KOMODIA’S ADVANCED INSTALLER MANUAL
By Barak Weichselbaum

Introduction

This manual covers all the options supported by Komodia’s advanced installer. Throughout this
manual, the terms “installer” and “RegisterLSP” will refer to Komodia’s advanced installer. It’s
important to keep in mind that although a small subset of the options is found in the default
Microsoft SDK installer, the core functionality described here is unique to Komodia’s installer.

This manual briefly discusses some LSP technical issues in order to give a reader unfamiliar with
LSP a firmer grasp of the subject. However, this cannot substitute for a full understanding. A
good place to start is my book LSP: The Complete Guide by Barak Weichselbaum.

Naming and licensing

When RegisterLLSP is licensed, it is for a single LSP name only. That is why we have omitted the
—n flag which exists in the Microsoft installer and allows to change the name of the LSP.

IFS and Non-IFS LSP

Before delving into the mechanics of the actual install process, we need to briefly review the
differences between IFS and non IFS LSP (for more in-depth coverage of this topic and of the
structure of the LSP stack, you can refer to my book.)

IFS LSP uses an actual OS I/O handle per socket, which means that handles passed from the LSP
to the upper layer or application do not need translation.

Non-IFS LSP allocates its own handle per socket, which means that handles passed from the LSP
to the upper layer of application must be translated by the LSP when it passes all the commands
to its lower-layer LSP or base provider.

It is important to understand that from an installer point of view, each LSP needs to be installed
differently. Non-IFS LSP can be layered into any position in the stack. IFS LSP must be installed
first after the base providers or after another IFS-based LSP. However, IFS LSP cannot be
installed after a Non-IFS LSP. Another important point is that the installer needs to set a special
flag to denote that the IFS LSP is installed in the stack.

LSP dummy entry

Another mechanism to discuss up before we get to the fun part is the usage of LSP dummy
entries. LSP is installed on top of multiple protocols, usually TCP and UDP; therefore, the
installer creates a dummy entry with unique GUID different than that of the LSP. This entry is
then named using the next layer’s name plus the LSP, separated by the “over” keyword. The
name is created for easy understanding, and has no technical significance. (Note: some
programmers do assign meaning to the dummy entry’s name, but this is wrong practice, as it is
not defined as a crucial standard.)

A name can look like this:

TestLSP over [MSAFD Tcpip [TCP/IP]]

This dummy entry is used to create a chain, and inside the chain’s entries it points to the actual
LSP. For example, let’s inspect this chain:

LSP Installed under 2 GUIDs
{D7E3B4EA-D34A-4FET7-BF66-02B5E0A38BRF'}
{4EEC5B94-2F44-4D3C-9AB1-9D13658880C8}

Layer 1021 "TestLSP over [MSAFD Tcpip [TCP/IP]]"
Chain 2 [1020 1001]
Layer 1022 "TestLSP over [MSAFD Tcpip [UDP/IP]]"
Chain 2 [1020 1002]

and the following layered LSP output (later in the manual we discuss how to get these lists):

Winsock 32-bit Catalog:

1021 - TestLSP over [MSAFD Tcpip [TCP/IP]]
1022 - TestLSP over [MSAFD Tcpip [UDP/IP]]
1001 — MSAFD Tcpip [TCP/IP]

1002 — MSAFD Tcpip [UDP/IP]

1003 — MSAFD Tcpip [RAW/IP]

1020 - TestLSP

As the output shows, the LSP is installed using two GUIDs, one for each dummy entry (TCP and
UDP), and each chain (bold and underlined) is composed of LSP ID 1020, which is our LSP,
together with the relevant base provider ID. The ID for TCP is 1001 (the base provider for TCP,
as seen in the list,) and the ID for UDP is 1002.

Autopilot

Syntax
The autopilot is the most common usage of the installer when trying to actually install an LSP. It
analyzes the stack and determines the best course of action on the fly.

Installation syntax for a Non-IFS LSP install:
RegisterLSP -b -d LSPName
Installation syntax for an IFS LSP install:

RegisterLSP -bi -d LSPName

Important:
e When RegisterLSP and the LSP are in the same directory, there is no need to specify the
directory name
e When the LSP path includes spaces, the path must be encapsulated in double quotes
e The installed LSP is copied to the System32 directory, so it’s okay to delete the original
LSP file after installation

Practical examples
Installing a Non-IFS LSP named nonifsisp.dil located at c:\Isp when the RegisterLSP is located
elsewhere:

RegisterLSP -b -d c:\lsp\nonifslsp.dll

Installing a Non-IFS LSP named nonifsisp.dll located at “c:\test Isp” when the RegisterLSP is
located elsewhere:

RegisterLSP -b -d “c:\test lsp\nonifslsp.dll”

Installing a Non-IFS LSP named nonifsisp.dll when the RegisterLSP is located in the same
directory as the LSP:

RegisterLSP -b -d nonifslsp.dll

When installing an IFS LSP all the examples remain the same, but the flag —b is replaced with —bi
(and, of course, the LSP name should be ifsisp.dll). Thus, the first example would become:

RegisterLSP -bi -d c:\lsp\ifslsp.dll

Vista issues

Under Vista, the autopilot detects whether it’s running in UAC elevated mode or not. If it isn’t,
the installation process will stop with an error message saying it cannot install without UAC
privileges.

UAC elevated mode is required for all install and update operations. The data collecting function
doesn’t require UAC elevated mode.

If LSP already exists

When the LSP already exists (RegisterLSP detects a match based on the LSP GUID), the
RegisterLSP compares the checksum of the source LSP with the checksum of the existing LSP. If
the checksums are identical and the required installation strategy is the same, the RegisterLSP
exists saying there is nothing to update.

In case the files are different, it is an update install, and the RegisterLSP replaces the existing
LSP with the source LSP. In case any temporary files are created, they are queued to be deleted
after the next reboot (rebooting is not required for the install process.)

In case the existing installation strategy differs from the new required strategy, the installer
updates the LSP installation to the new strategy and copies the source file to the System32
directory if necessary.

How the autopilot works
Autopilot first analyzes the current stack condition and has a different strategy for each condition:

No LSP installed:

1. The installer copies the original LSP to System32
2. The installer performs the LSP install

LSP installed is the same LSP we are trying to install:

1. The installer checks if the source LSP and the existing LSP match:
a. If they do, the installer continues to do a strategy check
b. If they do not match, the installer replaces the existing LSP with the new one. Any
temporary files created in the process are queued to be deleted after a reboot
2. The installer checks if the existing installation strategy is the required strategy:
a. If they match, the installer exits
b. If they don’t match, the installer updates the existing strategy to match the new
required strategy

The LSP we are trying to install doesn’t exist, but another LSP does exist:

1. If the LSP we are trying to install is an IFS LSP, then it must be installed immediately
after the base providers or after the last IFS LSP (experience shows that it is very difficult
to stabilize a stack with more then two LSP installed)

2. If the LSP we are trying to install is a Non-IFS LSP, then the installer tries to install it as
follows:

a. The installer tries to install the new LSP to be first in the chain, which means that
it processes every winsock command first (in manual installation, this is done by
adding the —t flag. Refer to the Manual Installation section for more information.)
In case of failure to install (the installer tries to connect to the Internet,) the
installer tries the next strategy

b. The installer tries to install the new LSP to be after the base provider, while
keeping the existing installed LSP first in the chain (some LSPs require this due to
architectural design or bad programming)

c. There are rare LSPs that cannot have another LSP in the chain. In these cases, new
LSPs must be installed over the base provider (this is called bypass mode), or the
old “bad” LSP must be removed. Bypass mode is never chosen by the autopilot,
but can only be preprogrammed using a scenario file.

Uninstalling an LSP

Uninstall all installed LSPs

Using the —f flag, the installer removes all user LSPs and leaves only base providers installed in
the stack:

RegisterLSP -f

Uninstalling a specific LSP using its ID
Let us suppose that we have the following LSP stack:

Winsock 32-bit Catalog:

1021 - TestLSP over [MSAFD Tcpip [TCP/IP]]
1022 - TestLSP over [MSAFD Tcpip [UDP/IP]]
1001 — MSAFD Tcpip [TCP/IP]

1002 — MSAFD Tcpip [UDP/IP]

1003 — MSAFD Tcpip [RAW/IP]

1004 - RSVP UDP Service Provider

1005 - RSVP TCP Service Provider

1012 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{0E41ADAF-748D-
AFE4-AT76F-F164642EEE87}] SEQPACKET 3

1013 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{0E41ADAF-748D-
A4FE4-AT76F-F164642EEE87}] DATAGRAM 3

1014 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{B8E72AD6-0B84-
4188-8841-52340436256E}] SEQPACKET O

1015 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{B8E72AD6-0B84-
4188-8841-52340436256E}] DATAGRAM O

1016 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{A0299C89-898F-
4CF1-BCDC—-1EE2550DFC55}] SEQPACKET 1

1017 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{A0299C89-898F-
4CF1-BCDC-1EE2550DFC55}] DATAGRAM 1

1018 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{9593A3E5-5C81-
4534-9160-0D9376807B68}] SEQPACKET 2

1019 - MSAFD NetBIOS [\Device\NetBT_Tcpip_{9593A3E5-5C81-

4534-9160-0D9376807B68}] DATAGRAM 2
1020 - TestLSP

We want to uninstall the LSP “TestLSP”. We do it using its ID, 1020:

RegisterLSP -r 1020

Uninstalling a specific LSP using its name
Using the stack from the previous example, in order to remove the LSP “TestLSP,” we use the
following syntax:

RegisterLSP —-g TestLSP

In case the LSP name contains spaces, it must be encapsulated with double quotes. For an LSP
named ‘“My company LSP,” we would therefore use the following syntax:

RegisterLSP —-g “My company LSP”

Disabling file removal on reboot

When uninstalling a specific LSP using —q or —r flags, the installer queues the file to be deleted
from the System32 directory after the next reboot. To disable file deletion, the flag —s can be
used, for example:

RegisterLSP —-g “My company LSP” -s

Displaying LSP stack information

The structure of the stack is used to determine several important facts about the current stack
condition:

e Which LSPs are installed and which are not

e Is an installed LSP IFS or Non-IFS

e The order of the LSPs inside a chain (for further information on LSP chains, you can refer
to my book)

e How many chains exist

Basic output
The most basic way to view installed LSPs is:

RegisterLSP -p

A sample output would look like the stack displayed in the section “Uninstalling a specific LSP
using its ID”, above.

From this output we can extract:

o A list of base providers and their IDs
e A list of custom installed LSPs and their IDs
e The location of the custom LSPs inside the chain

Chain structure output
The installer enables you to view the chain structure which is part of all custom LSPs. The syntax
is:

RegisterLSP -m
A sample output:
32-bit Winsock LSP Map:

0 LSP: TestLSP DLL 'C:\WINDOWS\system32\nonifslsp.dll'
ID: 1020
LSP Installed under 2 GUIDs
{D7E3B4EA-D34A-4FET7-BF66—-02B5E0A38BRF'}
{4EEC5B94-2F44-4D3C-9AB1-9D13658880C8}
Layer 1021 "TestLSP over [MSAFD Tcpip [TCP/IP]]"
Chain 2 [1020 1001]
Layer 1022 "TestLSP over [MSAFD Tcpip [UDP/IP]]"
Chain 2 [1020 1002]
Dependent LSPs:
None

What we see here is a single LSP installed with two chains, each composed from that LSP’s
dummy entry and the base provider (for further information on LSP chains, please refer to my
book.)

Displaying layered L.SPs only
To display only the layered LSPs without the base providers and dummy entries, use the
following syntax:

RegisterLSP -1
A sample output:

Winsock 32-bit Catalog:

1020 - TestLSP

Verbose display

During installation, every installer defines a number of states that affect the LSP during runtime,
(e.g., whether the LSP uses an IFS or a non-IFS handle.) Verbose display outputs a list of these
predefined states. It is used mostly to debug installation problems. This option can be used in
conjunction with two flags:

RegisterLSP -1 -v
RegisterLSP -p -Vv

A sample output:

Winsock 32-bit Catalog:

Protocol: TestLSP
Path: C:\WINDOWS\system32\nonifslsp.dll
Address Family: AF_INET
Protocol: IPROTO_IP
Socket Type: Connectionless: NO
Guaranteed Delivery: YES
Guaranteed Order: YES
Message Oriented: NO
Pseudo Stream: NO
Graceful Close: YES
Expedited Data: YES
Connect Data: NO
Disconnect Data: NO
Supports Broadcast: NO
Supports Multipoint: NO
Multipoint Control Plane: NON-ROOTED
Multipoint Data Plane: NON-ROOTED
QoS Supported: NO
Unidirectional Sends: NO
Unidirection Receives: NO
IFS Handles: NO
Partial Messages: NO
Provider Flags: PFL_HIDDEN

Provider Id: {46FA836F-6004-4D57-A267—

7092E9A6C8D8}
Catalog Entry Id: 1020
Number of Chain Entries: 0 {}

Version: 2
Max Socket Address Length: 16
Min Socket Address Length: 16
Protocol Max Offset: O

Network Byte Order: BIG-ENDIAN

Security Scheme: NONE
Message Size: N/A (Stream Oriented)

Provider Reserved: 0

Important note: this is only for the LSP entry and not for the dummy entries. The interpretation
of this output is beyond the scope of this manual. For further information, please refer to (yes,
you guessed it) my book.

How to build a scenario file
Scenario files are used with autopilot only; they have no effect on manual installs.

Why use a scenario file?
Scenario files are used when there is a known LSP for which the autopilot cannot detect the
correct strategy, or when we choose to bypass this LSP even though it’s possible to install our

LSP in the same chain.
Note: bypassing an LSP when you don’t have to do so is considered bad practice.

Using the scenario file

The scenario file is named RegisterLSP.ini and should be located in the same directory as the
installer. The file format is simple: it is the name of the LSP followed by the installation strategy,
separated by a comma. The installation strategies are:

o Bypass — install the LSP directly after the base providers and bypass the existing installed

LSP
o Before — install the LSP to be first in chain, and all winsock commands will go through
this LSP first

e After — install the LSP last in the chain and the closest to the base providers

Sample file structure:

ProductLSP, before
CompanyLSP, after
SomeLSP, bypass

Sanity checks and backup operations

Before installing an LSP, it is important to ensure that the stack is in perfect state; otherwise, if
the computer network is already corrupt, the user might wrongly blame the last installed LSP.

Checking winsock integrity
When the stack is completely corrupted, it is impossible to initialize winsock. The installer can
check for this condition and warn about it:

RegisterLSP —-tw

If everything is okay, the installer will return O as error code. All other values denote stack
corruption, and install should be halted immediately. Any installation after this kind of corruption
is at your own risk.

Checking LSP chain integrity
Another type of corruption is when there is a legitimate stack but one of the LSP files is missing,
resulting in lack of networking. To detect this, use:

RegisterLSP -tc

The installer will load and perform integrity tests on all the LSPs referenced by the stack. It will:

Detect if the file exists
Try to load the file as DLL
Try to get the GUID from the LSP

If any of the tests fails, the installer warns about it by exiting with an error code other then zero,
and as mentioned above, continuing to install at this point is at your own risk.

A sample output:

Testing winsock chain

Trying to load ©provider: TestLSP over [MSAFD Tcpip
[TCP/IP]], file name: C:\WINDOWS\system32\nonifslsp.dll,
result - Success

Trying to load ©provider: TestLSP over [MSAFD Tcpip
[UDP/IP]], file name: C:\WINDOWS\system32\nonifslsp.dll,
result - Success

Trying to load provider: MSAFD Tcpip [TCP/IP], file name:
C:\WINDOWS\system32\mswsock.dll, result - Success

Trying to load provider: MSAFD Tcpip [UDP/IP], file name:
C:\WINDOWS\system32\mswsock.dll, result - Success

Trying to load provider: MSAFD Tcpip [RAW/IP], file name:
C:\WINDOWS\system32\mswsock.dll, result - Success

Trying to load provider: RSVP UDP Service Provider, file
name: C:\WINDOWS\system32\rsvpsp.dll, result - Success
Trying to load provider: RSVP TCP Service Provider, file
name: C:\WINDOWS\system32\rsvpsp.dll, result - Success
Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{0E41ADAF-748D-4FE4-AT6F-F164642EEE87}]
SEQPACKET 3, file name: C:\WINDOWS\system32\mswsock.dll,
result - Success

Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{0E41ADAF-748D-4FE4-AT6F-F164642EEE87}]

DATAGRAM 3, file name: C:\WINDOWS\system32\mswsock.d1ll,
result - Success

Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{B8E72AD6-0B84-4188-8841-52340436256E}]
SEQPACKET 0, file name: C:\WINDOWS\system32\mswsock.dll,
result - Success

Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{B8E72AD6-0B84-4188-8841-52340436256E}]
DATAGRAM O, file name: C:\WINDOWS\system32\mswsock.d1ll,
result - Success

Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{A0299C89-898F-4CF1-BCDC-1EE2550DFC55}]
SEQPACKET 1, file name: C:\WINDOWS\system32\mswsock.dll,
result - Success

Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{A0299C89-898F-4CF1-BCDC-1EE2550DFC55}]
DATAGRAM 1, file name: C:\WINDOWS\system32\mswsock.d1ll,
result - Success

Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{9593A3E5-5C81-4534-9160-0D9376807B68}]
SEQPACKET 2, file name: C:\WINDOWS\system32\mswsock.dll,
result - Success

Trying to load provider: MSAFD NetBIOS
[\Device\NetBT_Tcpip_{9593A3E5-5C81-4534-9160-0D9376807B68}]
DATAGRAM 2, file name: C:\WINDOWS\system32\mswsock.d1ll,
result - Success

Trying to load provider: TestLSP, file name:
C:\WINDOWS\system32\nonifslsp.dll, result - Success

Exiting with error code: 0 which means everything went OK

Backing up the winsock stack
The installer has the ability to backup the stack using the following syntax:

RegisterLSP -br FileName
For example:

RegisterLSP -br c:\backup.dat

Restoring the winsock stack

An important point to understand is that the winsock is restored to its exact state from the time it
was backed up, meaning that if after the backup operation some LSPs were uninstalled and files
were removed, the restored state may be corrupted. The syntax is:

RegisterLSP -rr FileName

Restoring the stack using the file in the above example would look like this:

RegisterLSP -rr c:\backup.dat

Manual installation

Sometimes manual installation is required, usually for testing purposes. All the features of the
autopilot can be used manually. This is possible as long as the proper IDs or names of the LSPs
we wish to layer over are known.

The manual installation has two important flags that repeat in all manual installations: -i and —d
(which denotes the LSP name and path).

Installing over other providers based on their IDs
To install an LSP over TCP and UDP, use the following syntax:

RegisterLSP -1 -o TCPID -o UDPID -d LSPName

We assume that the ID for TCP is 1001 and for UDP is 1002, as seen in the printouts in this
manual. Keep in mind, however, that on some computers these IDs do not match: make sure you
know the proper IDs before using them in a manual install. A typical manual install would look
like this:

RegisterLSP -1 -o 1001 -o 1002 -d “c:\MyLsp.dll”

Installing an IFS LSP
If we install an IFS LSP, we must tell installer about it. We do so by using the flag —h. Installing
an IFS LSP over TCP and UDP would look like this:

RegisterLSP -1 -h -o 1001 -o 1002 -d *c:\MyLsp.dll”

Installing over other providers based on their names

As stated previously, using the ID is possible only when the person installing is using the target
machine and knows the precise ID. That is why it is better to install the LSP using the layer name
rather then the ID. This is done by using the —z flag instead of —o (when using IDs). Installing
over TCP and UDP would look like this:

RegisterLSP -i -z “MSAFD Tcpip I[TCP/IP]” -z *“MSAFD Tcpip
[UDP/IP]” -d *c:\MyLsp.dll”

Installing over another LSP based on either its name or its ID
This is done exactly the same as with a base provider, the only difference being the name or ID of
the LSP we wish to layer on. Suppose we have the following stack:

Winsock 32-bit Catalog:

1021 - TestLSP over [MSAFD Tcpip [TCP/IP]]
1022 - TestLSP over [MSAFD Tcpip [UDP/IP]]
1001 — MSAFD Tcpip [TCP/IP]
1002 — MSAFD Tcpip [UDP/IP]
1003 — MSAFD Tcpip [RAW/IP]

1020 - TestLsSP
and we wish to layer over TestLSP. This is how we do it using an ID:
RegisterLSP -1 -o 1021 -o 1022 -d “c:\MyLsp.dll”
This is how we do it using the name:

RegisterLSP -1 -z “TestLSP over [MSAFD Tcpip [TCP/IP]]1” -z
“TestLSP over [MSAFD Tcpip [UDP/IP]]1” -d “c:\MyLsp.dll”

The only difference here from the previous examples is the different name or ID.

Installing over an existing chain

The previous example has revealed that we must know the LSP’s exact name or IDs if we want to
layer over it; but unless we without executing “RegisterLSP —p” we cannot know this information
in advance. To overcome this problem, it is possible to instruct the installer to locate the LSP
installed over TCP and UDP, and use its chain for the install process.

Installing LSP first in the chain

If we want our LSP to be first in the chain, we can use the —t flag. The following example shows
how to do it layering over both TCP and UDP:

RegisterLSP -1 -t -o 1001 -o 1002 -d *c:\MyLsp.dll”
This example uses the TCP’s and UDP’s explicit names:

RegisterLSP -i -t -z “MSAFD Tcpip [TCP/IP]” -z *“MSAFD Tcpip
[UDP/IP]” -d *c:\MyLsp.dll”

Installing LSP last in the chain

We may want our LSP to be last in the chain, and closest to the base providers. For this we use
the —j flag instead of the —t flag used in the previous example. This is how we do it using
TCP/UDP IDs:

RegisterLSP -1 -j -o 1001 -o 1002 -d *c:\MyLsp.dll”
This example uses the TCP’s and UDP’s explicit names:

RegisterLSP -i -j -z “MSAFD Tcpip [TCP/IP]” -z *“MSAFD Tcpip
[UDP/IP]” -d *c:\MyLsp.dll”

64Bit

An LSP compiled using 32bit can work in 32bit and 64bit environments, but an LSP compiled
using 64bit can only work in a 64bit environment. Furthermore, a 32bit installer can install only
32bit LSPs, but a 64bit installer (which can operate only under a 64bit environment) can install
both 32bit and 64bit LSPs.

Working with the DLL installer

When is it better to use the DLL

e Under Vista, the DLL has the privileges of its spawning process, which means that if the
caller is running with UAC elevated mode, there is no need to get another elevation for
the installer.

e The installer has the ability to retrieve the list of installed LSPs inside an array, so it can
be further inspected. (This can also be done with the normal installer; however, it requires
further parsing by the user.)

Linking with the DLL
This can be done either by linking with the static library or using the LoadModule API command.
The installer comes with a sample that shows how to link with the static library.

Installer API

Working with the DLL installer is almost the same as working with the command line installer.
Programmatically, it accepts the same parameters and performs the same as the command line
installer.

AddParam, Execute, ResetParam

AddParam is used to add a single parameter to the installer; Execute is used to actually perform
the command. ResetParam is used if there is no need to perform another call to the installer, and
removes all the parameters added by previous call to AddParam. The following sample runs an
autopilot install of an LSP, and then removes all installed LSPs:

//The following code is equivalent to: RegisterLSP —b —d c:\nonifslsp.dll
AddParam (“-b") ;
AddParam (“-d”) ;
AddParam (“c:\\nonifslsp.dl1”);
Execute ()

’

//Need to delete the previous parameters
ResetParam();

//Now perform the remove
AddParam(“-f”);
Execute();

Subverting output
The installer in DLL mode doesn’t output to the screen like the command line installer, so there
are functions that send the output into a buffer.

GetOutputDataSize
Returns the number of bytes required to get the output buffer.

GetOutputData

Gets the actual data from the buffer. If successful, the return value is the buffer size. If the buffer
is too small, the return value will be —1. After successful retrieval of the data, the output is erased.
A sample usage:

//First get the size needed
int iSize=GetOutputDataSize();

//Do we have data-?

If (iSize)

{
//Allocate a buffer to accommodate
char* pData;
pData=new char[iSize];

//And get the data
if (GetOutputData (pData,
1iSize)>0)
//Show it, or do some other stuff
printf (“%$s\n”,pData);

//Cleanup
delete [] pData;

Vista API
There are two methods that help working with Vista.

IsVista
Returns true if the OS is Vista.

IsElevated

Returns true if UAC is elevated. If the OS is not Vista, the return value will always be true. All
install/uninstall operations on Vista require UAC elevation, without which the install/uninstall
will fail.

Sample code:

//Are we inside Vista?
if (IsVista())
//Are we elevated?
if (!IsElevated())
//Do something about it
printf (“Vista UAC not elevated!”);

Getting the installed LSP list
It is possible to perform a —p command and parse the output. However, there is an easier method
for retrieving the data already parsed.

GetlnstalledLSPs

Expects a pointer large enough in size to contain all the LSPs inside the stack. The data is sorted
by LSP ID.

Sample code:

//Allocate big enough variable, never seen a system with 100
LSPs!

char* pData;

pData=new char[100*sizeof (InstalledLSP)];

//Perform the call
int iLSPs=GetInstalledLSPs (pData,
100*sizeof (InstalledLSP)) ;

//Did we get it?
if (1LSPs>0)
//Do something, e.g., print it
for (int iCounter=0;
iCounter<iLSPs/sizeof (InstalledLSP) ;

iCounter++)
printf (“%i - %$s\n”,pData[iCounter]. dwID,
pData[iCounter]. aName) ;
//Cleanup
delete [] pData;

Working with the COM installer

The COM installer is a COM DLL that can be used from every COM-capable application: VC,
VB, .Net, etc.

It exposes the same API functionalities as does the DLL installer. The only difference is with the
parameters and return value type, which are variant compliant to adhere to the COM standards.

Registering the DLL
Since the DLL is COM based, it must be registered as such. To do so, run the following
command inside the DLL’s directory:

Regsvr32 RegisterLSPCOM.d1l1

