts of Algorithm 5 to be 1

2 (C2+
m2 −2) XOR, m2 AND and 1

2 (C2+2m2 −1) others to emulate cyclic shifts. The
total cost of Algorithm 4 also depends on how sub-field elements, each ofm2 bits,
are stored in registers. For the sake of simplicity we assume that an element of
GF (2m2) is stored in one ω-bit register (for software implementation of elliptic
curve crypto-systems with both m1 and m2 being prime, most general purpose
processors would have ω bit registers where ω ≥ m2). For ω = 24 and 32, the
best values of m2 are those which have ONBs, i.e., 23 and 29, respectively. Thus,
each element of GF (2m) needs m1 registers and the cyclic shifts in lines 3 and
7 of Algorithm 4 are almost free of cost (or at best register renaming). Based
on this assumption, we give the dynamic instruction counts of Algorithm 4 in
Table 4. In this table, µ is the number of instructions needed for one sub-field
cyclic shift in each register and it is 4 in the C programming language.

Table 4. Cost of Algorithm 4.

XOR m1
2

[
(C1 + 2m1 − 3) + (m1+1)

2 (C2 + m2 − 2)
]

# Instructions AND m1m2(m1+1)
2

Others µm1
4 (m1 + 1)(C2 + 2m2 − 1)

Memory Size in bits C1−1
2 �log2 m1� + C2−1

2 �log2 m2�
# Accesses C1−1

2 + (m1+1)(C2−1)
4

Table 5 shows the number of instructions and memory requirements of Al-
gorithm 4 for six different composite fields. These six fields are obtained by
combining three m1’s and two m2’s. Algorithm 4 is also coded for these com-
posite fields using the C programming language. The actual timing (in µs) of
Algorithm 4 executed on Pentium III 533 MHz PC are also shown in Table 5.

Table 5. Cost of Algorithm 4 for certain composite fields (µ = 4).

Parameters # Instructions Memory Actual timing
m m1 m2 C1 C2 XOR AND Others Total Size in bits # Accesses (in µs)
299 13 23 45 45 3445 2093 16380 21918 198 176 114
377 ” 29 ” 57 4264 2639 20748 27651 228 218 150
391 17 23 81 45 6001 3519 27540 37060 310 238 188
437 19 ” 117 ” 7714 4370 34200 46284 400 278 249
493 17 29 81 57 7378 4437 34884 46699 340 292 242
551 19 ” 117 ” 9424 5510 43320 58254 430 338 309
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6 Conclusions

In this article, we have presented a number of software algorithms for normal
basis multiplication over GF (2m). Both Algorithms 2 and 3 make maximal use
of the full width of the data-path of the processor on which the software is to be
executed and they provide significant speed-ups compared to the conventional
bit-level multiplication scheme (i.e., Algorithm 1). Algorithms 2 and 3 are partic-
ularly suitable if m is a prime. Such values of m are of importance, especially for
designing high speed crypto-systems based on Koblitz curves and for protecting
elliptic curve crypto-systems against the attack of Galbraith and Smart [4]. Both
Algorithms 2 and 3 have been coded for software implementation using C, and
our timing results show that Algorithm 3 is about 200% faster that Algorithm
2. These results are for those five Gaussian normal bases over the binary fields
which NIST has described in their ECDSA document [13]. For the purpose of
using NIST parameters, although we have presented our results for Gaussian
normal bases, our algorithms are quite generic and can be used for any normal
bases of GF (2m) over GF (2).
We have also considered composite fields with m = m1 · m2. To avoid the

attack of [4] on elliptic curve crypto-systems defined over these composite fields,
we choose both m1 and m2 to be prime. We have presented an algorithm (i.e.,
Algorithm 4) for normal basis multiplication for GF (2m) over GF (2m2). Our
results show that for similar values of m, Algorithm 4 can be much more efficient
than Algorithm 3. For example, the actual timing of Algorithm 3 is 318 micro-
seconds for GF (2283) whereas the timing of Algorithm 4 is 114 micro-seconds
for GF (2299). Composite fields also provide an added flexibility to hardware-
software co-design of finite field processors. For example, Algorithm 5 which is
called by Algorithm 4 a total of m1+1

2 times, can be implemented in hardware
for small values of m2, and Algorithm 4 can be embedded in a micro-controller
which would give us a high speed, yet quite flexible, normal basis multiplier over
very large fields.
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Abstract. A new method for multiplication of large integers and de-
signed for efficient software implementation is presented and compared
with the well-known “schoolbook” method that is currently used for
both software and hardware implementations of public-key cryptographic
techniques. The comparison for the software-efficient method is made in
terms of the required number of basic operations on small integers. It
is shown that a significant performance gain is achieved by the new
software-efficient method for integers from 192 to 1024 bits in length,
which is the range of interest for all current public-key implementa-
tions. For 1024-bit integer multiplication, the savings over the schoolbook
method is conservatively estimated to be about 33%. A new method for
multiplication of large integers, which is analogous to the new software-
efficient method but is designed for efficient hardware implementation,
is also presented and compared to the schoolbook method in terms of
the number of processor clock cycles required.

1 Introduction

Multiplication of large integers plays a decisive role in the efficient implemen-
tation of all existing public-key cryptographic techniques such as the Diffie-
Hellman and the elliptic-curve key-agreement protocols and the Rivest-Shamir-
Adelman (RSA) cryptosystem. The standard “schoolbook” method of multi-
plication is today the most used method for integer multiplication in practical
public-key systems, cf. pp. 630-631 in [1]. For very large integers beyond the range
of practical interest in current cryptographic systems, more efficient methods of
multiplication are known, cf. [2]. One of these methods that has some practical
significance is that due to Karatsuba and Ofman [3], which reduces the asymp-
totic complexity of multiplying two N-bit integers to 0(N1.585) bit operations
compared to 0(N2) bit operations for the schoolbook method.

The main contribution of this paper is a new software-efficient method of mul-
tiplication that improves on the schoolbook method when used in any current
public-key cryptographic application. Section 2 provides a brief description of
the schoolbook and the Karatsuba-Ofman methods. In Section 3 we introduce
the new software-efficient method of multiplication and compare its complex-
ity with that of the schoolbook method. We also provide explicit performance
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figures for the new soft ware-efficient method and for the schoolbook method
for integers in the range from 192 to 1024 bits in length, which is the range
of interest for all current public-key techniques. In Section 4 we introduce a
new hardware-efficient method of multiplication, which is analogous to the new
software-efficient method, and we compare its complexity in hardware with that
of the schoolbook method.

2 Schoolbook and Karatsuba-Ofman Methods

Let β = 2w be the radix in which integers are represented for calculation. Nor-
mally, w is the word size in bits of the processor on which the algorithm is
implemented. By an n-symbol integer, we will mean an integer between 0 and
βn −1 inclusive, i.e., an integer that can be written as an n-place radix-β integer.
Note that a symbol is a w-bit integer and that an n-symbol integer is an N -bit
integer where N = nw.

Let A = (an−1, an−2, ..a0) and B = (bn−1, bn−2, ..b0), where ai and bi are
w-bit integers, be two n-symbol integers. The result of their multiplication is
the 2n-symbol integer A · B where

A · B =
n−1∑
i=0

aiβ
i

n−1∑
j=0

bjβj

or, equivalently,

A · B =
n−1∑
i=0

n−1∑
j=0

ai · bjβi+j . (1)

The schoolbook method of multiplication computes A · B essentially by carry-
ing out the n2 multiplications of w-bit integers in (1), one for each of the n2

terms, and adding coefficients of like powers of β. The schoolbook method thus
requires n2 multiplications of w-bit integers to calculate the product of two n-
symbol integers. The precise order in which the multiplications and additions
are carried out will not concern us here, but this order affects the “overhea d”
in implementing the schoolbook method.

For counting the number of additions required by the schoolbook method, it
is convenient first to write the 2w-bit integer ai · bj in (1) as ci,jβ + di,j where
ci,j and di,j are w-bit integers. Then (1) can be written as

A · B =
n−1∑
i=0

n−1∑
j=0

(ci,jβ + di,j)βi+j

=
n−1∑
i=0

n−1∑
j=0

ci,jβi+j+1 +
n−1∑
i=0

n−1∑
j=0

di,jβi+j (2)

We note that there are only 2n distinct powers of β among the 2n2 terms in (2).
Because each addition of coefficients of some power of β reduces the number of



Fast Multiplication of Integers for Public-Key Applications 247

terms by one, it follows that exactly 2n2 − 2n = 2n(n − 1) additions of w-bit
integers are required to add the coefficients of like powers of β in (2). Thus, the
schoolbook method requires 2n(n − 1) additions of w-bit integers to calculate
the product of two n-symbol integers. The additions of the terms in (2) with
coefficients ci,j are called “carry additions” because these terms originate from
the “overflow” into the next higher w-bits when two w-bit integers are multiplied.
Of the 2n(n − 1) additions of w-bit integers required by the schoolbook method,
exactly half are such carry additions. Finally, we note that each addition of w-bit
integers can result in a bit carry to another w-bit integer, which increments this
latter integer by 1. The schoolbook method requires a maximum of 2n(n − 1)
such carry-bit additions.

The Karatsuba-Ofman method [3] is a divide-and-conquer technique for com-
puting the components of C = A · B based on the following observation. Sup-
pose that A and B are n-symbol integers where n = 2t. Let A = β2t−1

A1 + A0
and B = β2t−1

B1 + B0 where A0, A1, B0 and B1 are 2t−1-symbol integers.
Then A · B = C2β2t

+ C1β2t−1
+ C0, where C0 = A0 · B0, C2 = A1 · B1, and

C1 = (A0 +A1) · (B0 +B1)−C0 −C2. It follows that C = A ·B can be computed
by performing three multiplications of 2t−1-symbol integers together with two
additions and two subtractions of such integers. This procedure is iterated con-
ceptually t times, i.e., until the integers reach the size of one symbol (w-bits), at
which point the multiplications and additions are actually performed. This algo-
rithm requires only 3t ≈ n1.585 multiplications of w-bit integers, compared to n2

such multiplications for the schoolbook method. Combining Karatsuba-Ofman
algorithm with schoolbook multiplication may have some practical significance.
However, the recursive nature of the Karatsuba-Ofman algorithm results in such
a significant overhead that its direct application to integers of the size used in
current public-key cryptography is not efficient, cf. pp. 630-631 in [1].

3 A Software-Efficient Multiplication Method

3.1 The Underlying Idea

Our new software-efficient multiplication method is based on the formula

A·B =
n−1∑
u=1

u−1∑
v=0

(au+av)·(bu+bv)βu+v+2
n−1∑
u=0

au ·buβ2u−
n−1∑
v=0

βv
n−1∑
u=0

au ·buβu. (3)

We will use the same notation here as we used for the schoolbook method except
that we will write the radix as β = 2W rather than as β = 2w for a reason that
will become apparent in Subsection 3.2.

It is easy to check by multiplying out and combining terms that (3) gives
the correct result for multiplication. We note here for future use that n(n − 1)/2
additions of W -bit integers are required to form the coefficients au+av in (3) and
another n(n−1)/2 such additions are required to form the coefficients bu+bv. To
facilitate the counting of multiplications and further additions of W -bit integers
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needed to implement the multiplication formula (3), it is convenient to write

au + av = acb
u,vβ + asum

u,v

where acb
u,v is the carry bit and asum

u,v is the least significant W -bits of the sum
of the W -bit integers au and av. Using analogous notation for the sum of the
W -bit integers bu and bv, we can write (3) in the manner

A · B =
n−1∑
u=1

u−1∑
v=0

(acb
u,vβ + asum

u,v ) · (bcbu,vβ + bsumu,v ) · βu+v

+2
n−1∑
u=0

au · buβ2u −
n−1∑
v=0

βv
n−1∑
u=0

au · buβu

or, equivalently,

A · B =
n−1∑
u=1

u−1∑
v=0

acb
u,vbcbu,vβu+v+2

+
n−1∑
u=1

u−1∑
v=0

(bcbu,vasum
u,v + acb

u,vbsumu,v )βu+v+1

+
n−1∑
u=1

u−1∑
v=0

asum
u,v · bsumu,v βu+v

+2
n−1∑
u=0

au · buβ2u

−
n−1∑
v=0

βv
n−1∑
u=0

au · buβu. (4)

The only multiplications of W -bit integers occur within the third, fourth
and fifth lines in (4). Each of the

(
n
2

)
= n(n−1)

2 terms in the third line requires
one such multiplication. Each of the n terms within the sum on u in the fourth
line also requires one such multiplication and these are the same products as
are required in the fifth line. Thus, to implement the multiplication formula (3)
requires a total of n(n−1)

2 + n = n(n+1)
2 multiplications of W -bit integers, which

we note is about half that required by the schoolbook method when we choose
W = w as is required for a direct comparison.

In counting additions of W -bit integers, we consider the worst case where all
the carry bits acb

u,v and bcbu,v are equal to 1. It is again convenient to write the
2W -bit integer au · bu in (4) as cuβ + du where cu and du are W -bit integers,
and to write asum

u,v · bsumu,v in (4) as csumu,v β + dsum
u,v where csumu,v and dsum

u,v are W -bit
integers. We can then rewrite (4) for this worst case as

A · B =
n−1∑
u=1

u−1∑
v=0

βu+v+2
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+
n−1∑
u=1

u−1∑
v=0

asum
u,v βu+v+1 +

n−1∑
u=1

u−1∑
v=0

bsumu,v βu+v+1

+
n−1∑
u=1

u−1∑
v=0

csumu,v βu+v+1 +
n−1∑
u=1

u−1∑
v=0

dsum
u,v βu+v

+
n−1∑
u=0

(cu + cu)β2u+1 +
n−1∑
u=0

(du + du)β2u

−
n∑

u=0

n−1∑
v=0

(cu−1 + du)βu+v

with the convention that cj = dj = 0 for j < 0 and for j ≥ n. Upon setting
eu = cu−1+du and then u = i−v in the last line, we can rewrite this equivalently
as

A · B =
n−1∑
u=1

u−1∑
v=0

βu+v+2

+
n−1∑
u=1

u−1∑
v=0

asum
u,v βu+v+1 +

n−1∑
u=1

u−1∑
v=0

bsumu,v βu+v+1

+
n−1∑
u=1

u−1∑
v=0

csumu,v βu+v+1 +
n−1∑
u=1

u−1∑
v=0

dsum
u,v βu+v

+
n−1∑
u=0

(cu + cu)β2u+1 +
n−1∑
u=0

(du + du)β2u

−
2n−1∑
i=0

[
n−1∑
v=0

ei−v]βi. (5)

The terms ei = ci−1 + di for i = 0, 1, . . . , n require n − 1 additions of W -bit
integers for their formation because the terms for i = 0 and i = n, namely d0
and cn−1 respectively, require no additions. We next consider the number of
additions of W -bit integers required to form the coefficients

si =
n−1∑
v=0

ei−v for i = 0, 1, . . . , 2n − 1

that appear in the fifth line of (5). We observe that we can rewrite this sum
separately over two ranges of the index as

si =
i∑

j=0

ei = si−1 + ei for i = 0, 1, . . . n − 1 (6)

and

s2n−1−i =
i∑

j=0

en−j = s2n−i + en−i for i = 0, 1, . . . n − 1. (7)
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where we have taken s0 = s2n = 0. We see that n−2 additions of W -bit integers
are required to form the nested sums in (6) and another such n − 2 additions
are required to form the nested sums in (7). Hence a total of 3(n − 1) additions
of W -bit integers are required to form all the coefficients in the fifth line of (5).

The summation in the first line of (5) concerns only carry bits, which we will
consider later. There are n(n − 1) terms in the second line, another n(n − 1)
terms in the third line, 4n terms in the fourth line, and 2n terms in the fifth
line—a total of 2n2 + 4n terms. But there are only 2n distinct powers of β in
(5) so that 2n2 + 4n − 2n = 2n2 + 2n additions of W -bit numbers are required
to combine the like powers of β. To this, we must add the n(n − 1) additions
of W -bit integers required to form the coefficients au + av and bu + bv in (3) as
well as the 3(n − 1) additions required to form the coefficients in the last line
of (5). This gives a total of 3n2 + 4n − 3 additions of W -bit integers required
to implement the multiplication formula (3). We note that this is greater by
a factor of about 3

2 than the 2n(n − 1) additions required by the schoolbook
method when we choose W = w as is required for a direct comparison.

Finally, we note that the first line of (5) specifies 1
2n(n−1) additions of carry

bits (in this worst case) and each of the 3n2+4n−3 additions of W -bit numbers
can also result in a carry bit. Thus, to implement the multiplication formula (3)
requires a maximum of 7

2n(n + 1) − 3 carry-bit additions.

3.2 Achieving Efficiency

As we have just seen, the direct implementation of formula (3) for multiplication
of nW -bit integers requires only about half as many multiplications, but about
50% more additions, of W -bit integers compared to the schoolbook method
when we take W = w. To convert the multiplication formula (3) into an efficient
method for multiplication of N -bit integers on a w-bit processor, we first set
N = nsw and then split the problem of multiplication into (1) the problem of
multiplying N -bit integers using a virtual processor with word size W = sw,
followed by (2) the problem of implementing the necessary multiplications and
additions of W -bit integers using the actual processor with word size w. We solve
the first problem by implementing the multiplication formula (3), after which we
solve the second problem by implementing the necessary multiplications of sw-bit
integers by the schoolbook method. We now count the number of multiplications
and additions of w-bit integers required by this “hybrid method” for multiplying
N -bit integers.

As was shown in Subsection 3.1, the multiplication of N -bit integers, where
N = nW , according to the multiplication formula (3) requires n(n+1)

2 multiplica-
tions of W -bit integers where W = sw. Each such multiplication when performed
by the schoolbook method requires s2 multiplications and 2s(s − 1) additions of
w-bit numbers, as well as 2s(s−1) carry-bit additions. Thus, the multiplications
performed in the first step of the hybrid method result intal numbers of w-bit
integer operations shown in the following table: The multiplication of N -bit
integers, where N = nW , according to the multiplication formula (3) requires
3n2 + 4n − 3 additions of W -bit integers where W = sw. Each such addition is
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multiplications additions carry-bit additions
1
2 s2n(n + 1) s(s − 1)n(n + 1) s(s − 1)n(n + 1)

equivalent to s additions of w-bit integers and s carry-bit additions. Thus, the
the additions performed in the first step of the hybrid method result in the total
numbers of w-bit integer operations shown in the following table: Finally, the

multiplications additions carry-bit additions
0 (3n2 + 4n − 3)s (3n2 + 4n − 3)s

multiplication of N -bit integers, where N = nW , according to the multiplica-
tion formula (3) requires in the worst case 7

2n(n + 1) − 3 carry-bit additions for
W -bit integers where W = sw. Each such carry-bit addition for sw-bit integers
is equivalent to a single carry-bit addition for w-bit integers so that the carry-
bit additions performed in the first step of the hybrid method result in the total
numbers of w-bit integer operations shown in the following table:

multiplications additions carry-bit additions
0 0 7

2 n(n + 1) − 3

Tallying the counts in the three previous tables gives the figures shown in
the following table:

For ease of comparison, we include here the table of counts for schoolbook
method as calculated in Section 2.

3.3 Numerical Examples

Example 1: Consider the multiplication of 1024-bit integers [where we note that
1024 is a length commonly used for current implementations of the RSA cryp-
tosystem and of the Diffie-Hellman key agreement protocol] on a processor with
word size w = 16 bits. As a basis for comparison, we assume that one 16-bit
addition constitutes 1 unit of computation as also does one carry-bit addition,
but that one 16-bit multiplication constitutes 2 units of computation.

The specifications N = nsw = 1024 and w = 16 give ns = 64 and hence
the allowed values of (n, s) are (1, 64), (2, 32), (4, 16), (8, 8), (16, 4), (32, 8) and
(64, 1). Calculating the cost for each of these choices with the aid of the values
in Table 1 shows that the choice n = s = 8 yields the minimum cost of 16,457
computational units for the new software-efficient method, but the choice n = 4
and s = 16 is nearly as good with a cost of 16,739 units. For the choice n =
s = 8, the number of multiplications, additions and carry-bit additions are 2304,
5800 and 6049, respectively. By comparison, we calculate from Table 2 that the
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Table 1. Total counts of w-bit integer operations for the software-efficient multiplica-
tion method for nsw-bit integers

multiplications additions carry-bit additions
1
2 s2n(n + 1) s[(s + 2)n2 + (s + 3)n − 3] s[(s + 2)n2 + (s + 3)n − 3]

+ 7
2 n(n + 1) − 3

Table 2. Total counts of w-bit integer operations for the schoolbook multiplication
method for nsw-bit integers

multiplications additions carry-bit additions
(sn)2 2sn(sn − 1) 2sn(sn − 1)

schoolbook method has a cost of 24,320 computational units arising from the
4096 multiplications, 8064 additions, and 8064 carry-bit additions that must
be performed. In this example, the new software-efficient multiplication method
uses about one-third less computation than does the schoolbook method.

Example 2: Consider the multiplication of 192-bit integers [which is one of the
lengths for the Elliptic curve system recommended for the FIPS 186-2 standard]
on a processor with word size w = 8 bits. Again we assume that one 8-bit
addition or one carry-bit addition constitutes 1 unit of compution, but that one
8-bit multiplication constitutes 2 units of computation.

The specifications N = nsw = 192 and w = 8 give ns = 24 and hence the
allowed values of (n, s) are (1, 24), (2, 12), (3, 8), (4, 6), (6, 4), (8, 3), (12, 2) and
(24, 1). Calculating the cost for each of these choices with the aid of the values
in Table 1 shows that the choice n = 4 and s = 6 yields the minimum cost of
2719 computational units for the new software-efficient method, but the choice
n = 3 and s = 8 is virtually as good with a cost of 2727 units. For the choice
n = 4 and s = 6, the number of multiplications, additions and carry-bit additions
are 360, 966 and 1033, respectively. By comparison, we calculate from Table 2
that the schoolbook method has a cost of 3360 computational units arising from
the 576 multiplications, 1104 additions, and 1104 carry-bit additions that must
be performed. In this example, the new software-efficient multiplication method
uses about 19% less computation than does the schoolbook method.

It should be pointed out that actual performance results for the new software-
efficient multiplication method may well be substantially better than predicted by
our analysis, which was made using worst-case assumptions. For instance, our
8-bit implementation of the new software-efficient multiplication method on a
Pentium 2 processor for the parameters of Example 2 actually used about 40%
less computation than did the schoolbook method, rather than only 19% less as
our analysis had predicted.
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4 A Hardware-Efficient Multiplication Method

The following formula, analogous to (3), is the basis for our new hardware-
efficient method of multiplication:

A · B = (
n−1∑
v=0

βv)(
n−1∑
u=0

au · buβu) +
n−1∑
u=1

u−1∑
v=0

(au − av) · (bv − bu)βu+v. (8)

The complexity of implementing multiplication according to (8) is comparable to
that for implementing multiplication according to (3). Which method is superior
depends on the computational environment. For example, using (8) will give
fewer carry-bit additions but will require sign checks. In general the use of (8)
is better suited to hardware implementations and therefore we now analyze the
use of (8) in a hardware implementation by estimating the number of clock
cycles needed to multiply two N -bit numbers A and B. We will compare this
performance to a hardware implementation of the schoolbook method using the
shift-and-add technique, which requires N clock cycles when all N bits can be
processed in parallel.

Let N = nW and consider the multiplication formula (8) where ai and bi are
W -bit numbers. Calculating all n(n−1) required differences (ai−aj) and (bi−bj)
in the second double summation of (8) requires n(n−1)

n = n − 1 clock cycles if
the same resources as for the schoolbook method are used. Formula (8) requires
n(n+1)

2 multiplications of W -bit numbers. Because n such multiplications can be
performed in parallel, another W � (n+1)

2 � clock cycles are needed. Summing the
results of these multiplications requires in the worst case an additional n(n+1)

2
clock cycles. The total number of clock cycles required for the multiplication
A · B is thus

W (� (n + 1)
2

�) +
n(n + 1)

2
+ n − 1, (9)

which is about half that required by the schoolbook method for large N = nW .

Example 3: Suppose that A and B are 1024 bit numbers and consider the choice
W = 128 and n = 8. Multiplication according to (9) requires at most 683 clock
cycles compared to 1024 clock cyles for the schoolbook method using the shift-
and-add technique, a reduction of 33%.

5 Conclusion

The analyses of the new software-efficient multiplication method and of the new
hardware-efficient multiplication method both show that a significant perfor-
mance improvement over the schoolbook method can be obtained for all current
applications in public key cryptography. Moreover, our complexity estimates for
the new methods are conservative–actual gains can exceed those predicted, as
was pointed out in Example 2.
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Abstract. We propose a new method to compute x-coordinate of kP +
lQ simultaneously on the elliptic curve with Montgomery form over IFp

without precomputed points. To compute x-coordinate of kP + lQ is re-
quired in ECDSA signature verification. The proposed method is about
25% faster than the method using scalar multiplication and the recovery
of Y -coordinate of kP and lQ on the elliptic curve with Montgomery
form over IFp, and also slightly faster than the simultaneous scalar mul-
tiplication on the elliptic curve with Weierstrass form over IFp using
NAF and mixed coordinates. Furthermore, our method is applicable to
Montgomery method on elliptic curves over IF2n .

1 Introduction

Elliptic curve cryptography was first proposed by Koblitz [10] and Miller [15]. In
recent years, efficient algorithms and implementation techniques of elliptic curves
over IFp [3,4], IF2n [7,13] and IFpn [2,9,12] has been investigated. In particular,
the scalar multiplication on the elliptic curve with Montgomery form over IFp

can be computed efficiently without precomputed points [16], and is immune to
timing attacks [11,17]. This method is extended to elliptic curves over IF2n [14].

We need to compute kP + lQ, where P and Q are points on the elliptic
curve and k, l are integers less than the order of the base point, in Elliptic
Curve Digital Signature Algorithm (ECDSA) signature verification [1]. On the
elliptic curve with Weierstrass form, kP + lQ can be efficiently computed by a
simultaneous multiple point multiplication [3,7,19], which we call a simultaneous
scalar multiplication. On the other hand, the simultaneous scalar multiplication
on the elliptic curve with Montgomery form has not been proposed yet. Then
we propose it and call it Montgomery simultaneous scalar multiplication. This
method is about 25% faster than the method using Montgomery scalar multi-
plication and the recovery of Y -coordinate of kP and lQ, and about 1% faster
than Weierstrass simultaneous scalar multiplication over IFp using NAF [8] and
mixed coordinates [4]. Moreover, our method is applicable to elliptic curves over
IF2n .

This paper is described as follows. Section 2 presents preliminaries including
arithmetic over the elliptic curve with Montgomery form and Weierstrass form.
In Section 3, we describe the new method, Montgomery simultaneous scalar

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 255–267, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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multiplication. Section 4 presents comparison of our method with others and
Section 5 presents implementation results. We then apply our method to elliptic
curves over IF2n in Section 6 and conclude in Section 7.

2 Preliminaries

2.1 Elliptic Curve with Montgomery Form

Montgomery introduced the new form of elliptic curve over IFp [16]. For A, B ∈
IFp, the elliptic curve with Montgomery form EM is represented by

EM : By2 = x3 + Ax2 + x ((A2 − 4)B �= 0). (1)

We remark that the order of any elliptic curve with Montgomery form is always
divisible by 4.

In affine coordinates (x, y), the x-coordinate of the sum of the two points on
EM can be computed without the y-coordinates of these points if the difference
between these points is known. Affine coordinates (x, y) can be transformed into
projective coordinates (X, Y, Z) by x = X/Z, y = Y/Z. Equation (1) can also be
transformed as

EM : BY 2Z = X3 + AX2Z + XZ2.

Let P0 = (X0, Y0, Z0) and P1 = (X1, Y1, Z1) be points on EM and P2 =
(X2, Y2, Z2) = P1 + P0, P3 = (X3, Y3, Z3) = P1 − P0. Addition formulas and
doubling formulas are described as follows.

Addition formulas P2 = P1 + P0 (P1 �= P0)

X2 = Z3((X0 − Z0)(X1 + Z1) + (X0 + Z0)(X1 − Z1))2

Z2 = X3((X0 − Z0)(X1 + Z1) − (X0 + Z0)(X1 − Z1))2 (2)

Doubling formulas P2 = 2P0

4X0Z0 = (X0 + Z0)2 − (X0 − Z0)2

X2 = (X0 + Z0)2(X0 − Z0)2

Z2 = (4X0Z0)((X0 − Z0)2 + ((A + 2)/4)(4X0Z0))

P2 = (X2, Z2) can be computed without Y -coordinate. Since the computational
cost of a field addition and subtraction is much lower than that of a field multi-
plication and squaring, we can ignore it. The computational cost of the addition
formulas is 4M +2S, where M and S respectively denote that of a field multipli-
cation and squaring. If Z3 = 1, the computational cost of the addition formulas
is 3M +2S. If (A+2)/4 is precomputed, the computational cost of the doubling
formulas is also 3M + 2S.

Let (kt · · · k1k0)2 be the binary representation of k with kt = 1. To compute
the scalar multiplication kP from P = (x, y), we hold {miP, (mi+1)P} for mi =
(kt · · · ki)2. If ki = 0, miP = 2mi+1P and (mi + 1)P = (mi+1 + 1)P + mi+1P .
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Otherwise, miP = (mi+1+1)P +mi+1P and (mi+1)P = 2(mi+1+1)P . We can
compute {kP, (k+1)P} from {P, 2P}. Montgomery scalar multiplication requires
the addition formulas t − 1 times and the doubling formulas t times. Since the
difference between (mi+1 + 1)P and mi+1P is P , we can assume (X3, Z3) =
(x, 1) in addition formulas (2). The computational cost of Montgomery scalar
multiplication kP is (6|k| − 3)M + (4|k| − 2)S, where |k| is the bit length of k.

In ECDSA signature verification, we need to compute x-coordinate of kP +
lQ, where P, Q are points on the elliptic curve and k, l are integers less than
the order of the base point. kP and lQ can be computed using Montgomery
scalar multiplication, but kP + lQ cannot be computed from kP and lQ using
formulas (2) because the difference between kP and lQ is unknown. Therefore,
the recovery of Y -coordinate of kP and lQ is required to compute kP + lQ from
kP and lQ using other addition formulas. The method of recovering Y -coordinate
is described in [18]. If kP = (X0, Z0), (k + 1)P = (X1, Z1) and P = (x, y), we
can recover Y -coordinate of kP = (X, Y, Z) as:

X = 2ByZ0Z1X0

Y = Z1((X0 + xZ0 + 2AZ0)(X0x + Z0) − 2AZ0
2) − (X0 − xZ0)2X1

Z = 2ByZ0Z1Z0

The computational cost of recovering Y -coordinate is 12M + S.
To compute x-coordinate of kP + lQ, we require these 6 steps.

Step1 Compute kP using Montgomery scalar multiplication
Step2 Recover Y -coordinate of kP
Step3 Compute lQ using Montgomery scalar multiplication
Step4 Recover Y -coordinate of lQ
Step5 Compute kP + lQ from kP and lQ in projective coordinates
Step6 Compute x-coordinate of kP + lQ using x = X/Z

The computational cost of Step5 is 10M + 2S and that of Step6 is M + I,
where I denotes that of a field inversion. We can assume |k| = |l| without loss of
generality. The computational cost of x-coordinate of kP + lQ is (12|k|+29)M +
8|k|S + I.

2.2 Simultaneous Scalar Multiplication on Elliptic Curve
with Weierstrass Form

For a, b ∈ IFp, the elliptic curve with Weierstrass form EW is represented by

EW : y2 = x3 + ax + b (4a2 + 27b3 �= 0).

We remark that all elliptic curves with Montgomery form can be transformed
into Weierstrass form, but not all elliptic curves with Weierstrass form can be
transformed into Montgomery form.

kP + lQ can be computed simultaneously on the elliptic curve with Weier-
strass form without precomputed points [19]. This method is known as Shamir’s
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trick [5]. On the elliptic curve with Weierstrass form over IFp, the most effec-
tive method computing kP + lQ without precomputed points is the simulta-
neous scalar multiplication using non-adjacent form (NAF) (k′

t′ · · · k′
1k′

0), where
k′

i ∈ {0, ±1} (0 ≤ i ≤ t′), and mixed coordinates [4]. In [3], Weierstrass si-
multaneous scalar multiplication using window method and mixed coordinates
is described. This method is faster than Weierstrass simultaneous scalar mul-
tiplication using NAF, but requires much more memories where the points are
stored. That is why we pick Weierstrass simultaneous scalar multiplication using
NAF and mixed coordinates in this section.

NAF has the property that no two consecutive coefficients k′
i are non-zero

and the average density of non-zero coefficients is approximately 1/3. In mixed
coordinates, we use the addition formulas of Jm ← J + A for the additions,
the doubling formulas of J ← 2Jm for the doublings ahead of addition, and the
doubling formulas of Jm ← 2Jm for the doublings ahead of doubling, where
J , A, and Jm respectively denote Jacobian coordinate, affine coordinate, and
modified Jacobian coordinate. This method is described as follows.

Algorithm 1: Weierstrass Simultaneous Scalar Multiplication using NAF and
mixed coordinates
Input: k = (kt · · · k1k0)2, l = (lt · · · l1l0)2, P, Q ∈ EW (kt or lt = 1).
Output: x-coordinate of W = kP + lQ.

1. Compute P + Q, P − Q.
2. Let (k′

t′ · · · k′
1k′

0) and (l′
t′ · · · l′

1l′
0) be NAF of k and l (k′

t′ or l′
t′ = 1).

3. W ← k′
t′P + l′

t′Q.
4. For i from t′ − 1 downto 0 do

4.1 if (k′
i, l′

i) = (0, 0) then
W ← 2W (Jm ← 2Jm);

4.2 else then
W ← 2W (J ← 2Jm),
W ← W + (k′

iP + l′
iQ) (Jm ← J + A).

5. Compute x-coordinate of W .

At step 1, P + Q, P − Q are computed in affine coordinates and their com-
putational cost is 4M +2S + I. In mixed coordinates, the computational cost of
the addition formulas of Jm ← J + A, the doubling formulas of J ← 2Jm, and
the doubling formulas of Jm ← 2Jm are respectively 9M + 5S, 3M + 4S, and
4M+4S. Since the probability that (k′

i, l′
i) = (0, 0) is (1−1/3)2 = 4/9, we repeat

step 4.1 4|k|/9 times and step 4.2 5|k|/9 times if t′ = t + 1. The computational
cost of step 4.1 is (4|k|/9)·(4M+4S) and that of step 4.2 is (5|k|/9)·(12M+9S).
This shows that the computational cost of step 4 is 76|k|/9 ·M +61|k|/9 ·S. The
computational cost of step 5 is M +S+I by x = X/Z2. Therefore, the computa-
tional cost of x-coordinate of kP +lQ is (76|k|+45)/9·M+(61|k|+27)/9·S+2I.
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3 Proposed Method —
Montgomery Simultaneous Scalar Multiplication

Now we propose the new method to compute kP + lQ simultaneously on the
elliptic curve with Montgomery form over IFp.

At first, we define a set of four points Gi,

Gi =




miP + niQ,
miP + (ni + 1)Q,
(mi + 1)P + niQ,

(mi + 1)P + (ni + 1)Q




, (3)

for mi = (kt · · · ki)2, ni = (lt · · · li)2. Now, we present how to compute Gi from
Gi+1 in every case of (ki, li).

1. (ki, li) = (0, 0)
Since mi = 2mi+1 and ni = 2ni+1, we can compute all elements of Gi from
Gi+1 as:

miP + niQ = 2(mi+1P + ni+1Q)
miP + (ni + 1)Q = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)
(mi + 1)P + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)

(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q)

All elements of Gi can be computed without (mi+1 + 1)P + (ni+1 + 1)Q ∈
Gi+1.

2. (ki, li) = (0, 1)
Since mi = 2mi+1 and ni = 2ni+1 + 1, we can compute all elements of Gi

from Gi+1 as:

miP + niQ = (mi+1P + (ni+1 + 1)Q)) + (mi+1P + ni+1Q)
miP + (ni + 1)Q = 2(mi+1P + (ni+1 + 1)Q)
(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)

(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ (mi+1P + (ni+1 + 1)Q)

All elements of Gi can be computed without (mi+1 + 1)P + ni+1Q ∈ Gi+1.

3. (ki, li) = (1, 0)
Since mi = 2mi+1 + 1 and ni = 2ni+1, we can compute all elements of Gi

from Gi+1 as:

miP + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)
miP + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)
(mi + 1)P + niQ = 2((mi+1 + 1)P + ni+1Q)

(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ ((mi+1 + 1)P + ni+1Q)
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All elements of Gi can be computed without mi+1P + (ni+1 + 1)Q ∈ Gi+1.

4. (ki, li) = (1, 1)
Since mi = 2mi+1 + 1 and ni = 2ni+1 + 1, we can compute all elements of
Gi from Gi+1 as:

miP + niQ = ((mi+1 + 1)P + ni+1Q))
+ (mi+1P + (ni+1 + 1)Q)

miP + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ (mi+1P + (ni+1 + 1)Q)

(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ ((mi+1 + 1)P + ni+1Q)

(mi + 1)P + (ni + 1)Q = 2((mi+1 + 1)P + (ni+1 + 1)Q)

All elements of Gi can be computed without mi+1P + ni+1Q ∈ Gi+1.

In every case, all elements of Gi can be computed from Gi+1 without (mi+1+
1 − ki)P + (ni+1 + 1 − li)Q ∈ Gi+1. When we define a set of three points G′

i,

G′
i = Gi − {(mi + 1 − ki−1)P + (ni + 1 − li−1)Q}, (4)

all elements of Gi can be computed from G′
i+1. Therefore, we can compute G′

i

from G′
i+1. The way to compute G′

i fro m G′
i+1 depends on (ki, li, ki−1, li−1),

since computing Gi from G′
i+1 depends on (ki, li) while extracting G′

i from Gi

depends on (ki−1, li−1).

Example 1 (ki, li, ki−1, li−1) = (0, 0, 0, 0)

mi, ni, G′
i+1 and G′

i would be described as: mi = 2mi+1, ni = 2ni+1,

G′
i+1 =




mi+1P + ni+1Q,
mi+1P + (ni+1 + 1)Q,
(mi+1 + 1)P + ni+1Q


 , G′

i =




miP + niQ,
miP + (ni + 1)Q,
(mi + 1)P + niQ




Therefore, we can compute G′
i from G′

i+1 as:

miP + niQ = 2(mi+1P + ni+1Q)
miP + (ni + 1)Q = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q) (5)
(mi + 1)P + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)

If we define G′
i = {T0[i], T1[i], T2[i]}, equations (5) can be described as:

T0[i] = 2T0[i + 1]
T1[i] = T1[i + 1] + T0[i + 1] (T1[i + 1] − T0[i + 1] = Q)
T2[i] = T2[i + 1] + T0[i + 1] (T2[i + 1] − T0[i + 1] = P ).
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Example 2 (ki, li, ki−1, li−1) = (0, 1, 1, 0)

mi, ni, G′
i+1 and G′

i would be described as: mi = 2mi+1, ni = 2ni+1 + 1,

G′
i+1 =




mi+1P + ni+1Q,
mi+1P + (ni+1 + 1)Q,

(mi+1 + 1)P + (ni+1 + 1)Q


 , G′

i =




miP + niQ,
(mi + 1)P + niQ,

(mi + 1)P + (ni + 1)Q




Therefore, we can compute G′
i from G′

i+1 as:

miP + niQ = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)
(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q)

+ (mi+1P + ni+1Q) (6)
(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)

+ (mi+1P + (ni+1 + 1)Q)

Equations (6) can be described as:

T0[i] = T1[i + 1] + T0[i + 1] (T1[i + 1] − T0[i + 1] = Q)
T1[i] = T2[i + 1] + T0[i + 1] (T2[i + 1] − T0[i + 1] = P + Q)
T2[i] = T2[i + 1] + T1[i + 1] (T2[i + 1] − T1[i + 1] = P )

From equations (3) and (4), we can define G′
t+1 as an initial set of G′

i as:

Gt+1 = {O, Q, P, P + Q}
G′

t+1 = Gt+1 − {(1 − kt)P + (1 − lt)Q},

where O is the point at infinity. By calculating G′
i from G′

i+1 repeatedly, we can
compute G′

1 from G′
t+1 whereas kP + lQ will be computed from G′

1. Our method
to compute x-coordinate of kP + lQ can be described as next page. Ti + Tj (P )
means that the difference between Ti and Tj is P .

At step1, P − Q must be computed because the difference between (mi +
1)P + niQ and miP + (ni + 1)Q is P − Q.

We consider about the computational cost of the proposed method. At step1,
we compute P + Q, P − Q in affine coordinates and their computation cost is
4M + 2S + I. At step2, 3 and 4, we use projective coordinates in the same
way as Section 2.1. We assume |k| = |l| as referred in the previous section.
At step3, we require the addition formulas twice and the doubling formulas
once, or the addition formulas three times per bit of k. In either case, since the
computational cost per bit of k is 9M + 6S, the computational cost of step3 is
9(|k| − 1)M +6(|k| − 1)S. The computational cost of step4 is 3M +2S and that
of step5 is M + I. Therefore, the computational cost of the proposed method is
(9|k| − 1)M + (6|k| − 2)S + 2I.
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Algorithm 2: Montgomery Simultaneous Scalar Multiplication
Input: k = (kt · · · k1k0)2, l = (lt · · · l1l0)2, P, Q ∈ EM (kt or lt = 1).
Output: x-coordinate of W = kP + lQ.
1. Compute P + Q, P − Q.
2. If (kt, lt) = (0, 1) then: T0 ← O, T1 ← Q, T2 ← P + Q;

else if (kt, lt) = (1, 0) then: T0 ← O, T1 ← P, T2 ← P + Q;
else then: T0 ← Q, T1 ← P, T2 ← P + Q.

3. For i from t downto 1 do
3.1. If (ki, li, ki−1, li−1) = (0, 0, 0, 0) then:

T2 ← T2 + T0 (P ), T1 ← T1 + T0 (Q), T0 ← 2T0;
3.2. else if (ki, li, ki−1, li−1) = (0, 0, 0, 1) then:

T2 ← T2 + T1 (P − Q), T1 ← T1 + T0 (Q), T0 ← 2T0;
3.3. else if (ki, li, ki−1, li−1) = (0, 0, 1, 0) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← 2T0, T2 ← T2 + T (P − Q);
3.4. else if (ki, li, ki−1, li−1) = (0, 0, 1, 1) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← T + T0 (Q), T2 ← T2 + T (P − Q);
3.5. else if (ki, li, ki−1, li−1) = (0, 1, 0, 0) then:

T2 ← T2 + T0 (P + Q), T0 ← T1 + T0 (Q), T1 ← 2T1;
3.6. else if (ki, li, ki−1, li−1) = (0, 1, 0, 1) then:

T2 ← T2 + T1 (P ), T0 ← T1 + T0 (Q), T1 ← 2T1;
3.7. else if (ki, li, ki−1, li−1) = (0, 1, 1, 0) then:

T ← T1, T1 ← T2 + T0 (P + Q), T0 ← T + T0 (Q), T2 ← T2 + T (P );
3.8. else if (ki, li, ki−1, li−1) = (0, 1, 1, 1) then:

T ← T1, T1 ← T2 + T0 (P + Q), T0 ← 2T, T2 ← T2 + T (P );
3.9. else if (ki, li, ki−1, li−1) = (1, 0, 0, 0) then:

T ← T1, T1 ← T2 + T0 (P + Q), T0 ← T + T0 (P ), T2 ← 2T ;
3.10. else if (ki, li, ki−1, li−1) = (1, 0, 0, 1) then:

T ← T1, T1 ← T2 + T0 (P + Q), T0 ← T + T0 (P ), T2 ← T2 + T (Q);
3.11. else if (ki, li, ki−1, li−1) = (1, 0, 1, 0) then:

T0 ← T1 + T0 (P ), T2 ← T2 + T1 (Q), T1 ← 2T1;
3.12. else if (ki, li, ki−1, li−1) = (1, 0, 1, 1) then:

T0 ← T2 + T0 (P + Q), T2 ← T2 + T1 (Q), T1 ← 2T1;
3.13. else if (ki, li, ki−1, li−1) = (1, 1, 0, 0) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← T + T0 (P − Q), T2 ← T2 + T (Q);
3.14. else if (ki, li, ki−1, li−1) = (1, 1, 0, 1) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← T + T0 (P − Q), T2 ← 2T2;
3.15. else if (ki, li, ki−1, li−1) = (1, 1, 1, 0) then:

T0 ← T1 + T0 (P − Q), T1 ← T2 + T1 (Q), T2 ← 2T2;
3.16. else then:

T0 ← T2 + T0 (P ), T1 ← T2 + T1 (Q), T2 ← 2T2.
4. If (k0, l0) = (0, 0) then W ← 2T0;

else if (k0, l0) = (0, 1) then W ← T1 + T0 (Q);
else if (k0, l0) = (1, 0) then W ← T1 + T0 (P );
else then W ← T1 + T0 (P − Q).

5. Compute x-coordinate of W by x = X/Z.
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4 Comparison

Now we compare the computational cost of the proposed method to that of both
methods in Section 2. In addition, we compare this to the computational cost
of the method described in IEEE P1363 Draft [8], which is based on the scalar
multiplication using NAF on the elliptic curve with Weierstrass form. This is a
fair comparison because all four methods require no precomputed point. Table
1 shows the computational cost of each method to compute x-coordinate of
kP + lQ. M , S and I respectively denote the computational costs of a field
multiplication, squaring and inversion.

Table 1. The computational costs of every method

Method M S I

Weierstrass NAF [8] (40|k| − 1)/3 14|k| − 9 1

Montgomery 12|k| + 29 8|k| 1

Weierstrass Simultaneous +NAF (Algorithm 1) (76|k| + 45)/9 (61|k| + 27)/9 2

Montgomery Simultaneous (Algorithm 2) 9|k| − 1 6|k| − 2 2

Table 2 shows the computational cost of each method for |k| = 160 and
the total cost when we assume S/M = 0.8 and I/M = 30 [12]. We also com-
pare the computational cost of our method to that of Weierstrass simultane-
ous scalar multiplication using window method and mixed coordinates, which
requires memories for 13 points [3]. The proposed method, Montgomery simul-
taneous scalar multiplication, is about 45% faster than the method described in
IEEE P1363 Draft, and about 25% faster than the method using Montgomery
scalar multiplication and the recovery of Y -coordinate. Moreover, the proposed
method is about 1% faster than Weierstrass simultaneous scalar multiplication
using NAF. Our method is about 2% slower than Weierstrass simultaneous scalar
multiplication using window method, but requires much less memories.

5 Running Times

Here we present the running times of each method described in Section 4. To
calculate arbitrary precision arithmetic over IFp, we used the GNU MP library
GMP [6]. The running times were obtained on a Pentium II 300 MHz machine.
We used the following elliptic curve over IFp, where |p| = 162 and the order of
the base point r was 160 bits. #E means the order of this elliptic curve.
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Table 2. The computational cost of each method for |k| = 160 and S/M = 0.8, I/M =
30.

Method M S I M (S/M = 0.8, I/M = 30)

Weierstrass NAF 2133 2231 1 3938

Montgomery 1949 1280 1 3003

Weierstrass Simultaneous + NAF 1356 1087 2 2286

Montgomery Simultaneous 1439 958 2 2265

Weierstrass Simultaneous + Window 1281 1018 4 2215

p = 2 0aa6fc4d 8396f3ac 06200db7 3e819694 067a0e7b

a = 1 5fed3282 429907d6 03b41b7a 309abf87 bed9bd83

b = 1 74019686 9a423134 f3cdf013 b13564d0 ba3999e8

#E = 4 ∗ 82a9bf13 60e5bceb 01878167 1d478cea 881e1d1d

A = 1 8be6a098 c28d6bc0 3286dc51 e7e3f705 8a5b9d98

B = 0 120c2550 f6ff7a01 440d78d1 122fa3ac aa70fd53

We obtained average running times to compute x-coordinate of kP + lQ
by randomly choosing 100 points P, Q over this elliptic curve and 100 integers
k, l < r. Table 3 shows the average time of each method to compute x-coordinate
of kP + lQ. From Table 3, we notice the proposed method, Montgomery simul-
taneous scalar multiplication, is about 44% faster than the method described in
IEEE P1363 Draft, and about 25% faster than the method using Montgomery
scalar multiplication and the recovery of Y -coordinate. Moreover, the proposed
method is about 3% faster than Weierstrass simultaneous scalar multiplication
using NAF. This shows that the theoretical advantage of our method is actually
observed.

Table 3. The average time of each method

Method Average time (ms)

Weierstrass NAF 36.2
Montgomery 26.9

Weierstrass Simultaneous + NAF 20.8
Montgomery Simultaneous 20.1
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6 Elliptic Curve over IF2n

A non-supersingular elliptic curve E over IF2n is represented by E : x2 + xy =
x3+ax2+b, where a, b ∈ IF2n , b �= 0. We can apply the proposed method to Mont-
gomery method on elliptic curves over IF2n [14]. The advantage of Montgomery
method on elliptic curves over IF2n is that we need not consider transformability
from Weierstrass form to Montgomery form. Since the computational cost of a
field squaring over IF2n is much lower than that of a field multiplication over
IF2n , we can ignore it.

In Montgomery method, the computational cost of addition formulas and
doubling formulas are respectively 4M and 2M in projective coordinates. If we
compute kP + lQ using Montgomery scalar multiplication, we requires addition
formulas twice and doubling formulas twice per bit of k. Therefore, the compu-
tational cost per bit of k is estimated to be about 12M .

On the other hand, if we compute kP + lQ using Montgomery simultaneous
scalar multiplication, we require addition formulas twice and doubling formulas
once at probability of 3/4, and addition formulas three times at probability of
1/4 per bit of k, as described in Algorithm 2. Since we require addition formulas
9/4 times and doubling formulas 3/4 times per bit of k, the computational cost
per bit of k is estimated to be about 21/2 · M .

In Weierstrass simultaneous scalar multiplication over IF2n using NAF [7,13],
the computational cost per bit of k is estimated to be about 9M if a = 0, 1.

Therefore, the proposed method is only 13% faster than the method using
Montgomery scalar multiplication and 17% slower thanWeierstrass simultaneous
scalar multiplication using NAF. This shows that the proposed method on elliptic
curves over IF2n is not so efficient as that on elliptic curves with Montgomery
form over IFp.

7 Conclusion

We proposed the new method to compute x-coordinate of kP + lQ simultane-
ously on the elliptic curve with Montgomery form over IFp without precomputed
points. To compute x-coordinate of kP + lQ is required in ECDSA signature ver-
ification. Our method is about 25% faster than the method using Montgomery
scalar multiplication and the recovery of Y -coordinate over IFp, and slightly
faster than Weierstrass simultaneous scalar multiplication over IFp using NAF
and mixed coordinates. Our method is considered to be particularly useful in
case that ECDSA signature generation is performed using Montgomery scalar
multiplication on the elliptic curve over IFp because of its efficiency of computa-
tion and its immunity to timing attacks, since all arithmetic on the elliptic curve
can be computed with Montgomery form and we don’t require transformation
to the elliptic curve with Weierstrass form. Furthermore, we showed that our
method was applicable to Montgomery method on elliptic curves over IF2n .
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Abstract. We discuss multidoubling methods for efficient elliptic scalar
multiplication. The methods allows computation of 2kP directly from P
without computing the intermediate points, where P denotes a randomly
selected point on an elliptic curve. We introduce algorithms for elliptic
curves with Montgomery form and Weierstrass form defined over finite
fields with characteristic greater than 3 in terms of affine coordinates.
These algorithms are faster than k repeated doublings. Moreover, we
apply the algorithms to scalar multiplication on elliptic curves and ana-
lyze computational complexity. As a result of our implementation with
respect to the Montgomery and Weierstrass forms in terms of affine coor-
dinates, we achieved running time reduced by 28% and 31%, respectively,
in the scalar multiplication of an elliptic curve of size 160-bit over finite
fields with characteristic greater than 3.

Keywords. Elliptic curve cryptosystems, Scalar multiplication, Mont-
gomery form, Multidoubling, Fast implementation

1 Introduction

Elliptic curve cryptosystems, which were suggested by Miller [Mi85] and Koblitz
[Ko87], are now widely used in various security services. IEEE and other stan-
dardizing bodies such as ANSI and ISO are in the process of standardizing el-
liptic curve cryptosystems. Therefore, it is very attractive to provide algorithms
that allow efficient implementation. Encryption/decryption or signature genera-
tion/verification schemes require computation of scalar multiplication. The com-
putational performance of cryptographic protocols with elliptic curves strongly
depends on the efficiency of the scalar multiplication. Thus, fast scalar multipli-
cation is essential for elliptic curve cryptosystems.

One method to increase doubling speed involves the “multidoubling”, which
computes 2kP directly from P ∈ E(Fq), without computing the intermediate
points 2P, 22P, · · · , 2k−1P . The concept of multidoubling was first suggested by
Guajardo and Paar in [GP97]. They formulated algorithms for the multidoubling
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of 4P , 8P and 16P on elliptic curves over F2n in terms of affine coordinates. Re-
cent related results include a formula for computing 4P on elliptic curves over Fp

in affine coordinates by Müller [Mu97] and a formula for computing 4P on elliptic
curves over Fp in projective coordinates by Miyaji, Ono and Cohen [MOC97a].
These formulae are more efficient than repeated doublings. All of the previous
works were on the subject of elliptic curves with Weierstrass form. Another
model of an elliptic curve that is useful for cryptosystems is the Montgomery
form. Montgomery introduced the equation to speed up integer factorization
with elliptic curves [Mo87]. The elliptic curve method of factoring was proposed
by H.W.Lenstra [Le87]. In recent years, several authors have proposed elliptic
curve cryptosystems using the Montgomery model [Iz99,LD99,OKS00].

In this paper, we propose efficient algorithms for speeding up elliptic curve
cryptosystems with Montgomery elliptic curves in terms of affine coordinates.
We construct efficient formulae that compute 2kP directly for ∀k ≥ 2. In the
case of an elliptic curve with Montgomery form, our formulae have computational
complexity (8k+4)M+(4k−1)S+I, where M, S, and I denote multiplication,
squaring and inversion in Fp, respectively. This is more efficient than k repeated
doublings, which require k inversions. When implementing our multidoubling
method, experimental results show that computing 16P achieved running time
reduced by 40% over 4 doublings in affine coordinates. Moreover we introduce
formulae that compute 2kP directly for ∀k ≥ 2, for Weierstrass elliptic curves in
terms of affine coordinates. Our formulae have computational complexity (4k +
1)M + (4k + 1)S + I. The formulae have slightly simple form compared to the
formulae described in [SS01] and have computational advantage, due to one field
multiplication, over the formulae proposed in [SS00]

As a results of our implementation with respect to Montgomery and Weier-
strass forms in terms of affine coordinates, we achieved running time reduced by
28% and 31%, respectively, in the scalar multiplication of an elliptic curve of size
160-bit. We also discuss the computational complexity of scalar multiplication
using multidoubling. The proposed algorithm improve the performance of scalar
multiplication with the binary method, as well as the window method. There-
fore, they are effective in restricted environments where resources are limited,
such as smart cards.

2 Previous Work

In this section, we summarize the multidoubling, the direct computation and
arithmetic for an elliptic curve with Montgomery form.

2.1 Multidoubling and Direct Computation

The concept of using multidoubling and direct computation of 2kP to efficiently
implement elliptic scalar multiplication was first proposed by Guajardo and Paar
in [GP97]. They formulated algorithms for computing 4P , 8P , and 16P on elliptic
curves over F2n in terms of affine coordinates. In recent years, several authors
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have reported methods that compute 2kP directly, but some of them are limited
to small k. The following section summarizes the previous work on multidoubling
and direct computation.

1. Guajardo and Paar [GP97] proposed formulae for computing 4P , 8P , and
16P on elliptic curves over F2n in terms of affine coordinates.

2. Müller [Mu97] proposed formulae for computing 4P on elliptic curves over
Fp in terms of affine coordinates.

3. Miyaji, Ono, and Cohen [MOC97a] proposed formulae for computing 4P on
elliptic curves over Fp in terms of projective coordinates.

4. Han and Tan [HT99] proposed formulae for computing 3P , 5P , 6P , 7P , etc,
on elliptic curves over F2n in terms of affine coordinates.

5. Sakai and Sakurai [SS00,SS01] proposed formulae for computing 2kP (∀k ≥
1) on elliptic curves over Fp in terms of affine coordinates.

We should remark that the algorithm proposed by Cohen, Miyaji and Ono in
[CMO98] can be efficiently used for the direct computation of several doublings.
The authors call their algorithm a “modified jacobian” coordinate system. The
coordinate system uses (redundant) mixed representation such as (X,Y, Z, aZ4).
Doubling in terms of the modified jacobian coordinates has computational ad-
vantages over weighted projective (jacobian) coordinates. Itoh et al. also gave a
similar method for doubling [ITTTK99].

All of these works dealt with computations on Weierstrass elliptic curves. In
later sections, we will formulate algorithms that work on Montgomery elliptic
curves in terms of affine coordinates, and analyze their computational complex-
ity.

2.2 Elliptic Curves with Montgomery Model

Let a, b ∈ Fp, 4a3 +27b2 	= 0, p > 3, and p be a prime number. An elliptic curve
defined over Fp for Weierstrass model is defined by the following equation (1).
Elliptic curve cryptosystems using curves with Weierstrass form are in the pro-
cess of being standardized, e.g., [IEEE], and are widely used in various security
services.

E : y2 = x3 + ax+ b (1)

H. W. Lenstra proposed the elliptic curve method of factoring [Le87]. Mont-
gomery introduced the following equation to speed up integer factorization with
elliptic curves [Mo87]. In recent years, several authors have proposed cryptosys-
tems using an elliptic curve with Montgomery form [Iz99,LD99,OKS00]. Let
A,B ∈ Fp, (A2 − 4)B 	= 0. An elliptic curve of Montgomery model is defined by
the following equation (2).

Em : Bv2 = u3 +Au2 + u (2)

The formulae for transforming Montgomery and Weierstrass forms are given
by the following (See [Iz99] for details).
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By the transformation u = 3x−AB
3B and v = y

B2 , we obtain y2 = x3 +
B2(3−A2)

3 x + AB3(2A2−9)
27 . Therefore, by the relationship a = B2(3−A2)

3 and b =
AB3(2A2−9)

27 , we can transform a Montgomery form into a Weierstrass form.
The above linear transformation clearly converts any elliptic curve with

Montgomery form into a curve withWeierstrass form. However, the inverse trans-
formation, from Weierstrass form to Montgomery form, works only if there exists
a particular curve. Based on the above relationship between (a, b) and (A,B), we
eliminate B, then we obtain A6 −9A4 −27(r−1)A2+27(4r−1) = 0, where r =

a3

4a4+27b2 . Let we consider the equation f(t) = t3−9t2−27(r−1)t+27(4r−1) = 0,
where t = A2. If f(t) has a solution t = α such as a quadratic residue in Fp,
a Weierstrass form can be transform into a Montgomery form by the following
relation. Let β be a square root of α, we obtain A = β and B = 9b(3−β2)

αβ(2β2−9) . Then
the relation x = 3Bu+AB

3 and y = B2v are derived.
A detailed analysis on the case which can transform a Weierstrass form into

a Montgomery form was given by Izu [Iz99]. He concluded that approximately
40% of curves with Weierstrass form can be transformed into a curve with Mont-
gomery form.

2.3 Group Operation for Elliptic Curves with Montgomery Form

We describe algorithms for group operation in an elliptic curve with Montgomery
form. When we estimate a computational efficiency, we will ignore the cost of a
field addition, as well as the cost of a multiplication by small constants.

Affine Coordinates. Suppose P3(u3, v3) = P1(u1, v1) + P2(u2, v2) ∈ Em(Fp),
and P1 	= P2. The addition formulae are given by the following.

u3 = Bλ2 −A− u1 − u2
v3 = λ(u1 − u3) − v1

λ =
v1 − v2
u1 − u2

(3)

The computational complexity for an addition involves 3M + S + I.
Suppose P3(u3, v3) = 2P1(u1, v1) ∈ Em(Fp). Point doubling can be accom-

plished by the following.

u3 = Bλ2 −A− 2u1
v3 = λ(u1 − u3) − v1

λ =
3u21 + 2Au1 + 1

2Bv1

(4)

The computational complexity of a doubling involves 5M + 2S + I.

Projective Coordinates. Next, we describe formulae for the group opera-
tions in projective coordinates. Let u = U

W , v = V
W . Suppose P2(U2,W2) =
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P1(U1,W1) + P (u, v, 1). The point P3(U3,W3) = P1(U1,W1) + P2(U2,W2) can
be computed by the following.

U3 = (U1U2 − W1W2)2

= (Sub1Add2 + Add1Sub2)2

W3 = u (U1W2 − W1U2)2

= u (Sub1Add2 − Add1Sub2)2

where, Add1 = U1+W1, Sub1 = U1−W1, Add2 = U2+W2 and Sub2 = U2−W2.
The computational complexity for an addition involves 3M + 2S.

Note that V -coordinate does not enter into any of the formulae. An addition
can be accomplished without computation of the V -coordinate if the difference
between the two given points is known [Mo87]. Point doubling can be accom-
plished by the following.

U3 =
(
U2

1 − W 2
1
)2

= Add2
1Sub2

1

W3 = 4U1W1
(
U2

1 + AU1W1 + W 2
1
)

=
(
Add2

1 − Sub2
1
) {

Sub2
1 + C

(
Add2

1 − Sub2
1
)}

where, C = A+2
4 . For a given curve, C can be pre-computed. Therefore above

formulae have computational complexity 3M + 2S.
The basic well known method for elliptic scalar multiplication on curves with

Weierstrass form is the “double-and-add” (or binary) method. There are several
methods which have computational advantage over the binary method such as
the window method. However, in the case of elliptic curves with Montgomery
form in terms of projective coordinates, we can not apply such methods, because
the difference between the two given points, i.e., the U -coordinate of P2 − P1,
must be known when adding the two points. To compute kP , we compute 2P and
then repeatedly compute two points (2mP, (2m+1)P ) or ((2m+1)P, (2m+2)P ),
depending on whether the corresponding bit in the binary representation of k is a
0 or a 1 [AMV93,Mo87,MV93]. This method maintains the invariant relationship
such that the difference of the two points always P .

3 The Proposed Algorithms

In this section, we describe new algorithms for elliptic curves with Montgomery
form, which compute 2kP directly from a given point P ∈ Em(Fp) without
computing the intermediate points 2P, 22P, · · · , 2k−1P . We will begin by con-
structing formulae for small k, then we will construct an algorithm for general
k (k ≥ 2). We will also show an algorithm that compute 2kP directly for ellip-
tic curves with Weierstrass form. This is an improved version of the algorithm
proposed in [SS00,SS01].

3.1 Montgomery Form

As an example, we give an algorithm that compute 8P directly from P ∈ Em(Fp).
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Computing 8P . Let P8(u8, v8) = 8P (u1, v1) ∈ Em(Fp). For an elliptic curve
with Montgomery form in terms of affine coordinates, P8 can be computed in
the following way. The derivation is based on repeated substitution of the point
doubling formulae, such that only one field inversion needs to be calculated. First
we compute C, Di, Ei, Fi, for 1 ≤ i ≤ 3 as follows.

C = AB

D1 = u1B

E1 = v1

F1 = 1 + u1(2A + 3u1)

D2 = −22CE2
1 − 8D1E2

1 + F 2
1

E2 = −8B2E4
1 + F1(4D1E2

1 − D2)

F2 = 24B2E4
1 + D2(23CE2

1 + 3D2)

D3 = −24C(E1E2)2 − 8D2E2
2 + F 2

2

E3 = −8E4
2 + F2(4D2E2

2 − D3)

F3 = 28B2(E1E2)4 + D3(25C(E1E2)2 + 3D3)

Then we compute u8 and v8 as follows.

u8 =
−8E2

3(23C(E1E2)2 + D3) + F 2
3

26B(E1E2E3)2

v8 =
F3((26C(E1E2)2 + 12D3)E2

3 − F 2
3 ) − 8E4

3

29B2(E1E2E3)3

Note that C and B2 can be pre-computed, and that although the denominator
of u8 differs from that of v8, the above formulae require only one inversion
if we multiply the numerator of u8 by 23BE1E2E3. The above formulae have
computational complexity 25M + 11S + I.

Multidoubling. From the formulae that compute 2kP for small k, given in
the previous subsection, we can easily obtain general formulae that allow direct
doubling P �→ 2kP for k ≥ 2. The figure shown below describes the formulae,
and their computational complexity is given as Theorem 1.

Algorithm 1: Direct computation of 2kP in affine coordinates on an elliptic curve
with Montgomery form, where k ≥ 2 and P ∈ Em(Fp).

INPUT: P1 = (u1, v1) ∈ Em(Fp)
OUTPUT: P2k = 2kP1 = (u2k , v2k ) ∈ Em(Fp)

Pre Computations

C = AB

B2 = B2

Step 1. Compute D0, E0 and F0

D0 = u1B

E0 = v1

F0 = 1 + u1(2A + 3u1)
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Step 2. For i from 1 to k compute Di and Ei, for i from 1 to k − 1 compute Fi

Di = −22iC

(
i−1∏

j=0

Ej

)2

− 8Di−1E2
i−1 + F 2

i−1

if i = 1 E1 = −8B2E4
0 + F0(4D0E2

0 − D1)

else Ei = −8E4
i−1 + Fi−1(4Di−1E2

i−1 − Di)

Fi =

(
i−1∏

j=0

Ej

)2


24iB2

(
i−1∏

j=0

Ej

)2

+ 22i+1CDi



+ 3D2
i

Step 3. Compute u2k and v2k

u2k =
Dk

B
(
2k
∏k−1

i=0 Ei

)2

v2k =
Ek

B2

(
2k
∏k−1

i=0 Ei

)3

Theorem 1. For an elliptic curve with Montgomery form in terms of affine
coordinates, there exists an algorithm that computes 2kP , with k ≥ 2, in at most
8k+4 field multiplication, 4k− 1 field squaring and one inversion in Fp for any
point P ∈ Em(Fp), excluding precomputation.

The proof is outlined in Appendix A.1.

3.2 Weierstrass Form

The multidoubling for Weierstrass elliptic curves in terms of affine coordinates
is given below. Their computational complexity have, given as Theorem 2, (4k+
1)M+(4k+1)S+I. The complexity has a one field multiplication computational
advantage over the formulae proposed in [SS00]. Moreover, the formulae have
slightly simple form compared to the formulae described in [SS01]

Algorithm 2: Direct computation of 2kP in affine coordinates on an elliptic curve
with Weierstrass form, where k ≥ 1 and P ∈ E(Fp).

INPUT: P1 = (x1, y1) ∈ E(Fp)
OUTPUT: P2k = 2kP1 = (x2k , y2k ) ∈ E(Fp)

Step 1. Compute A0, B0 and C0

A0 = x1

B0 = y1

C0 = 3x2
1 + a
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Step 2. For i from 1 to k compute Ai and Bi, for i from 1 to k − 1 compute Ci

Ai = C2
i−1 − 8Ai−1B2

i−1

Bi = 8B4
i−1 + Ci−1(Ai − 4Ai−1B2

i−1)

Ci = 3A2
i + 16i−1a

(
i−1∏

j=1

Bj

)4

Step 3. Compute x2k and y2k

x2k =
Ak

(
2k
∏k

i=1 Bi

)2

y2k =
Bk

(
2k
∏k

i=1 Bi

)3

Theorem 2. For an elliptic curve with Weierstrass form in terms of affine
coordinates, there exists an algorithm that computes 2kP in at most 4k + 1
multiplications, 4k + 1 squarings, and one inversion in Fp for any point P ∈
E(Fp).

The proof is outlined in Appendix A.2.

3.3 Complexity Comparison on Direct Computation

In this subsection, we compare the computational complexity of the multidou-
bling given in the previous subsection with the complexity of k separate repeated
doublings. The complexity of a doubling is estimated from the algorithm given
by the formulae (4) or as shown in [IEEE]. Tables 1 and 2 show the number
of multiplications M, squarings S, and inversions I in the base field Fp. Note
that our method reduces inversions at the cost of multiplications. Therefore, the
performance of the new formulae depends on the cost factor of one inversion
relative to one multiplication. For this purpose, we introduce the notation of a
“break-even point ”, as used in [GP97]. It is possible to express the time that it
takes to perform one inversion in terms of the equivalent number of multiplica-
tions needed per inversion. In this comparison, we assume that one squaring has
complexity S = 0.8M, and that the costs of field addition and multiplication by
small constants can be ignored.

As we can see from Table 1, if a field inversion has complexity I > 10.4M,
one quadrupling will be more efficient than two separate doublings. If Fp has
size 160-bit or larger, it is likely that I > 10.4M in many implementations (e.g.,
see [WMPW98]). In addition, if k > 2, our direct computation method is more
efficient than individual doublings in most implementations. For Weierstrass
form, shown in Table 2, our direct computation method is more efficient than
individual doublings in most implementations.
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Table 1. Complexity comparison on direct computation : Montgomery form

Calculation Method Complexity Break-Even

M S I Point

4P Direct computation 18 7 1 10.4M < I
Separate 2 doublings 10 4 2

8P Direct computation 25 11 1 7.0M < I
Separate 3 doublings 15 6 3

16P Direct computation 32 15 1 5.9M < I
Separate 4 doublings 20 8 4

2kP Direct computation 8k + 4 4k − 1 1 (4.6 + 7.8
k−1 )M < I

Separate k doublings 5k 2k k

Table 2. Complexity comparison on direct computation : Weierstrass form

Calculation Method Complexity Break-Even Point

M S I
4P Direct computation 9 9 1 8.6M < I

Separate 2 doublings 4 4 2

8P Direct computation 13 13 1 6.3M < I
Separate 3 doublings 6 6 3

16P Direct computation 17 17 1 5.4M < I
Separate 4 doublings 8 8 4

2kP Direct computation 4k + 1 4k + 1 1 (3.6 + 5.4
k−1 )M < I

Separate k doublings 2k 2k k

4 Scalar Multiplication with Direct Computation

4.1 The Algorithm

Using our previous formulae for direct computation of 2kP , we can improve
elliptic scalar multiplication with the sliding signed binary window method
[Go98,KT92]. For example, we apply our new formulae to the window method
with windows of length 4. We represent a scalar m in P �→ mP with a nonad-
jacent form (NAF) 1. For example, m = (1101110111)2 will be represented as
m′ = (1001̃0001̃001̃)NAF , where 1̃ denotes -1.
1 Koyama and Tsuruoka pointed out that an NAF is not necessarily the optimal
representation to use [Go98,KT92]. Although it has minimal weight, allowing a few
adjacent nonzeros may increase the length of zero-runs, which, in turn, would re-
duces the total number of additions. Their method may be useful for our scalar
multiplication with direct computations of 2kP .
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Algorithm 3 describes scalar multiplication on elliptic curves using our direct
computations of 2kP for the case k up to 4.

Algorithm 3: Elliptic scalar multiplication combining our direct computation
of 2kP with the window method, and window size k = 4

INPUT: P ∈ Em(Fp) or E(Fp), m ∈ Z

OUTPUT: mP ∈ Em(Fp) or E(Fp)

Step 1. Construct NAF representation
m = (etet−1 · · · e1e0)NAF , ei ∈ {−1, 0, 1}

Step 2. Precomputation
2.1 P6 ← 6P
2.2 For i from 7 to 10 do: Pi ← Pi−1 + P

Step 3. Pm ← O, i ← t
Step 4. While i ≥ 3 do the following:
4.1 If ei = 0 then:

find the longest bitstring eiei−1 · · · el such that ei = ei−1 = · · · el = 0,
and do the following
Pm ← 2i−l+1Pm

i ← l − 1
4.2 else (ei 	= 0):

If (eiei−1ei−2ei−3)NAF > 0 then:
Pm ← 16Pm + P(eiei−1ei−2ei−3)NAF

else:
Pm ← 16Pm − P|(eiei−1ei−2ei−3)NAF |

i ← i− 4
Step 5. Pm ← (ei · · · e0)NAFPm using the traditional double-and-add method
Step 6. Return Pm

In Algorithm 3, we compute 16P directly from P in each window rather than
using 4 separate doublings. In Step 4.1 with strings of zero-runs in the scalar
mNAF , we should choose computations 16P , 8P , 4P or 2P optimally. This can
be done with rules such as: 1) If a length of zero equals to 4, we compute 16P .
2) If a length of zero equals to 3, we compute 8P , and so on. Note that the
computation for Step 5 is inexpensive if m is large.

Using our algorithms for scalar multiplication, many of the doublings in the
traditional window method will be replaced by the direct computation of 16P .
Therefore, if one computation of 16P is relatively faster than four doublings,
scalar multiplication with our method will be significantly improved. We will
examine this improvement by real implementation in the next section.

5 Complexity Comparison on Scalar Multiplication

In this section, we discuss the computational complexity of scalar multiplication
using our direct computation.
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Table 3. Number of computations of 2kP , where 1 ≤ k ≤ 4, and addition in the
sliding signed binary window method with window length of 4

Curves Add 2P 4P 8P 16P

160-bit 36.82 14.93 4.99 2.58 31.75

192-bit 37.63 15.29 5.06 2.64 39.54

224-bit 37.77 15.31 5.05 2.69 47.49

256-bit 41.77 15.31 5.06 2.70 55.53

384-bit 48.76 17.13 5.10 3.59 86.26

521-bit 90.39 31.34 14.51 6.94 109.87

5.1 Number of 2kP Computations in the Window Method

Table 3 shows the number of required computations of 2kP and additions in
the sliding signed binary window method based on Algorithm 3. The window
size shown in the table is 4 as an example. The numbers were counted by our
implementation such that We randomly generated 10000 exponents and counted
the number of operations. The averages of the numbers are shown in Table 3. In
the case of a window of length 4, direct computations of 4P , 8P , and 16P can
be used.

From the table, we can see that with direct computations of up to 16P , the
computational efficiency of 16P significantly affects scalar multiplication.

5.2 Break-Even Point

Based on the number of computations of 2kP in scalar multiplication, given in
Table 3, we compared the computational complexity of scalar multiplication. For
example, in the case of a 160-bit scalar, the complexity of scalar multiplication
using direct computation with k = 4 can be evaluated as: C = 36.82A+14.93D2+
4.99D4+2.58D8+31.75D16, whereA,D2,D4,D8, andD16 denote the complexity
of the computation for point addition, doubling, 4P , 8P , and 16P , respectively.
The complexity of those point operations can be evaluated using the algorithms
given in the previous sections. For the proposed scalar multiplication with the
window method, we used Algorithm 3, which is based on the sliding window
method with NAF representation for a scalar.

The complexity comparisons in the case of 160-bit are described in Tables 4
and 5. By the “Traditional method”, we mean a scalar multiplication using the
double-and-add method in terms of affine coordinates. Again, we assume that
one squaring has complexity S = 0.8M. For larger sizes, the comparison can be
obtained in the same way.
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Table 4. Break-even point in scalar multiplication on a 160-bit elliptic curve with
Montgomery form

Method Complexity Break-Even Point

Binary Traditional 1360M + 240I 9.3M < I
Proposed 1686M + 205I

NAF Traditional 1259M + 213I 6.6M < I
Proposed 1551M + 169I

Window with NAF Traditional 1195M + 197I 6.1M < I
Proposed 1840M + 91I

Table 5. Break-even point in scalar multiplication on a 160-bit elliptic curve with
Weierstrass form

Method Complexity Break-Even Point

Binary Traditional 800M + 240I 6.6M < I
Proposed 1030M + 205I

NAF Traditional 724M + 213I 7.1M < I
Proposed 1038M + 169I

Window with NAF Traditional 679M + 197I 5.6M < I
Proposed 1269M + 91I

6 Running Time

In this section, we present the running times that we obtained with our software
implementation of the proposed algorithms.

The platform consisted of a 600MHz Pentium III, which has 32-bit word,
using Windows 2000, Visual C++ 6.0, and MASM 6.15. The programs were
written in assembly language for multi-precision integer operations, which may
be time-critical in our implementation, or in ANSI C language for other opera-
tions.

We used the following domain parameters for an elliptic curve with Mont-
gomery form.

p = 800000000000000000000000000000000000012b

A = 49cb474d172aadfd987191a490ae0671674fe5a9

B = 17240aee6e1c8c00a7ec1df1b8721d3f90437803

Gu = 31c0186c5389ec1c81d85f4e1449390c954f7f39

Gv = 534a718a33d4e2c2089ac68e48c8f6eb101ec46d

�Em(Fp) = 800000000000000000005b4c33272e33dfe2cb9c

where (Gu, Gv) ∈ Em(Fp), and &Em(Fp) denotes the number of points on Em.
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Table 6. Running time of elliptic curve and field operations in msec

Curve Elliptic (160-bit) Field (160-bit)

Add 2P 4P 8P 16P multiply square inversion

Montgomery 0.11 0.12 0.19 0.25 0.29 1.92 · 10−3 1.63 · 10−3 56.0 · 10−3

Weierstrass 0.093 0.094 0.13 0.16 0.20

Table 7. Running time of scalar multiplication of a randomly selected point in msec

Curve Binary NAF Window with NAF

(160-bit) Traditional Proposed Traditional Proposed Traditional Proposed

Montgomery 27.4 25.7 25.0 22.7 23.3 16.7

Weierstrass 22.5 20.2 20.0 17.1 17.9 12.3

Table 8. Improvement of the performance of scalar multiplications in %

Curve (160-bit) Binary NAF Window with NAF

Montgomery 6 9 28

Weierstrass 10 14 31

Table 6 shows the running times of elliptic curve and definition field opera-
tions. 2 Table 7 shows the running times of scalar multiplications.

We achieved running time reduction as shown in Table 8. As a result of
our implementation with respect to Montgomery and Weierstrass form in terms
of affine coordinates, we achieved running time reduced by 28% and 31%, re-
spectively, in the scalar multiplication of the elliptic curve of size 160-bit. The
proposed algorithms improved the performance of a scalar multiplication with
the binary method, as well as the window method. Therefore they are effective
in an restricted environment where resources are limited, such as with a smart
card.
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A Computational Complexity of Direct Computations

In this appendix, we give proofs of Theorems 1 and 2. In these proofs, we ignore the
cost of field additions and a subtractions, as well as the cost of multiplications by small
constants.

A.1 Proof of Theorem 1

In Step 1 of Algorithm 1, two multiplications are performed to compute u1B and
u1(2A + 3u1). The complexity of Step 1 involves 2M.

In Step 2, the following computations are performed k times to compute Di and
Ei, and k − 1 times to compute Fi. We first perform 2 squarings to compute E2

i−1

and F 2
i−1. If i > 1, we perform one multiplication to compute (

∏i−1
j=0 Ej)2. Next we

perform 2 multiplications for the computation of Di−1E2
i−1 and C(

∏i−1
j=0 Ej)2. Note

that (
∏i−2

j=0 Ej)2 should be stored in the previous loop of the iteration. This gives Di,
and so the complexity of computing Di involves 3M + 2S if i > 1 and 2M + 2S if
i = 1. Next, we perform one squaring and one multiplication to compute E4

i−1 and
Fi−1(Di−1E2

i−1 − Di−1). If i = 1, we perform one more multiplication to compute
B2E4

0 . This gives Ei, and so the complexity of computing Ei involves M + S if i > 1
and 2M + S if i = 1. Next, if i 	= k, we perform 3 multiplications and one squaring to
compute CDi, B2(

∏i−1
j=0 Ej)2, (

∏i−1
j=0 Ej)2(24iB2(

∏i−1
j=0 Ej)2 +22i+1CDi) and D2

i . This
gives Fi, and so the complexity of computing Fi involves 3M + S.

The total complexity of Step 2 involves k(4M + 3S) + (k − 1)(3M + S).
In Step 3, we first perform k −1 multiplications to compute (

∏k−1
i=0 Ei) and set the

result to T1. Next, two multiplications for (
∏k−1

i=0 Ei)3 and B2(
∏k−1

i=0 Ei)3 are performed.
Note that (

∏k−1
i=0 Ei)2 has already been computed in Step 2. Then, we perform on

inversion to compute (23kB2(
∏i−1

j=0 Ej)3)−1 and set the result to T2. Next, we perform
one multiplication to compute EkT2. Then, we obtain v2k . The complexity of computing
v2k involves (k − 1)M + 3M + I.

To compute u2k , we perform 3 multiplications to compute DkB, DkBT1, and
DkBT1T2. Then, we obtain u2k . The complexity of computing u2k involves 3M.

According to above computation, the complexity of Algorithm 1 involves (8k +
4)M + (4k − 1)S + I.

A.2 Proof of Theorem 2

In Step 1 of Algorithm 2, one squaring is performed to compute x2
1. The complexity

of Step 1 involves S.
In Step 2, the following computations are performed k times to compute Ai and

Bi, and k − 1 times to compute Ci. First, we perform 3 squarings to compute B2
i−1,

B4
i−1, and C2

i−1. Second, we perform one multiplication to compute Ai−1B2
i−1. Then

we obtain Ai. Third, we perform one multiplication to compute Ci−1(Ai −4Ai−1B2
i−1).

Then we obtain Bi. Next, we perform one squaring to compute A2
i . If i = 1, we perform

one multiplication to compute aB4
1 and set the result to U , and if i > 1, we perform one

multiplication to compute UB4
i−1 and set the result to U . Then, U equals a(

∏i−1
j=1 Bj)4.

Then we obtain Ci. The complexity of Step 2 involves (2M+3S)k+(M+S)(k − 1).
In Step 3, we first compute

∏k
i=1 Bi which takes k − 1 multiplications. Second, we

perform one inversion to compute (2k∏k
i=1 Bi)−1 and set the result to T . Next, we
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perform one squaring to compute T 2. Next, we perform one multiplication to compute
AkT 2. Then, we obtain x2k . Finally, we perform 2 multiplications to compute BkT 2T .
Then, we obtain y2k . The complexity of Step 3 involves (k − 1)M + 3M + S + I.

According to above computation, the complexity of Algorithm 2 involves (4k +
1)M + (4k + 1)S + I.
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Abstract. This paper will propose an efficient algorithm that utilizes
the signed-digit representation to compute the kth term of a character-
istic sequence generated by a linear feedback shift register of order 3
over GF (q). We will also propose an efficient algorithm to compute the
(h−dk)th term of the characteristic sequence based on the knowledge of
the kth term where k is unknown. Incorporating these results, we con-
struct the ElGamal-like digital signature algorithm for the public-key
cryptography based on the 3rd-order characteristic sequences which was
proposed by Gong and Harn in 1999.

Key words. Public-key cryptosystem, digital signature, third-order
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1 Introduction

Gong and Harn have published papers on applying third-order linear feedback
shift register (LFSR) sequences with some initial states to construct public-key
cryptosystems (PKC) in the ChinaCrypt’98 [4] and in the IEEE Transactions on
Information Theory [5], respectively. This type of LFSR sequences is called the
characteristic sequence in the area of sequence study. The security of the PKC
is based on the difficulty of solving the discrete logarithm (DL) in GF (q3); but
all computations involved in the system are still performed in GF (q).

In [5], Gong and Harn have proposed the Diffie-Hellman (DH) key agreement
protocol [1] and the RSA-like encryption scheme [14] as examples of the applica-
tions of the GH public-key cryptosystem. Along this line, Lenstra and Verheul
[7] have published their XTR public-key system at the Crypto’2000. In the XTR
public-key system, they have also used the 3rd-order characteristic sequence;
but with a special polynomial. They have proposed the XTR DH and the XTR
Nyberg-Rueppel signature scheme as examples.

In this paper, we will review some fundamental properties of 3rd-order char-
acteristic sequences and the original GH public-key cryptosystem and point it
out that the XTR cryptosystem is constructed based on a special type of 3rd-
order characteristic sequences as Gong and Harn have analyzed in [5]. Then,
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we will explore some useful properties of 3rd-order characteristic-sequences over
GF (q) and utilize these results in the construction of the GH ElGamal-like dig-
ital signature algorithm [2] [13].

The paper is organized as follows. In section 2, we introduce LFSR sequences
and 3rd-order characteristic sequences over GF (q). Then, we will review the
original GH public-key cryptosystem and explain the relations of design ap-
proach between GH and XTR public-key cryptosystems. In Section 3, using the
maximal-weight signed-digit representation, we propose a fast algorithm for eval-
uating the kth term of a pair of reciprocal characteristic sequences over GF (q)
and discuss the computational complexity for a special case when q = p2. This
algorithm is more efficient than the previously proposed one [5]. In Section 4, we
will introduce the Duality Law of a pair of reciprocal characteristic sequences.
Using this law, we show the property of redundancy in states of characteristic
sequences over GF (q). Lenstra and Verheul in [8] have also found this type of
redundancy for a special case of characteristic sequences over GF (p2). However
the technique used in [8] can not be extended to the general case of the charac-
teristic sequences over either GF (p2) or GF (q) for any arbitrary q. In Section
5, using the linear feedback shift register concept, we will propose an efficient
algorithm to compute the (h− dk)th term of a characteristic sequence based on
the knowledge of the kth term where k is unknown to the user. This mentioned
property is required for digital signature verification. This algorithm can save the
matrix computation needed in Algorithm 2.4.8 proposed by Lenstra and Verheul
in [7]. Then we will apply these results to the design of the GH ElGamal-like
digital signature algorithm as an example of digital signature schemes for the
GH public-key cryptosystem.

2 Characteristic Sequences
and the GH Public-Key Cryptosystem

In this section, we will briefly introduce LFSR sequences, characteristic se-
quences, and the GH Public-key Cryptosystem and explain that the sequences
used to construct the XTR cryptosystem is just a special case used in the design
of the GH cryptosystem. We will use the notation K = GF (q) where q = pr, p
is a prime and r is a positive integer throughout this paper.

2.1 LFSR Sequences

Let
f(x) = xn − cn−1x

n−1 − · · · − c1x − c0, ci ∈ K

be a polynomial and

s = {si} = s0, s1, s2, · · · , si ∈ K

be a sequence over K. If s satisfies the following linear recursive relation

sk+n =
n−1∑
i=0

cisk+i, k = 0, 1, · · · .
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then we say that s is an LFSR sequence of order n (generated by f(x)). (s0, s1,
· · · , sn−1) is called an initial state of the sequence s or f(x). A vector (sk, sk+1,
· · · , sk+n−1) containing consecutive n terms of s is called a state of s, or the kth
state of s, which is denoted by sk.

Example 1. Let K = GF (5), n = 3 and f(x) = x3 −x−1 which is an irreducible
polynomial over K. An LFSR sequence generated by f(x) is given below:

3 0 3 3 2 0 1 2 4 4
3 0 1 3 4 3 4 1 4 3
2 1 1 1 0 0 1 0 4 1
1 ...

which has period 31 = 52 + 5 + 1 and the initial state is s0 = (3, 0, 3).

2.2 Irreducible Case and Trace Representation

If f(x) is an irreducible polynomial over K, let α be a root of f(x) in the
extension E = GF (q3), then there exists some β ∈ K such that

si = Tr(βαi), i = 0, 1, 2, · · · ,

where Tr(x) = x+ xq + · · ·+ xqn−1
is the trace function from E to K. If β = 1,

then s is called a characteristic sequence of f(x), or a char-sequence for short.
The sequence given in Example 1 is the characteristic sequence of f(x).

2.3 Period and Order

Let f(x) ∈ K[x], we say that f(x) has period t if t is the smallest integer such
that f(x)|xt − 1. We denote it as per(f) = t.

For β ∈ E, the order of β is the smallest integer t such that

βt = 1.

We denote it as ord(β) = r. A proof of the following result can be found in
several references on sequences, for example, in [9,10].

Lemma 1. If f(x) ∈ K[x] is irreducible over K and s is generated by f(x),
then

per(s) = per(f) = ord(α)

where α is a root of f(x) in the extension GF (qn).

2.4 Third-Order Characteristic Sequences

Let
f(x) = x3 − ax2 + bx − 1, a, b ∈ K (1)
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be an irreducible polynomial over K and α be a root of f(x) in the extension
field GF (q3). Let s = {si} be a characteristic sequence generated by f(x). Then
the initial state of {si} can be given by

s0 = 3, s1 = a, and s2 = a2 − 2b.

Example 1 is a characteristic sequence of oder 3.
We list the following lemmas which appeared in [5].

Lemma 2. With the same notation, we have

– per(s)|q2 + q + 1, i.e., period of s is a factor of q2 + q + 1.
– s has the following trace representation:

sk = Tr(αk) = αk + αkq + αkq2
, k = 0, 1, 2, · · · .

If the order of α satisfies an additional condition, then we have the following
result whose proof can be found in [7].

Lemma 3. With the same notation, let K = GF (p2), if ord(α)|p2 − p+1, then

f(x) = x3 − ax2 + apx − 1, a ∈ K.

2.5 Fundamental Results on 3rd-Order Char-sequences

Here we summarize some results obtained previously. In [5], all results on 3rd-
order char-sequences related to the GH Diffie-Hellman key agreement protocol
are presented in the finite field GF (p). However, all these results are also true
in K = GF (q). So we just list the following two lemmas and the proofs of these
lemmas are exactly the same as that described in [5]. Similar results can also be
found in corollary 2.3.5 in [7]. For the sake of simplicity, we write sk = sk(a, b)
or sk(f) to indicate the generating polynomial. Let f−1(x) = x3 − bx2+ ax− 1,
which is the reciprocal polynomial of f(x). Let {sk(b, a)} be the char-sequence of
f−1(x), called the reciprocal sequence of {sk(a, b)}k≥0. Then we have s−k(a, b) =
sk(b, a), k = 1, 2, · · · (see [5]).
Lemma 4. Let f(x) = x3 − ax2 + bx − 1 be an irreducible polynomial over K
and s be the char-sequence of f(x) and α be a root of f(x) in GF (q3). Then

1. For all integers r and e,

sr(se(a, b), s−e(a, b)) = sre(a, b).

2. For all integers n and m,
(a) s2n = s2n − 2s−n, and
(b) snsm − sn−ms−m = sn+m = sn−2m.

3. If gcd(k, per(s)) = 1, then αkqi

, i = 0, 1, 2 are three roots of g(x) = x3 −
skx

2 + s−kx − 1 in GF (q3).
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Lemma 5. Let k = k0k1 · · · kr =
∑r

i=0 ki2r−i be the binary representation
of k. Let T0 = k0 = 1, and Tj = kj + 2Tj−1, 1 ≤ j ≤ r. So, Tr = k. If
(sTj−1−1, sTj−1 , sTj−1+1) is computed, then (sTj−1, sTj

, sTj+1) can be computed
according to the following formulas.

For kj = 0

sTj−1 = sTj−1sTj−1−1 − bs−Tj−1 + s−(Tj−1+1) (2)

sTj = s2Tj−1
− 2s−Tj−1 (3)

sTj+1 = sTj−1sTj−1+1 − as−Tj−1 + s−(Tj−1−1) (4)

For kj = 1

sTj−1 = s2Tj−1
− 2s−Tj−1 (5)

sTj = sTj−1sTj−1+1 − as−Tj−1 + s−(Tj−1−1) (6)

sTj+1 = s2Tj−1+1 − 2s−(Tj−1+1) (7)

Thus, to calculate a pair of kth terms sk and s−k of the sequence s needs
9logk multiplications in GF (q) in average.

2.6 The GH Diffie-Hellman Key Agreement Protocol

In this subsection, we will review the GH Diffie-Hellman (DH) key agreement
protocol. (Note. In [5], the GH-DH was presented in GF (p). As we have men-
tioned in the beginning of Section 2.5, all results can also be true in GF (q),
where q is a power of a prime.) In the following discussion, we will present the
GH-DH in GF (q), where q = p2 in the same setting as in the XTR cryptosystem.

GH-DH Key Agreement Protocol (Gong and Harn, 1999) [5] :

System parameters: p is a prime number, q = p2 and f(x) = x3−ax2+bx−1
which is an irreducible polynomial over GF (q) with period Q = q2 + q + 1.

User Alice chooses e, 0 < e < Q, with gcd(e,Q) = 1 as her private key and
computes (se, s−e) as her public key. Similarly, user Bob has r, 0 < r < Q,
with gcd(r,Q) = 1 as his private key and (sr, s−r) as his public key. In the key
distribution phase, Alice uses Bob’s public key to form a polynomial:

g(x) = x3 − srx
2 + s−rx − 1

and then computes the eth terms of a pair of reciprocal char-sequences generated
by g(x). I.e., Alice computes

se(sr, s−r) and s−e(sr, s−r).

Similarly, Bob computes

sr(se, s−e) and s−r(se, s−e).
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They share the common secret key as (ser, s−er).

Let ZQ = {0, 1, 2, · · · , Q− 1}, Z
∗
Q contain all numbers in ZQ and these num-

bers are coprime with Q, RQ contains all numbers in Z
∗
Q and these numbers are

not conjugate modulo Q respect to q (i.e., any two numbers t and r are conjugate
modulo Q if there exists some integer j such that r ≡ tqj mod Q).

The mathematical function used in the GH public-key cryptosystem is:

µ : RQ → K × K
i �→ (si, s−i)

(8)

where s is the 3rd-order char-sequence over GF (q) generated by f(x) which is
an irreducible polynomial with a period of Q = q2 + q + 1. In [5], it is shown
that this is an injective map from RQ to K × K.

Remark 1. The XTR [7] is designed based on the char-sequences generated by
the 3rd-order polynomial of f(x) = x3 − ax2 + apx− 1 which is irreducible over
GF (q) with period Q|p2 − p+ 1. The XTR only uses one char-sequence instead
of a pair of reciprocal char-sequences. The mathematical function used in the
XTR public-key system is:

ν : RQ → K
i �→ si

(9)

However, the GH system is based on the char-sequences generated by the 3rd-
order polynomial of a3 − ax2 + bx − 1, where a and b are from GF (p2). Thus,
the 3rd-order char-sequence used to construct the XTR cryptosystem is just
a special case used in the design of the GH cryptosystem. Two schemes have
the same efficiency when they are applied to the DH key agreement protocol,
because the GH-DH computes a pair of elements over GF (p2) and shares a pair
of elements over GF (p2), and the XTR-DH computes one element over GF (p2)
and shares one element over GF (p2).

In the following sections, we will explore some useful properties of 3rd-order
char-sequences over K and use these results to the design of a new GH digital
signature algorithm. For additional results on LFSR sequences and finite fields,
the reader can refer to [3,9,10].

3 Fast Computational Algorithm
Based on the Signed-Digit Representation

3.1 A New Signed-Digit Number Representation

Definition 1. Let A = an−1an−2 · · · a0, ai ∈ {0, 1} be a binary representation.
Then A = bn−1bn−2 · · · b0, bi ∈ {−1, 0, 1} is called the binary maximal-weight
signed-digit (SD) representation of A, if there does not exist another binary SD
representation of length n for A whose Hamming weight is higher than that of
the maximal-weight SD representation.



290 Guang Gong, Lein Harn, and Huapeng Wu

An algorithm to obtain such an SD representation is given in Appendix A. The
following lemma is obvious from Algorithm 4 in Appendix A.

Lemma 6. Let an−1an−2 · · · a0, ai ∈ {0, 1} and an−1 = 1 be the binary repre-
sentation of integer A. Let d, 0 ≤ d ≤ n − 2, be the smallest integer such that
ad �= 0. Then the Hamming weight of the binary maximal-weight SD representa-
tion of A is n − d. Moreover, all the zeroes are associated with least significant
bit positions.

Some examples are given for the maximal-weight SD representations:
101100111 = 1 1 1 1 1 1 1 1 1 and 11001011000 = 1 1 1 1 1 1 1 1 0 0 0. When this
SD representations is involved in computing exponentiation-like functions using
square-and-multiply method, it is obvious that efficiency can only be achieved
when the “squaring and multiplication” is less expensive than the “squaring”.
It appears to be the case when computing terms in a third-order recurrence
sequence as it will be discussed in detail in the next subsections.

3.2 Fast Computational Algorithm of Recurrence Terms

Let k be given in its maximal-weight SD representation as k = k0k1 · · · kr =∑r
i=0 ki2r−i, k ∈ {−1, 0, 1}. It can be proven that Lemma 5 still holds true if

we add the following formulas.
For kj = −1

sTj−1 = s2Tj−1−1 − 2s−(Tj−1−1) (10)
sTj = sTj−1sTj−1−1 − bs−Tj−1 + s−(Tj−1+1) (11)

sTj+1 = s2Tj−1
− 2s−Tj−1 (12)

With values of initial terms as s0 = 3, s1 = a, s2 = a2 − 2b, s−1 = b, and
s−2 = b2 −2a, T0 = k0 = 1 and Tj = kj +2Tj−1, 1 ≤ j ≤ r, Tr = k, a pair of dual
terms, sk and s−k for k ≥ 0, can be computed based on the following algorithm.

Algorithm 1 Computing s±k

1. Set up initial values: sT0−1 = s−T0+1 = 3; sT0 = a; sT0+1 = a2 − 2b; s−T0 =
b; s−T0−1 = b2 − 2a;

2. IF kr = 0 THAN find h < r, such that kh �= 0 and kh+1 = kh+2 = · · · =
kr = 0, ELSE h = r;

3. IF h > 1 THEN FOR i = 1 TO h − 1
(a) IF ki = 1 THEN

i. compute sTi and sTi±1 using (5)-(7);
ii. compute s−Ti and s−Ti±1 using (10)-(12);

(b) ELSE
i. compute sTi and sTi±1 using (10)-(12);
ii. compute s−Ti

and s−Ti±1 using (5)-(7);
4. FOR i = Max{1, h} TO r

(a) compute s±Ti using (3);
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The final value is sTr = sk. Note that Tj and Tj−1 should be respectively replaced
by −Tj and −Tj−1 in (2)-(12), when these formulas are used in computing s−Ti

and s−Ti±1 as shown in Steps 3(a)(ii), 3(b)(ii) and 4(a) in the above algorithm.
Since the implementation of (5)-(7) or (10)-(12) is less costly than that of

(2)-(4), certain efficiency can be achieved by using the maximal-weight SD rep-
resentations. It can be shown that an evaluation of (5)-(7) or (10)-(12) needs one
multiplication, two squarings, and one constant multiplication in GF(q); while an
evaluation of (3) requires one squaring in GF(q). Thus, Step 3 needs two mul-
tiplications, four squarings, and two constant multiplications in GF(q); while
Step 4 requires two squarings in GF(q). With the assumptions that Step 3(a) or
Step 3(b) has to be performed for h− 1 times and Step 4(a) has to be executed
for r − h + 1 times, and also with the estimation of the average value of h as
included in Appendix B, we have the following lemma:

Lemma 7. Let k be given in its maximal-weight SD representation, with
log2 k ≥ 10, then, on the average case (which is also the worst case), to com-
pute a dual pair {s−k, sk} using Algorithm 1 needs 4 log2 k multiplications and
4 log2 k squarings in GF(q). On the best case to compute both sk and s−k needs
2 log2 k multiplications in GF(q).

Note that half number of 4 log2 k multiplications are in fact contant multiplica-
tions if both a and b are contant.

3.3 Complexity of Computing Recurrence Terms When q = p2

When −1 is a quadratic non-residue in GF(p), the binomial f(x) = x2 + 1
is irreducible over GF(p). Let α be a root of f(x). Under previous assump-
tions, {1, α} forms a polynomial basis in GF(p2) over GF(p). Any two ele-
ments, xandy ∈GF(p2), can be represented in the polynomial basis as x =
x0 + x1α and y = y0 + y1α, x0, x1, y0, y1 ∈GF(p). (It is worth to mention
that, in XTR system [7], the irreducible trinomial f(x) = x2 + x + 1 and
the normal basis have been chosen.) A multiplication in GF(p2) can be rep-
resented by xy = (x0 + x1α)(y0 + y1α) = (x0y0 − x1y1) + (x0y1 + x1y0)α =
[x0(y0 + y1) − y1(x0 + x1)] + [x0(y0 + y1) + y0(x1 − x0)]α. Thus, three mul-
tiplications in GF(p) are needed. Since the squaring can be represented by
x2 = (x0 + x1α)2 = (x20 − x21) + 2x0x1α = (x0 − x1)(x0 + x1) + 2x0x1α,
two multiplications in GF(p) are required for a squaring in GF(p2). The con-
stant multiplication is the case where the multiplicand is a fixed element. If
the constant element can be chosen to be a number with a specific form, then
the constant multiplication can be extremely efficient. For example, if both x0
and x1 can be chosen to be a small power of two, then it can be seen from
xy = (x0 + x1α)(y0 + y1α) = (x0y0 − x1y1) + (x0y1 + x1y0)α that the mul-
tiplication of xy can be obtained for free. If we choose the constant element
x = x0 + x1α such that one of the two coefficients x0 and x1 is a small power of
2, then only two multiplications in GF(p) are needed to perform multiplication
of xy in GF(p2). We summarize the above results in the following lemma:
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Lemma 8.

1. A multiplication in GF(p2) can be realized by performing three multiplications
in GF(p).

2. A squaring in GF(p2) needs two multiplications in GF(p).
3. A constant multiplication in GF(p2)

(a) can be realized for free if both the coefficients of the constant element can
be chosen to be a small power of 2.

(b) can be realized by performing two multiplications in GF(p), if one of the
two coefficients of the constant element can be chosen as a small power
of 2.

¿From Lemmas 7 and 8, we can find the complexity of computing s±k using
Algorithm 1 and we summarized this result in the following lemma:

Lemma 9. Let q = p2 and k be given in its maximal-weight SD representation,
with log2 k ≥ 10, then on the average case (which can also be the worst case) to
compute a dual pair {s−k, sk} using Algorithm 1 needs:

1. at most 20 log2 k multiplications in GF(p);
2. at most 18 log2 k multiplications in GF(p), if one of the two coefficients of

the constant elements a, b ∈GF(p2), can be chosen to be a small power of 2;
3. at most 16 log2 k multiplications in GF(p), if one constant element is chosen

in such a way that one of the coefficients is a small power of 2, and the other
constant element is chosen such that both coefficients are small powers of 2;

4. at most 14 log2 k multiplications in GF(p), if the both constant elements can
be chosen such that all the coefficients are small powers of 2.

On the best case to compute both sk and s−k needs 4 log2 k multiplications in
GF(p).

4 Redundancy in States of the 3rd-Order Char-Sequences

In this section, we will introduce the duality law of a pair of reciprocal char-
sequences. Under this duality law, we can address some redundancy in states of
char-sequence over K.

4.1 Duality Law

Let f(x) = x3 − ax2 + bx − 1 be an irreducible polynomial over K and s be its
char-sequence. We define a dual operator as given below:

D(sk) = s−k

D(sk, sk+1, · · · , sk+t) = (s−k, s−(k+1), · · · , s−(+t)), k ∈ Z, t ≥ 0,

where T = (sk, sk+1, · · · , sk+t) is a segment of s.
We call (sk, sk+1, · · · , sk+t) and D(sk, sk+1, · · · , sk+t) a dual segment of s or

f(x). If t = 0, we call sk and s−k a dual pair of s or f(x).
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Let h(x1, x2, · · · , xt) ∈ K[x1, x2, · · · , xt], i.e., h is a multivariables polynomial
over K. We define

D(h(si1 , si2 , · · · , sit)) = h(s−i1 , s−i2 , · · · , s−it), ij ∈ Z.

Duality Law. Let f(x) = x3 − ax2 + bx − 1 be an irreducible polynomial
over K, s be its char-sequence and D be the dual operator. Then D(D(T )) = T ,
D(D(h)) = h and

h(si1 , si2 , · · · , sit) = 0 ↔ D(h(si1 , si2 , · · · , sit)) = 0.

4.2 Property of Redundancy

In the following theorem, we will show that three elements in any state of the
3rd-order char-sequence are not independent. If we know any two consecutive
elements, the third remaining one can be uniquely determined according to a
formula.

Theorem 1. Let f(x) = x3 − ax2 + bx − 1 be an irreducible polynomial over
K and s be its char-sequence. For given the dual segment (sk, sk+1) and (s−k,
s−(k+1)), we assume that ∆ = sk+1s−(k+1) − s1s−1 �= 0. Then sk−1 and its dual
s−(k−1) can be computed by the following formulas:

sk−1 =
es−(k+1) − s−1D(e)

∆
(13)

s−(k−1) =
D(e)s(k+1) − s1e

∆
(14)

where

e=−s−1D(c1)+c2, where c1=s1sk+1−s−1sk and c2=s2k−3s−k+(b2−a)s−(k+1).

(Note. Here s1 = a and s−1 = b. In order to keep symmetric forms in the
formulas, we keep on using s1 and s−1.)

Proof. A sketch to prove this theorem is given below. From U = (sk−1, sk, sk+1,
sk+2) and its dual, we will form four linear equations in terms of four variables
sk+2, s−(k+2), sk−1, s−(k−1). Then based on linear algebra, we can solve these
equations and obtain (13) and (14).

We now start to construct the linear equations. Since U is a segment of s
generated by f(x), it satisfies the linear recurrent relation,

sk+2 = s1sk+1 − s−1sk + sk−1.

Thus, we have

sk+2 − sk−1 = c1 where c1 = s1sk+1 − s−1sk. (15)
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Applying Duality Law to the above expression, we have

s−(k+2) − s−(k−1) = D(c1). (16)

Let n = k − 1, m = k + 1 in formula 2(b) in Lemma 4, we get

sk−1sk+1 − s−2s−(k+1) = s2k − s−(k+3). (17)

Since (s−k, s−(k+1), s−(k+2), s−(k+3)) is a dual of U , it satisfies the following
linear recursive relation

s−(k+3) = s−1s−(k+2) − s1s−(k+1) + s−k.

Note that s2k = s2k − 2s−k from 2(a) in Lemma 4. Substituting s−(k+3) and s2k

in (17) respectively with the above two identities, it follows that

sk−1sk+1 − s−2s−(k+1) = s2k − 2s−k − s−1s−(k+2) + s1s−(k+1) − s−k.

Since s−2 + s1 = b2 − 2a+ a = b2 − a, we have

s−1s−(k+2) + sk+1sk−1 = c2 where c2 = s2k − 3s−k + (b2 − a)s−(k+1). (18)

By Duality Law, we have

s1s(k+2) + s−(k+1)s−(k−1) = D(c2). (19)

The equations (15), (16), (18), and (19) form four linear equations in terms of
variables sk+2, s−(k+2), sk−1, s−(k−1). Let A be the matrix of the coefficients of
this linear system, i.e.,

A =




1 0 −1 0
0 1 0 −1
0 s−1 sk+1 0
s1 0 0 s−(k+1)




Therefore, this linear system can be written as

AST = CT , (20)

where S = (sk+2, s−(k+2), sk−1, s−(k−1)), C = (c1, D(c1), c2, D(c2)) and XT is
the transpose of the vector X. Let Ã = (A,CT ). Then the reduced row-echelon
form of Ã is given below:

Ã ∼



1 0 −1 0 c1
0 1 0 −1 D(c1)
0 0 sk+1 s−1 e
0 0 s1 s−(k+1) D(e)




where e = −s−1D(c1) + c2. Thus (20) has a unique solution if and only if
det(B) �= 0, where

B =
(
sk+1 s−1
s1 s−(k+1)

)
.
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Since det(B) = ∆ �= 0, then sk−1 is given by

sk−1 =
det

(
e s−1

D(e) s−(k+1)

)

∆
,

which yields (13). The validity of (14) follows from the Duality Law.

Corollary 1. With the same notation as used in Theorem 1, the dual pair sk+2
and s−(k+2) are given by

sk+2 = sk−1 + c1 and s−(k+2) = s−(k−1) +D(c1).

Remark 2. If ∆ �= 0, then three elements in a state (sk−1, sk, sk+1) and their
duals are dependent. With the knowledge of any two consecutive elements and
their duals, the third one and its dual can be uniquely determined by Theorem 1.
If ∆ = 0, then the third element in a state of s may have more than one solution.
For the case of knowing (sk−1, sk) and its dual to compute sk+1 and its dual, it
is similar to the previous case that we have discussed. We will not include the
discussion here.

Remark 3. In [8], Lenstra et. al. have also given a formula to compute sk−1
(or sk+1) with the knowledge of (sk, sk+1) (or (sk−1, sk) ) for a special case of
K = GF (p2) and f(x) = x3 − ax2 + apx − 1. Here, we have discussed more
general cases and proposed a simpler proof. The formulas between these two
approaches are different. The technique used in [8] can not be extended to the
general case of the char-sequences.

5 The GH Digital Signature Algorithm

In this section, we explain the method to evaluate sc(h−dk) and its dual with the
knowledge of sk and its dual; but without knowing k. Then, we apply this result
together with Theorem 1 in Section 4 and Algorithm 1 in Section 3 to the design
of GH ElGamal-like digital signature algorithm (GH-DSA).

5.1 Computation of a Mixed Term Sc(h−dk)

The following lemma is a direct result from the definition of LFSR sequences.

Lemma 10. With the same notation of f(x), s, let (sk−1, sk, sk+1) be a state of
s and u be a sequence generated by f(x) with (sk−1, sk, sk+1) as an initial state.
I.e.,

u0 = sk−1, u1 = sk, and u2 = sk+1.

Then, uv−1 = (uv−1, uv, uv+1), the (v−1)th state of u, is equal to the (v−1+k)th
state of s. In other words, we have

(uv−1, uv, uv+1) = (sv−1+k, sv+k, sv+1+k).
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For simplicity, we denote ((sk−1, sk, sk+1), f(x)) as a sequence generated by
f(x) with an initial state (sk−1, sk, sk+1).

Algorithm 2 Assume that f(x),(sk, sk+1) and its dual are given. Let Q =
per(s). Assume that c, h and d are given integers with gcd(d,Q) = 1. Then
sc(h−dk) and its dual can be computed according to the following procedures:

1. Compute v = −hd−1 mod Q and u = −cd mod Q.
2. Compute the sk−1 and its dual according to Theorem 1.
3. Compute (v − 1)th state of a sequence generated by ((sk−1, sk, sk+1), f(x))

according to Algorithm 1. This step gives sv+k and its dual.
4. Construct g(x) = x3 − sv+kx

2 + s−(v+k)x − 1 and compute su(g), s−u(g)
according to Algorithm 1.

Here, we have su(g) = sc(h−dk) and s−u(g) = s−(c(h−dk)).

Note. All results that we have discussed so far are true for general q and Q.

Lemma 11. With the same notation as used in Algorithm 2, to compute
sc(h−dk) and its dual needs 2 ·4(logv+ logu) multiplications and 2 ·4(logv+ logu)
squarings in GF (q) in average. In particular, if q = p2, to compute sc(h−dk) and
its dual needs 2 · 20(logv + logu) multiplications in GF (p) in average.

Proof. In Algorithm 2, the computational cost depends only on how many times
Algorithm 1 is invoked. Since Algorithm 2 invoked Algorithm 1 twice, applying
Lemma 7, it needs 16 multiplications in GF (q). According to Lemma 9, for in-
voking Algorithm 1 each time, it needs 20(logv+ logu) multiplications in GF (p).
In total, it needs 2 · 20(logv + logu) multiplications in GF (p).

Remark 4. When we apply Algorithm 2 to the char-sequences used in the XTR,
it can save the matrix computation as given in Algorithm 2.4.8 [7]. So, this
algorithm is more efficient than the algorithm given in [7].

5.2 The GH Digital Signature Algorithm

We are now ready to present the GH ElGamal-like digital signature algorithm.
Note that the GH signature scheme can also be modified into variants of gener-
alized ElGamal-like signature schemes as listed in [6].

Algorithm 3 (GH-DSA)
System public parameters: p is a prime, q = p2, and f(x) = x3 − ax2 +

bx − 1 which is an irreducible polynomial over GF (q) with period Q, where Q
satisfies the condition that Q = P1P2, P1 is a prime divisor of p2 + p + 1 and
P2 is a prime divisor of p2 − p + 1. Let GF (p2) be defined by the irreducible
polynomial of x2 + 1 (see Section 3) and γ be its root in GF (p2).

Alice: Choose x, with 0 < x < Q and gcd(x,Q) = 1 as her private key and
compute (sx, s−x) as her public key. For a message m that Alice needs to sign,
she follows the procedures:
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1. Randomly choose k, with 0 < k < Q, and gcd(k,Q) = 1, and use Algorithm 1
to compute (sk−1, sk, sk+1) and its dual such that r = sk,0+ sk,1p is coprime
with Q, where sk = sk,0 + sk,1γ. (Here, we adopt the similar approach as
used in the Elliptic Curve digital signature algorithm [12] to form an integer
r in digital signing process.)

2. Compute h = h(m), where h is a hash function.
3. Compute t = k−1(h − xr) mod Q (i.e., the signing equation is: h ≡ xr + kt

mod Q.)

Then (r, t) is a digital signature of the message m. Alice sends Bob (m, r, t)
together with (sk, sk+1) and its dual.

Bob: Perferming the following verifying process

Check if gcd(t, Q) = 1.

Case 1. gcd(t, Q) = 1.

1. Compute v = tr(−1) mod Q and u = hr(−1) mod Q.
2. Compute su−vk and its dual according to Algorithm 2.
3. Check if both su−vk = sx and s−(u−vk) = s−x. If so, Bob accepts it as a valid

signature. Otherwise, Bob rejects it.

Case 2. gcd(t, Q) > 1.

1. Compute sh−rx and its dual according to Algorithm 2.
2. Form g(x) = x3 − skx

2+ s−kx− 1 and compute st(g) and its dual according
to Algorithm 1.

3. Check if both sh−rx = st(g) and s−(h−rx) = s−t(g). If so, Bob accepts it as
a valid signature. Otherwise, Bob rejects it.

Lemma 12. The security of the GH-DSA is based on the difficulty of solving
the discrete logarithm in GF (q3) = GF (p6). The signing and verifying processes
need respectively 20logQ multiplications and 2 · 20logQ multiplications in GF (p)
in average.

Proof. Since f(x) is an irreducible polynomial over GF (q3) and the period of
f(x) is Q = P1P2, where P1|p2 + p + 1 and P2|p2 − p + 1, a root of f(x) is in
GF (p6) − (GF (p3) ∪ GF (p2)). Similarly, as we have proved in [5], the problem
of solving for x from (sx, s−x) or solving for k from (sk, s−k) is equivalent to
compute DL in GF (p6). Thus, the first assertion is established.

Note that the probability of any number less than Q which is not coprime
with Q is given by

Prob{gcd(z,Q) > 1 : 0 < z < Q} =
P1 + P2 − 1

P1P2
. (21)

Thus, in the signing process, we only need to estimate the computational cost
for invoking Algorithm 1 at Step 1, which is 20logQ multiplications in GF (p) in
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average. For case 1 in the verifying process, it can be seen that from Lemma 9
invoking Algorithm 2 at Step 2 needs 2 · 20logQ multiplications in GF (p) in
average. In Case 3, it invokes Algorithm 2 at Step 2 and Algorithm 1 at Step 3.
Thus, it needs 3 · 20logQ multiplications in GF (p) in average. Combined with
(21), the verifying process needs 2 · 20logQ multiplications in GF (p) in average.

6 Conclusion

In this paper, we discuss an efficient algorithm that utilizes the signed-digit
representation to compute the k term of a characteristic sequence generated by
a linear feedback shift register of order 3 overGF (q). Then we propose an efficient
algorithm to compute the (h−dk)th term of the characteristic sequence based on
the knowledge of the kth term where k is unknown. By using these new results
on the characteristic sequences, the GH-DSA (Digital Signature Algorithm) is
developed.

Remark 5. The GH cryptosystem, just like the elliptic curve public-key cryp-
tosystem, enjoys the benefit of using a shorter key to achieve high security. Also,
the GH cryptosystem can be resistant to power analysis attack and timer analy-
sis attack without increasing cost of computation. This is due to their evaluation
formulas as given in Lemma 5 of Section 2.
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Appendix

A An Algorithm
to Obtain Maximal-Weight SD Representation

When the binary representation of an integer is given, its binary maximal-weight
SD representation can be generated with the following algorithm.

Algorithm 4 Maximal-weight signed-digit recoding
Input: the binary representation of A: an−1an−2 · · · a0, ai ∈ {0, 1}

and an−1 = 1;
Output: the binary maximal-weight representation of A:

bn−1bn−2 · · · b0, bi ∈ {−1, 0, 1};
1. initialize the flag: t = 0;
2. FOR i = 0 TO n − 2

(a) IF t = 0 THEN
i. IF ai = 0 THEN bi = 0;
ii. ELSE {t = 1; IF ai+1 = 0 THEN bi = −1; ELSE bi = 1; }

(b) ELSE
i. IF (ai = 1 AND ai+1 = 0) THEN bi = −1;
ii. IF (ai = 1 AND ai+1 = 1) THEN bi = 1;
iii. IF (ai = 0 AND ai+1 = 0) THEN bi = −1;
iv. IF (ai = 0 AND ai+1 = 1) THEN bi = 1;

3. bn−1 = an−1;

The correctness of this algorithm can be proved. It is worth to point out that
the maximal-weight SD representation always has the same length as the binary
form. If the maximal-weight SD representation of a negative integer (−A) is
required, it can be obtained by negating each bit in the maximal-weight SD
representation of A. It can be seen that the Hamming weight of the maximal-
weight SD representation of −A is the same as that of A.
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B An Estimation of the Parameter h

In Algorithm 1, Let k = k0k1 · · · kr, 2r ≤ k ≤ 2r+1 − 1, be given in its maximal-
weight SD representation, then from Lemma 6, we have Pr{ki = 0, 0 < i < r} =

r(r−1)
2

(r−1)×2r = r
2r+1 . Thus, the average value of h can be given by h = r−(r−1) r

2r+1 .
The following table shows some values of h(r) as a function of r.

Table 1. Some values of h(r), Max{h(r)}, Min{h(r)} and r.

r 2 3 4 5 6 7 8 9 10 12 r > 15

h(r) 1.75 2.62 3.62 4.69 5.77 6.84 7.89 8.93 9.96 11.98 r

Max{h(r)} 2 3 4 5 6 7 8 9 10 12 r

Min{h(r)} 0 0 0 0 0 0 0 0 0 0 0

Although the value of h can be as small as 0, it can be seen that the average
value h(r) is approximately equal to its maximal value r when r ≥ 10.
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Abstract. A. K. Lenstra and E. R. Verheul in [2] proposed a very ef-
ficient way called XTR in which certain subgroup of the Galois field
GF(p6) can be represented by elements in GF(p2). At the end of their
paper [2], they briefly mentioned on a method of generalizing their idea
to the field GF(p6m). In this paper, we give a systematic design of this
generalization and discuss about optimal choices for p and m with respect
to performances. If we choose m large enough, we can reduce the size of
p as small as the word size of common processors. In such a case, this
extended XTR is well suited for the processors with optimized arithmetic
on integers of word size.

1 Introduction

After Diffie-Hellman (DH) key agreement protocol was published, many re-
lated key agreement protocols have been proposed. Very recently, in [2] A. K.
Lenstra and E. Verheul proposed an efficient computational tool called XTR
(Efficient and Compact Subgroup Trace Representation) and showed that it
can be adopted to various public key systems including key exchange protocols.
Their scheme results in relatively efficient system with respect to the computa-
tional and communicational complexity compared to currently known public key
schemes using subgroups. At the end of their paper, they mentioned very briefly
that XTR can be generalized in a straightforward way using the extension field
of the form GF(p6m) and made some general comments with the focus on the
case p = 2.

In this paper, we carry out the generalization in detail and discuss about
optimal choices of the parameters p and m. The idea is mostly straightforward,
but we need to be more systematic to find out optimal choices of p and m
among the possible cases. In more detail, the generalization is done in two steps.
First, we propose a systematic design for XTR-like system in GF(p6m) using an
irreducible cubic polynomial F (c,X) = X3 − cX2 + cpm

X−1 ∈ GF(p2m)[X] for
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any m. Then we determine the required properties of the parameters m, p, and c
for F (c,X) under the efficiency and security considerations. We are focusing on
the case that is efficient in the limited applications such as smart cards. We use
an optimal normal basis to represent elements of GF(p2m) over GF(p). Hence we
consider the case where 2m+ 1 is a prime and p is a primitive element modulo
2m+ 1. We suggest to use m such that either 2m+ 1 is a Fermat prime or both
m and 2m+ 1 are primes. With such a choice of m, a randomly chosen prime p
has a better chance to be a primitive element in Z2m+1.

We estimated the required computational complexity for XTR extended to
GF(p6m) under considerations as the above, and compare the result with XTR
in GF(P 6) where P and p6m have the same bit sizes. The result shows us that
the required number of bit operations for both are about the same.

Modern workstation microprocessors are designed to calculate in units of
data known as words. For large prime p, multiple machine words are required to
represent elements of prime field GF(p) on microprocessors, since typical word
sizes are not large enough. This representation causes two possible computational
difficulties: carries between words must be treated and reduction modulo p must
be performed with operands of multiple span words.

Hence we see that using prime number p as small as the word size of common
processors for XTR relieves the above computational difficulties for operation
in GF(P ) for large prime P . In this way, the proposed generalization maintains
the communicational advantages as in XTR and it enhances the computational
advantages over XTR since there is no need of multiprecision computation es-
pecially when the system is implemented under workstation processors with
optimized arithmetic on integers of word size.

Unfortunately, there are some drawbacks in extending XTR to GF(p6m). As
m gets larger there are fewer prime numbers p, q that can be used to establish
an XTR-like system in GF(p6m). Also it takes longer to generate the primes p, q
with the required properties. But generating p, q is a one-time task and it is not
a serious disadvantage in many cases.

Our paper is organized as the following. In Section 2, we describe the gener-
alized system in such a way that it can be formulated for any m, setting aside
any security or complexity related concerns. In Section 3, we discuss about the
security of the system and determine the choices of parameters. In Section 4,
we estimate the computational complexity for the proposed XTR-like scheme in
GF(p6m). Then we discuss about optimal choices of parameters. In Section 5, we
conclude our paper with comparison of efficiency and security for cryptographic
schemes using this generalization with those using the original XTR under the
Galois fields with about the same sizes. We also discuss about an efficient way
of parameter generation of XTR system extended to GF(p6m) and recommend
good choices of m for current use in Appendix A.
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2 A Description of XTR Extended to GF(p6m)

In this section we describe the XTR system using elementary symmetric poly-
nomials and give a systematic way to generalize XTR-like system to GF(p6m).
Following [2], we start by setting up some notations. Given an element c ∈
GF(p2m), we define the cubic polynomial F (c,X) as following:

F (c,X) = X3 − cX2 + cpm

X − 1 = (X − h0)(X − h1)(X − h2),

where the roots hi’s are taken from the splitting field of F (c,X). We set cn =
hn
0 +hn

1 +hn
2 for any integer n. Then from the root-coefficient relations of a cubic

equation, we have

Lemma 1. For any integers n and t we have

1. c1 = c, h0h1 + h1h2 + h0h2 = cpm

, and h0h1h2 = 1;
2. c−n = cnpm = cpm

n ;
3. Either all hi’s are in GF(p2m) or F (c,X) is irreducible over GF(p2m) and

all hi’s have order dividing p2m − pm + 1;
4. (cn)t = ctn = (ct)n.

Proof. Item 1 is nothing but the root-coefficient relation. Items 2 and 3 can
be proved exactly the same way as Lemma 2.3.2 of [2] is proved.

To prove item 4, note that

cn = hn
0 + hn

1 + hn
2 , c

pm

n = c−n = (h1h2)n + (h0h2)n + (h0h1)n.

This implies that

F (cn, X) = X3 − cnX
2 + cpm

n X − 1 = (X − hn
0 )(X − hn

1 )(X − hn
2 ).

And thus we see that

(cn)t = (hn
0 )t + (hn

1 )t + (hn
2 )t = hnt

0 + hnt
1 + hnt

2 .

Hence we see that (cn)t = cnt = (ct)n for any integer n, t.

It can be easily checked that any irreducible cubic polynomial f(x) = x3 −
ax2 + bx− 1 ∈ GF(p2m) is of the form f(x) = x3 − ax2 + apm

x− 1 if the order
of the roots h0, h1, h2 ∈ GF(p6m) of f(x) = 0 divides p2m − pm + 1.

Recall that the elementary symmetric polynomials σk of degree k in the
indeterminates X1, X2, X3 are given by

σ1 = X1 +X2 +X3, σ2 = X1X2 +X2X3 +X1X3, σ3 = X1X2X3.

Here is a theorem, due to Newton, so-called ‘fundamental theorem on sym-
metric polynomials’.
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Theorem 1. (Theorem 1.75 in [7]) Let σ1, σ2, σ3 be the elementary symmetric
polynomials in X1, X2, X3 over a commutative ring R, and let s0 = 3, sn =
Xn

1 +Xn
2 +Xn

3 ∈ R[X1, X2, X3] for n ≥ 1. Then the following equality

sk − sk−1σ1 + sk−2σ2 − sk−3σ3 = 0

holds for k ≥ 3.

As a direct application of Newton’s Theorem the following lemma can be
easily proved.

Lemma 2. Then for any positive integer n we have

1. cn+2 = cn+1c− cnc
pm

+ cn−1, cn−1 = cn+2 − cn+1c+ cnc
pm

;
2. c2n = c2n − 2cpm

n ;
3. c2n+1 = cncn+1 − ccpm

n + cpm

n−1;
4. c2n−1 = cncn−1 − cpm

cpm

n + cpm

n+1.

As in [2], we denote Sn(c) = (cn−1, cn, cn+1) for any integer n. Then by
Lemma 2.2, we see that S−1(c) = (c2pm − 2c, cpm

, 3), S0(c) = (cpm

, 3, c), and
S1(c) = (3, c, c2 − 2cpm

). Thus, if we do not care about efficiency or security
we can define XTR-like key exchange system as following for any prime p and
positive integer m and for any c ∈ GF(p2m).

XTR-DH key exchange system in GF(p6m):

1. Alice chooses a random integer n and computes Sn(c) then sends cn to Bob.
2. Bob chooses a random integer t and computes St(c) then sends ct to Alice.
3. Alice and Bob share the key cnt that can be obtained by computing either
Sn(ct) = ((ct)n−1, (ct)n, (ct)n+1) or St(cn) = ((cn)t−1, (cn)t, (cn)t+1).

All the XTR-based schemes given in [2] can be extended to GF(p6m) similarly.
In the following sections, we will discuss about the parameter selections to meet
various security levels and to boost up the efficiency.

3 Parameter Selection for Security Consideration

Various XTR-based public key systems or key exchange protocols rely their
security on the Discrete Logarithm Problem(DLP) in the base g ∈ GF(p6m),
where g is a root of the cubic equation F (c,X) = 0. Therefore, in order to make
XTR-based schemes secure, we need to use parameters p,m, c such that the DLP
in the base g is difficult. In this section, we follow the method in [1] to determine
the size of the subgroup generated by g to prevent known attacks on DLP in
extension fields.

Up to this point one of the best attacks known for the DLP is the Index
Calculus Method using Number Field Sieve. For a DLP in the base g ∈ GF(p6m),
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the asymptotic complexity of the Index Calculus Method using Number Field
Sieve is

L(ps, 1/3, 1.923 + o(1)),

where s is the smallest divisor of 6m such that g is contained in a subfield of
GF (p6m) isomorphic to GF (ps). Thus, for the security reason, it is desirable to
use g ∈ GF(p6m), which is not contained in any proper subfield of GF(p6m).
Note that if a root g of the polynomial F (c,X) is not contained any proper
subfield of GF(p6m) then F (c,X) is irreducible over GF(p2m). Hence we have
c = Tr(g) and the roots of F (c,X) are conjugates of g over GF(p2m). Here, Tr :
GF(p6m) → GF(p2m) is the trace projection defined by Tr(x) = x+xp2m

+xp4m

for x ∈ GF(p6m).
The following Lemma, which follows directly from Lemma 2.4 of [1], gives

a sufficient condition for a subgroup of GF(p6m)∗ not to be contained in any
proper subfield of GF(p6m).

Lemma 3. Let q be a prime factor of Φ6m(p). Then the subgroup of GF(p6m)∗

of order q is not contained in any proper subfield of GF(p6m).

Here Φn(X) is the n-th cyclotomic polynomial for a positive integer n not divis-
ible by p. For computations with cyclotomic polynomials, we can use Theorem
3.27 in [7]:

Φ6m =
∏

d|6m

(X6m/d − 1)µ(d),

where µ(·) is the Möbius function.
As we shall see in the next section, we will take m to be a prime or a power

of 2 (so that 2m+ 1 is a Fermat prime) for easy selection of the prime p. Thus
we have

Φ6m(X) =
(X6m − 1)(X2 − 1)(X3 − 1)(Xm − 1)
(X2m − 1)(X3m − 1)(X6 − 1)(X − 1)

=
X2m −Xm + 1
X2 −X + 1

if m is a prime, or

Φ6m(X) =
(X6m − 1)(Xm − 1)
(X2m − 1)(X3m − 1)

= X2m −Xm + 1

if m is a power of 2.
When we use a system based on the DLP in a multiplicative subgroup of size

q of the Galois field, the sizes of q and the underlying Galois field that guarantee
the security required currently can be determined according to the table in [4].
The recommended size for q is much larger than p2 − p+ 1 for small or medium
sized p. Thus in our case we need to take the size q of the subgroup of GF(p6m)∗

to be much larger than p2 − p+ 1. In addition, if we take q to be a prime factor
of p2m − pm + 1 then the calculation in the previous paragraph tells us that q
is a prime factor of Φ6m(p). Then by Lemma 3 the subgroup of order q is not
contained in any proper subfield of GF(p6m).
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Also it is well-known that birthday-type attacks can be applied to get x from
the given gx and the complexity of birthday attacks can be estimated by O(

√
q)

where q is the order of g. Currently the recommended size for q is q > 2160. Thus
to make our system as secure as the DLP problem in GF (p6m) against currently
known attacks, it is enough to choose g ∈ GF(p6m) so that the order of g is a
prime factor of p2m − pm + 1 and larger than max(p2 − p+ 1, 2160).

4 Parameter Selection for Efficiency Cconsiderations

The most basic computation required in XTR-like schemes is to compute Sn(c)
from any given c ∈ GF(p2m) and a positive integer n. ¿From Lemma 2 we have

Lemma 4. Let c be any element of GF(p2m) and A(c) be the 3×3 matrix given
by

A(c) =


 0 0 1

1 0 −cpm

0 1 c


.

For any integer n ≥ 1, we have Sn+1(c) = Sn(c)A(c).

By modifying the ‘square and multiply’ method, we can compute Sn(c) as fol-
lows:

Algorithm 2 Let c ∈ GF(p2m) and a positive integer n be given. ¿From the
binary expansion of n =

∑k
i=0mi2i define a sequence {ti} by

t0 = m0

ti = 2ti−1 +mi, i ≥ 1.

To compute Sn(c) = (cn−1, cn, cn+1), follow the steps:

Step 1. Set St0(c) = (cpm

, 3, c) if t0 = 0, or St0(c) = (3, c, c2 − 2cpm

) if t0 = 1.
Step 2. Compute Sti from Sti−1 for i = 1, 2, · · · , k.
Step 3. Output Stk

.

Step 2 of the above algorithm is performed as following. For a fixed i let us let
d = ti−1 for simplicity. If mi = 0, then

Sti = S2d = (cdcd+1 − cpm

cpm

d + cpm

d+1, c
2
d − 2cpm

d , cdcd+1 − ccpm

d + cpm

d−1).

If mi = 1, then

Sti = S2d+1 = (c2d − 2cpm

d , cdcd+1 − ccpm

d + cpm

d−1, c
2
d+1 − 2cpm

d+1).

As we can see from Lemma 2 and Algorithm 2, the most frequently performed
operations in our system are the following three types:

x2, xy, xz − yzpm

for x, y, z ∈ GF(p2m).
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In order to make the XTR system in GF(p6m) efficient, it is enough to perform
these operations efficiently. Thus, we consider the case when GF(p2m) has an
optimal normal basis (ONB) of type I, that is, the case when 2m+ 1 is a prime
number and p (mod 2m + 1) is a primitive element in Z2m+1. In this case, the
cyclotomic polynomial

Φ2m+1(X) =
X2m+1 − 1
X − 1

= X2m +X2m−1 + · · · +X + 1 ∈ GF(p)[X]

is irreducible and the set B1 = {α, αp, αp2
, . . . , αp2m−1} of roots becomes an

Optimal Normal Basis for GF(p2m). Since p (mod 2m+1) is a primitive element
in Z2m+1, this basis B1 is setwise equal to the (almost) polynomial basis B2 =
{α, α2, α3, . . . , α2m}.

The complexity for elementary operations in GF(p2m) is well studied by
Lenstra in [1]. Our focus is on the most frequently performed operations

x2, xy, xz − yzpm

for x, y, z ∈ GF(p2m)

as was in [2]. We have similar result as in [2] on the complexity for these opera-
tions.

Lemma 5. Let p and 2m + 1 be prime numbers, where p (mod 2m+ 1) is a
primitive element in Z2m+1. Then for x, y, z ∈ GF(p2m), we have

1. Computing xpm

is for free.
2. Computing x2 takes 80 percent of the complexity taken for multiplications in

GF(p2m).
3. Computing xy takes 4m2 multiplications in GF(p).
4. Computing xz − yzpm

takes 4m2 multiplications in GF(p).

Proof. Since we can use either of the two bases B1 and B2 at our convenience,
all the items are straightforward. Thus we only prove item 4 in detail. Set t = 2m.
First we represent x, y, z by using the normal basis B1,

x =
t−1∑
i=0

aiα
pi

, y =
t−1∑
i=0

biα
pi

z =
t−1∑
i=0

ciα
pi

,

and we get

zpm

=
m−1∑
i=0

ciα
pi+m

+
t−1∑
i=m

ciα
pi−m

.

Then we have

xz − yzpm

=
t−1∑
i=0

m−1∑
j=0

aic
′
jα

pi

αpj+m

+
t−1∑
i=0

t−1∑
j=m

bic
′′
jα

pi

αpj−m

,

where c′
j = cj + cm+j and c′′

j = cj + cj−m. Getting c′
j , c

′′
j from cj ’s is a free

operation. Now we convert the basis into B2 and then the computation for
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αpj

αpi±m

becomes free. Hence we need t2 multiplications in GF(p) to compute
xy − yzpm

.

We note here that we haven’t used any high speed multiplication algorithms
in the proof. When we apply more efficient multiplication algorithms, then the
required bit complexity will be reduced. Comparing Lemma 2.1.1 in [2] and the
above Lemma 5, we see that the number of bit operations for computing

x2, xy, xz − yzp

are about the same in the following two cases when |P | = m|p|,

– x, y, z ∈ GF(P 2) with P = 2 (mod 3) ;
– x, y, z ∈ GF(p2m) where 2m+ 1 is a prime and 〈p〉 = Z∗

2m+1.

Now based on Lemma 5, we have the following estimate for the computational
complexity of Algorithm 2.

Theorem 3. Let c ∈ GF(p2m) and a positive integer n be given. Then it takes at
most 11.2m2 log n multiplications in GF(p) to compute Sn(c) = (cn−1, cn, cn+1).

Also we estimate the required bit complexity to compute Tr(gagbk) from
given Tr(g) and Sk(Tr(g)) for unknown k. This computation is required for
XTR-Nyberg-Rueppel signature scheme as in [2].

Theorem 4. Let g ∈ GF(p6m) be an element of prime order q and suppose
Tr(g) and Sk(Tr(g)) be given for some unknown positive integer k. Let a, b be
positive integers with less than q. Then Tr(gagbk) can be computed at a cost of
(11.2 log(a/b (mod q) + 11.2 log b+ 36)m2 multiplications in GF(p).

We specify the steps as following :

– Compute e = a
b (mod q).

– Compute Tr(gk+e).
– Compute Tr(g(k+e)b) = Tr(gagbk)

We focus on the second item here. We have

Sk(Tr(g))A(c)e = [S0(Tr(g))A(c)k]A(c)e = [S0(Tr(g))A(c)e]A(c)k

In order to get Tr(gk+e), what we need is [S0(Tr(g))A(c)e]C(A(c)k), where
C(A(c)k) is the center column of the matrix A(c)k. Since we have already given
Sk(Tr(g)), and we know that

Sk(Tr(g))T =


S−1(c)

S0(c)
S1(c)


C(A(c)k),
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where Sk(Tr(g))T is the transpose of Sk(Tr(g)). Hence we have the very same
formula as in XTR,

C(A(c)k) =


S−1(c)

S0(c)
S1(c)




−1

Sk(Tr(g))T .

This implies that computing C(A(c)k) takes constant time for any k when
Sk(Tr(g)) is given. In fact, it takes at most 9 × 4m2 = 36m2 multiplications
in GF(p). Hence the complexity to compute Tr(gk+e) can be estimated as
(11.2 log e + 36)m2 multiplications in GF(p). And the complexity to compute
the third item is 11.2 log bm2 multiplications in GF(p). Thus we can estimate
the complexity to get Tr(gagbk) by (11.2 log(a/b (mod q))+ 11.2 log b+36)m2

multiplications in GF(p).
Thus we see that the computational complexity is about the same for the

original XTR and our extension to GF (p6m). But the multiprecision problem
that occurs in the operations in GF(P ) for large P can be removed when we use
GF(p) with p as small as the word size of the processor.

Now we pose another condition on m so that it is easy to generate the prime
p. Since we are using ONB, p is necessarily a primitive element in Z2m+1. But as
a matter of parameter generation, we will decide m first and choose the prime p
somewhat randomly. So it is desirable that Z2m+1 has more primitive elements.

The number of primitive elements in Z2m+1 is φ(φ(2m+1)) = φ(2m), where
φ(·) is the Euler totient function. Thus we want to make φ(2m) as big as possible
compared to m. There are two possible directions we can take to this end. The
first is to take m to be a power of 2. But then 2m+ 1 must be a Fermat prime,
which is very rare. The other is to take m to be a prime. There are reasonably
many choice of primes m for which 2m+ 1 is also a prime.

For appropriate selection of m for current recommendation is given in the
Appendix A. After m and the sizes of p, q have been established, we generate p, q
and c = Tr(g). Algorithms for generating parameters are also given in Appendix
A.

5 Conclusion

Thus most of the details in XTR can be generalized systematically to the finite
field GF(p6m) using the trace projection Tr : GF(p6m) → GF(p2m). Hence it is
straightforward to see that the schemes as XTR-DH, XTR-ElGamal encryption,
and XTR-Nyberg-Rueppel signatures can be extended to GF(p6m).

For security concerns, all the details were given in Section 5 of [2]. They’ve
discussed about the DLP in GF(pt), and hence it can be applied to cases in
GF(p6m). The communicational and computational advantages of the XTR
schemes can be obtained in the generalization as long as we choose m so that
either 2m + 1 is a Fermat prime or both m, 2m + 1 are primes and we don’t
have any multiprecision operations if we select the size of p as small as the word
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size of common processors in the generalization but we might need longer time
to generate prime numbers p and q in such cases. But the prime numbers are
needed to generate only once, the generalized version of XTR is more preferable
for limited applications as smart cards.
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A An Efficient Way for Parameter Generation

In this appendix, we describe an efficient way for parameter generation one by
one. At first, we decide the size of the field GF(p6m) and which m to use. Then
we select the primes p, q. And finally, we select c ∈ GF(p2m) \ GF(pm).

As we discussed in Section 4, m will be chosen so that either 2m + 1 is a
Fermat prime or both m and 2m+1 are primes. In the Table 1 below, we give a
list of m which meet this criterion. The numbers in the column titled ‘ratio’ are
the proportion of primitive elements of Z2m+1. The case m = 1 is the original
XTR. Not much improvement is achieved in the cases m = 2, 3. Thus we do not
recommend to use these cases. Note that the ratio tends to 1/2 as m gets larger.

For given m as in the above table, we choose the appropriate size for the field
characteristic p so that the size of p6m is about the same as the recommended
size for prime fields with respect to the security concerns in the DLP in prime
fields. For example, see Table 2.

Now we consider the generation of the prime numbers p, q in our scheme. We
follow the scheme of generating prime numbers as in [1] rather than using the
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Table 1. Choices for m and the corresponding extension fields

m ratio field extensions

1 1/3 GF(p) → GF(p2) → GF(p6)

2 2/5 GF(p) → GF(p4) → GF(p12)

3 2/7 GF(p) → GF(p6) → GF(p18)

5 4/11 GF(p) → GF(p10) → GF(p30)

8 8/17 GF(p) → GF(p16) → GF(p48)

11 10/23 GF(p) → GF(p22) → GF(p66)

23 22/47 GF(p) → GF(p46) → GF(p138)

29 28/59 GF(p) → GF(p58) → GF(p174)

41 40/83 GF(p) → GF(p80) → GF(p240)

Table 2. Choices for m and the corresponding size of a finite field

field size 1024 bit 2048 bit 2700 bit 5100 bit

recommended m for p of 16 bits 11 23 29 41

recommended m for p of 32 bits 8 11 23 29

recommended m for p of 64 bits 5 8 11 23

method given in [2]. In general setting, we are interested in the cases using small
or medium sized prime number p covered in [1].

Here we describe the method of generating prime numbers p and q that we
need. First we determine the |p6m| and |q| (the bit sizes of p6m and q) for general
security considerations according to [4]. And then we decide m so that p is of
the word size of the processor to be used.

We repeat selecting p until p2m − pm + 1 has a prime factor of size |q|. We
refer the result of [1] that points it works sufficiently quickly in practice. As
m grows, hence p gets smaller, there are fewer appropriate p,m’s than XTR
case (assuming comparable levels of security). The exact distribution of such
primes p, q is not known until now. Since this is one-time cost, it’s not a serious
disadvantage.

Now consider the generation of c = Tr(g). The most elementary way to
generate c = Tr(g) where g ∈ GF (p6m) of the order q with q divides p2m−pm+1.

As usual, first we randomly generate h ∈ GF (p6m) and check if h
p2m−pm+1

q �= 1

and set g = h
p2m−pm+1

q . Then such g has the order q. We compute Tr(g). But
here we have lemmas which will come in handy when we construct a suitable
generator g of a subgroup. And the proofs of these lemmas are similar to the
XTR in GF (P 6).
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Lemma 6. Let m be a positive integer such that either 2m+1 is a Fermat prime
or both m and 2m+ 1 are primes. Suppose F (c,X) is irreducible over GF(p2m)
and g ∈ GF(p6m) is a root of F (c,X). Then we have c = Tr(g) and cn = Tr(gn)
and the multiplicative order q of g divides p2m − pm + 1.

Lemma 7. F (c,X) is reducible over GF (p2m) if and only if cpm+1 ∈ GF (pm)

By using this lemma, we have a similar algorithm as in XTR to generate
c = Tr(g) where g ∈ GF (p6m) of prime order q that is not contained any
subfield of GF (p6m).

Algorithm to generate c = Tr(g) for our purpose
1. Choose c̃ ∈ GF (p2m) \GF (pm).
2. Check if c̃pm+1 ∈ GF (pm). If it is, go to 1.
3. Compute c̃ p2m−pm+1

q

and check if it is 3. If it is not 3, then set c = c̃ p2m−pm+1
q

.

This c is what we wanted.
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Abstract. Lattices are regular arrangements of points in n-dimensional
space, whose study appeared in the 19th century in both number the-
ory and crystallography. Since the appearance of the celebrated Lenstra-
Lenstra-Lovász lattice basis reduction algorithm twenty years ago, lat-
tices have had surprising applications in cryptology. Until recently, the
applications of lattices to cryptology were only negative, as lattices were
used to break various cryptographic schemes. Paradoxically, several pos-
itive cryptographic applications of lattices have emerged in the past five
years: there now exist public-key cryptosystems based on the hardness of
lattice problems, and lattices play a crucial rôle in a few security proofs.
In this talk, we will try to survey the main examples of the two faces of
lattices in cryptology. The full material of this talk appeared in [2]. A
preliminary version can be found in [1].
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Abstract. We present a new message authentication code. It is based
on a two trail construction, which underlies the unkeyed hash func-
tion RIPEMD-160. It is in comparison with the MDx-MAC based on
RIPEMD-160, much more efficient on short messages (that is on mes-
sages of 512 or 1024 bits) and percentage-wise a little bit more efficient
on long messages. Moreover, it handles key-changes very efficiently. This
positive fact remains if we compare our Two-Track-MAC with HMAC
based on RIPEMD-160.

1 Introduction

Message Authentication Codes (MACs) are symmetric-key cryptographic prim-
itives used to provide data integrity and symmetric data origin authentication.
Given a message M to be authenticated and a secret key K (shared between two
parties), the MAC algorithm computes an authentication tag A = MAC(K,M)
for the message. The pair (M,A) is passed from sender to receiver who can ver-
ify the authentication tag by computing the MAC of the message himself (as he
knows the key).

The goal of an adversary (who does not know the key) is to forge a MAC for a
message of his choice (selective forgery), or for an arbitrary message (existential
forgery). Here it is assumed that the adversary has knowledge of a number of
messages M i and their corresponding authentication tags Ai = MAC(K,M i).
In the case of a chosen-text attack the opponent is even able to request the MAC
for a number of messages of his choice (before forging a MAC on a new, and
different, message).
� Algorithm invented while working at debis Information Security Services – Bonn,
Germany.
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It is a common approach to construct MAC algorithms from existing crypto-
graphic hash functions, as such schemes require little additional implementation
effort. They are also generally faster than MACs which are based on block ci-
phers. A cryptographic hash function is a function which compresses an input of
arbitrary length into a hash value of fixed length, while also satisfying some ad-
ditional cryptographic properties (preimage resistance and collision resistance).
A hash function usually works by iteration of a compression function, which has
a fixed-length message input operating on an internal state variable. The final
value of this internal state then serves as hash value.

To build a MAC algorithm from a hash function it is necessary to include
a secondary input, the secret key, in the computation. Early proposals such as
the envelope method [6], where the key material is simply prepended and ap-
pended to the message input to the hash function, were shown to have significant
weaknesses [4,5]. MDx-MAC and HMAC have emerged as the most secure alter-
natives. MDx-MAC [4], which can be based on MD5, RIPEMD, SHA or similar
algorithms, makes some small changes to the hash function used, while HMAC
[1] is a black box construction that can be based on any hash function.

In this paper we will present a new MAC algorithm, called Two-Track-MAC
(or TTMAC in short). It has been submitted as a candidate algorithm for the
NESSIE project [3]. The algorithm is based on the RIPEMD-160 hash function
[2] (making only small changes to the hash function). We will show that the
structure of RIPEMD, which consists of two parallel trails, has been exploited to
double the size of the internal state, and that this allows to significantly reduce
the overhead in the computation of the MAC for short messages, compared
to the other MAC constructions. Another advantage of our proposal is better
efficiency in the case of frequent key changes. These properties are very useful
in applications, e.g., banking applications, where many short messages need to
be authenticated (with frequent key changes). Although there is no formal proof
of security for our construction, based on the heuristic arguments presented in
Section 3, we believe it is very unlikely that an attack can be found on Two-
Track-MAC, which would not also breach the security of RIPEMD-160.

The remainder of this paper is organized as follows. In Section 2 we present
our new MAC. Section 3 discusses the security, and Section 4 the efficiency of our
proposal. In Section 5 we suggest a more general construction method that can
be used to construct new schemes. Section 6 concludes the paper. Pseudo-code
for our algorithm is given in the Appendix.

2 Presentation of Two-Track-MAC

The unkeyed hash function RIPEMD-160 (for a description we refer to [2]) uses
two trails in its compression function. If we separate those two trails then each
trail can be seen as a transformation of a 160-bit input I, controlled by a message
M , consisting of sixteen words of 32 bits. Those 160 bits of the input I (and of
the output) consist of five words of 32 bits. Call the output of the different trails
L(I,M) and R(I,M) (left respectively right trail output for an input I and a
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message M), then our proposal for a MAC on a relative short message M (of
512 bits) and a key K of 160 bits is (in short notation)

R(K,M) − L(K,M).

Or as R(K,M) can be viewed as five words Ai of 32 bits : (A0, A1, A2, A3, A4),
and similarly the value L(K,M) as (B0, B1, B2, B3, B4), we get an output E =
(E0, E1, E2, E3, E4) of five 32-bit words. Here

Ei = Ai − Bi (subtraction modulo 232) for i = 0, 1, 2, 3, 4.

Then the 160-bit string E is the MAC of the 512-bit message M . Figure 1 gives
a schematic view of this computation.

K

❄�

❄

M ✲ R

✲

❄

M✛L

✛A B

❄
E

Fig. 1. High level view of TTMAC for a message of a single block.

If the message is longer, i.e. M = M1M2M3 · · ·Mn where each Mi is of length
512 bits, we define, using a new operation L∗ and a new operation R∗, the 160-
bit quantity A, respectively the 160-bit quantity B. A = (A0, A1, A2, A3, A4) =
L∗(K,M1), where each Ai is a 32 bit word. And B = (B0, B1, B2, B3, B4) =
R∗(K,M1) as the result of the right trail. The operation L∗ is based on the
operation L, which had a straightforward inverse operation on the first (160
bits long) argument. This new operation L∗ has a simple feedback with the first
argument, i.e.

L∗(I,M) = L(I,M) − I

(this is five times a subtraction modulo 232). Similarly the operation R∗ is defined
in shorthand as

R∗(I,M) = R(I,M) − I

(this is five times a subtraction modulo 232). Now we introduce two 160-bit blocks
C and D of five 32-bit words, C=(C0,C1,C2,C3,C4) and D=(D0,D1,D2,D3,D4),
which are defined as follows:

C2 = A3 − B0,



New (Two-Track-)MAC Based on the Two Trails of RIPEMD 317

C3 = A4 − B1,

C4 = A0 − B2,

C0 = (A1 +A4) − B3,

C1 = A2 − B4,

D1 = (A4 +A2) − B0,

D2 = A0 − B1,

D3 = A1 − B2,

D4 = A2 − B3,

D0 = A3 − B4.

All subtractions and additions are modulo 232. These 160-bit blocks C and D are
the starting values for the left, respectively, right trail to incorporate the next
512-bit message block M2. If there are more message blocks Mi the iteration is
the same. So we have

HL(1) = A = L∗(K,M1),

HR(1) = B = R∗(K,M1),

and then iteratively (for i = 2, ..., n − 1) the three operations

(A,B) → (C,D),

HL(i) = A = L∗(C,Mi),

HR(i) = B = R∗(D,Mi).

For the last message block Mn however, the role of the left and right trails is
interchanged:

(A,B) → (C,D),

HL(n) = A = R∗(C,Mn),

HR(n) = B = L∗(D,Mn).

Once we have HL(n) and HR(n) we define our MAC as TTMAC(K,M) by
HL(n) − HR(n) (five times a subtraction modulo 232). In Figure 2 a schematic
view of the computation is given for a message consisting of two blocks.

The same preprocessing rules as in the RIPEMD-160 hash function are used
to format the message input to the algorithm (the message is padded to a
bitlength which is a multiple of 512). An additional output transformation can
be used to reduce the length of the MAC result. This transformation calculates
the necessary number of output words, in such a manner that all of the normal
output words are used. Let the normal 160-bit result be E = (E0, E1, E2, E3, E4),
and denote the final (shortened) MAC result with F , consisting of t 32-bit words
Fi (t = 1, 2, 3, or 4). For a 32-bit MAC we compute (using addition modulo 232)

F0 = E0 + E1 + E2 + E3 + E4.
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Fig. 2. High level view of TTMAC for a message of two blocks.

For a MAC result of 64, 96 or 128 bits we compute respectively the first two,
the first three or all four of the following values (all additions are modulo 232):

F0 = E0 + E1 + E3,

F1 = E1 + E2 + E4,

F2 = E2 + E3 + E0,

F3 = E3 + E4 + E1.

3 Security of Our Proposal

3.1 Philosophy on the Security

The idea for the security is simple: Now we have an internal state variable
(HL(i), HR(i)) of 320 bits. This is twice as long as for other MAC constructions
(e.g., MDx-MAC and HMAC) based on RIPEMD-160 (or on SHA-1). Only in
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the case of very weak transformations a cryptanalyst is allowed to hope on so-
called internal collisions. In almost all attacks, which do not attack the very
heart of the MAC (in our case the two trails of RIPEMD-160), forgery is based
on internal collisions.

Another attack is possible if the MAC on a message contains all the informa-
tion (or lacks “only” 32 bits of information) of the internal variable on a longer
message, containing the first message as a prefix. In our case we have an internal
state of 320 bits, so we can use 160 bits of information (the difference between
the left and the right state variable, this depends on both trails) as the MAC
output without compromising the internal state. Furthermore, we have used the
idea of interchanging the left and right trails for the last message block as a free
extra defence against such extension attacks. Note that other MAC construc-
tions need to apply the compression function with some secret key material at
the end of the computation in order to prevent these attacks. In our case, the
secret key is only used as initial value for the two trails.

So now the worry for the cryptographer are the two trails of RIPEMD-160
itself. A single trail has one important weakness: it is a bijective operation,
where the attacker can choose the bijection, which is parameterized by the 512-
bit quantity Mi. But as long as two trails are used, parametrized by the same
512-bit quantityMi, and only a sum will come out in the open, there is no danger
that an attacker can invert the operation. Moreover, we have used feedback to
counter a straightforward inverse operation. (We do not use feedback on messages
of 512 bits, because there the feedback from the left trail would cancel out the
feedback from the right trail, in other words we do not need feedback there).
All this makes the transformation of a new 512-bit message block on the 320-bit
internal variable a one-way operation.

Suppose a cryptanalist discovers a messageN , such that the function L∗(·,N),
from a 160-bit leftside argument to a 160-bit output, has only a few short cycles
(and many relative short tails ending in those cycles) . Such a discovery is useless
because we have chosen to mix the outputs of the two trails, as soon as the
functions L∗ and R∗ have outputted their results. (Otherwise it might be possible
for the cryptanalyst to generate collisions for the left trail by appending blocks
to the message, and seperately trying to find collisions for the right trail.) This
mixing is thorough in the following sense: Denote the outcome of the left trail
by A, the outcome of the right trail by B (as we did before), denote the MAC,
in case we are done (in case this was the last message block), with E. Now
denote C and D as the starting values for the new trails (in case it was not the
last block). Then each pair out of the five values A,B,C,D and E has (just)
enough information to determine the other three values. This ensures all kinds
of injectivity properties.

The information theoretic uncertainty about the pair (C,D) can, of course,
not be larger than the uncertainty about the key. That is 160 bits. But the goal
of the design is that RIPEMD-160 is so “complicated”, that the “virtual” un-
certainty about (C,D) is 320 bits. The construction is such that the information
in any pair of the five tuple (A,B,C,D,E) is 320 bits. So if the uncertainty
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about (C,D) is 320 bits then the uncertainty about for example the pair (A,E)
is also 320 bits. This means that given all information about E, the uncertainty
about A is still 160 bits. In other words the attacker has “virtually” no informa-
tion about the starting value for the new left trail. Of course he has ”virtual”
information about the pair (A,B), but that is more “complicated” than having
information about a single trail.

3.2 Resistance against General Attacks

The resistance of Two-Track-MAC against forgery attacks which are generally
applicable, depends on the following parameters: the keylength k which is 160
bits, the output length m which can be between 32 and 160 bits (in 32 bit steps),
and the length l of the internal state which is 320 bits.

A first possible approach for an adversary is trying all possible keys (once he
recovers the key he is able to forge the MAC for any message he chooses). For a
key length k and output length m, such an attack requires about 2k trials and
k/m known text-MAC pairs (for verification of the attack).

Alternatively, the adversary can just guess the MAC corresponding to a cho-
sen message. His success probability will be 1/2m although this attack is not
verifiable. The parameter m should be chosen long enough according to the
needs of the application.

The forgery attack based on internal collisions requires about 2l/2 known
text-MAC pairs to find an internal collision (with a birthday attack), and 2l−m

chosen texts to distinguish the internal collision from the external ones (this is
shown in [4]). Table 1 below summarizes the difficulty of these general attacks
applied to Two-Track-MAC.

Table 1. Resistance of Two-Track-MAC against general attacks. The output length
m can take the following values: 32, 64, 96, 128 or 160 bits.

attack trials success prob. known pairs chosen texts

key search 2160 160/m

guessing the MAC 1/2m

internal collision 2160 2320−m

4 Short Comparison on the Efficiency of Two-Track-MAC

Our MAC uses only a few percent more operations on a message as RIPEMD-
160 would do to get an unkeyed hash of the message (about 97% of the speed
of RIPEMD-160 is achieved). This is already the case for the shortest possible
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message of 512 bits. In contrast, both MDx-MAC and HMAC require an extra
computation of the underlying compression function (using a secret key) at the
end of the MAC computation. So that is relatively costly on messages of just
one (512-bit) block (less than 50% of the speed of unkeyed hashing is achieved).

Also, since the secret key only serves as an initial value for the computation, a
key-change will not slowdown the speed of the computation of Two-Track-MAC.
In the case of HMAC or MDx-MAC a keychange costs respectively two or six
extra computations with the underlying compression function.

5 General Construction

Our new MAC construction is not dependent on RIPEMD-160 alone. It just
needs two operations L and R : (T1×T2) �→ T1. The set T1 should be big enough
to make collissions improbable, for example GF (2160). The size of the set T2
should be chosen big if messages are expected to be long. The operations L and
R are allowed to be invertible if the second argument is fixed, but the operations
L∗ and R∗ (including feedback from the first input) should be infeasible to invert.
The operations L and R might be bijective in the first argument, but they should
behave unpredictable on changes in the second argument, if the first argument
is unknown (but perhaps fixed). It would even be better if the change in the
output of the function L, say, is unpredictable with known first argument, i.e.,
the only way to know the effect of a change is to compute the new function
value. Based on the experience that a first version of RIPEMD was partially
broken, it is recommended that L and R should be as different as possible. In
the case that T1 contains all 160-bit strings, one can use the same transitions
(A,B) → (C,D) as we use for Two-Track-MAC based on RIPEMD-160. One of
course needs to define also a padding rule as the message-length needs to be a
multiple of some fixed quantity. With those transitions and a padding rule one
can define the MAC on a message of any length.

6 Conclusion

We have presented a new message authentication code based on the two trail
construction which underlies RIPEMD-160. The main advantage of the scheme
is that it is more efficient than other schemes based on RIPEMD-160, especially
in the case of short messages and frequent key-changes. We also suggested a
more general construction method which can be used to construct new schemes.

A Pseudo-code for Two-Track-MAC

The TTMAC algorithm computes a 160-bit MAC value for an arbitrary message,
under a 160-bit key. The result can be transformed into a shorter value by use
of the output transformation (not reflected in the pseudo-code below). First we
define all the constants and functions.
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TTMAC: definitions
nonlinear functions at bit level: exor, mux, -, mux, -
f(j, x, y, z) = x ⊕ y ⊕ z (0 ≤ j ≤ 15)
f(j, x, y, z) = (x ∧ y) ∨ (¬x ∧ z) (16 ≤ j ≤ 31)
f(j, x, y, z) = (x ∨ ¬y) ⊕ z (32 ≤ j ≤ 47)
f(j, x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) (48 ≤ j ≤ 63)
f(j, x, y, z) = x ⊕ (y ∨ ¬z) (64 ≤ j ≤ 79)
added constants (hexadecimal)
c(j) = 00000000x (0 ≤ j ≤ 15)
c(j) = 5A827999x (16 ≤ j ≤ 31) �230 · √

2 

c(j) = 6ED9EBA1x (32 ≤ j ≤ 47) �230 · √

3 

c(j) = 8F1BBCDCx (48 ≤ j ≤ 63) �230 · √

5 

c(j) = A953FD4Ex (64 ≤ j ≤ 79) �230 · √

7 

c′(j) = 50A28BE6x (0 ≤ j ≤ 15) �230 · 3

√
2 


c′(j) = 5C4DD124x (16 ≤ j ≤ 31) �230 · 3
√
3 


c′(j) = 6D703EF3x (32 ≤ j ≤ 47) �230 · 3
√
5 


c′(j) = 7A6D76E9x (48 ≤ j ≤ 63) �230 · 3
√
7 


c′(j) = 00000000x (64 ≤ j ≤ 79)
selection of message word
r(j) = j (0 ≤ j ≤ 15)
r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8
r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12
r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2
r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
r′(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12
r′(16..31) = 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2
r′(32..47) = 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13
r′(48..63) = 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
r′(64..79) = 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
amount for rotate left (rol)
s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8
s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12
s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5
s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12
s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
s′(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6
s′(16..31) = 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11
s′(32..47) = 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5
s′(48..63) = 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8
s′(64..79) = 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
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It is assumed that the message after padding consists of n 16-word blocks that
will be denoted with Mi[j], with 1 ≤ i ≤ n and 0 ≤ j ≤ 15. The key used and the
MAC value obtained consist of five words each, respectively (K0,K1,K2,K3,K4)
and (E0, E1, E2, E3, E4). The symbols and denote respectively addition
and subtraction modulo 232; rols denotes cyclic left shift (rotate) over s positions.
The pseudo-code for TTMAC is then given below.

TTMAC: pseudo-code
C0 := K0; C1 := K1; C2 := K2; C3 := K3; C4 := K4;
D0 := K0; D1 := K1; D2 := K2; D3 := K3; D4 := K4;
for i := 1 to n {

A0 := C0; A1 := C1; A2 := C2; A3 := C3; A4 := C4;
B0 := D0; B1 := D1; B2 := D2; B3 := D3; B4 := D4;
if (i ! = n) for j := 0 to 79 {

T := rols(j) (A0 f(j, A1, A2, A3) Mi[r(j)] c(j)) A4;
A0 := A4; A4 := A3; A3 := rol10(A2); A2 := A1; A1 := T ;
T := rols′(j) (B0 f(79 − j, B1, B2, B3) Mi[r′(j)] c′(j)) B4;
B0 := B4; B4 := B3; B3 := rol10(B2); B2 := B1; B1 := T ;

}
else for j := 0 to 79 {

T := rols′(j) (A0 f(79 − j, A1, A2, A3) Mi[r′(j)] c′(j)) A4;
A0 := A4; A4 := A3; A3 := rol10(A2); A2 := A1; A1 := T ;
T := rols(j) (B0 f(j, B1, B2, B3) Mi[r(j)] c(j)) B4;
B0 := B4; B4 := B3; B3 := rol10(B2); B2 := B1; B1 := T ;

}
A0 := A0 C0; A1 := A1 C1; A2 :=A2 C2; A3 := A3 C3;
A4 := A4 C4;
B0 := B0 D0; B1 := B1 D1; B2 := B2 D2; B3 := B3 D3;
B4 := B4 D4;
if (i ! = n) {

C2 := A3 B0; C3 := A4 B1; C4 := A0 B2; C0 := (A1 A4) B3;
C1 := A2 B4;
D1 := (A4 A2) B0; D2 := A0 B1; D3 := A1 B2;
D4 := A2 B3; D0 := A3 B4;

}
}
E0 := A0 B0; E1 := A1 B1; E2 := A2 B2; E3 := A3 B3;
E4 := A4 B4.For a short message of up to 512 bits (one 16-word block after padding), no
feedback or mixing is required and the following simplified pseudo-code can be
used.
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TTMAC (one message block): pseudo-code
A0 := K0; A1 := K1; A2 := K2; A3 := K3; A4 := K4;
B0 := K0; B1 := K1; B2 := K2; B3 := K3; B4 := K4;
for j := 0 to 79 {

T := rols′(j) (A0 f(79 − j, A1, A2, A3) M [r′(j)] c′(j)) A4;
A0 := A4; A4 := A3; A3 := rol10(A2); A2 := A1; A1 := T ;
T := rols(j) (B0 f(j, B1, B2, B3) M [r(j)] c(j)) B4;
B0 := B4; B4 := B3; B3 := rol10(B2); B2 := B1; B1 := T ;

}
E0 := A0 B0; E1 := A1 B1; E2 := A2 B2; E3 := A3 B3;
E4 := A4 B4.
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Abstract. We present data structures for complement covering with
intervals and their application for digital identity revocation. We give
lower bounds showing the structures to be nearly optimal. Our method
improves upon the schemes proposed by S. Micali [5,6] and Aiello, Lodha,
Ostrovsky [1] by reducing the communication between a Certificate Au-
thority and public directories while keeping the number of tokens per
user in the public key certificate small.

1 Introduction

Digital identities play an essential role in many cryptographic applications. In-
frastructures for digital identities are built by means of public-key cryptography
and Certification Authorities. The schemes differ in how digital identities can
checked to be valid and how the identities can be revoked.

A digital identity is validated by a certificate issued by a Certification Au-
thority (CA). The CA initially uses a public key generation process to create a
public key/secret key pair. The public key together with a fingerprint is pub-
lished. A user u who wants to establish his own digital identity creates a new
public key/secret key pair and sends the public key together with identifying in-
formation to the CA. The Certificate Authority checks u’s identity to ensure that
the user is really the person he/she claims to be. After that, the CA signs with
its secret key a certificate containing u’s public key, the identifying information
and an expiration date of this certification. Hence, anyone is able to check the
certificate issued by the CA with the CA’s public key. For accepting u’s public
key, one must not trust the user u himself but the CA. To establish higher levels
of trust, one can use a hierarchy of CAs.

A digital identity is valid as long as its certificate has not expired. In contrast
to this, we must also have a mean for revoking users. Assume u’s identity is
stolen or compromised before the certificate expiration date. The thief can sign
arbitrary messages with u’s secret key. Hence, as in the case of credit cards, one
must establish an immediate identity revocation.

There are many solutions proposed in literature how to revoke digital iden-
tities. The first one is a centralized online solution where a trusted database
holds the status of each public key. The database answers queries about public
keys. However, these answers must be authenticated by the database to avoid

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 325–341, 2001.
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man-in-the-middle attacks. In many cases the method is impractical because an
online access is required.

Another solution, the Certificate Revocation List (CRL), is widely used in
practice. In this offline approach, the CA makes a list of all users revoked thus
far and signs it. This list is distributed at regular intervals – for example during a
daily update period – to many public directories. A public directory is untrusted
but one insists that it cannot cheat and must return a user’s revocation status
when queried. The main drawback of this scheme is the time it takes to check a
key’s validity. One must first check the CA signature and then look at the whole
list of revoked users. Consider a fixed update time and let r be the total number
of revoked users up to this point. The CA has to communicate a CRL of size
O(r) to each public directory in order to update the status of the keys. The time
to check a key’s validity using the CRL is also O(r).

There are two other offline schemes proposed by Kocher [3] and Naor, Nis-
sim [7]. They make use of authenticated hash trees. For a fixed update time and
r as defined above the communication from the CA to the public directories is
reduced to O(log r). In order to check a user’s identity, one receives O(log r) hash
values from the directory and computes another O(log r) hash values. These val-
ues are compared with the public directory data in a specified way. Additionally,
the root signature of the authenticated hash tree is checked.

The main drawbacks of the offline solutions mentioned so far are:

– The information send by the CA must be authenticated. Therefore, signing
the data is necessary. In order to prove the status, the signature must be
checked.

– The proof length – the amount of data that has to be checked for validation
– is a function of r. Since normally one must prove a key’s validity very
often, the proof length is the main bottleneck of digital identity revocation.

S. Micali [5,6] proposed an elegant solution for these two problems based
on an idea of offline/online signatures [2], which in turn builds on a work of
Lamport [4]. He suggests to add an additional number y – called the user’s
0-token – into the certificate. In order to create the 0-token, the CA picks a
random number x and a one-way hash function f and computes y = f (l)(x) :=
f(f(. . . f(x))), that is, the function f is applied l times to x in order to compute
the 0-token y. The parameter l corresponds to the number of update periods, e.g.
the days till expiration. On day 1, if user u is not revoked, the CA publishes the
1-token f (l−1)(x) of u. Since f is a one-way function, y can easily be computed
from f (l−1)(x) by applying f once, but it is infeasible to find a valid 1-token
x̃ with f(x̃) = y. Hence, u can take the 1-token as a proof that his key is
valid on day 1. In general, the CA publishes the i-token f (l−i) on day i. This
i-token serves as a day-i proof for the validity of u’s key. Applying f i times and
comparing the result with the 0-token proves the key’s validity. In the sequel,
we will use the terms token and proof synonymously. Notice that in contrast to
the schemes of Kocher [3] and Naor, Nissim [7] this scheme needs only one proof
for key validation and no signature of the CA in the daily update period.



Key Revocation with Interval Cover Families 327

Let U = {1, 2, . . . , n} be the set of users and let 2U denote the power set of
U . For a fixed update time let R ⊆ U be the set of all users revoked so far. We
set r = |R|. The complement R̄ = U − R of R is the set of non-revoked users.
The problem with Micali’s scheme is that each of the n− r non-revoked users in
R̄ obtains his own proof during an update period. Hence in each update period
the CA has to communicate n − r tokens to a public directory. We denote this
as the CA-to-directory communication.

ALO (Aiello, Lodha, Ostrovsky) [1] proposed two schemes that reduce the
CA-to-directory communication. These schemes are called Hierarchical and Gen-
eralized Scheme. The main building block of the ALO schemes is a set F ⊆ 2U .
The set F has the property that each set R̄ of non-revoked users can be written
as the union of the elements in a subset S(R̄) of F . Each element Sj ∈ F has
its own 0-token. For each set Sj ∈ F , each user u ∈ Sj stores the 0-token of Sj

in his certificate. That is, the certificate of user u contains |{Sj ∈ F : u ∈ Sj}|
different tokens. We denote the maximal number maxu∈U |{Sj ∈ F : u ∈ Sj}| of
tokens per certificate by T .

In order to issue day-i proofs for the non-revoked users u ∈ R̄, the CA
computes a cover S(R̄) = {Sj1 , Sj2 , . . . , Sjm}, ⋃

1≤k≤m Sjk
= R̄ of the set R̄.

Next, it publishes the m i-tokens of the sets Sj1 , Sj2 , . . . , Sjm . Since these sets
cover the set R̄, each non-revoked user u is contained in at least one set Sj .
Recall that u stores the 0-token of Sj in his certificate. Hence, the i-token of the
set Sj is a day-i proof for user u.

There may be different ways to cover R̄ by elements Sj ∈ F . In ALO’s
schemes, the CA always takes the minimal number of subsets for the cover in
order to minimize the number m of proofs. Let

max
R̄⊆U :|R̄|=n−r

{m : CA needs m sets to cover R̄}

be the maximal number of proofs that the CA has to publish for a set R̄ of size
n− r. We denote this maximal number of proofs by P.

Note that Micali’s revocation scheme fits this description. To obtain Micali’s
revocation scheme, define F as F = {{1}, {2}, . . . {n}}. Hence, the users only
have to store one 0-token in their certificate.

Let us define three demands on our key revocation scenario in order of de-
creasing priority:

Proof of key’s validity: In our scenario, a user must prove a key’s validity
very often. Therefore, we insist on only one proof for key validation as in the
revocation schemes of Micali and ALO. The schemes of Kocher and Naor,
Nissim do not meet this requirement.

CA-to-directory communication (P): The CA-to-directory communication
corresponds to the maximal number of proofs the CA has to send to a public
directory. The maximal number of proofs is denoted by P. We have to keep
the CA-to-directory communication small to allow frequent update periods.
Thus, we want to minimize P.

Tokens per certificate (T ): We denote the number of tokens per certificate
by T . To make the scheme practical (especially for smart card applications),
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T must be kept small, since checking long certificates is inefficient. But as-
suming that checked keys are stored, certificates normally have to be checked
only once.

As mentioned above, Micali’s scheme has T = 1 token per certificate. How-
ever, the CA-to-directory communication is P = n − r if r is the number of
revoked users. ALO’s Hierarchical Scheme improves upon Micali’s scheme by re-
ducing the CA-to-directory communication P to r log2(n/r) while increasing the
number of 0-tokens T per certificate to log2 n. The Generalized Scheme of ALO
needs at most r(logc(n/r)+1) proofs per update period and T ≤ (2c−1−1) logc n
tokens per certificate. Due to the (2c−1 − 1) factor, this scheme is only practical
for c = 2 or c = 3, otherwise the certificates become too large.

Our results build on the work of ALO. We propose a new method for covering
the set R̄ of non-revoked users by intervals. Therefore, we define a new class for
covering problems called interval cover family (ICF). Our ICFs are constructed
using interval trees.

The set R of revoked users partitions U in subintervals of non-revoked users,
which can be represented by the nodes of an interval tree. Our task is to find a
scheme which covers any interval with sets of an ICF. Furthermore, we want that
each user u ∈ U is in a small number of sets. This property is important because
as in ALO’s schemes, user u must include in his certificate all the 0-tokens of
sets that contain u.

Micali’s [5,6] and ALO’s Hierarchical scheme [1] also belong to the class of
algorithms using interval cover families. The ICF in [5,6] is the simplest one. It
covers intervals by single elements. Thus, the length of the covering intervals is
always 1. In ALO’s Hierarchical scheme, the set of non-revoked users is covered
by intervals with interval lengths that are powers of 2. In this paper, we propose
two new methods for covering intervals that might be interesting for other areas
of covering problems as well.

In Section 2, we introduce the class ICF of interval cover families. Revoca-
tion Scheme 1 (RS1) is presented in Section 3. It is a generalization of ALO’s
Hierarchical scheme. The length of the covering intervals is a power of c ≥ 2. For
RS1, we obtain the upper bounds P ≤ (r+1)(2 logc n−1) and T ≤ (c+1)2

4 logc n
for some constant parameter c.

Our second Revocation Scheme (RS2) presented in Section 4 leads to a CA-
to-directory communication of P ≤ (r+1)(logc n+1), while keeping the number
of 0-tokens per certificate upper bounded by T ≤ (c+1)2

2 logc n(1 + o(1)).
Since the new bounds for T are polynomial in c our systems are practical

for larger parameters c than ALO’s schemes. Thus, we can reduce the CA-to-
directory communication P by choosing a large c. Since this communication is
done during each update period, the system becomes more efficient.

In Section 5, we study the relations of the class ICF to the task of key
revocation. Using a more refined analysis, we show that RS1 has a maximal CA-
to-directory communication of P ≤ 2r(logc n− �logc r�). Assuming the revoked
users to be uniformly distributed, we can further reduce the bound of RS2 to an
expected upper bound of P ≤ (r + 1 − r(r−1)

n ))(logc n+ 1).
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Table 1. Comparison of our schemes with Micali’s and ALO’s schemes

Scheme P proofs from CA to directories T tokens per certificate

Micali n − r 1

ALO’s Hierarchical r log2( n
r

) log2 n

ALO’s Generalized r(logc( n
r

) + 1) (2c−1 − 1) logc n

RS1 2r(logc n − �logc r�) (c+1)2

4 logc n

RS2 (r + 1)(logc n + 1) (c+1)2

2 logc n(1 + o(1))

If we only want to minimize the CA-to-directory communication, an optimal
solution can be obtained from Yao’s range query data structures [8]. However,
Yao’s construction results in prohibitively many tokens per certificate. For the
first time in this area, we also prove lower bounds for the number T of 0-tokens
(see Section 6). For example, Corollary 22 provides a lower bound of T ≥ ( c

e −
1) · logc n, where e is the Euler number. This shows that if c is constant, the
trade-off in our revocation schemes between CA-to-directory communication P
and the number of 0-tokens T is optimal up to a constant.

2 Definitions

Consider the universe U = {1, 2, . . . , n} of users with personal identification
numbers 1 to n. Let 2U denote the power set of U . Let R ⊆ U be the subset
of revoked users, R̄ = U − R the complement of R. In our schemes, the CA
has to find a family of sets that covers the subset R̄ of all non-revoked users.
Then the CA issues the i-tokens for all the sets in the cover. A day-i proof for
a non-revoked u is a set that contains u.

Definition 1 (interval set) The interval set V = [a, b], V ⊆ U is defined as
[a, b] := {x ∈ IN | a ≤ x ≤ b} . The interval set [a, a] is briefly written as [a]. The
length of an interval set [a, b] is defined as b− a+ 1.

Definition 2 (interval cover) We call a family of subsets S ⊆ 2U an interval
cover (IC) of the interval set I iff

⋃
V ∈S V = I and all subsets V are interval

sets. If |S| ≤ k, S is called a k-IC.

Definition 3 (interval cover family) F ⊆ 2U is an interval cover family
(ICF) of U iff for every interval set I ⊆ U , there is a subset S of F such
that S is an IC of I. F is a k-ICF of U iff there is at least one k-IC S ⊆ F of
I for every I ⊆ U .
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Lemma 4 Assume we have a k-ICF F of the universe U = {1, . . . , n} and an
arbitrary R ⊆ U with |R| = r. Then F covers R̄ with at most (r + 1)k interval
sets.

Proof: Notice that a subset R of size |R| = r partitions the interval [1, n] in
at most r + 1 subintervals R̄1 ∪ · · · ∪ R̄r+1 = R̄. Thus, it suffices to cover these
subintervals for covering R̄. Since each R̄i is coverable by F with at most k
interval sets, the claim follows.

The number of interval sets needed to cover a set R̄ in Lemma 4 corresponds
to the maximal number of proofs – denoted PF – the CA must send to the
public directories during an update period. Hence, for a k-ICF F the size of PF

is always upper-bounded by (r + 1)k.
It is also important for the practicality of a revocation scheme that the size

of F is polynomial in n and that for every subset R̄ of non-revoked users the
corresponding ICs can be computed in time polynomial in log(n).

For an ICF F and every u ∈ U , we define hF (u) as the multiplicity of u
in F , that is the number of sets in F containing the element u. Because every
set in F that contains u can be part of an interval cover, user u’s certificate
must include all hF (u) 0-tokens that contain u. Thus, the maximal number of
0-tokens, denoted TF := maxu{hF (u)}, corresponds to the maximal length of a
user’s public key certificate. This length should be polynomial in log(n). There
is a trade-off between the number of proofs PF the CA must send to a public
directory and the number of 0-tokens TF in a revocation scheme. For instance
in the Micali scheme [5,6], we have P = n − r and T = 1. In their Generalized
scheme, ALO [1] had P ≤ r(logc(n/r) + 1) and T ≤ (2c−1 − 1) logc n.

In the next section, we present a (2k − 1)-ICF F with TF = O(kn2/k) for
some system parameter k. Taking k = logc n leads to T = O(c2 logc n).

3 A Revocation Scheme Using ICFs

First, we introduce a notation on intervals.

Definition 5 (combinational sum) The combinational sum of an interval
[a1, b1] with an interval [a2, b2] is defined as the interval [min {a1, a2},
max {b1, b2}]. We also say, we combine interval [a1, b1] with [a2, b2]. Let W =
{[a1, b1], [a2, b2], . . . , [am, bm]} be a set of disjoint intervals. We define the maxi-
mal combinational sum of W that is contained in an interval [a, b] as the interval
[minai : ai ≥ a,maxbj : bj ≤ b].

Note that the combinational sum of two intervals [a1, b1] and [a2, b2] may contain
elements which are neither in [a1, b1] nor in [a2, b2].

Next, we define an interval tree T for the interval [1, n] and a parameter k,
that might depend on n. The construction is recursive.

Construction of the interval tree T
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– The root is labelled with the interval [1, n].
– Each node labelled with an interval [a, b] of length greater than 1 has n1/k

children. The children partition the interval [a, b] into equally long pieces.
That is, the children are roots of the interval trees for the intervals [a + i ·
b−a+1

n1/k , a+ (i+ 1) · b−a+1
n1/k − 1], 0 ≤ i < n1/k (for simplicity, we assume that

n1/k is an integer to avoid rounding).

We store the following contents in each node of the interval tree.

– Each node stores the interval of its label.
– Moreover, each node stores the combinational sums of its label with the

labels of its right siblings.

Let combinational sums of nodes be defined as the combinational sums of their
labels.

[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]

[1 , 9 ] [10,18] [19,27]

[ 1, 27 ]

[1] [2]

[10,12] [13,15] [16,18] [19,21] [22,24] [25,27][7,9][4,6][1,3]

Fig. 1. The interval tree T for n = 33, k = 3

Example: In Figure 1, the node with label [10, 12] stores the interval sets [10, 12],
[10, 15] and [10, 18]. Its father [10, 18] stores the intervals [10, 18] and [10, 27].

Since in level i the nodes are labelled with intervals of length n(k−i)/k, in
level k we have interval length 1 and the recursive construction stops. Thus, the
interval tree has depth k.

We define the ICF F as the union of all the sets of intervals stored in the
nodes of the interval tree T . However, we exclude the root label interval [1, n].

Next, we want to show that F is a (2k − 1)-ICF, that is, we want to show
that we can cover every interval set I ⊆ [1, n] by at most 2k − 1 sets in F . In
order to prove this, we present an algorithm that needs a maximum of 2k − 1
combinational sums for covering any interval I.
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Algorithm Cover Scheme 1 (CS1)

INPUT : interval I = [a, b]

FOR level i = 1 TO k in the interval tree T DO
Take the maximal combinational sums of the label intervals in
level i of T that is contained in the yet uncovered parts of [a, b].
IF [a, b] is covered completely, EXIT.

OUTPUT : interval sets I1, I2, . . . , Im with
⋃

j=1...m Ij = [a, b] and m ≤ 2k − 1.

Example: In Figure 1 on input I = [2, 21], the Algorithm CS1 covers I by taking
the intervals [10, 18] (level 1, stored in node [10, 18]), [4, 9] and [19, 21] (level 2,
stored in nodes [4, 6] and [19, 21]) and [2, 3] (level 3, stored in [2]).

Lemma 6 The union F of all intervals stored in the interval tree T is a (2k−1)-
ICF.

Proof: We have to show that CS1 needs at most 2k − 1 interval sets to cover
[a, b]. Notice that CS1 covers the whole interval [a, b] successively from the middle
to the borders. In level 1 of the interval tree T , one gets at most one combina-
tional sum [a1, b1]. The uncovered parts [a, a1 − 1] and [b1 + 1, b] both yield at
most one additional interval in level 2. This holds because the maximal combi-
national sums in level 2 are always of the form [a2, a1−1] respectively [b1+1, b2].
Analogously, we get at most two additional intervals in the subsequent levels.
This leads to the upper bound of 2k − 1.

We define the memory requirement |F | of an ICF F to be the number of interval
sets in F . The running time of a k-ICF F on input I = [a, b] is the time to find a
k-IC S for I. Further, we define the running time of a k-ICF to be the maximal
running time taken over all choices of input intervals I. The following lemma
shows that our (2k − 1)-ICF F can be efficiently implemented.

Lemma 7 The ICF F has memory requirement O(n1+1/k) and running time
O(kn1/k).

Proof: In every set of siblings at most
∑n1/k

i=1 i = O(n2/k) intervals are stored.
This follows from the fact that each node contains its label and all combinational
sums with its right siblings. Hence, F contains at most O(n2/k)

∑k−1
i=0 (n

1/k)i =
O(n1+1/k) interval sets.

The operations in each level can easily be implemented to run in timeO(n1/k),
that is in the number of children. Thus, the total running time is O(kn1/k).

Definition 8 (RS1) Revocation Scheme 1 (RS1) uses the (2k− 1)-ICF F and
Algorithm CS1 in order to cover all interval sets R̄ = U − R of non-revoked
users.
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Theorem 9 RS1 is a revocation scheme with PF ≤ (r + 1)(2k − 1) and TF ≤
1
4k(n

1/k + 1)2.

Proof: The number of proofs PF ≤ (r + 1)(2k − 1) follows from Lemma 4.
It remains to show the upper bound for TF . Because the node labels in each

level partition the interval [1, n], every element u ∈ U is stored in exactly one
label per level. We want to determine the number of interval sets of a single level
in which a user u is contained. Therefore, consider the node with the label inter-
val containing u. Combinational sums are only taken among the n1/k siblings of
this node. When enumerating the siblings from left to right, it is easy to see that
the ith sibling is in exactly i · (n1/k − i+1) interval sets. This function in i takes
its maximum for i = (n1/k +1)/2, leading to maxi{i ·(n1/k − i+1)} = (n1/k+1

2 )2.
Hence, user u can be in at most (n1/k+1

2 )2 intervals sets per level. Summing over
the k levels, we obtain TF ≤ 1

4k(n
1/k + 1)2.

Corollary 10 Choosing k = logc n for some constant c, we obtain a (2 logc n−
1)-ICF F that needs O(n) memory and O(logc n) running time. RS1 is a key
revocation scheme with PF ≤ (r + 1)(2 logc n− 1) and TF ≤ (c+1)2

4 logc n.

Note that our result improves upon the generalized scheme of ALO, who had
T ≤ (2c−1 − 1) logc n. A refined analysis of PF is given in Section 5.

Even with refined analysis, there remain two problems with the (2k − 1)-
ICF presented above. First, we always assume an upper bound of 2k− 1 for the
number of intervals taken by algorithm CS1. Consider a small interval [a, b] with
length much shorter than n. Algorithm CS1 will take its first combinational sum
in a level i that is close to the leaves in level k. It is easy to see that in this
case, CS1 outputs at most 2(k− i)+1 interval sets. Therefore, Lemma 6 gives a
pessimistic bound. Second, after using the first combinational sum in level i, we
just need combinational sums of the rightmost or leftmost sibling nodes in the
subsequent levels. But we store combinational sums of all sibling nodes. In the
next section, we show how to avoid these problems.

4 Another Revocation Scheme Based on ICFs

We take an interval tree T ′ similar to the interval tree T in Section 3. The nodes
and their labels remain the same as in T , only their content is changed.

Definition 11 (partial sums) For each set of sibling nodes in a tree, we call
the combinational sums of the leftmost sibling v with all other siblings to the right
the right partial sums. The combinational sums of v’s father’s leftmost sibling
with v and all of v’s siblings are called the upper right partial sums (for an
example, see below). The combinational sums of the rightmost sibling w with all
other siblings to the left – except the leftmost sibling – are called the left partial
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sums. Analogously, the combinational sums of w’s father’s rightmost sibling with
w and all of w’s siblings are called the upper left partial sums.

Let W = {[a1, b1], [a2, b2], . . . , [am, bm]} be a set of partial sums. We define
the maximal partial sum ofW that is contained in an interval [a, b] as the interval
[minai : ai ≥ a,maxbj : bj ≤ b].

Example: In Figure 1, the right partial sums of the set {[13], [14], [15]} of sibling
nodes are [13], [13, 14] and [13, 15]. The left partial sums are [15] and [14, 15].
The upper right partial sums are the interval sets [10, 13], [10, 14], [10, 15] and
the upper left partial sums are [15, 18], [14, 18] and [13, 18].

Notice that we should omit those upper right partial sums where the father
of the leftmost sibling v is itself a leftmost sibling, since these combinational
sums yield always the label of the father. This holds analogous for the upper left
partial sums.

Node contents of the interval tree T′

– Each node stores its label.
– For any sibling nodes in level k − 2j, 0 ≤ j < k−1

2 , the leftmost sibling v
stores the right partial sums. Additionally, v stores the upper right partial
sums.

– For any sibling nodes in level k − 2j, 0 ≤ j < k−1
2 , the rightmost sibling w

stores the left partial sums. In addition, w stores the upper left partial sums.
– Any sibling nodes in level i of the recursion tree are divided in i equally large

parts. In any part, each node stores the combinational sums of its label with
the labels of its right siblings in this part.

Again, the ICF F ′ is defined as the union of all intervals stored in the nodes.

Algorithm Cover Scheme 2 (CS2)

INPUT : interval I = [a, b]

level i := 1
UNTIL a combinational sum is taken DO

Take the maximal combinational sum of the label intervals
in level i of T ′ that is contained in [a, b]. (That combinational
sum may consist of up to i intervals.) i := i+ 1

FOR level j = i+ (k − i mod 2) TO k STEP 2 DO
Take the maximal partial sums of the yet uncovered parts of [a, b].
IF [a, b] is covered completely, EXIT.

OUTPUT : interval sets I1, I2, . . . , Im with
⋃

j=1...m Ij = [a, b] and m ≤ k + 1.

Example: We cover the interval [2, 21] using Algorithm CS2 and the interval
tree T ′ of Figure 1. CS2 outputs the combinational sum [10, 18] in level 1 and
the upper partial sums [2, 9] and [19, 21] in level 3.



Key Revocation with Interval Cover Families 335

Lemma 12 The union F ′ of all intervals stored in the nodes of the interval tree
T ′ is a (k + 1)-ICF.

Proof: Let Algorithm CS2 take a combinational sum in level i. Since in level
i, maximal combinational sums of label intervals can be divided into i parts, we
take at most i intervals. In the remaining k − i levels, CS2 can take at most 2
intervals in each of the levels k − 2j, 0 ≤ j < k−i

2 . These are at most � k−i
2 �

levels. Thus, we obtain the upper bound i+ 2 · � k−i
2 � ≤ i+ 2 · k−i+1

2 = k+ 1.

Lemma 13 The (k+1)-ICF F ′ needs O(n1+1/k) memory and O(kn1/k) running
time.

Proof: The memory requirement of F ′ is the amount of partial sums and
combinational sums. We have at most 2n1/k right and left partial sums per set
of siblings. The upper partial sums sum up to another 2n1/k intervals. Ignoring
that these intervals are only taken in each second level we get an upper bound
of 4n1/k · ∑k−1

i=0 (n
1/k)i = O(n) for the partial sums. Further, each set of siblings

stores O(n2/k) combinational sums. Summing over the levels gives an upper
bound of O(n2/k) · ∑k−1

i=0 (n
1/k)i = O(n1+1/k) which is also an upper bound for

the total memory requirement.
Since the operations in each level can be implemented to run in time O(n1/k),

the running time is O(kn1/k).

Definition 14 (RS2) The Revocation Scheme 2 (RS2) uses the (k+1)-ICF F ′

and Algorithm CS2 in order to cover all interval sets R̄ = U −R of non-revoked
users.

Theorem 15 The (k + 1)-ICF F ′ yields a revocation scheme with PF ′ ≤ (r +
1)(k + 1) and TF ′ ≤ k+1

2 · n2/k + k
4 · (2n1/k + 1) + 1

2 (log k + 1)n1/k.

Proof: The upper bound for the number of proofs PF ′ follows from Lemma 4.
To complete the proof, we must show that TF ′ ≤ k+1

2 ·n2/k + k
4 · (2n1/k +1)+

1
2 (log k+1)n1/k. Let us start with the partial sums and consider a set of sibling
nodes as enumerated from left to right. It is easy to see that the ith sibling is
in n1/k − i + 1 right partial sums and in i − 1 left partial sums. This gives a
total of n1/k partial sums for each element u ∈ U . Analogously, one can show
that each element u is in n1/k upper partial sums. Since each upper partial sum
consists of n1/k combinational sums, we get another n2/k intervals. Thus, we
have a total of n2/k + n1/k partial sums for every element u ∈ U in the levels
k − 2j, 0 ≤ j < k−1

2 . Summing over these levels gives us an upper bound of
� k−1

2 � · (n2/k + n1/k) ≤ k
2 · (n2/k + n1/k).

In addition to the partial sums, we divide all sibling nodes in level i of T ′ in
parts of size n1/k

i and compute the combinational sums with their right siblings
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in that part. Analogous to the proof of Theorem 9 every element in level i is in
no more than 1

4 (
n1/k

i + 1)2 of these intervals. Summing over the levels gives

1
4

k∑
i=1

(
n1/k + i

i

)2

=
1
4

(
k∑

i=1

n2/k

i2
+

k∑
i=1

2n1/k

i
+

k∑
i=1

1

)

≤ 1
4

(
π2

6
· n2/k + 2(log k + 1) · n1/k + k

)

Together with the partial sums computed before we get the desired upper bound
for the number of 0-tokens

TF ′ ≤ k + 1
2

· n2/k +
k

4
· (2n1/k + 1) +

1
2
(log k + 1)n1/k.

Corollary 16 Taking k = logc n, RS2 is a revocation scheme with PF ′ ≤ (r +
1)(logcn+ 1) and TF ′ ≤ (c+1)2

2 · logc n(1 + o(1)).

If we compare this result with the revocation scheme RS1 of Section 3, we
roughly halve the number of proofs P by doubling T . Since we have update
periods frequently, it is preferable to make P small by slightly enlarging T .

5 ICFs and Key Revocation

In the previous sections, we studied the covering of arbitrary intervals [a, b] by
ICFs and connected this to the task of key revocation by Lemma 4. But Lemma 4
yields a pessimistic bound:

– We always expect that r revoked users yield r + 1 intervals of non-revoked
users. This is no longer true if r becomes large.

– The intervals representing non-revoked users are not arbitrary but disjoint,
that is the intervals do not overlap. Further, the average length of the inter-
vals that have to be covered depends on the parameter r.

5.1 The Expected Number of Intervals

In the following, we assume that the revoked users R are uniformly distributed
over the interval [1, n] and look for the expected number of intervals of non-
revoked users. Let i1, i2, . . . , ir be the revoked users in sorted order, that is
i1 < i2 < · · · < ir. We call ij and ij+1 a pair iff ij+1 = ij +1. Note that pairs of
revoked users do not introduce a new interval that must be covered, since they
enclose an interval of non-revoked users of size 0. Let X be the random variable
for the number of intervals. Then

ER(X) ≤ r + 1 − ER(number of pairs).
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We obtain an upper bound since revoked users at the interval borders 1 and n
never yield an additional interval. Thus, the borders 1 and n always pair.
The expected number of pairs is

ER(number of pairs) =

(
n−2
r−2

)
(

n
r

) · (n− 1) =
r(r − 1)
n

.

We summarize this in the following lemma.

Lemma 17 Let the revoked users be distributed uniformly over [1, n] and let F
be a k-ICF. Then F yields a key revocation system with an expected upper bound
of PF ≤ (r + 1 − r(r−1)

n )k for the CA-to-directory communication.

5.2 Key Revocation with RS1 for Growing r

Lemmas 4 and 17 still give pessimistic bounds, since they assume that arbitrary
intervals are covered. But CS1 does not always use 2k − 1 intervals to cover an
interval [a, b]. If the interval length of [a, b] is small, Algorithm CS1 will not use
any intervals in the upper levels of the interval tree T . However, if the number
r of revoked users increases then the average interval lengths of intervals that
must be covered decreases. Hence, we expect some amortization of costs with
growing r.

This fact was studied in ALO [1]. They proved an upper bound of T ≤
r log2(

n
r ). Note, that the logarithmic term decreases with increasing r. We show

our algorithm to be a generalization of [1] by showing a bound of 2r(logc n −
�logc r�) −m for arbitrary c > 2 and m = r − c�logc r	. Therefore, we adapt the
proof techniques of [1]. For c = 2, our scheme reduces to the Hierarchical Scheme
proposed in ALO[1].

Definition 18 Let P (n,R) be the number of proofs using the revocation scheme
RS1 for covering U − R, where U = {1, 2, . . . , n}. We define P (n, r) =
maxR:|R|=r{P (n,R)} to be the worst case number of proofs for a revocation set
R of r users.

Assume n = ck.

Theorem 19 For r = cl, l ≥ 0, RS1 has P (n, r) ≤ 2r logc(
n
r ) for c > 2, c ∈ IN .

Proof: Similar to the proof in ALO [1]. The proof is given in the full version
of the paper.

In the following theorem, we prove the upper bound for P (n, r) for arbitrary r.

Theorem 20 For r = cl +m, RS1 yields P (n, r) ≤ 2r(logc n− �logc r�) −m.

Proof: The proof is given in the full version of the paper.
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6 Lower Bounds for TF in a k-ICF F

In this section, we show lower bounds for the number of tokens TF . Let U =
{1, 2, . . . , n} be the set of users. We cover arbitrary interval sets [a, b] ⊆ U of non-
revoked users by k-ICFs. Comparing the lower bounds to our results in Section 3
and 4 will prove that our revocation schemes are up to constants optimal.

Theorem 21 Let F be a k-ICF of U , then TF ≥ k
√
k! · (n+ 1)1/k − k.

Proof: We prove a lower bound for covering the interval sets [1, 1], [1, 2], . . .
, [1, n] with the k-ICF F . This yields a lower bound for covering all interval
sets I ⊆ U . The bound is proven by induction. For k = 1 an optimal family F1
covering these sets must contain all of the n interval sets. But each of these sets
contains the element 1. Thus, TF1 = hF1(1) = n. The identity

TFk
= hFk

(1), (1)

is an invariant of the proof, where Fk denotes an optimal covering scheme with
at most k interval sets. The inductive step is done from k − 1 to k.

Assume, there’s an optimal family Fk covering the sets [1, 1], [1, 2], . . . , [1, n]
with at most k interval sets and minimal TFk

. We show in Lemma 24 that we
can assume wlog TFk

= hFk
(1). Hence, invariant (1) holds.

Now, consider the interval sets of Fk containing 1. Let these be the sets [1, a1],
[1, a2], . . . , [1, at], where a1 = 1 because Fk must cover the single user 1. By
construction, t = TFk

. An auxiliary set is defined by [1, at+1] with at+1 = n+ 1.
The intervals sets [1, ai+1 − 1], 1 ≤ i ≤ t are covered by taking the interval set
[1, ai] and an optimal covering in Fk of the remaining interval [ai + 1, ai+1 − 1]
with at most k − 1 sets.

The element ai+1 is the first element in the interval [ai+1, ai+1 −1]. Hence,
it plays the role of the element 1 when covering the sets [ai + 1, ai + 1], [ai +
1, ai + 2], . . . , [ai + 1, ai+1 − 1]. By equation (1), the element ai + 1 is critical,
because it has maximal multiplicity of all the elements in [ai+1, ai+1 −1]. Thus,
element ai + 1 must be contained in hFk−1(1) interval sets and the induction
hypothesis applies with k − 1 and interval length ai+1 − ai − 1. Additionally,
ai +1 is contained in the t− i interval sets [1, ai+1], . . . , [1, at]. Since hFk

(1) = t
and 1 is the element of maximal multiplicity, we obtain for 1 ≤ i ≤ t

k−1
√
(k − 1)! · (ai+1 − ai)

1
k−1 − (k − 1) + t− i ≤ t (2)

⇒ ai+1 ≤ ai +
(i+ k − 1)k−1

(k − 1)!
. (3)

Solving the recurrence in (3) for a1 = 1 yields

ai+1 ≤ ai−1 +
(i+ k − 2)k−1

(k − 1)!
+

(i+ k − 1)k−1

(k − 1)!
≤ · · · ≤ 1

(k − 1)!

i+k−1∑
j=1

jk−1

<
1

(k − 1)!

∫ i+k

j=0
jk−1dj =

(i+ k)k

k!
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But we know at+1 = n+ 1, which leads to

(t+ k)k

k!
≥ n+ 1

⇒ t ≥ k
√
k! · (n+ 1)1/k − k.

Using Stirling’s formula k! ∼ √
2πk

(
k
e

)k
>

(
k
e

)k
, we conclude

Corollary 22

TF >
k

e
· (n+ 1)1/k − k >

(
n1/k

e
− 1

)
k

Taking k = logc n yields

Corollary 23
TF ≥

( c
e

− 1
)

· logc n.

Lemma 24 Let Fk be a k-ICF covering [1, 1], [1, 2], . . . , [1, n] with minimal TFk
.

Fk can be turned into a k-ICF with hFk
(1) = TFk

.

Proof: The proof is given in the full version of the paper.

Theorem 25 Let F be a k-ICF of U , then TF >
( 1
6

) 1
k−1 n

2
k .

Proof: Let F={S1, S2, . . . , Sm}. Since F is a k-ICF, for every interval set
I ∈ U there exist at most k interval sets Si1 , Si2 , . . . , Sik

such that S(I) :=
{Si1 , Si2 , . . . , Sik

} is a cover of I. Note, that some Sij might be empty and there
might be several S(I) in F that cover I. For each interval set I we consider an
arbitrary but fixed S(I).

Assume TF ≤ ( 16 )
1

k−1n
2
k . Fix some interval set Si = [a, b] of F and consider

the number of times this set can be contained in a cover S(I) of some interval
set I = [s, t], where s < a or b < t. Consider the case s < a. By assumption, user
a−1 is contained in at most (16 )

1
k−1n

2
k sets of F . On the other hand, every cover

S(I) containing Si = [a, b] must contain a set Sj which includes the element
a − 1. Next consider the interval Sj ∪ Si = [c, d]. Assuming s < c and arguing
as above, S(I) must contain one of the (16 )

1
k−1n

2
k intervals containing c − 1.

Continuing in this way and using the fact that F is a k-ICF, we conclude that
there are at most 1

6n
2(k−1)

k covers S(I) in which a set Si can participate. This
holds for any Si:

|{I ⊆ U : Si ∈ S(I)}| ≤ 1
6
n

2(k−1)
k . (4)
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Next, we count the number of elements with multiplicities in all the
(

n
2

)
interval

sets I in U . Since there is one interval of length n, two intervals of length n− 1,
etc., we get

∑
I∈U |I| = ∑n

i=1 i · (n − i + 1) = 1
6n

3 + 1
2n

2 + 1
3 >

1
6n

3. Since the
interval sets Si that cover I can overlap, the following inequality holds

∑
I∈U

∑
Si∈S(I)

|Si| ≥
∑
I∈U

|I| > 1
6
n3. (5)

Using inequality (4), we also obtain
∑
I∈U

∑
Si∈S(I)

|Si| =
∑

Si∈F

|Si| · |{I ⊆ U : Si ∈ S(I)}|

≤ 1
6
n

2(k−1)
k

∑
Si∈F

|Si| (6)

Combining (5) and (6) leads to
∑

Si∈F

|Si| > n3− 2(k−1)
k = n1+

2
k .

Note that
∑

Si∈F |Si| =
∑

u∈U hF (u). Taking the average number of the mul-
tiplicities hF (u) yields that there must be an element u with hF (u) > n

2
k ,

contradicting the assumption that each element is in at most (16 )
1

k−1n
2
k sets.

Definition 26 We call a k-ICF F δ-optimal, if for all k-ICFs F̄ : TF

TF̄
= O(δ).

Theorem 27 RS1 uses a mink{n3/k, kn2/k}-optimal k-ICF. The (k + 1)-ICF
F ′ constructed for RS2 is mink{n1/k, k}-optimal.
Proof: RS1 uses a (2k−1)-ICF F with TF = O(kn2/k). This can be turned into
a k-ICF with TF = O(kn4/k). Dividing by the lower bounds of Corollary 22 and
Theorem 25 gives the mink{n3/k, kn2/k}-optimality. RS2 uses a (k + 1)-ICF F ′

with TF ′ = O(kn2/k). Applying Corollary 22 and Theorem 25 proves the claim.

Corollary 28 For k = logc n, the (2k− 1)-ICF F used in RS1 and the (k+1)-
ICF F ′ used in RS2 are 1-optimal.

Note, that we obtain the lower bound in Theorem 21 by covering the intervals
[1, 1], [1, 2], . . . , [1, n]. This is only a small subset of all the intervals in [1, n]
and the left border is fixed by the element 1. It seems that making both borders
variable introduces a factor of n2/k, but we can not prove this yet. Thus, we
expect a lower bound of TF = Ω(kn2/k) for any k-ICF F . This would yield
1-optimality for the ICF F ′ in RS2 independent of the choice of k.
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7 Conclusion

We introduced a new class called ICF for key revocation. Micali’s scheme [5,6]
and ALO’s Hierarchical scheme [1] belong to this class. We improved upon the
former results by reducing the critical update cost for CA-to-directory commu-
nication. In practice, the performances of our revocation schemes depend on the
expected number r of revoked users. If one expects r to be a small fraction of n,
then RS2 is preferable. It avoids a factor of 2 in the communication. RS1 should
perform better for large r. We have shown the first lower bounds in this area,
proving our schemes to be optimal up to constants.
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Abstract. Let n be a large composite number. Without factoring n,
the computation of a2t

(mod n) given a, t with gcd(a, n) = 1 and t < n
can be done in t squarings modulo n. For t � n (e.g., n > 21024 and
t < 2100), no lower complexity than t squarings is known to fulfill this
task. Rivest et al suggested to use such constructions as good candidates
for realising timed-release crypto problems.
We argue the necessity for a zero-knowledge proof of the correctness of
such constructions and propose the first practically efficient protocol for
a realisation. Our protocol proves, in log2 t standard crypto operations,
the correctness of (ae)2t

(mod n) with respect to ae where e is an RSA
encryption exponent. With such a proof, a Timed-release Encryption of
a message M can be given as a2t

M (mod n) with the assertion that the
correct decryption of the RSA ciphertext Me (mod n) can be obtained
by performing t squarings modulo n starting from a. Timed-release RSA
signatures can be constructed analogously.

Keywords Timed-release cryptography, Time-lock puzzles, Non-paral-
lelisability, Efficient zero-knowledge protocols.

1 Introduction

Let n be a large composite natural number. Given t < n and gcd(a, n) = 1,
without factoring n, the validation of

X ≡ a2
t

(mod n) (1)

can be done in t squarings mod n. However if φ(n) (Euler’s phi function of n)
is known, then the job can be completed in O(log n) multiplications via the
following two steps:

u
def= 2t (mod φ(n)), (2)

X
def= au (mod n). (3)

For t � n (e.g., n > 21024 and t < 2100), it can be anticipated that factoring
of n (and hence computing φ(n) for performing the above steps) will be much
more difficult than performing t squarings. Under this condition we do not know
any other method which, without using the factorisation of n, can compute
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a2
t

(mod n) in time less than t squarings. Moreover, because each squaring can
only be performed on the result of the previous squaring, it is not known how to
speedup the t squarings via parallelisation of multiple processors. Parallelisation
of each squaring step cannot achieve a great deal of speedup since a squaring
step only needs a trivial computational resource and so any non-trivial scale
of parallelisation of a squaring step is likely to be penalised by communication
delays among the processors.

These properties suggest that the following language (notice that each ele-
ment in the language associates a non-secret natural number t)

L(a, n) = { a2t

(mod n) | gcd(a, n) = 1, t = 1, 2, ..., } (4)

forms a good candidate for the realisation of timed-release crypto problems.
Rivest, Shamir and Wagner pioneered the use of this language in a time-lock
puzzle scheme [11]. In their scheme a puzzle is a triple (t, a, n) and the instruction
for finding its solution is to perform t squarings mod n starting from a which
leads to a2

t

(mod n). A puzzle maker, with the factorisation knowledge of n,
can construct a puzzle efficiently using the steps in (2) and (3) and can fine tune
the difficulty for finding the solution by choosing t in a vast range. For instance,
the MIT Laboratory for Computer Science (LCS) has implemented the time-
lock puzzle of Rivest et al into “The LCS35 Time Capsule Crypto-Puzzle” and
started its solving routine on 4th April 1999. It is estimated that the solution to
the LCS35 Time Capsule Crypto-Puzzle will be found in 35 years from 1999, or
on the 70 years from the inception of the MIT-LCS [10]. (Though we will discuss
a problem of this puzzle in §1.2.)

1.1 Applications

Boneh and Naor used a sub-language of L(a, n) (details to be discussed in §1.2)
and constructed a timed-release crypto primitive which they called “timed com-
mitments” [3]. Besides several suggested applications they suggested an inter-
esting use of their primitive for solving a long-standing problem in fair contract
signing. A previous solution (due to Damg̊ard [6]) for fair contract signing be-
tween two remote and mutually distrusted parties is to let them exchange signa-
tures of a contract via gradual release of a secret. A major drawback with that
solution is that it only provides a weak fairness. Let us describe this weakness
by using, for example, a discrete-logarithm based signature scheme. A signature
being gradually released relates to a series of discrete logarithm problems with
the discrete logarithm values having gradually decreasing magnitudes. Sooner
or later before the two parties completes their exchange, one of them may find
himself in a position of extracting a discrete logarithm which is sufficiently small
with respect to his computational resource. It is well-known (e.g., the work of
van Oorschot and Wiener on the parallelised rho method [13]) that parallelisa-
tion is effective for extracting small discrete logarithms. So the resourceful party
(one who is able to afford vast parallelisation) can abort the exchange at that
point and wins an advanced position unfairly. Boneh and Naor suggested to seal
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signatures under exchange using elements in L(a, n). Recall the aforementioned
non-parallelisable property for re-constructing the elements in L(a, n), a roughly
equal time can be imposed for both parties to open the sealed signatures regard-
less of their difference (maybe vast) in computing resources. In this way, they
argued that strong fairness for contract signing can be achieved.

Rivest et al suggested several other applications of timed-release cryptogra-
phy [11]:

– A bidder in an auction wants to seal his bid so that it can only be opened
after the bidding period is closed.

– A homeowner wants to give his mortgage holder a series of encrypted mort-
gage payments. These might be encrypted digital cash with different decryp-
tion dates, so that one payment becomes decryptable (and thus usable by
the bank) at the beginning of each successive month.

– A key-escrow scheme can be based on timed-release crypto, so that the gov-
ernment can get the message keys, but only after a fixed, pre-determined
period.

– An individual wants to encrypt his diaries so that they are only decryptable
after fifty years (when the individual may have forgotten the decryption key).

1.2 Previous Work and Unsolved Problem

With the nice properties of L(a, n) we are only half way to the realisation of
timed-release cryptography. In most imaginable applications where timed-release
crypto may play a role, it is necessary for a problem constructor to prove (ideally
in zero-knowledge) the correct construction of the problem. For example, without
a correctness proof, the strong fairness property of the fair-exchange application
is actually absent.

From the problem’s membership in NP we know that there exists a zero-
knowledge proof for a membership assertion regarding language L(a, n). Such a
proof can be constructed via a general method (e.g., the work of Goldreich et al
[9]). However, the performance of a zero-knowledge proof in a general construc-
tion is not suitable for practical use. By the performance for practical use we
mean an efficiency measured by a small polynomial in some typical parameters
(e.g., the bit length of n). To our knowledge, there exists no practically effi-
cient zero-knowledge protocols for proving the general case of the membership
in L(a, n).

Boneh and Naor constructed a practically efficient protocol for proving mem-
bership in a sub-language of L(a, n) where t = 2k with k being any natural
number. The time control that the elements in this sub-language can offer has
the granularity 2. We know that the time complexity in bit operation for per-
forming one squaring modulo n can be expressed by the lowest known result of
c·log n·log log n (where c > 1 is a machine dependent value, a faster machine has
a smaller c) if FFT (fast Fourier transform) is used for the implementation of
squaring. Thus, the time complexity for computing elements in this sub-language
is the step function

2k · c · log n · log log n
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which has a fast increasing step when k gets large. Boneh and Naor envisioned
k ∈ [30, ..., 50] for typical cases in applications. While it is evident that k decreas-
ing from 30 downwards will quickly trivialise a timed-release crypto problem as
230 is already at the level of a small polynomial in the secure bit length of n
(usually 210), a k increasing from 30 upwards will harden the problem in such
increasingly giant steps that imaginable services (e.g., the strong fairness for
gradual disclosure of secret proposed in [3]) will quickly become unattractive or
unusable. Taking the LCS35 Time Capsule for example, let the 35-year-opening-
time capsule be in that sub-language (so the correctness can be efficiently proved
with the protocol in [3]), then the only other elements in that sub-language with
opening times close to 35 years will be 17.5 years and 70 years. We should notice
that there is no hope to try to tune the size of n as a means of tuning the time
complexity since changing c · log n · log log n will have little impact on the above
giant step function.

Boneh and Naor expressed a desire for a finer time-control ratio than 2 and
sketched a method to obtain a finer ratio with t0 = 1 and ti = ti−1 + ti−2 for
i = 1, ..., k. This method of reducing the ratio renders the ratio being bounded
below by α = 1+

√
5

2 (≈ 1.618) while increasing the number of proof rounds from
k to logα k. They further mentioned that smaller values can be obtained by other
such recurrences. It seems to us that if some recurrence method similar to above
is used, then with ratio→ 1 (1 is the ideal ratio and will be that for our case), the
number of proof rounds logratio k → ∞. So their suggested methods for reducing
the time-control ratio are not practical for obtaining a desirable ratio.

The Time-Lock-Puzzle work of Rivest et al [11] did not provide a method for
proving the correct construction of a timed-release crypto problem.

1.3 Our Work

We construct the first practically efficient zero-knowledge proof protocol for
demonstrating the membership in L(a, n) which runs in log2 t steps, each an
exponentiation modulo n, or O(log2 t · (log2 n)3) bit operations in total (without
using FFT). This efficiency suits practical uses. The membership demonstration
can be conducted in terms of (ae)2

t

(mod n) ∈ L(ae, n) on given a, ae and t,
where e is an RSA encryption exponent. Then we are able to provide two timed-
release crypto primitives, one for timed release of a message, and the other for
timed release of an RSA signature. In the former, a message M can be sealed
in a2

t

M (mod n), and the established membership asserts that the correct de-
cryption of the RSA ciphertext Me (mod n) can be obtained by performing t
squarings modulo n starting from a. The latter primitive can be constructed
analogously.

Our schemes provide general methods for the use of timed-release cryptog-
raphy.
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1.4 Organisation

In the next section we agree on the notation to be used in the paper. In Section 3
we construct general methods for timed-release cryptography based on proven
membership in L(a, n). In Section 4 we construct our membership proof protocol
working with an RSA modulus of a safe-prime structure. In Section 5 we will
discuss how to generalise our result to working with a general form of composite
modulus.

2 Notation

Throughout the paper we use the following notation. Zn denotes the ring of in-
tegers modulo n. Z

∗
n denotes the multiplicative group of integers modulo n. φ(n)

denotes Euler’s phi function of n, which is the order, i.e., the number of elements,
of the group Z

∗
n. For an element a ∈ Z

∗
n, ordn(a) denotes the multiplicative order

modulo n of a, which is the least index i satisfying ai ≡ 1 (mod n); 〈a〉 denotes
the subgroup generated by a;

(
x
n

)
denotes the Jacobi symbol of x mod n. We

denote by J+(n) the subset of Z
∗
n containing the elements of the positive Jacobi

symbol. For integers a, b, we denote by gcd(a, b) the greatest common divisor
of a and b. For a real number r, we denote by �r� the floor of r, i.e., r rounded
down to the nearest integer.

3 Timed-Release Crypto
with Proven Membership in L(a, n)

Let Alice be the constructor of a timed-release crypto problem. She begins with
constructing a composite natural number n = pq where p and q are two distinct
odd prime numbers. Define

a(t) def= a2
t

(mod n), (5)

ae(t) def= (a(t))e (mod n), (6)

where e is a fixed natural number relatively prime to φ(n) (in the position of an
RSA public exponent), and a �≡ ±1 (mod n) is a random element in Z

∗
n. Alice

can construct a(t) using the steps in (2) and (3).
The following security requirements should be in place: n should be so con-

structed that ordφ(n)(2) is sufficiently large, and a should be so chosen that
ordn(a) is sufficiently large. Here, “sufficiently large” means “much larger than
t” for the largest possible t that the system should accommodate.

In the remainder of this section, we assume that Alice has proven to Bob,
the verifier, the following membership status (using the protocol in §4):

ae(t) ∈ L(ae, n). (7)
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Clearly, with e co-prime to φ(n), this is equivalent to another membership status:

a(t) ∈ L(a, n).

However in the latter case a(t) is (temporarily) unavailable to Bob due to the
difficulty of extracting the e-th root (of ae(t)) in the RSA group.

3.1 Timed-Release of an Encrypted Message

For message M < n, to make it decryptable in time t, Alice can construct a
“timed encryption”:

TE(M, t) def= a(t)M (mod n). (8)

Let Bob be given the tuple (TE(M, t), ae(t), e, a, t, n) where ae(t) is con-
structed in (5) and (6) and has the membership status in (7) proven by Alice.
Then from the relation

TE(M, t)e ≡ ae(t)Me (mod n), (9)

Bob is assured that the plaintext corresponding to the RSA ciphertext
Me (mod n) can be obtained from TE(M, t) by performing t squarings mod-
ulo n starting from a. We should note that in this encryption scheme, Alice is
the sender and Bob, the recipient; so if Alice wants the message to be timed-
release to Bob exclusively then she should send a to Bob exclusively, e.g., via a
confidential channel.

Remark 1. As in the case of any practical public-key encryption scheme,M in (8)
should be randomised using a proper plaintext randomisation scheme designed
for providing the semantic security (e.g., the OAEP scheme for RSA [7]).

3.2 Timed-Release of an RSA Signature

Let e, n be as above and d satisfy ed ≡ 1 (mod φ(n)) (so d is in the position of
an RSA signing exponent). For message M < n (see Remark 2 below), to make
its RSA signatureMd (mod n) releasable in time t, Alice can construct a “timed
signature”:

TS(M, t) def= a(t)Md (mod n). (10)

Let Bob be given the tuple (M,TS(M, t), ae(t), e, a, t, n) where ae(t) is con-
structed in (5) and (6) and has the membership status in (7) proven by Alice.
Then from the relation

TS(M, t)e ≡ ae(t)M (mod n), (11)

Bob is assured that the RSA signature on M can be obtained from TS(M, t) by
performing t squarings modulo n starting from a.
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Remark 2. As in the case of a practical digital signature scheme, in order to
prevent existential forgery of a signature, M in (10) should denote an output
from a cryptographically secure one-way hash function. If we further require the
signature to an indistinguishability property (see §3.3), then the hashed result
should be in J+(n). Padding M with a random string and then hashing, the
probability for the hashed result in J+(n) is 0.5.

3.3 Security Analysis

Confidentiality of M in TE(M, t) We assume that Alice has implemented
properly our security requirements on the large magnitudes of ordφ(n)(2) and
ordn(a). Then we observe that L(a, n) is a large subset of the quadratic residues
modulo n, and the mapping a �→ a(t) is one-way under the appropriate in-
tractability assumption (here, integer factorisation). Consequently, our scheme
for encrypting M ∈ Z

∗
n in TE(M, t) is a trapdoor one-way permutation since it

is the multiplication, modulo n, of the message M to the trapdoor secret a(t).
In fact, from (9) we see that the availability of TE(M, t)e and ae(t) makes Me

available, and so without considering to go through t squarings, the underly-
ing intractability of TE(M, t) is reduced to that of RSA. Therefore, well-known
plaintext randomisation schemes for RSA encryption (e.g., OAEP [7]), which
have been proposed for achieving the semantic security (against adaptive chosen
ciphertext attacks) can be applied to our plaintext message before the appli-
cation of the permutation. The message confidentiality properties (i.e., the in-
distinguishability and non-malleability on the message M) of our timed-release
encryption scheme should follow directly those of RSA-OAEP.

Thus, given the difficulty of extracting the e-th root of a random element
modulo n, a successful extraction of a(t) from ae(t), or of some information
regarding M from TE(M, t), will constitute a grand breakthrough in the area if
they are done at a cost less than t squarings modulo n.

Unforgeability of Md in TS(M, t) First, recall that M here denotes an
output from a cryptographically secure one-way hash function before signing in
the RSA fashion. The unforgeability of Md in TS(M, t) follows directly that of
Md (mod n) given in clear.

Secondly, the randomness of ae(t) ensures that of TS(M, t)e. Thus the avail-
ability of the pair (TS(M, t), TS(M, t)e) does not constitute a valid signature of
Alice on anything (such as on an adaptively chosen message). The availability
of the pair (TS(M, t), TS(M, t)e) is equivalent to that of (x, xe) which can be
constructed by anybody using a random x.

Indistinguishability of Md in TS(M, t) The indistinguishability is the fol-
lowing property: with the timed-release signature TS(M, t) on M and with the
proven membership ae(t) ∈ L(ae, n) but without going through t squarings mod
n, one should not be able to tell whether TS(M, t) has any verifiable relation-
ship with a signature on M . This property should hold even if the signature



Timed-Release Cryptography 349

pair (M,Md) becomes available; namely, even if Bob has recovered the signa-
ture pair (M,Md) (e.g., after having performed t squarings), he is still not able
to convince a third party that TS(M, t) is a timed-release signature of Alice on
M . This property is shown below.

Let M̃ ∈ J+(n) be any message of Bob’s choice (e.g., Bob may have chosen
it because M̃d may be available to him from a different context). We have

TS(M, t) ≡ a(t)Md ≡ a(t)
(
M

M̃

)d

M̃d ≡ ãM̃d (mod n).

So upon seeing Bob’s allegation on a “verifiable relationship” between TS(M, t)
andMd, the third party faces a problem of deciding which ofMd or M̃d is sealed
in TS(M, t). This boils down to deciding if a(t) ∈ L(a, n) or if ã ∈ L(a, n) (both
are in J+(n)), which is still a problem of going through t squarings. Thus, even
though the availability of Md and M̃d does allow one to recognise that the both
are in fact Alice’s valid signatures, without verifying the membership status, one
is unable to tell if any of the two has any connection with TS(M, t) at all.

4 Membership Proof with Modulus
of a Safe-Prime Structure

Let Alice have constructed her RSA modulus n with a safe-prime structure.
This requires n = pq, p′ = (p − 1)/2, q′ = (q − 1)/2 where p, q, p′ and q′ are all
distinct primes of roughly equal size. We assume that Alice has proven to Bob
in zero-knowledge such a structure of n. This can be achieved via using, e.g., the
protocol of Camenisch and Michels [4].1

Let a ∈ Z
∗
n satisfy

gcd(a ± 1, n) = 1, (12)
(a

n

)
= −1. (13)

It is elementary to show that a satisfying (12) and (13) has the full order 2p′q′.
The following lemma observes a property of a.

Lemma 1. Let n be an RSA modulus of a safe-prime structure and a ∈ Z
∗
n of

the full order. Then for any x ∈ Z
∗
n, either x ∈ 〈a〉 or −x ∈ 〈a〉.

Proof It’s easy to check −1 �∈ 〈a〉. So 〈a〉 and the coset (−1)〈a〉 both have the
half the size of Z

∗
n, yielding Z

∗
n = 〈a〉 ∪ (−1)〈a〉. Any x ∈ Z

∗
n is either in 〈a〉 or

in (−1)〈a〉. The latter case means −x ∈ 〈a〉. ��
1 Due to the current difficulty of zero-knowledge proof for a safe-prime-structured RSA
modulus, we recommend to use the method in Section 5 which works with a general
form of composite modulus. The role of Section 4 is to serve a clear exposition on
how we solve the current problem in timed-release cryptography.
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4.1 A Building Block Protocol

Let Alice and Bob have agreed on n (this is based on Bob’s satisfaction on Alice’s
proof that n has a safe-prime structure).

Figure 1 specifies a perfect zero-knowledge protocol (SQ) for Alice to prove
that for a, x, y ∈ Z

∗
n with n of a safe-prime structure, a of the full order, and

x, y ∈ J+(n), they satisfy (note, ± below means either + or −, but not both)

∃z : x ≡ ±az (mod n), y ≡ ±az2
(mod n). (14)

Alice should of course have constructed a, x, y to satisfy (14). She sends a, x, y
to Bob.

Bob (has checked n of a safe-prime structure) should first check (12) and
(13) on a for its full-order property (the check guarantees a �≡ ±1 (mod n)); he
should also check x, y ∈ J+(n).

SQ(a, x, y, n)

Input Common: n: an RSA modulus with a safe-prime structure;
a ∈ Z

∗
n: an element of the full-order 2p′q′ = φ(n)/2

(so a �≡ ±1 (mod n));
x, y ∈ J+(n): x �≡ ±y (mod n);

Alice: z: x ≡ ±az (mod n), y ≡ ±az2
(mod n);

1. Bob chooses at random r < n, s < n and sends to Alice: C
def= arxs (mod n);

2. Alice sends to Bob: R
def= Cz (mod n);

3. Bob accepts if R ≡ ±xrys (mod n), or rejects otherwise.

Fig. 1. Building Block Protocol

Remark 3. For ease of exposition this protocol appears in a non zero-knowledge
format. However, the zero-knowledge property can be added to it using the
notion of a commitment function: Instead of Alice sending R in Step 2, she
sends a commitment commit(R), after which Bob reveals r and s; this allows
Alice to check the correct formation of C; the correct formation means that Bob
has already known Alice’s response.

Theorem 1. Let a, x, y, n be as specified in the common input in Protocol SQ.
The protocol has the following properties:
Completeness If the common input satisfies (14) then Bob will always accept
Alice’s proof;
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Soundness If (14) does not hold for the common input, then Alice, even com-
putationally unbounded, cannot convince Bob to accept her proof with probability
greater than 2p′+2q′−1

2p′q′ .2

Zero-knowledge Bob gains no information about Alice’s private input.

Proof
Completeness Evident from inspection of the protocol.
Soundness Suppose that (14) does not hold for the common input (a, x, y, n)
(here x, y ∈ J+(n)) whereas Bob has accepted Alice’s proof. By Lemma 1, the
first congruence of (14) always holds for some z = loga ±x. So it is the second
congruence of (14) that does not hold for the same z. Let ξ ∈ Z

∗
n satisfy

y ≡ ξaz2
(mod n) with ξ �= ±1. (15)

Since Bob accepts the proof, he sees the following two congruences

C ≡ arxs (mod n), (16)

R ≡ ±xrys (mod n). (17)

Since (16) implies
C2 ≡ a2rx2s (mod n),

and by Lemma 1, both loga C
2 and loga x

2 (= loga(±x)2 = 2z) exist, we can
write the following linear congruence with r and s as unknowns

loga C
2 ≡ 2r + 2zs (mod 2p′q′).

For s = 1, 2, · · · , 2p′q′, this linear congruence yields r = loga C2−2zs
2 (mod 2p′q′).

Therefore there exists exactly 2p′q′ pairs of (r, s) to satisfy (16) for any fixed C
(and the fixed a, x). Each of these pairs and the fixed x, y will yield an R from
(17). Below we argue that for any two such pairs, denoted by (r, s) and (r′, s′),
if gcd(s− s′, 2p′q′) ≤ 2 then they must yield R �≡ ±R′ (mod n). Suppose on the
contrary for

arxs ≡ C ≡ ar′
xs′

(mod n), i.e., ar−r′ ≡ xs′−s (mod n), (18)

it also holds

xrys ≡ R ≡ ±R′ ≡ ±xr′
ys′

(mod n), i.e., xr−r′ ≡ ±ys′−s (mod n). (19)

Using the second congruence in (18), noticing x ≡ ±az and (15), we can trans-
form the second congruence in (19) to

(±1)[r−r′+z(s′−s)]a[z
2(s′−s)] ≡ xr−r′ ≡ ±ys′−s ≡ ±ξ(s

′−s)a[z
2(s′−s)] (mod n),

2 The safe-prime structure of n implies p′ ≈ q′ ≈ √
n and hence this probability value

is approximately 2/
√

n.
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which yields

± ξ(s
′−s) ≡ (±1)[r−r′+z(s′−s)] ≡ ±1, i.e., ξ2(s

′−s) ≡ 1 (mod n). (20)

Recall that ξ �= ±1 and y ≡ ξaz2 ≡ ±ξxz (mod n) with x, y ∈ J+(n), we know
ordn(ξ) �= 2 (i.e., ξ cannot be any square root of 1, since the two roots �= ±1
will render y �∈ J+(n)). Thus, ordn(ξ) must be a multiple of p′ or q′ or both.
However, we have assumed gcd(s′ − s, 2p′q′) ≤ 2, i.e., gcd(2(s′ − s), 2p′q′) = 2,
so 2(s′ − s) cannot be such a multiple. Consequently (20) cannot hold and we
reach a contradiction.

For any s ≤ 2p′q′, it’s routine to check that there are 2p′ + 2q′ − 2 cases of
s′ satisfying gcd(2(s′ − s), 2p′q′) > 2. Thus, if (14) does not hold, amongst 2p′q′

possible R′s matching the challenge C, there are in total 2p′ + 2q′ − 1 of them
(matching the s itself and the 2p′ + 2q′ − 2 other s′s) that may collide to Bob’s
fixing of R. Even computationally unbounded, Alice will have at best 2p′+2q′−1

2p′q′
probability to have responded with a correct R.
Zero-Knowledge Immediate (see Remark 3). ��

4.2 Proof of Membership in L(a, n)

For t ≥ 1, we can express 2t as

2t =
{
2[2·(t/2)] = [2(t/2)]2 if t is even
2[2·(t−1)/2+1] = [2(t−1)/2]2 · 2 if t is odd

Copying this expression to the exponent position of a2
t

(mod n), we can express

a2t

(mod n) ≡
{

a[2(t/2)]2 if t is even

(a[2(t−1)/2]2)2 if t is odd
(21)

In (21) we see that the exponent 2t can be expressed as the square of another
power of 2 with t being halved in the latter. This observation suggests that re-
peatedly using SQ, we can demonstrate, in �log2 t� steps, that the discrete log-
arithm of an element is of the form 2t. This observation translates precisely into
the protocol specified in Figure 2 which will terminate within �log2 t� steps and
prove the correct structure of a(t). The protocol is presented in three columns:
the actions in the left column are performed by Alice, those in the right column,
by Bob, and those in the middle, by the both parties.

A run of Membership(a, t, a(t), n) will terminate within �log2 t� loops, and
this is the completeness property. The zero-knowledge property follows that of
SQ (also note Remark 4(ii) below). We only have to show the soundness property.

Theorem 2. Let n = (2p′ + 1)(2q′ + 1) be an RSA modulus of a safe-prime
structure, a ∈ Z

∗
n be of the full order 2p′q′, and t > 1. Upon acceptance ter-

mination of Membership(a, t, a(t), n), relation a(t) ≡ ±a2
t

(mod n) holds with
probability greater than

1− �log2 t�(2p′ + 2q′ − 1)
2p′q′ .
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Membership(a, t, a(t), n)
Abort and reject if any checking by Bob fails, or accept upon termination.

Alice both Bob

u
def= a(t); u

?∈ J+(n); a
?
�≡ ±u (mod n)

While t > 1 do
























y
def= u;

if t is odd: y
def= a(t − 1);

x
def= a(	t/2
);

Sends x, y to Bob;
Receives x, y from Alice;

x, y
?∈ J+(n);

if t is odd: y2 ?≡ u (mod n);

if t is even: y
?≡ u (mod n);

SQ(a, x, y, n);
u

def= x;
t

def= 	t/2
;
When t = 1:
u

?≡ a2 (mod n);

Fig. 2. Membership Proof Protocol

Proof Denote by SQ(a, x1, y1, n) and by SQ(a, x2, y2, n) any two consecutive
acceptance calls of SQ in Membership (so in the first call, y1 = a(t) if t is even,
or y1 = a(t − 1) if t is odd; and in the last call, x2 = a2). When t > 1, such two
calls prove that there exists z:

x2 ≡ ±az (mod n), y2 ≡ ±az2
(mod n), (22)

and either
x1 = y2 ≡ ±az2

(mod n), y1 ≡ ±az4
(mod n), (23)

or
x1 = y22 ≡ a2z2

(mod n), y1 ≡ ±a4z4
(mod n). (24)

Upon t = 1, Bob further sees that x2 = a2. By induction, the exponents z (resp.
z2, z4, 2z2, 4z4) in all cases of ±az (resp. ±az2

, · · ·) in (22), (23) or (24) contain
a single factor: 2. So we can write a(t) = ±a2

u

(mod n) for some natural number
u.

Further note that each call of SQ causes an effect of having 2u square-rooted
in the integers which is equivalent to having u halved in the integers. Thus,
exactly �log2 u� calls (and no more) of SQ can be made. But Bob has counted
�log2 t� calls of SQ, therefore u = t.

Each acceptance call of SQ has the correctness probability of 1− 2p′+2q′−1
2p′q′ .

So after �log2 t� acceptance calls of SQ, the probability for Membership to be
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correct is

(1− 2p′ + 2q′ − 1
2p′q′ )�log2 t� > 1− �log2 t�(2p′ + 2q′ − 1)

2p′q′ . ��

Remark 4.

i) An acceptance run of Membership(a, t, a(t), n) proves ±a(t) ∈ L(a, n), or
a2(t) = a(t+ 1) ∈ L(a, n).

ii) It is obvious that by preparing all the intermediate values in advance, Pro-
tocol Membership can be run in parallel to save the �log2 t� rounds of in-
teractions. This way of parallelisation should not be confused with another
common method for parallelising a proof of knowledge protocol using a hash
function to create challenge bits (which turns the proof publicly verifiable).
Our parallelisation does not damage the zero-knowledge property.

iii) In most applications, a(t) is the very number (solution to a puzzle) that
should not be disclosed to Bob during the proof time. In such a situation,
Alice should choose t to be even and render a(t − 1) to be the solution to a
puzzle. Then a proof of Membership(a, t, a(t), n) will not disclose a(t − 1).
Note that such a proof does disclose to Bob a(�t/2�) which provides Bob
with a complexity of �t/2� − 1 squarings to reach a(t − 1). To compensate
the loss of computation, proof of Membership(a, 2t, a(2t), n) is necessary.
Consequently, the proof runs one loop more than Membership(a, t, a(t), n)
does. Note that the above precautions are unnecessary for our applications
in §3 where it is the e-th root of ae(t) that is the puzzle’s solution; the
disclosures of ae(t) or ae(�t/2�) do not seem to reduce the time complexity
for finding a(t).

4.3 Performance

In each run of SQ, Alice (resp. Bob) performs one (resp. four) exponentiation(s)
mod n. So in Membership(a, t, a(t), n) Alice (resp. Bob) will perform �log2 t�
(resp. 4�log2 t�) exponentiations mod n. These translate to O(�log2 t�(log2 n)3)
bit operations.

In the LCS35 Time Capsule Crypto-Puzzle [10], t = 79685186856218 is a
47-bit binary number. Thus the verification for that puzzle can be completed
within 4× 47 = 188 exponentiations mod n.

The number of bits to be exchanged is measured by O((�log2 t�)(log2 n)).

5 Use of Modulus of a General Form

When n does not have a safe-prime structure, the error probability of SQ can
be much larger than what we have measured in Theorem 1. The general method
for Alice to introduce an error in her proof (i.e., to cheat) is to fix y in (15)
with some ξ �= ±1. For y so fixed before Bob’s challenge C, Bob is actually
awaiting for R ≡ ±Czξs (mod n) in which ξs (mod n) is the only value that
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Alice does not know (she does not know it because Bob’s random choice of s
is perfectly hidden in C). Therefore in order to respond with the correct R, it
is both necessary and sufficient for Alice to guess ξs (mod n) correctly. Notice
that while it is unnecessary and can be too difficult for Alice to guess s, guessing
ξs (mod n) need not be very difficult and the probability of a correct guess is
bounded by 1

ordn(ξ)
. Thus, in order for Alice to achieve a large error probability

(meaning, to ease her cheating), she should use ξ of a small order.
The above cheating scenario provides the easiest method for Alice to cheat

and yet is general enough for covering the cases that the soundness of SQ should
consider. Multiplying both x and y with some small-order elements will only
make the cheating job more difficult. Therefore it suffices for us to anticipate
the above general cheating method.

To this end it becomes apparent that in order to limit Alice’s cheating proba-
bility we should prevent her from constructing y in (15) using ξ of a small order.
Using a safe-prime-structured modulus n = (2p′ + 1)(2q′ + 1) achieves this pur-
pose exactly because then the least order available to Alice is min( 1p′ ,

1
q′ ) which

is satisfiably small (using ξ of order 2 either does not constitute an attack, or
will cause detection of y �∈ J+(n)).

While a zero-knowledge proof of n being in a safe-prime structure is com-
putationally inefficient to date, it is rather easy to construct a zero-knowledge
proof protocol for proving that φ(n) is free of small odd prime factors up to a
bound B. Boyar et al [2] constructed a practically efficient zero-knowledge proof
protocol for proving that φ(n) is relatively prime to n. As in [8], we can apply
the same idea to prove that φ(n) is relatively prime to ∆ (i.e., using ∆ in place
of n) where

∆ =
∏

primes � :
2 < � < B

*. (25)

Supposing that n is a Blum integer (which can be efficiently proved using,
e.g., the protocol of van de Graaf and Peralta [12]), then after applying the
protocol of Boyar et al using ∆ in (25) in place of n, we can be sure that
the error probability of SQ is bounded by B−1. Notice that the multiplication
attack using the square roots of 1 with the negative Jacobi symbol (in place of ξ
in (15)) is not possible since that will be detected by the Jacobi symbol checking
conducted on the input values. Thus, if Alice is required to repeat running SQ

k
log2 B times, then Bob is sure that her cheating probability (i.e., for (14) not to
hold) is bounded by 2−k.

5.1 Performance of Membership Proof
Using General Form of Modulus

With the soundness probability of SQ bounded by B−1, for each case of x, y,
SQ(a, x, y, n) need to be run k

log2 B times to achieve an acceptable soundness

probability 2−k. Thus in Membership, SQ is run �log2 t�k
log2 B times. Since in each
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run of SQ, Alice (resp. Bob) performs one (resp. four) exponentiation(s) mod
n. So in Membership(a, t, a(t), n) Alice (resp. Bob) will perform �log2 t�k

log2 B (resp.
4�log2 t�k
log2 B exponentiations mod n. Adding to this is the cost for running k times

the protocol of Boyar et al, each run of that protocol costs one modulo exponen-
tiation for both parties. Thus, the total cost in number of exponentiations mod
n of the membership proof for Alice is

�log2 t�k
log2B

+ k,

and that for Bob is
4�log2 t�k
log2B

+ k.

In the LCS35 Time Capsule Crypto-Puzzle [10] where �log2 t� = 47, if we con-
sider B = 210 and k = 100, then the quantity for Alice is 570 and that for Bob is
1980. Therefore, the LCS35 Time Capsule Crypto-Puzzle using a general-form
modulus (Blum integer) can be verified with 1980 modulo exponentiations.

Zero-knowledge proof of a Blum integer using the protocol in [12] has a
performance similar to one modulo exponentiation for Alice; the workload of that
protocol for Bob is trivial since it only involves multiplications and evaluations of
Jacobi symbols. Thus, considering the same low soundness probability of 2−100,
we should add 100 modulo exponentiations to Alice’s workload to reach 670
modulo exponentiations.

6 Conclusion

We have constructed an efficient zero-knowledge protocol for providing general
solutions to timed-release cryptographic problems (encryption and signature).
These schemes have proven correctness on time control which can be fine tuned
to the granularity in number of multiplications.

Successful timed-release cryptographic problems have been constructed upon
the integer-factoring based intractability. An important feature that such in-
tractability offers is non-parallelisability. An open question is that can other
intractability offer this feature? (We know that the problem of extraction of dis-
crete logarithm can be parallelised [13].)
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Blömer, Johannes 325
Boer, Bert den 314

Coron, Jean-Sébastien 151
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