
THE PELUDO SYSTEM

December 8, 2009

1 What is Peludo

Peludo is a system to create and run platform independent, self-contained, network-transportable, injectable
applications written in the C programming language. It provides a cross-compilation environment and other
tools needed to generate applications using a new binary format called PLD as well as a Runtime to launch
these applications.
A common application usually involves a main executable, some dependency libraries and data files; under
Peludo these files are normalized using the PLD binary format. The runtime component called Peludo Kernel
is in charge of launching the main executable after loading and resolving all the required dependencies.
The reason behind this new binary format in contrast to other well known standards (like PE or ELF) is that
PLD has a very small footprint, it is extremely scalable, and can be deployed almost everywhere.

2 PLD File Format

The PLD file format is the core of the Peludo Platform, everything is based on it and it is as simple as a TLV
(Tag-Length-Value) format.
A PLD file is a container for modules(2.3), each module is composed of one or more sections (2.4) and each
section is encoded as a {name, size, data} tuple.
If not otherwise specified, all values are encoded using the big endian byte order.
As a convention, PLD files are stored in the file system using the .pld extension.

2.1 Symbol Names

All symbol names are 32 bits values (file names, section names, exported and imported symbol names, etc.):

typedef uint32 PLDNAME;

2.2 Addresses

Addresses are specified using a 64 bits section:offset pair:

typedef struct {

PLDNAME addr_section;
uint32 addr_offset;

} PLDADDR;

addr_section Name of the section where the referenced element is
located;

addr_offset Offset into the section where the referenced element is
located.

2.3 Modules

Modules are containers for generic code and data and have the following features:

1. Modules may not share the same virtual address space (spread over running processes)1

1Not implemented in Peludo Cachicamo

1

2. Modules may contain executable code

3. Modules may contain readable and/or writable data

4. Modules may export symbols

5. Modules may import symbols from other modules

6. Modules may import symbols from native DLLs (provided by the underlying Operating System)2

Each PLD file contains one module that is composed of an arbitrary number of sections. It starts with the
following ”header”:

typedef struct {

PLDNAME pld_name;
uint32 pld_sections;

} PLDFILE;

pld_name Name of the PLD file;

pld_sections Number of sections contained in this PLD file.

A sequence of pld_sections sections continue after this information.

2.4 Sections

A section is a container for any kind of data:

typedef struct {

PLDNAME sec_name;
uint32 sec_size;
uint32 sec_flags;

} PLDSECTION;

sec_name Name of the section.

sec_size Size of the section’s content.

sec_flags Section flags; a bitwise OR combination of:

PLDSECTION_FL_X: The section contains eXecutable code;

PLDSECTION_FL_R: The section contains Readable data;

PLDSECTION_FL_W: The section contains Writable data;

PLDSECTION_FL_Z: The section content is compressed.

The actual data continues after this information.

2.5 Type of Sections

The following standard section types are adopted:

2.5.1 CODE Section

The .code section contains executable code (like .text or .code in ELF or PE files).

2.5.2 DATA Section

The .data section contains the module’s data (like .[ro]data in ELF or PE files).
2Not imlemented in Peludo Cachicamo under unix.

2

2.5.3 EXPORT Section

The .export section contains a list of exported symbols; this list is implemented as a NULL terminated array of
PLDEXPORT_ENTRY elements each of them associated to a single exported symbol:

typedef struct {

PLDNAME exp_symname;
PLDADDR exp_symaddr;

} PLDEXPORT_ENTRY;

exp_symname Name of the exported symbol;

exp_symaddr Address of the exported symbol.

2.5.4 IMPORT Section

The .import section contains information about symbols that should be imported from other PLD modules; it is
implemented as a NULL terminated array of PLDIMPORT_ENTRY elements:

typedef struct {

PLDNAME imp_modname;
PLDADDR imp_symbols;

} PLDIMPORT_ENTRY;

imp_modname Name of the PLD module that exports required symbols.

imp_symbols Address containing the table of imported symbols from the
specified module; this table is implemented as a NULL terminated
array of PLDIMPORT_SYMBOL elements:

typedef struct {

PLDNAME imp_symname;
PLDADDR imp_symaddr;

} PLDIMPORT_SYMBOL;

imp_symname Name of the imported symbol.

imp_symaddr Address that should be updated with the virtual address
of the imported symbol.

2.5.5 NIMPORT Section

The .nimport (Native IMPORT) section contains information about symbols that should be imported from native
libraries (DLL’s provided by the underlying Operating System). It is implemented as a NULL terminated array
of PLDNIMPORT_ENTRY elements:

typedef struct {

PLDADDR nimp_dllname;
PLDADDR nimp_impsym;

} PLDNIMPORT_ENTRY;

nimp_dllname Address containing the ASCIIZ string describing the name
of the native DLL.

nimp_impsym Address containing the table of imported symbols from
the specified DLL; this table is a NULL terminated array of
PLDNIMPORT_SYMBOL elements:

typedef struct {

PLDADDR nimp_symname;
PLDADDR nimp_symaddr;

} PLDNIMPORT_SYMBOL;

nimp_symname Address containing the ASCIIZ string describing the
name of the imported symbol.

nimp_symaddr Address that should be updated with the virtual address
of the imported symbol.

3

2.5.6 RELOC Section

The .reloc section contains information about relocatable elements. Usually, the .code section references
values located into the .data section but since the virtual address of .data is not known in advance it is not
possible to reference any data from other sections until it is loaded into memory. The .reloc section contains
a table that instructs the PLD loader to update specified addresses with the virtual address of the referenced
element; this table is implemented as a NULL terminated array of PLDRELOC_ENTRY elements:

typedef struct {

PLDADDR rel_symbol;
PLDADDR rel_address;
uint32 rel_type;

} PLDRELOC_ENTRY;

rel_symbol Address of the referenced symbol.

rel_address Address to be updated with the virtual address of the
referenced symbol.

rel_type Type of relocation:

PLDRELOC_TYPE_ABS rel_address should be updated with the
absolute virtual address of the rel_symbol:

*VirtualAddress(rel_address) = *VirtualAddress(rel_symbol);

PLDRELOC_TYPE_ADD The absolute virtual address of rel_symbol
should be added to the content of rel_address:

*VirtualAddress(rel_address) += *VirtualAddress(rel_symbol);

2.5.7 HASH Section

The .hash section is present only on PLD files compiled in debug mode and contains a table used to translate
from PLDNAMEs to ASCIIZ strings. It is used by the PLD loader (that should be compiled in debug mode) to
print out debugging information in a human readable form. This table is implemented as a NULL terminated
array of PLDHASH_ENTRY elements:

typedef struct {

PLDNAME hash_name;
PLDADDR hash_string;

} PLDHASH_ENTRY;

hash_name A PLDNAME.

hash_string Address containing the ASCIIZ string of the PLDNAME.

3 PLD Chain

A PLD Chain is a sequence of PLD files in dependency order.
For example, if an application is associated to the following three modules:

• main.pld : The Main Application (where the main() function resides)

• mainlib.pld : The application’s library (exporting symbols needed by main.pld)

• libc.pld : Libc library (needed by both main.pld and mainlib.pld)

A PLD Chain containing this application can be generated using the unix cat(1) command as follows:

$ cat libc.pld mainlib.pld main.pld > application.pld

4

4 PLB Files (Peludo Binary Files)

To execute an application encoded as a PLD Chain two additional components are provided:

• The Peludo Bootstrap Code (krn0.plo)

• The Peludo Kernel (krn1.plo)

A PLB file is created when a PLD Chain is concatenated to these components (see 6.1). It could be seen as
a large executable embedding all dependency libraries and data files. As a convention, PLB files are stored in
the filesystem using the .plb extension.
This is how a PLB file looks like:

+-----------+-------------+-------------+------+------+-...-+------+
| BOOTSTRAP | KERNEL CODE KERNEL DATA | PLD1 | PLD2 | | END |
+-----------+-------------+-------------+------+------+-...-+------+

Refer to section 6 for more information about the bootstrap code and the kernel.
Returning to the example of section 3, the Peludo Binary file for that application can be generated using the
unix cat(1) command as follows:

$ cat krn0.plo krn1.plo application.pld end.pld > application.plb

where end.pld is a 0 filled PLD used to mark the end of the PLB file.
To execute it the only thing that should be done is to load the entire PLB file into page aligned executable
memory and call its first byte, the bootstrap code, whose prototype is:

long boot(int argc, char **argv)

The argc and argv arguments are the same passed to the common C main() function.

5 Peludo Toolchain

To cross-compile, the current version of Peludo uses the GNU GCC Core Compiler (http://gcc.gnu.org/)
and some tools provided by the GNU Binutils package (http://www.gnu.org/software/binutils/),
both of them are automatically downloaded from the internet during the building process.
The provided third party commands are: ar, as, gcc, cpp, ld, nm, objcopy, objdump, ranlib, and strip. Refer to
the appropriate man pages to get more information about them.
Peludo adds new commands to deal with PLD and PLB files: prun, plzma, pldhash, plb2elf, plb2c, elf2pld,
data2pld, dir2pld.

5.1 HOST and TARGET

The HOST is the system where the toolchain runs; it is where modules are compiled.
The TARGET is the platform where generated applications or modules are intended to run.

5.2 New Commands

5.2.1 prun

prun <plb>

Executes a PLB file (this command should be launched in the target platform).

5.2.2 plzma

plzma <e|d> <infile> <outfile>

Compress/Uncompress files using the same LZMA method used to compress PLD files (See section flags
in2.4).

5

5.2.3 pldhash

pldhash <string>

Generates a hash value associated to the specified string. This command is used to generate PLDNAMEs
from user defined strings (See section 2.1).

5.2.4 plb2elf

plb2elf [-q] -p <platform> <plb> <elf>

Generates a static executable ELF file embedding an entire PLB that runs on a specified target platform.

5.2.5 plb2c

plb2c <plb>

Generates a simple C program that, once compiled, launches the specified PLB file. The output of this com-
mand can be used as a template when one or more PLB files should be embedded into some container
application at C level.
The Peludo Toolchain is not needed to compile the generated code (just take any gcc compatible C compiler
in the target platform, compile it, run it).

5.2.6 elf2pld

elf2pld [options] <elf> [<pld>]

Generates a PLD from a ”specially crafted” ELF shared library. The user should not use this command directly
(see 5.3).

5.2.7 data2pld

data2pld [options] <file> [<pld>]

Generates a PLD containing a single .data section (see 2.5.2) embedding the specified file.

5.2.8 dir2pld

dir2pld [options] <dir> <pld>

Generates a PLD containing a .data and a .export (see 2.5.2 and 2.5.3) sections embedding all the regular
files under the specified directory (and subdirectories).
The content of these files are stored in the data section; the export table is created to make them easily
accesible from other PLD modules.

5.3 MK System

The MK system is composed of a set of makefiles using the .mk extension, Its purspose is to make it easy to
create PLD modules and PLB files. These files are:

5.3.1 pbase.mk

Contains the base definitions needed by all the other .mk files.

5.3.2 objhost.mk

Used to compile C or Assembly code that should run in the HOST system.

5.3.3 binhost.mk

Used to generate static ELF files able to be launched in the HOST system.

6

5.3.4 objtarget.mk

Used to compile C or Assembly code that should run in the TARGET system.

5.3.5 libtarget.mk

Used to generate libraries (.a files or .pld modules) for the TARGET system.

5.3.6 bintarget.mk

Used to generate the main PLD module intended to run in the TARGET system. This module should export
the main() function.

5.3.7 plbtarget.mk

Used to generate PLB files intended to run in the TARGET system. It can also be used to generate native ELF
embedding a PLB.

5.3.8 clean.mk

Used to clean generated files, leaving only the source code.

5.3.9 dir.mk

Used to traverse directories.

5.3.10 install.mk

Used to install generated files.

5.3.11 download.mk

Used to download packages from the internet. It requires the openssl (http://www.openssl.org) and the
wget (http://www.gnu.org/software/wget) utilities.

6 Peludo Runtime

6.1 Peludo Core

6.1.1 Bootstrap Code

The Bootstrap Code is the first piece of code that gets executed when a PLB file is launched; it resolves and
executes the Peludo Kernel.

6.1.2 Peludo Kernel

The main purspose of the Peludo Kernel is to load, resolve and execute an attached PLD Chain. It contains the
PLD loader and other components allowing the application to access the operating system resources. If the
chain is successfuly loaded and some module in it exports the main() function it is executed. In other words:
The kernel loads and starts the user application.
When coding kernel components the user must initialize all global variables even if they shoud be set to 0,
otherwise it is generated a .bss section that is discarded when the kernel binary file is created. As an extension
to this rule, all global pointers must be initialized to NULL (they should not point to any data); an initialization
function should take care of these pointers. The reason behind this last restriction is that the bootstrap code
relocates only the .got but initialized global pointers belongs to .data.
Example of a non-working code:

7

char *hello = "hello world\n";
void foo()
{

print(hello);
}

The following code instead is correct:

char msg[] = "hello world\n";
char *hello = NULL;
void init()
{

hello = msg;
}
void foo()
{

init();
print(hello);

}

6.2 Special PLD Files

6.2.1 CMDLINE

When the Kernel is resolving a PLD Chain (see 3) it recognizes a special PLD file named .cmdline containing
the default command line options. These arguments should be placed in the PLD’s .data section (2.5.2)
encoded as follows:

arg1\0arg2\0arg3\0...argn\0\0

They are used when the application is called without arguments and it is really easy to generate using the unix
shell:

$ printf ”arg1\0arg2\arg3\0\0” > cmdline.tmp && \
data2pld -0 -p .cmdline cmdline.tmp cmdline.pld

See 5.2.7.

6.3 C Library

For historical reasons, Peludo provides a minimalistic C library that is not a full ANSI/POSIX library. Although,
90% of its methods are ANSI/POSIX compliant. It will become a minimalistic full ANSI/POSIX C library in future
releases.
One of the major differences is in the printf(3) implementation where only a few format string options are
recognized and some of them are not standard at all:

%c Same as standard printf(3)
%d Same as standard printf(3)
%u Same as standard printf(3)
%p Same as standard printf(3)
%s Same as standard printf(3)
%x Equivalent to %08X
%X Equivalent to %016lX

printf(3) will become more or less standard in the future.
The main goal of the Peludo C Library is portability not speed. Speed improvements will be added in future
releases (see 6.7).

6.4 Multithread Library

Peludo provides a subset of the POSIX Threads API: Most of the POSIX Threads methods are supported but
not all of them.
The main goal of the Peludo Multithread Library is portability not speed. Speed improvements will be added in
future releases (see 6.7).

8

6.5 PLZMA Library

The PLZMA library is a port of the LZMA library created by the 7Zip project (see http://www.7-zip.org/
sdk.html).
Sections of a PLD file are compressed (if so instructed) using these methods.
The PLZMA decoder is integrated into the Peludo Kernel (see 6.1.2).

6.6 Peludo File System

The Peludo File System is a work in progress.
It is an on-memroy file system where user applications can store temporal data.

6.7 Profiler Library

The Profiler is a work in progress.
It is a library whose main purpose is to generate runtime usage information that is precious to improve the C
Library and others.

9

