

#BadWinmail:

The "Enterprise Killer" Attack Vector in Microsoft Outlook

by Haifei Li (haifei.van@hotmail.com), December, 2015

current version 1.1, always check the latest version of this paper here

Introduction
Microsoft Outlook, a part of the Microsoft Office suit, has become one of the most popular applications

in today's computing world, especially for the enterprise environment. Enterprise employees use

Outlook to exchange emails everyday as well as manage various information such as schedules, meeting

invitations, etc. For more information please visit its wiki page.

Acknowledgements: The author would like to thank Xiaoning Li for peer-reviewing the report. Thanks to the Microsoft Security Response Center

and the Office team for fixing the issue within 1.5 months. Logo credit: the Pangu Team.

https://sites.google.com/site/zerodayresearch/BadWinmail.pdf
https://en.wikipedia.org/wiki/Microsoft_Outlook
http://pangu.io/
https://sites.google.com/site/zerodayresearch/BadWinmail_logo.jpg

Security Mitigations/Enhancements on Outlook
Since Outlook is such a critical application, Microsoft has implemented various security mitigations/

enhancements to ensure Outlook is safe to use, these include:

 Some file types, such as those bringing direct code executions, are blocked automatically. For

example, a .exe file will be blocked automatically without further confirmation from the user, as

the following figure shows:

 For those file types that may have potential risks, Outlook offers a warning dialog to the user

when the user tries to open the attachment. Following is the warning dialog when trying to

open a .html file. Users are not allowed to open such attachment directly.

 For Office documents, such as Word, PowerPoint or Excel files, users can either open the

attachment by double-clicking on the attachment, or even “previewing” the attachment by

simply single-clicking on the attachment icon. Following figure shows the user is previewing the

content of a Word document on Outlook 2016.

Regardless whether it’s opened via previewing or actual opening - the document will be

rendered in the “Office Sandbox”, this is also known as the Protected View feature of Office.

According to this MWR Labs research, the sandbox is pretty strong, which makes end users

highly immune from Office-based threats delivered via Outlook.

https://support.office.com/en-nz/article/What-is-Protected-View-d6f09ac7-e6b9-4495-8e43-2bbcdbcb6653
https://labs.mwrinfosecurity.com/system/assets/1015/original/Understanding_The_Microsoft_Office_2013_Protected_View_Sandbox.pdf

However, in-depth research has showed that there are critical security problems in Outlook, which may

be leveraged to bypass those forementioned mitigations. Specially, the author has discovered a novel

attack vector in Outlook, which allows anonymous attacker to take control of a computer via just an

email. Following we are going to discuss about the details.

The OLE Mechanism
As we know, the Object Linking and Embedding (OLE) technology is well used in the Office Word, Excel,

PowerPoint, as well as the WordPad application. For more details about the OLE feature in Office

documents, please check out the research entitled “Attacking Interoperability: An OLE Edition”

presented at Black Hat USA 2015.

However, previous research only discussed OLE objects embedded in various Office (or RTF) documents,

but not for Outlook or emails. The author has found that OLE is also supported in Outlook, which poses a

pretty serious security problem.

The “Enterprise Killer” Attack Vector: OLE via TNEF
The Transport Neutral Encapsulation Format (TNEF), is a Microsoft-invented email format supported by

Outlook (the author suspects it’s only supported by Outlook). For more details please refer to this wiki

page.

A “TNEF” email’s original content may look like the following:

------=_NextPart_000_0048_01D106A0.9042DC90
Content-Type: application/ms-tnef;
 name="winmail.dat"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
 filename="winmail.dat"

eJ8+IhkXAQaQCAAEAAAAAAABAAEAAQeQBgAIAAAA5AQAAAAAAADoAAEIgAcAGAAAAElQTS5NaWNy
b3NvZnQgTWFpbC5Ob3RlADEIAQOQBgC4DwAAJAAAAAsAAgABAAAAAwAmAAAAAAALACkAAAAAAB4A

As shown above, the value of the "Content-Type" field is set to "application/ms-tnef", and the filename

is usually “winmail.dat”. The "content" is actually a file (after base64 decoding) following the "TNEF" file

format, the TNEF file format is well described by Microsoft here.

P.S.: the author named the attack vector as “BadWinmail” because of the special filename “winmail.dat”

in the “TNEF” email.

https://sites.google.com/site/zerodayresearch/Attacking_Interoperability_OLE_BHUSA2015.pdf
https://en.wikipedia.org/wiki/Transport_Neutral_Encapsulation_Format
https://en.wikipedia.org/wiki/Transport_Neutral_Encapsulation_Format
https://msdn.microsoft.com/en-us/library/cc425498(v=exchg.80).aspx

As described in the TNEF specification, when the value of the "PidTagAttachMethod" is set to

ATTACH_OLE (6), the “attachment file” (which is another file contained in the winmail.dat file) will be

rendered as an OLE object, the same description can also be found online at the MSDN site.

A sample winmail.dat file may look like the following:

A malicious winmail.dat, which contains an OLE object, may have the following bytes contained (with

the author’s comments on the right side).

02 //level
02 90 //name, Attachment Rendering Data
06 00 //type, indicating an OLE object
0E 00 00 00 //att_length
02 00 00 00 00 00 FF FF FF FF 00 00 00 00 //data
FE 03 //att_checksum

The type “06 00” defines that the “attachment stream” inside the winmail.dat file will be rendered as an

OLE object.

Such a feature could allow us to “build” a TNEF email and send it to the user, when the user reads the

email, the embedded OLE object will be loaded automatically. Following is an example showing the

“Excel Binary Worksheet Object” OLE object is loaded when the user is just reading the email.

https://msdn.microsoft.com/en-us/library/cc815439(v=office.12).aspx

P.S.: We may right-click on the object to see the “Microsoft Excel Binary Worksheet Object” menu,

indicating the OLE object is indeed loaded.

According to the author’s tests, various OLE objects can be loaded via emails; this poses a big security

problem. As discussed previously, Outlook has blocked various unsafe attachments, as well as only

allowing Office documents to be opened in its Sandbox. However, this feature breaks all the security

efforts. I’ve tested and confirmed that the Flash OLE object (CLSID: D27CDB6E-AE6D-11cf-96B8-

444553540000) can be loaded via the feature. By packing a Flash exploit in an OLE-enabled TNEF email,

an attacker can archive full code execution as long as the victim reads the email.

We use Flash OLE object as an example since Flash (zero-day) exploits are easy to obtain by attackers,

but please note that there are other OLE objects may be abused by attacker, as not only Flash but also a

number of other OLE objects can be loaded in Outlook.

Another Attack Vector: OLE via MSG
The author has also discovered another way to embed OLE: the .msg file format, though they may share

the same code path. With the default configuration, Outlook considers a .msg attachment is safe, thus,

it will use the Outlook application itself to open the .msg file even if the user just previews the

attachment.

The MSG format is described by Microsoft as well, the sections “2.2.2.1 Embedded Message Object

Storage”, “2.2.2.2 Custom Attachment Storage” and “3.3 Custom Attachment Storage” describe how to

define an OLE object in .msg file, the OLE data should be stored in the sub-storage named as

“__substg1.0_3701000D”.

http://download.microsoft.com/download/5/D/D/5DD33FDF-91F5-496D-9884-0A0B0EE698BB/%5bMS-OXMSG%5d.pdf

The Impact: An Ideal “APT” and Wormable Attacking Technique
As we know, Flash has been proven as an extremely unsafe application during the years; we have seen

so many Flash exploits including so many Flash zero-day exploits in the wild. To reduce/mitigate the risks

delivered via Flash content, modern browser vendors have been working hard to put Flash content

being rendered in a sandboxed environment. For example, on Google Chrome, Flash is run as the Pepper

Flash in the Chrome sandbox, for IE11 Flash content is rendered in the Protected Mode which is also an

application sandbox, for the newly-released Microsoft Edge browser on Windows 10, all Flash content is

rendered in the Enhanced Protected Mode - a much stronger sandbox than the Protected Mode.

Office documents can embed Flash contents as well, which makes Office document seem unsafe to

open. However, Microsoft has worked on this – Office documents downloaded from the Internet or

delivered via email attachments will be opened in the Office sandbox, this limits the damage caused by

malicious Office documents, as we have discussed in previous “Security Mitigations/Enhancements on

Outlook” section. In fact, Flash content embedded in Office document will not be rendered at all when

in the sandboxed environment.

However, there's no Sandbox for Outlook. Following figure shows Outlook is running with the "Medium"

integrity when handling emails - no sandbox at all.

What does it mean? It means that if the attacker sends an email to the victim with an embedded Flash

exploit (via the “TNEF” format), as long as the victim reads (or we may say, preview) the email, the Flash

exploit will be executed in the "outlook.exe" process and it will give the attacker the same privilege of

the current user - an ideal way to take control of the victim’s system!

Since Outlook will preview the newest email automatically upon launching, it means that if the attacking

email is the newest one, the victim has no choice to avoid being attacked – he/she doesn’t even need to

read/preview the attacking email.

Following is the screen captured while the victim just “preview” the email delivered into his/her inbox. It

shows:

1. The Windows Calculator was popped up, it means the Flash exploit worked successfully.

2. Outlook process and the calc.exe process are run with “Medium” integrity, means there is no

Sandbox on Outlook.

3. The Flash binary (Flash.ocx) is loaded in the Outlook process.

https://msdn.microsoft.com/en-us/library/bb250462(v=vs.85).aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/03/23/understanding-ie10-enhanced-protected-mode-network-security-addons-cookies-metro-desktop.aspx

Even worse, starting from Windows 8, Microsoft has integrated Flash Player (ActiveX version, so can be

loaded via OLE) by default, which means that all the Windows 8, Windows 8.1, Windows 10 operating

systems are affected by this attack vector by default.

It means that an attacker - who may have a Flash zero-day exploit (considering what we have seen about

Flash zero-day attacks in past years, it shouldn’t be a rare requirement) - can attack anybody if the

victim is using Outlook on a Windows 8/8.1/10 system, or a Windows 7 which has the Flash ActiveX for

IE installed.

 All the attacker needs to know is the email address of the victim

 All the victim needs to do is just reading/previewing the email sent from the attacker

Think about it, an attacker may just need a Flash zero-day exploit (and the email address, of course) to

take control of a CEO’s computer for a business company - most enterprise users use Outlook every day,

then he/she can read all the confidential emails and may do many more. This is absolutely an ideal

technology for targeted attacks, especially in an “APT” (advanced persistent threat) era.

Even, an attacker may launch a “worm” based attack by abusing this attack vector – that doesn’t usually

happen in Windows ecosystem since Vista’s release - when compromising one computer via email, the

worm may gather all the contacts and then send the same exploit via email to all the contacts to spread

itself.

Demonstration
To help readers better analyze the attack vector and understand the impact, the author has made a

screen video showing how dangerous it is for this “BadWinmail” attack vector. The video is hosted

online at https://youtu.be/ngWVbcLDPm8. In the demo, the author used an old Flash exploit leaked

from Hacking Team, the CVE-ID is believed to be CVE-2015-5122. Thus, to ensure the old Flash exploit

work, the Flash binary on Windows should less than or equal to 18.0.0.203, as the demo shows.

The attack vector works on all available Windows + Office computing environments, which includes

Windows 7/8/8.1/10 having any of the Outlook 2007/2010/2013/2016 installed, prior to the Microsoft’s

fix in MS15-131.

Patch & Workarounds
The author has worked with Microsoft to address this serious problem in Outlook since discovered and

reported in late October 2015. Microsoft has now addressed the issue on December 8th, 2015, in

Microsoft Security Bulletin MS15-131 (CVE-2015-6172). Users are highly recommended to apply the

patch immediately.

For users who are not able to apply the official patch for some reason, please follow the Workarounds in

MS15-131, where basically it suggests reading emails with plain text only. Additionally, the author would

suggest setting an “Office Kill-bit” register key to prevent Outlook from loading the “highly-risky” Flash

content, the blocked CLSID is D27CDB6E-AE6D-11cf-96B8-444553540000. The author has confirmed that

by setting the following registry key, Outlook will not load Flash content anymore.

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\Common\COM Compatibility\{D27CDB6E-AE6D-

11cf-96B8-444553540000}]

"Compatibility Flags"=dword:00000400

Conclusion

In this report, the author disclosed a novel attack vector to attack Outlook users via emails, which the

author named as BadWinmail. Specifically, we disclosed that a Flash (or other types of) exploit can be

packed and delivered via a TNEF email (or MSG attachment). The most serious impact is that the exploit

will get executed as long as the Outlook user reads/previews the attacking email. Because there is no

sandbox on Outlook, it allows the attacker to take control of the victim’s computer immediately.

BadWinmail is an ideal attacking technique for targeted/APT attacks because of its severity and the

nature of email-based attacks - all the attacker needs to know is the victim’s email address. It’s a “killer”

exploit-delivering method as usual tricks such as delivering via email attachments or delivering via URLs

(in email bodies) require additional user interactions and are protected by various application

sandboxes. It’s also a wormable issue rarely seen on Windows platform nowadays.

https://youtu.be/ngWVbcLDPm8
https://technet.microsoft.com/en-us/library/security/ms15-131.aspx
https://technet.microsoft.com/en-us/library/security/ms15-131.aspx
https://technet.microsoft.com/en-us/library/security/ms15-131.aspx
https://support.microsoft.com/en-us/kb/2252664

