
Security in Development Environment

----Break The Linker

Keji Yu，Wei Zhao Venustech AD-Lab

Foreword
This speech is about the linker
vulnerability we found in program
development environment .
This is the problem that we might be
ignored. Have you ever thinking
about the security problem which we
might come across in our daily using
development environment?

Why we need to study the develop
environment security?

Why:
We found many security problems in
develop environment, but we didn’t focus
on this problem seriously. The software
which offer its source code are considered
as security ones, no one have thought that
he will be attacked by the compiling
process or linking process.

Environment
Commonly the program develop
environment might include （mainly
as Intel x86 under Windows and
Linux）:

Compiler: CL, gcc
Linker: Link, ld
Debugger: VC debugger, GDB
Etc.

Emphases
Linker security is the important part
of this speech.
What is the linker? The function of
the linker
The vulnerabilities of linkers (Both ld
and link)

Linker
In order to study this vulnerability
deeply, let’s describe the linker
process first.
Linker’s general working process

Under Linux
May be we all have this kind of
experience:
gcc crashed when we compiling
program.
One reason: The vulnerabilities in
Binary File Descriptor(bfd) library

ld linking process
ld brief introduction:Usually the last
step in compiling a program is to
run ld.
ld linking process

BFD library
BFD: The BFD library provides a uniform
method of accessing a variety of object file
formats.
BFD working process: When an object file is
opened, BFD subroutines automatically
determine the format of the input object file.
They then build a descriptor in memory
with pointers to routines that will be used
to access elements of the object file's data
structures.

Elf file format brief introduction 1 ELF
file head

ELF file head
char magic[4] = "\177ELF";// magic number
char class; // address size， 1 = 32 bit， 2 = 64 bit
char byteorder; // 1 = little-endian， 2 = big-endian
char hversion; // header version， always 1
char pad[9];
short filetype; // file type: 1 = relocatable， 2 = executable，

// 3 = shared object， 4 = core image
short archtype; // 2 = SPARC， 3 = x86， 4 = 68K， etc.
int fversion; // file version， always 1
int entry; // entry point if executable

Elf file format brief introduction 2 ELF
file head

Continued

int phdrpos; // file position of program header or 0
int shdrpos; // file position of section header or 0
int flags; // architecture specific flags， usually 0
short hdrsize; // size of this ELF header
short phdrent; // size of an entry in program header
short phdrcnt; // number of entries in program header or 0
short shdrent; // size of an entry in section header
short shdrcnt; // number of entries in section header or 0
short strsec; // section number that contains section name

strings

Elf file format brief introduction 3
Section head

Section head
int sh_name; // name， index into the string table
int sh_type; // section type
int sh_flags; // flag bits， below
int sh_addr; // base memory address， if loadable， or zero
int sh_offset; // file position of beginning of section
int sh_size; // size in bytes
int sh_link; // section number with related info or zero
int sh_info; // more section-specific info
int sh_align; // alignment granularity if section is moved
int sh_entsize; // size of entries if section is an array

Bfd vulnerability background
We found the Id crash since 2004,
but we ignored it. (Do not ignore any
details around youJ)
June 1st 2005, Gentoo code auditing
team published this vulnerability.

bfd elf vulnerability 1
A crafted elf file head

00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|
00000010 02 00 03 00 01 00 00 00 94 80 04 08 34 00 00 00 |............4...|
00000020 26 00 00 00 00 00 41 41 41 41 41 41 41 41 41 41 |&.....AAAAAAAAAA|
00000030 00 00 41 41 41 41 41 41 41 41 00 00 00 40 41 41 |..AAAAAAAA...@AA|
00000040 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 |AAAAAAAAAAAAAAAA|

bfd elf vulnerability 2
elf_object_p() function in Elfcode.h:

bfd_set_start_address (abfd, i_ehdrp->e_entry);
if (i_ehdrp->e_shoff != 0)

{
if (bfd_seek (abfd, (file_ptr) i_ehdrp->e_shoff, SEEK_SET) != 0) //get shoff and find
section header table
goto got_no_match;
if (bfd_bread (&x_shdr, sizeof x_shdr, abfd) != sizeof (x_shdr))// read the first section
head
goto got_no_match;
elf_swap_shdr_in (abfd, &x_shdr, &i_shdr); // translate to internal formate
if (i_ehdrp->e_shnum == SHN_UNDEF) // if section number is 0, use the sh_size
i_ehdrp->e_shnum = i_shdr.sh_size;
if (i_ehdrp->e_shstrndx == SHN_XINDEX)
i_ehdrp->e_shstrndx = i_shdr.sh_link;

}

bfd analyze elf vulnerability 3
Contioued

/* allocate memory for section header table in internal format*/
if (i_ehdrp->e_shnum != 0)

{
Elf_Internal_Shdr *shdrp;
unsigned int num_sec;
amt = sizeof (*i_shdrp) * i_ehdrp->e_shnum; // i_shdr.sh_size
i_shdrp = bfd_alloc (abfd, amt); // allocate amt size memory
if (!i_shdrp)
goto got_no_match;
num_sec = i_ehdrp->e_shnum; // i_shdr.sh_size
if (num_sec > SHN_LORESERVE)
num_sec += SHN_HIRESERVE + 1 - SHN_LORESERVE; //0xffff-0xff00+1
elf_numsections (abfd) = num_sec;
amt = sizeof (i_shdrp) * num_sec; // integer overflow
elf_elfsections (abfd) = bfd_alloc (abfd, amt); // allocated wrong size and lead overflow

Threat
Lot of program use bfd lib: objdump,
gdb,nm,size,ar…etc.
It’s not linux kernel bug
May be used to attack programmersJ

Summary
Reliable linkers never crashJ
This is a typical integer overflow
attack
Patch suggestion

Gentoo ‘s patch
GNU ‘s patch

Windows platform
There is an unreleased vulnerability
exit in VC 6 (discovered by Keji)
Similar with the Id problem
Next, a brief introduction about lib
file format

Lib format
The differences between

Lib file and obj file
The format of Lib file

Signature
Header
First section

Lib file format brief introduction
First section :

typedef struct {
unsigned long SymbolNum;

//symbol number in lib
unsigned long SymbolOffset[n]; //

symbol offset
char StrTable[m]; // symbol

name table
}FirstSec;

Link.exe vulnerability
A craft library file, the symbol num is at offset 0x44

000000 21 3C 61 72 63 68 3E 0A 2F 20 20 20 20 20 20 20 !<arch>./
000010 20 20 20 20 20 20 20 20 31 31 30 33 30 30 35 35 11030055
000020 34 35 20 20 20 20 20 20 20 3C 20 20 20 37 20 20 45 < 7
000030 30 20 20 20 20 20 20 20 32 34 33 20 20 20 20 20 0 243
000040 20 20 60 0A 40 00 00 07 00 00 02 62 00 00 02 62 `.@......b...b
000050 00 00 02 62 00 00 02 62 00 00 02 62 00 00 02 62 ...b...b...b...b
000060 00 00 02 62 3F 3F 5F 43 40 5F 30 42 41 43 48

40 ...b??_C@_0BACH@
000070 4A 4B 49 43 40 43 43 AD 43 43 43 43 43 43 BD 43

JKIC@CC.CCCCCC.C
000080 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43

CCCCCCCCCCCCCCCC
000090 43 43 43 43 43 40 00 3F 3F 5F 5B 40 5F C5 48 41

CCCCC@.??_[@_.HA
0000A0 48 40 45 42 42 43 40 41 41 41 55 41 41 41 41 41

H@EBBC@AAAUAAAAA

Link.exe vulnerability
LINK.EXE allocated sybolnum*4 size memory for saving
the symbol string table:

0045FB54 mov edx,[ebx+0x18] ; [EBX+18]
symbolnum

0045FB57 shl edx,2 ; symbolnum * 4
0045FB5A push edx
0045FB5B call 00451B20 ; allocate

memory(malloc)
0045FB60 mov edx,[ebx+0x18]
0045FB63 xor ecx,ecx
0045FB65 mov [ebx+0x28],eax ;save allocated

memory address

Link.exe vulnerability
Calculate the symbol name string address, and save to allocated memory:

0045FB6F mov edx,[ebx+0x28] ; allocated memory address
0045FB72 mov [edx+ecx*4],eax ;save the symbol name
0045FB75 mov dl,[eax]
0045FB77 inc eax
0045FB78 test dl,dl
0045FB7A jz 0045FB83
0045FB7C mov dl,[eax] ; next symbol name string
0045FB7E inc eax
0045FB7F test dl,dl
0045FB81 jnz 0045FB7C
0045FB83 mov edx,[ebx+0x18] ;[ebx+0x18] is symbol number
0045FB86 inc ecx
0045FB87 cmp ecx,edx ;if not finish loop
0045FB89 jb 0045FB6F

Write above code in C
This is a very “clear” vulnerability, are there any
vulnerabilities like this?
Write above code in C：

DWORD* pTable = (DWORD *)malloc(SymbolNum *
4);

//integer overflow here
for(int i=0; i<SymbolNum; i++)
{

pTable[i] = symbol name string address;
}

New bug in bfd
We found another vulnerability in
library format but in bfd library.
It’s a similar vulnerability as the VC
one.
The vulnerability is in Archive.c in bfd
lib.

New bug in bfd
In the do_slurp_coff_armap funciton:

static bfd_boolean
do_slurp_coff_armap (bfd *abfd){
…

carsym_size = (nsymz * sizeof (carsym)); //used the nsymz from file
ptrsize = (4 * nsymz); //integer overflow here

…
/* Allocate and read in the raw offsets. */
raw_armap = bfd_alloc (abfd, ptrsize); // allocate wrong memory size here
if (raw_armap == NULL)
goto release_symdefs;

…
}

Threat
Programmer is still the first target,
whether there’s anyone do not write
program but use vcJ?
Similar with other file format
vulnerability, need the method to
deliver it.
Hiding in some open source code
(New slogan: Do not compile
stranger’s code)

Doubt
Doubt :Why this kind of problem
always comes out?

Whether we have ignored some thing?
Why it is the int overflow vulnerability?
What’s the essence of this kind of
vulnerability?
Still exist this kind of vulnerability?

Real reason
Usually the security tips tell us: Do not
trust user’s input
We extend it: Do not trust user’s input, do
not trust file’s input as well, because file is
the user’s input either.

Include the develop tool’s configuration files
Include the develop tool’s project files
Include the develop tool’s makefile files
All these files might hide malicious program

Security tips
Two new security tips:

Do not trust user’s input, include file’s
input.
Do not compile stranger’s source or
similar engineering file, they are not safe.

Hope you guys could do more
extension.

Summary
This is a new area, can we meet new
problem in future?
Some questions about this:

What’s the impact of vulnerability in development
environment?
What kind of threat to the programmers will
caused by these security problems?
How many attack types this will bring? Use this in
injecting backdoor?

Q/A

Thanks
安全源自未雨绸缪

Venus Info Tec Inc.
Security

Trusted {Solution} Provider
Services

