
Samhain 0.8

User Manual

Rainer Wichmann

July 10, 2000

Contents

1 Functional summary 1

1.1 Overview . 1

1.2 Installation Requirements & Environment 2

1.3 How to invoke . 3

1.4 Signals . 3

1.5 Options & configuration file 4

2 Basic 4

2.1 Trusted users and trusted paths 4

2.2 Hash function . 4

2.3 Logging severities, thresholds, and facilities 5

2.3.1 Severity levels . 5

Example . 6

2.3.2 Configuring logging facilities 7

Example . 8

2.3.3 Thresholds . 9

Example . 9

2.4 Details of logging facilities . 10

2.4.1 Console . 10

2.4.2 Syslog . 10

2.4.3 E-mail . 10

2.4.4 The log file . 12

2.4.5 The log server . 12

3 Signed Configuration/Database File 13

4 samhain – The file monitor 14

4.1 Basic usage instructions . 14

4.2 File signatures . 15

4.3 Defining which files/directories to monitor 16

4.3.1 Monitoring policies . 16

4.3.2 File/directory specification 17

4.3.3 ’All except ...’ . 17

4.3.4 Non-existent/disappered/new files 17

4.3.5 Recursion depth(s) . 18

4.4 Timing file checks . 18

4.5 Initializing or checking . 18

4.6 The database . 19

4.7 Monitoring login/logout events 19

Example . 19

4.8 Modules . 20

5 yule – The log server 21

5.1 General . 21

5.2 Client registry . 22

5.3 Server status information . 23

5.4 Authentication protocol . 24

5.4.1 Challenge-response . 24

5.4.2 SRP . 25

5.5 Message transfer protocol . 25

5.6 File transfer protocol . 26

6 Stealth mode 27

7 Security Design 29

A Compilation options 31

A.1 General . 31

A.2 OpenPGP Signatures on Configuration/Database Files 33

A.3 Client/Server Connectivity . 34

A.4 Paths . 34

B Command line options 35

B.1 General . 35

B.2 samhain . 35

B.3 yule . 36

C The configuration file 36

C.1 General . 36

Example . 37

C.1.1 Conditionals . 37

Example . 37

C.2 Files to check . 38

C.3 Severity of events . 38

C.4 Logging thresholds . 39

C.5 Watching login/logout events 39

C.6 Miscellaneous . 40

C.7 Clients . 41

C.8 End of file . 41

Abstract

samhain is a file integrity monitoring system that can be used on single hosts
as well as for large, UNIX-based networks.
samhain offers several features to support and facilitate centralized file in-
tegrity monitoring: samhain can be used as a client/server system, with
monitoring clients on individual hosts and a central log server. Powerful
conditionals allow to build a single configuration file for all clients on the
network. Clients may download the configuration file and the database of
file signatures from the log server.
This manual gives a detailed description of the samhain system. It is in-
tended to be of help for anyone wishing to use, test, or modify samhain

.

1 Functional summary

samhain is a system to monitor the integrity of files. It has a number of
features that are intended to support and facilitate centralized monitoring in
a network, although it can also be used on single hosts.

In particular, samhain can optionally be used as a client/server system with
monitoring clients on individual hosts, and a central log server that collects
the messages of all clients.

Also, the configuration and database files can be stored centrally and down-
loaded by clients from the log server. The construction of a single config-
uration file for all hosts on the network is facilitated by conditionals for
inclusion/exclusion of parts of the configuration file based on hostname, ma-
chine (hardware) type, operating system, and operating system version (all
with regular expresions).

The client (or standalone) part is called samhain , while the server is referred
to as yule .

1.1 Overview

This overview assumes that the database is already initialized (see Sect. 4.1).
On startup, samhain /yule will

1. Set the effective user to some compiled-in default (e.g. nobody), if it is
different from the real user.

2. Parse the command line. Options given on the command line will
override those in the configuration file.

3. Check whether the path to the configuration file is trusted (see Sect. 2.1),
determine the checksum – or verify the signature – of the configuration
file, then read in from it:

• A list of files and directories to monitor, together with the spec-
ification of the policies that should be applied, i.e. what kind of
modifications will be allowed or not.

• Instructions regarding the logging facilities to be used.

• Settings for the monitoring of login/logout events.

• Miscellaneous other settings, as described in the appendix.

4. Obtain the local hostname, and information on the real and effective
user. Initialize according to the specified options (e.g. disconnect from
the parent process to become a daemon).

5. (samhain only): Determine the checksum – or verify the signature –
of the file database.

6. Issue a startup message including user, time, and information on check-
sums – or signature keys – of configuration file and database.

7. samhain : Enter a loop to check the files specified in the configuration
file against the database at regular intervals as defined in the configu-
ration file.
yule : Enter a loop to wait for connections from clients.

8. samhain : If not running as daemon, exit after the first loop, else, exit
on SIGTERM (see Sect. 1.4).
yule : Exit on SIGTERM (see Sect. 1.4).

9. Issue an exit message including time and reason for exit.

1.2 Installation Requirements & Environment

samhain requires an ANSI C compiler and a POSIX operating system. The
installation procedure uses GNU autoconfigure (all configuration options are
listed in the appendix):

./configure [options]
make

make install

The installation routine will install the following files. The last three are
optional, and only compiled and installed if the --enable-network option
(yule, samhain setpwd) or the --with-stealth option (samhain stealth) has
been selected:

Original Installed Purpose Mode

samhain.8 $(mandir)/man8/samhain.8 manpage 600
samhainrc.5 $(mandir)/man5/samhainrc.5 manpage 600
samhainrc $(configdir)/.samhainrc configuration 600
samhain $(bindir)/samhain process image 700
The log server:
(yule) $(bindir)/yule process image 700
Helper app (network):
(samhain setpwd) $(bindir)/samhain setpwd process image 700
Helper app (stealth):
(samhain stealth) $(bindir)/samhain stealth process image 700

The configuration file should be carefully checked before installation, espe-
cially with respect to the (e-mail, log server, time server) addresses listed
therein. Installed files should be owned by root. If the --with-stealth op-
tion is used, installed files should be renamed to some less suspicious name.
The install routine will not do that by itself.

1.3 How to invoke

samhain can be invoked from the command line, from the cron daemon,
or during the boot procedure from a script in the appropriate location (e.g.
/sbin/init.d/rc3.d/S99samhain, /etc/rc.d/rc3.d/S99samhain,
/etc/rc3.d/S99samhain, depending on the host system).

The distribution package includes a sample boot script, and the Makefile
includes a target make install-boot, that will try to figure out which of
the above locations is the correct one, and install to that location. If the
correct location cannot be determined, nothing will be installed.

A complete list of command line options is given in the appendix.

1.4 Signals

On startup, all signals will be reset to their default. Then a signal handler
will be installed for all signals that (i) can be trapped by a process and

(ii) whose default action would be to stop, abort, or terminate the process.
The signal handler will terminate the process normally for SIGXFSZ, SIGX-
CPU, SIGPWR, SIGSTKFLT, SIGIOT, SIGTRAP, SIGTERM, SIGPIPE,
SIGABRT, SIGQUIT, SIGINT, SIGHUP, otherwise ignore the signal. For
SIGSEGV, SIGILL, SIGBUS, and SIGFPE, a ’fast’ termination will occur,
with only minimal cleanup that may result in a stale lock file being left.

Trivially, samhain will terminate on SIGKILL, and stop on SIGSTOP, be-
cause these signals cannot be trapped by a process.

1.5 Options & configuration file

All command line options, and all settings in the configuration file, are de-
scribed in the appendix.

2 Basic

2.1 Trusted users and trusted paths

Trusted users are root and the effective user of the process. Additional
trusted users can be defined in the configuration file (see Sect. 2.3.2 for an
example), or at compile time.

A trusted path is a path with all elements writeable only by trusted users.
samhain requires the paths to the configuration and log file to be trusted
paths, as well as the path to the lock file that will be created to lock access
to the log file.

Evidently, if the path to the configuration file itself is writeable by other users
than root and the effective user, these must be defined as trusted already
at compile time. This is especially the case on some systems where the root
directory is owned by the user bin.

2.2 Hash function

A hash function is a one-way function H(foo) such that it is easy to compute
H(foo) from foo, yet infeasible to compute foo from H(foo).

One common usage of a hash function is the computation of checksums of
files, such that any modification of a file can be noticed, as its checksum will
change.

For computing checksums of files, and also for some other purposes, samhain
uses the TIGER hash function developed by Ross Anderson and Eli Biham.
The output of this function is 192 bits long, and the function can be imple-
mented efficiently on 32-bit and 64-bit machines. Technical details can be
found at http://www.cs.technion.ac.il/~ biham/Reports/Tiger/.

2.3 Logging severities, thresholds, and facilities

Events (e.g. unauthorized modifications of files monitored by samhain) will
generate messages of some severity. These messages will be logged to all
logging facilities, whose threshold is equal to, or lower than, the severity of
the message.

2.3.1 Severity levels

The following severity levels are defined:

none Not logged.
debug Debugging-level messages.
info Informational message.
notice Normal conditions.
warn Warning conditions.
mark Timestamps.
err Error conditions.
crit Critical conditions, including program startup/normal exit.
alert Fatal error, causing abnormal program termination.

Most events (e.g. timestamps, internal errors, program startup/exit) have
fixed severities. The following events have configurable severities:

• policy violations (for monitored files)

• access errors for files

• access errors for directories

• obscure file names (with non-printable characters)

• login/logout events (if samhain is configured to monitor them)

Severity levels for events (see Sect. 2.3.1) are set in the EventSeverity and
(for login/logout events) the Utmp sections of the configuration file.

Example In the configuration file, these can be set as follows:

[EventSeverity]

#
these are policies (see section 4.3.1)
#
SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=warn
SeverityIgnoreNone=crit
SeverityIgnoreAll=info
#
these are access errors
#
SeverityFiles=err
SeverityDirs=err
#
these are obscure file names
#
SeverityNames=info
#
This is the section for login/logout monitoring
#
[Utmp]

SeverityLogin=notice
SeverityLogout=notice
multiple logins by same user
SeverityLoginMulti=err

2.3.2 Configuring logging facilities

samhain supports the following facilities for logging:

e-mail samhain uses built-in SMTP code, rather than an external mailer
program. E-mails are signed to prevent forging.

syslog The system logging utility.
console If running as daemon, /dev/console is used, otherwise stdout.
log file Entries are signed to provide tamper-resistance.
log server samhain uses TCP/IP with authentication and signed messages.

Some of these facilities require proper settings in the configuration file. These
settings are in the section Misc (see the example on next side for the proper
syntax).

E-mail You must set:

1. the recipients address, in the format username@hostname

2. the maximum time (in seconds) between two e-mails, and

3. the maximum maximum number of messages that are stored be-
fore e-mailing them in a sigle e-mail. Messages of highest priority
(alert) are always sent immediately.

4. If the recipient is offsite, and your site uses a mail relay host to
route outbound e-mails, you need to specify the relay host.

Caveat: usually not all hosts in a domain are configured to receive
e-mail, but rather there is often a dedicated mail handler. The host
given in the e-mail address must be willing to handle e-mail. The
host or nslookup commands can help you to find the mail handler for
a domain.
Hint: it is recommended to use numerical IP addresses instead of host
names (to avoid DNS lookups).

Log file If some element in the path to the log file is writeable by someone
else than root or the effective user of the process, you have to include
that user in the list of trusted users.

Log server The IP address of the log server must be given.

Example

[Misc]

#
E-mail receipient (offsite in this case).
#
SetMailAddress=username@host.another domain
#
Need a relay host for outgoing mail.
#
SetMailRelay=relay.mydomain
#
Number of pending mails.
#
SetMailNum=10
#
Maximum time between e-mails.
Want a message every day, just to be sure that the
program still runs.
#
SetMailTime=86400
#
The log server.
#
SetLogServer=server.mydomain
#
A trusted user.
#
TrustedUser=username
#
Another trusted user.
#
TrustedUser=UID

2.3.3 Thresholds

Messages are only logged to a log facility if their severity is at least as high
as the threshold of that facility.

Thresholds can be specified individually for each facility. A threshold of
’none’ switches off the respective facility.

Thresholds are set in the Log section of the configuration file.

Example

[Log]

#
Threshold for E-mails (none = switched off)
#
MailSeverity=none
#
Threshold for log file
#
LogSeverity=err
#
Threshold for console
#
PrintSeverity=info
#
Threshold for syslog (none = switched off)
#
SyslogSeverity=none
#
Threshold for forarding to the log server
#
ExportSeverity=crit

2.4 Details of logging facilities

This section discusses some details of the logging facilities offered by samhain

Configuring logging facilities (if required) is explained in section 2.3.2. Acti-
vating logging facilities (by setting an appropriate threshold) is explained in
section 2.3.3 .

2.4.1 Console

If running as daemon, samhain will use /dev/console for output, otherwise
stdout.

2.4.2 Syslog

samhain will translate its own severities into syslog priorities as follows:

debug LOG DEBUG
info LOG INFO
notice LOG NOTICE
warn LOG WARNING
mark LOG ERR
err LOG ERR
crit LOG CRIT
alert LOG ALERT

Messages will be truncated to 1023 chars. samhain will use the identity
’samhain’, the syslog facility LOG AUTHPRIV, and will log its PID (process
identification number) in addition to the message.

2.4.3 E-mail

E-mails are sent (using built-in SMTP code) to one recipient only. The
subject line contains timestamp and local hostname, which are repeated in
the message body.

During temporary connection failures, messages are stored in a FIFO queue.
The maximum number of stored messages is 128. samhain will re-try to mail
every hour for at most 48 hours. In conformance with RFC 822, samhain
will keep the responsibility for the message delivery until the recipient’s mail
server has confirmed receipt of the e-mail (except that, as noted above, after
48 hours it will assume a permanent connection failure).

The body of the mail may consist of several messages that were pending on
the internal queue (see sect. 2.3.2), followed by a signature that is computed
from the message and a key. The key is initialized with a random number,
and for each e-mail iterated by a hash chain.

The initial key is revealed in the first email sent (obviously, you have to be-
lieve that this first e-mail is authentical). This initial key not transmitted in
cleartext, but encrypted with a one-time pad. The one-time pad is generated
by hashing a base (a compiled-in key) with a salt (the message itself). This
way, different one-time pads can be generated from the same base.

The signature is followed by a unique identification string. This is used to
identify seperate audit trails (here, a trail is a sequence of e-mails from the
same run of samhain), and to enumerate individual e-mails within a trail.

The mail thus looks like:

<--- MESSAGE ---->

first message
second message
...
<--- SIGNATURE ---->

signature
ID TRAIL ID:hostname
<--- END ---->

To verify the integrity of an e-mail audit trail, a convenience function is
provided:

samhain -M path to mailbox file

The mailbox file may contain multiple and/or overlapping audit trails from
different runs of samhain and/or different clients (hosts) – that’s what the
unique identifier is for.

2.4.4 The log file

The log file is named .samhain log by default, and placed into
/usr/local/var/log by default (name and location can be configured at
compile time).

The log file is created if it does not exist, and locked by creating a lock file.
By default, the lock file is named .samhain lock and placed in
/usr/local/var/log (name and location can be configured at compile time).
The lock file contains the PID of the process that created it. Upon normal
program termination, the lock file is removed. Stale lock files are removed at
startup if there is no process with that PID.

The directory where the log and its lock file are located must be writeable
only by trusted users (see sect. 2.3.2). This requirement refers to the complete
path, i.e. all directories therein. By default, only root and the effective user
of the process are trusted.

Audit trails (sequences of messages from individual runs of samhain) in the
log file start with a [SOF] marker. Each message is followed by a signature,
that is formed by hashing the message with a key.

The first key is generated at random, and sent by e-mail, encrypted with a
one-time pad as described in the previous section on e-mail. Further keys
are generated by a hash chain (i.e. the key is hashed to generate the next
key). Thus, only by knowing the initial key the integrity of the log file can
be assured.

To verify the log file’s integrity, a convenience function is provided:

samhain -L path to log file

2.4.5 The log server

Details of the transmission protocols can be found in section 5. Configuring
samhain for logging to the log server is explained in section 2.3.2 (setting the
IP address of the server) and section 2.3.3 (activating the facility by setting
an appropriate threshold).

During temporary connection failures, messages are stored in a FIFO queue.
The maximum number of stored messages is 128. samhain will re-try to
connect every 10 minutes for an unlimited time.

3 Signed Configuration/Database File

Both the configuration file (Sect. C.1) and the database of file signatures
(Sect. 4.6) may be cleartext signed by GnuGP (gpg) or PGP (pgp). If
compiled without support for signatures, samhain will ignore them (the sig-
natures then may still be useful for manual verification.)

If compiled with support, samhain will invoke gpg or pgp to verify the sig-
nature. Before calling the program, samhain will check that the path to the
executable is writeable only by trusted users. The programm will be called
without using the shell, with its full path (that must be compiled in), and
with an environment that is limited to the $HOME variable, which is set to
the home directory of the effective user (as determined from /etc/passwd).

The $HOME environment variable determines where gpg/pgp will look for the
public key to verify the signatures (subdirectories $HOME/.gnupg/$HOME/.pgp).

As signatures on files are only useful as long as you can trust the gpg/pgp
executables and the file holding the public key, you may consider using the
following options:

• it is possible to compile in the TIGER checksum of the gpg/pgp exe-
cutable, which then will be verified before calling the program.
Note that gpg supports TIGER: you can compute TIGER checksums
with

gpg --load-extension tiger --print-md TIGER filename

• it is possible to compile in the key fingerprint of the signature key,
which then will be verified after checking the signature itself.

samhain will report the signature key owner and the key fingerprint as ob-
tained from gpg/pgp. If both files are present and checked (i.e. when checking
files against the database), both must be signed with the same key. If the
verification is successful, samhain will only report the signature on the con-
figuration file. If the verification fails, or the key for the configuration file is
different from that of the database file, an error message will result.

4 samhain – The file monitor

The samhain monitor checks the integrity of files by comparing them against
a database of file signatures, and notify the user of inconsistencies. The level
of logging is configurable, and several facilities are provided: output to the
console, to a log file, to syslog, sending e-mail, and/or forwarding messages
by TCP/IP to a log server.

The samhain monitor can be used as a client that forwards messages to the
server part (yule) of the samhain system, or as a standalone program (for
single hosts). To reduce resource usage, for the latter mode one may compile
a standalone version without any TCP/IP code included.

The samhain monitor can be run as a background process (i.e. a daemon),
or it can be started at regular intervals by cron. It is recommended to run
samhain as daemon and start it up immediately at system boot. Using it
with cron opens up a security hole, because in that case the samhain program
might be modified or replaced by a rogue program between two consecutive
invocations.

4.1 Basic usage instructions

To use samhain , the following steps must be followed:

1. The configuration file must be prepared (see Sect. 4.3, 2.3, and 4.7 for
details).

• All files and directories that you want to monitor must be listed.

• The policies for monitoring them (i.e. which modifications are
allowed and which not) must be chosen.

• The severity of a policy violation must be selected.

• The threshold level of logging must be defined.

• The logging facilities must be chosen.

• Eventually, the address of the e-mail recepient and/or the IP ad-
dress of the log server must be given.

2. The database must be initialized.

• If it already exists, it should be deleted (samhain will not over-
write, but append).

• samhain must be run with the command line option
samhain -t init

3. (Only relevant if samhain is used in client/server mode) The client
must be registered with the server.

(a) Choose a password (16 chars hexadecimal, i.e. only 0 – 9, a – f, A
– F allowed.

(b) Use the program samhain setpwd to reset the password in the
compiled binary to the one you have chosen. Running samhain setpwd

without arguments will print out exhaustive usage information.

(c) Use the server’s convenience function to create a registration en-
try:

yule -P password

(d) The output will look like: Client=HOSTNAME@salt@verifier
You now have to replace HOSTNAME with the fully qualified
domain name of the host on which the client should run.

(e) Put the registration entry into the servers’s configuration file, un-
der the section heading Clients (see Sect. 5.2). You need to re-
start the server for the new entry to take effect.

(f) Repeat steps (a) – (e) for any number of clients you need (actually,
you need a registration entry for each client’s host, but you don’t
neccesarily need different passwords for each client. I.e. you may
skip steps (a) – (c)).

4. Now start samhain in check mode. Either select this mode in the
configuration file, or use the command line option

samhain -t check [more options]

To run samhain as a background process, use the command line option
samhain -D [more options]

4.2 File signatures

samhain works by generating a database of file signatures, and later compar-
ing file against that database to recognize file modifications and/or added/deleted

files.

File signatures include:

• a 192-bit cryptographic checksum computed using the TIGER hash al-
gorithm,

• the inode of the file,

• the type of the file,

• owner and group,

• access permissions,

• the timestamps of the file,

• the file size,

• the number of hard links,

• and the name of the linked file (if the file is a symbolic link).

Depending on the policy chosen for a particular file, only a subset of these
may be checked for modifications (see sect. 4.3.1).

4.3 Defining which files/directories to monitor

This section explains how to specify in the configuration file, which files or
directories should be monitored, and which monitoring policy should be used.

4.3.1 Monitoring policies

samhain offers several pre-defined monitoring policies. Each of these policies
has its own section in the configuration file. Placing a file in one of these
sections will select the respective policy for that file.

The available policies (section headings) are:

ReadOnly All modifications except access times will be reported for these
files.

LogFiles Modifications of timestamps, file size, and signature will be ig-
nored.

GrowingLogFiles Modifications of timestamps, and signature will be ig-
nored. Modification of the file size will only be ignored if the file size
has increased.

Attributes Only modifications of ownership and access permissions will be
checked.

IgnoreAll No modifications will be reported. However, the existence of that
file/directory will still be checked.

IgnoreNone All modifications, including access time, will be reported.

4.3.2 File/directory specification

Entries for files have the following syntax:

file=/full/path/to/the/file

Entries for directories have the following syntax:

dir=[recursion depth]/full/path/to/the/directory

The specification of a recursion depth is optional (see 4.3.5).

4.3.3 ’All except ...’

To exclude individual files from a directory, place them under the policy
IgnoreAll. Note that the existence of such files will still be checked (see
next section).

4.3.4 Non-existent/disappered/new files

If files specified in the configuration file are non-existent already when the
database is initialized, you will get an error message (for file access) only at
initialization, while later, on file checking, only a message of severity info is
generated.

If files disappear after initialization, you will get an error message with the
severity specified for file access errors.

If new files appear in a monitored directory after initialization, you will get
an error message with the severity specified for that directorie’s file policy.

4.3.5 Recursion depth(s)

Directories can be monitored up to a maximum recursion depth of 99 (i.e.
99 levels of subdirectories. The recursion depth actually used is defined in
the following order of priority:

1. The recursion depth specified for that individual directory (see 4.3). As
a special case, for directories with the policy IgnoreAll, the recursion
depth should be set to 0, if you want to monitor (the existence of) the
files within that directory, but to -1, if you do not want samhain to
look into that directory.

2. The global default recursion depth specified in the configuration file.
This is done in the configuration file section Misc with the entry
SetRecursionLevel=number

3. The default recursion depth, which is zero.

4.4 Timing file checks

In the Misc section of the configuration file, you can set the interval (in
seconds) between succesive file checks:

SetFilecheckTime=value

4.5 Initializing or checking

In the Misc section of the configuration file, you can choose between initial-
izing the database or checking the files against the existing database:

ChecksumTest=init—check—none

If you use the mode none, you should specify on the command line one of
init or check:

samhain -t check

4.6 The database

The database file is named .samhain file by default, and placed into
/usr/local/var/log by default (name and location can be configured at
compile time).

The database is a binary file. For security reasons, it is recommended to
store a backup copy of the database on read-only media, otherwise you will
not be able to recognize file modifications after its deletion (by accident or
by some malicious person).

samhain will not keep the content of the database in memory, but will com-
pute the checksum of the database at startup and verify it at each access.
(samhain will first open() the database, compute the checksum, rewind the
file, and then read it).

4.7 Monitoring login/logout events

samhain can be compiled to monitor login/logout events of system users.

For initialization, the system utmp file is searched for users currently logged
in. To recognize changes (i.e. logouts or logins), the system wtmp file is then
used.

This facility is configured in the Utmp section of the configuration file.

Example

[Utmp]

#
activate (0 for switching off)
#
LoginCheckActive=1
#

interval between checks (in seconds)
#
LoginCheckInterval=600
#
these are policies (see section 4.3.1)
#
SeverityLogin=info
SeverityLogout=info
#
multiple logins by same user
#
SeverityLoginMulti=crit

This facility is implemented using the module interface of samhain (see nect
section).

4.8 Modules

samhain has a programming interface that allows to add modules written
in C. Basically, for each module a structure of type struct mod type, as
defined in sh modules.h, must be added to the list in sh modules.c.

This structure contains pointers to initialization, timing, checking, and cleanup
functions, as well as information for parsing the configuration file.

For details, in the source code distribution check the files sh modules.h,

sh modules.c, as well as utmp.c, utmp.h, which implement a module to
monitor login/logout events.

5 yule – The log server

yule is the log server within the samhain file integrity monitoring system.
yule is part of the distribution package. It is only required if you intend to
use the client/server capability of the samhain system for centralized logging
to yule .

5.1 General

yule is a non-forking server. Intead of forking a new process for each incom-
ing logging request, it multiplexes connections internally.

Each potential client must be registered with yule to make a connection
(see Sect. 4.1 and the example below). On the first connection made by
a client, an authentication protocol is performed. This protocol provides
mutual authentication of client and server, as well as a fresh session key.

yule keeps track of all clients and their session keys. As connections are
dropped after successful completion of message delivery, there is no limit
on the total number of clients. There is, however, a limit on the maximum
number of simultaneous connections. This limit depends on the operating
system, but may be of order 103.

Session key expire after two hours. If its session key is expired, the client is
forced to repeat the authentication protocol to set up a fresh session key.

Incoming messages are signed by the client. On receipt, yule will:

1. check the signature,

2. accept the message if the signature can be verified, otherwise discard
it and issue an error message,

3. discard the clients signature,

4. log the message, and the client’s hostname, to the console and the log
file, and

5. add its own signature to the log file entry.

It is possible to set a time limit for the maximum time between two consec-
utive messages of a client (option SetClientTimeLimit in the configuration
file). If the time limit is exceeded without a message from the client, the
server will issue a warning. The default is 86400 seconds (one day); specify-
ing a value of 0 will switch off this option.

5.2 Client registry

As noted above, clients must be registered with yule to make a connection.
The respective section in the configuration file looks like:

[Clients]

#
A client
#
Client=HOSTNAME CLIENT1@salt1@verifier1
#
another one
#
Client=HOSTNAME CLIENT2@salt2@verifier2
#

The entries have to be computed in the following way:

1. Choose a password (16 chars hexadecimal, i.e. only 0 – 9, a – f, A – F
allowed.

2. Use the program samhain setpwd to reset the password in the compiled
binary to the one you have chosen. Running samhain setpwd without
arguments will print out exhaustive usage information.

3. Use the server’s convenience function to create a registration entry:
yule -P password

4. The output will look like: Client=HOSTNAME@salt@verifier
You now have to replace HOSTNAME with the fully qualified domain
name of the host on which the client should run.

5. Put the registration entry into the servers’s configuration file, under
the section heading Clients (see Sect. 5.2). You need to re-start the
server for the new entry to take effect.

6. Repeat steps (a) – (e) for any number of clients you need (actually, you
need a registration entry for each client’s host, but you don’t neccesarily
need different passwords for each client. I.e. you may skip steps (a) –
(c)).

5.3 Server status information

yule writes the current status to a HTML file. The default name of this file
is .samhain.html, and by default it is placed in /usr/local/var/log.

The file contains a header with the current status of the server (starting time,
current time, open connections, total connections since start), and a table
that lists the status of all registered clients.

There are a number of pre-defined events that may occur for a client:

Inactive The client has not connected since server startup.
Started The client has started.

This message may be missing if the client was
already running at server startup.

Exited The client has exited.
Message The client has sent a message.
File transfer The client has fetched a file from the server.
ILLEGAL Startup without prior exit.

May indicate a preceding abnormal termination.
PANIC The client has encountered a fatal error condition.
FAILED An unsuccessful attempt to set up a session key

or transfer a message.
POLICY The client has discovered a policy violation.

For each client, the latest event of each given type is listed. Events are sorted
by time. Events that have not occurred (yet) are not listed.

It is possible to specify templates for (i) the file header, (ii) a single table
entry, and (iii) the file end. Templates must be named head.html, entry.html,

and foot.html, respectively, and must be located in the $dataroot directory
(see Sect. A.4). The distribution package includes two sample files head.html
and foot.html.

The following replacements will be made in the head template (only one per
input line allowed):

%T Current time.
%S Startup time.
%L Time of last connection.
%O Open connections.
%A Total connections since startup.
%M Maximum simultaneous connections.

The following replacements will be made in the entry template:

%H Host name.
%S Event.
%T Time of event.

NOTE: A literal ’%’ in the HTML output must be represented by a ’% ’ (’%’
followed by space) in the template.

5.4 Authentication protocol

Depending in the option selected at compile time, either a challenge-response
protocol or the Secure Remote Password (SRP) protocol will be used for
mutual authentication and exchange of a session key.

5.4.1 Challenge-response

1. The client requests a random nonce from the server.

2. The server generates a random nonce v and sends H(v:password)v to
the client. (H is a one-way hash function.)

3. The client generates a random nonce u and sends H(H(u:v)password)u.

4. The session key is H(v:password:u)

5.4.2 SRP

The protocol is described in detail in the following paper (available at
http://srp.stanford.edu/srp):
T. Wu, The Secure Remote Password Protocol, in Proceedings of the 1998
Internet Society Network and Distributed System Security Symposium, San
Diego, CA, Mar 1998, pp. 97-111.

Some of the advantages of SRP are:

1. No useful information about the password is revealed.

2. No useful information about the session key is revealed to an eaves-
dropper.

3. A compromise of a session key does not help to determine the password.

4. A compromise of the password does not allow to determine the session
key for past sessions.

5. A man-in-the-middle may at worst cause the authentication to fail.

5.5 Message transfer protocol

To submit a message to yule , the following protocol is used:

1. The client request a random nonce from the server.

2. The server generates a random nonce u and sends it to the client.

3. The client send the message, followed by a signature. The signature is
computed as H(message:u:session key). (H is a one-way hash function.)

4. On receipt of the message, the server verifies the signature, and discards
message on failure.

5. The server confirms successful receipt by sending H(message:session
key:u) (i.e. reverse order of u and session key in the hash).

6. The client verifies the server’s confirmation.

Message transfer is relieable in the sense that the client assumes responsibility
for the message until it has verified the server’s confirmation of the receipt.

5.6 File transfer protocol

Caveat: Obviously, retrieving the configuration file from the log server re-
quires that the IP address of the log server is compiled in.

If the compiled-in path to the configuration file begins the special value
“REQ FROM SERVER”, the client will request to download the configu-
ration file from yule . If “REQ FROM SERVER” is followed by a path,
the server will use that path as the path to its configuration file (basi-
cally, this feature allows to use the same configuration options for client
and server). If the client is initializing the database (rather than checking),
and “REQ FROM SERVER” is followed by a path, the client will use that
path as the path to a local configuration file.

Likewise, if the compiled-in path to the database file begins with the spe-
cial value “REQ FROM SERVER”, the client will request to download the
database file from yule for reading. If “REQ FROM SERVER” is followed
by a path, that path will be used for writing the database file when initial-
izing (the client cannot upload the database file to the server, as this would
open a security hole).

For file transmission, the following protocol is used:

1. The client announces that it requests a file from the server.

2. The server generates and sends a random nonce u.

3. The client generates and sends a random nonce v, together with a
request for either the configuration or database file.

4. The server sends the file in chunks of 2000 bytes, each preceded by a
checksum computed as H(H(u:v:session key)H(data)).

5. The client verifies the checksum, and discards data on failure.

6. The server ends the file transmission with an EOF marker signed by
H(H(u:v:session key)H(client hostname)).

7. The client verifies the EOF marker, and discards the file on failure.

The server will search for the configuration file to send in the following order
of priority (dataroot is the data directory, see Sect. A.4; clientname is the
hostname of the client’s host):

1. $dataroot/rc.clientname

2. $dataroot/rc

3. The server’s own configuration file

The server will search for the database file to send in the following order of
priority:

1. $dataroot/file.clientname

2. $dataroot/file

The transferred data are written to a temporary file that is created in the
home directory of the effective user. The filename is chosen at random, the
file is opened for writing after checking that it does not exist already, and
immediately thereafter unlinked.
Thus the name of the file will be deleted from the filesystem, but the file itself
will remain in existence until the file descriptor referring it is closed (see man

unlink), or the process exits (on exit, all open file descriptors belonging to
the process are closed).

6 Stealth mode

samhain may be compiled with support for a stealth mode of operation,
meaning that the program can be run without any obvious trace of its pres-
ence on disk. The supplied facilities are simple - they are more sophisticated
than just running the program under a different name, and might thwart
efforts using ’standard’ Unix commands, but they will not resist a search
using dedicated utilities.

Stealth mode must be selected at compile time. There are two levels available
(--with-stealth=xor val, --with-micro-stealth=xor val). Stealth mode
provides the following measures:

1. All embedded strings are obfuscated by XORing them with some value
xor val chosen at compile time. The allowed range for xor val is 128 to
255.

2. The messages in the log file are obfuscated by XORing them with
xor val. The built-in routine for validating the log file will handle this
transparently.

3. Paths in the database file are obfuscated by XORing them with xor val.

4. The configuration file must be steganographically hidden in a postscript
image file (the image data must be uncompressed). To create such a
file from an existing image, you may use e.g. the program convert,
which is part of the ImageMagick package, such as:
convert +compress ima.jpg ima.ps.

To hide/extract the configuration data within/from the postscript file,
a utility program samhain stealth is provided. Use it without options
to get help.

The option --with-micro-stealth=xor val uses a ’normal’ configuration file
(not hidden steganographically).

For additional stealthyness, an option --with-nocl is provided, which dis-
ables command line parsing.

7 Security Design

Obviously, a security application should not open up security holes by itself.
Therefore, an inportant aspect in the developement of samhain has been the
security of the program itself. While samhain comes with no warranty (see
the license), much effort has been invested to identify security problems and
avoid them.

To avoid buffer overflows, only secure string handling functions are used to
limit the amount of data copied into a buffer to the size of the respective
buffer (unless it is known in advance that the data will fit into the buffer).

On startup, the timezone is saved, and all environment variables are set to
zero thereafter. Signal handlers, timers, and file creation mask are reset, and
the core dump size is set to zero. If started as daemon, all file descriptors
are closed, and the first three streams are opened to /dev/null.

If external programs are used (in the entropy gatherer, if /dev/random is
not available), they are invoked directly (without using the shell), with the
full path, and with a limited environment (by default only the timezone).
Privileged credentials are dropped before calling the external program.

With respect to its own files (configuration, database, the log file, and its
lock), on access samhain checks the complete path for write access by un-
trusted users. Some care has been taken to avoid race conditions on file
access as far as possible.

samhain requires root privileges to monitor files with privileged access. If
set SUID root, samhain will run with the credentials of a compiled-in user,
which by default is nobody. In that case, root privileges will only be used if
neccessary.

Critical information, including session keys and data read from files for com-
puting checksums, is kept in memory for which paging is disabled (if the
operating system supports this). This way it is avoided that such infor-
mation is transfered to a persistent swap store medium, where it might be
accessible to unauthorized users.

Random numbers are generated from a pseudo-random number generator
(PRNG) with a period of 288 (actually by mixing the output from three
instances of the PRNG). The internal state of the PRNG is seeded from a
strong entropy source (if available, /dev/random is used, else lots of system

statistics is pooled and mixed with a hash function). The PRNG is re-seeded
from the entropy source at regular intervals (one hour).

Numbers generated from a PRNG can be predicted, if the internal state of
the PRNG can be inferred. To avoid this, the internal state of the PRNG is
hidden by hashing the output with a hash function.

A Compilation options

A.1 General

–enable-login-watch Compile in the module to watch for login/logout
events.

–with-identity=USER The username to use when dropping root privi-
leges (default nobody).

–with-sender=SENDER The username of the sender for e-mail (default
is daemon).

–with-recipient=ADDR The recepient for e-mail. You can set this in the
configuration file as well. An address in the configuration file will take
precedence.

–with-trusted=UID Trusted users (must be a comma-separated list of
numerical UIDs). Only required if the configuration file must be on a
path writeable by others than root and the effective user.

–with-timeserver=HOST Set host address for time server (default is lit-
eral “NULL” - use own clock). You can set this in the configuration
file as well. An address in the configuration file will take precedence.

–with-stealth=XOR VAL Enable stealth mode, and set XOR VAL. XOR VAL
must be decimal, in the range 127 – 255, and will be used to obfuscate
literal strings.

–with-mini-stealth=XOR VAL As –with-stealth, but command line
parsing is enabled.

–with-micro-stealth=XOR VAL As –with-mini-stealth, but without
steganographic hidden configuration file.

–with-base=B1,B2 Set base key for one-time pads. Must be ONE string
(no space) made of TWO comma-separated integers in the range 0 –
2147483647.
Caveat: If this option is not used, a random value will be chosen
at compile time (by the configuration script). Binaries compiled with
different values cannot verify the audit trail(s) of each other.

–enable-debug Enable debugging. Will slow down things, increase resource
usage, and may leak information that should be kept secure.

–enable-ptrace Call ptrace() for anti-debugging. Will make signal han-
dling impossible. Only takes effect if –enable-debug is not used.

A.2 OpenPGP Signatures on Configuration/Database
Files

–with-gpg=PATH Use GnuPG to verify database/configuration file. The
public key of the effective user (in /.gnupg/pubring.gpg) will be used.

–with-pgp=PATH Use PPG to verify database/configuration file. The
public key of the effective user (in /.pgp/pubring.pgp) will be used.

–with-checksum=CHECKSUM Compile in TIGER checksum of the gpg/pgp
binary. CHECKSUM must be the full line output by samhain or gpg

when computing the checksum (pgp has no support for the TIGER
algorithm).

–with-fp=FINGERPRINT Compile in the fingerprint of the key used to
sign the configuration/database files. FINGERPRINT must be without
spaces. If used, samhain will verify the fingerprint, but still report on
the used public key.

A.3 Client/Server Connectivity

–enable-network Compile with client/server support.

–enable-srp Use SRP protocol to authenticate to log server, rather than
the default (faster, but less secure) challenge-response protocol.

–with-port=PORT The port on which the server will listen (default is
49777). Only needed if this port is already used by some other applica-
tion. Port numbers below 1024 require root privileges for the server.

–with-logserver=HOST The host address of the log server. This can be
set in the configuration file. A compiled-in address is only required if
you want to fetch the configuration file from the log server. An address
in the configuration file will take precedence.

A.4 Paths

Compiled-in paths may be as long as 255 chars. If the --with-stealth

option is used, the limit is 127 chars.

–prefix=PREFIX The root install directory (default is /usr/local).

–with-config-file=FILE The full path of the configuration file (default is
$PREFIX/etc/.samhainrc).

–with-dataroot-prefix=PFX The dataroot directory (default is $PRE-
FIX/var/log).

–with-log-file=FILE The path of the log file (default is $PFX/.samhain log).

–with-lock-file=FILE The path of the lock file (default is $PFX/.samhain lock).

–with-data-file=FILE The path of the database file written by samhain

(default is $PFX/.samhain file).

–with-html-file=FILE The path of the html report file written by yule

(default is $PFX/.samhain.html).

B Command line options

B.1 General

-D, –deamon Run as daemon.

-s <arg>, –set-syslog-severity=<arg> Set the severity threshold for sys-
log. arg may be one of none, debug, info, notice, warn, mark,

err, crit, alert.

-l <arg>, –set-log-severity=<arg> Set the severity threshold for logfile.
arg may be one of none, debug, info, notice, warn, mark, err,

crit, alert.

-m <arg>, –set-mail-severity=<arg> Set the severity threshold for e-
mail. arg may be one of none, debug, info, notice, warn, mark,

err, crit, alert.

-p <arg>, –set-print-severity=<arg> Set the severity threshold for ter-
minal/console. arg may be one of none, debug, info, notice, warn,

mark, err, crit, alert.

-L <arg>, –verify-log=<arg> Verify the integrity of the log file (arg is
the path of the log file).

-M <arg>, –verify-mail=<arg> Verify the integrity of e-mailed messages
(arg is the path of the mail box).

-H <arg>, –hash-string=<arg> Print the hash of a string / the check-
sum of a file, and exit. If arg starts with a ’/’, it is assumed to be a file,
otherwise a string. This function is useful to test the hash algorithm.

-c, –copyright Print copyright information and exit.

-h, –help Print a short help on command line options and exit.

B.2 samhain

-t <arg>, –set-checksum-test=<arg> Set file checking to init or check.
Use init to create the database, check to check files against the database.

-e <arg>, –set-export-severity=<arg> Set the severity threshold for for-
warding messages to the log server. arg may be one of none, debug,

info, notice, warn, mark, err, crit, alert.

-r <arg>, –recursion=<arg> Set the default recursion level for directo-
ries (0 – 99).

B.3 yule

-S, –server Run as server. Only required if the binary is dual-purpose.

-q, –qualified Log received messages with the fully qualified name of client
host.

-P <arg>, –password=<arg> Compute a client registry entry. arg is the
chosen password (16 hexadecimal digits).

C The configuration file

C.1 General

The configuration file for samhain is named .samhainrc by default. Also by
default, it is placed in /usr/local/etc. (Name and location is configurable
at compile time). The distribution package comes with a commented sample
configuration file.

This section introduces the general structure of the configuration file. Details
on individual entries in the configuration files are discussed in Sect. 4.3 (which
files to monitor), Sect. 2.3 (what should be logged, which logging facilities
should be used, and how these facilities are properly configured), and Sect. 4.7
(monitoring login/logout events).

The configuration file contains several sections, indicated by headings in
square brackets. Each section may hold zero or more key=value pairs. Blank
lines and lines starting with ’#’ are comments. Everything before the first
section and after an [EOF] is ignored. The [EOF] end-of-file marker is op-
tional. The file thus looks like:

Example

this is a comment
[Section heading]

key1=value
key2=value

[Another section]

key3=value
key4=value

C.1.1 Conditionals

Conditional inclusion of entries for some host(s) is supported via any num-
ber of @hostname/@end directives. @hostname and @end must each be on
separate lines. Lines in between will only be read if hostname (which may
be a regular expression) matches the local host.

Likewise, conditional inclusion of entries based on system type is supported
via any number of $sysname:release:machine/$end directives.
sysname:release:machine for the local host can be determined using the com-
mand uname -srm and may be a regular expression.

A ’!’ in front of the ’@’/’$’ will invert its meaning. Conditionals may be
nested up to 15 levels.

Example

@hostname
only read if hostname matches local host
@end
!@hostname
not read if hostname matches local host
@end
#
$sysname:release:machine
only read if sysname:release:machine matches local host

$end
!$sysname:release:machine
not read if sysname:release:machine matches local host
$end

C.2 Files to check

Allowed section headings (see Sect. 4.3.1 for more details) are:

[Attributes]

[LogFiles]

[GrowingLogFiles]

[IgnoreAll]

[IgnoreNone]

[ReadOnly]

Placing an entry under one of these headings will select the respective policy
for that entry (see Sect. 4.3.1). Entries under the above section headings
must be of the form:

dir=[optional numerical recursion depth]path
file=path

C.3 Severity of events

Section heading (see Sect. 2.3.1 for more details):

[EventSeverity]

Entries:

SeverityReadOnly=severity
SeverityLogFiles=severity
SeverityGrowingLogs=severity
SeverityIgnoreNone=severity
SeverityIgnoreAll=severity
SeverityAttributes=severity

SeverityFiles=severity
SeverityDirs=severity
SeverityNames=severity

severity may be one of none, debug, info, notice, warn, mark, err,

crit, alert.

C.4 Logging thresholds

Section heading (see Sect. 2.3.3 for more details):

[Log]

Entries:

MailSeverity=[optional specifier]threshold
PrintSeverity=[optional specifier]threshold
LogSeverity=[optional specifier]threshold
SyslogSeverity=[optional specifier]threshold
ExportSeverity=[optional specifier]threshold

threshold may be one of none, debug, info, notice, warn, mark, err,

crit, alert.

The optional specifier may be one of ’ !’, ’*’, or ’=’, which are interpreted as
’all’, ’all but’, and ’only’, respectively.

C.5 Watching login/logout events

Section heading:

[Utmp]

Entries:

LoginCheckActive=1/0 ’1’ to switch on, ’0’ to switch off.
LoginCheckInterval=seconds Interval between checks.
SeverityLogin=severity Severity for login events.
SeverityLoginMulti=severity Severity for logout events.

SeverityLogout=severity Severity for multiple logins by same user.

C.6 Miscellaneous

Section heading:

[Misc]

Entries:

Daemon=yes—no Whether to become a daemon (default: no)

SetLoopTime=seconds Interval between timestamp messages.
SetFilecheckTime=seconds Interval between file checks.
ChecksumTest=none/init/check The default action.

SetMailTime=seconds Maximum time interval between mail messages.
SetMailNum=0 – 127 Maximum number of pending mails on internal queue.
SetMailAddress=recepient The recepients e-mail address.
SetMailRelay=IP address The mail relay (for offsite mail).

SamhainPath=path The path of the process image.

SetLogServer=IP address The log server.

SetTimeServer=IP address The time server.

TrustedUser=username(,username,..). List of additional trusted users.

SetClientTimeLimit=seconds Time limit until next client message (server-only).

Remarks: (i) root and the effective user are always trusted.
(ii) If no time server is given, the local host clock is used.
(iii) If the path of the process image is given, the process image will be
checksummed at startup and exit, and both checksums compared.

C.7 Clients

This section is relevant for yule only. Section heading:

[Clients]

Entries must be of the form:

Client=hostname@salt@verifier

See Sect. 5.2 on how to compute a valid entry.

The hostname must be the same name that the client retrieves from the
host on which it runs. Usually, this will be a fully qualified hostname, no
numerical address. However, there is no method that guarantees to yield the
fully qualified hostname (it is not even guaranteed that a host has one ...).
The only way to know for sure is to set up the client, and check whether the
connection is refused by the server with a message like

Connection attempt from unregistered host hostname
In that case, hostname is what you should use.

C.8 End of file

[EOF] Not required, unless there is junk beyond.

