
Malheur Version 0.5.0
— User Manual —

Konrad Rieck

April 19, 2011

Contents

1 NAME 2

2 SYNOPSIS 2

3 DESCRIPTION 2

4 ACTIONS & OPTIONS 3

5 CONFIGURATION 5

6 FILES 7

7 EXAMPLES 8

8 BUGS 9

9 COPYRIGHT 9

1



1 NAME

malheur - automatic analysis of malware behavior

2 SYNOPSIS

malheur [-hrvV] [-m maldir] [-o outfile] action dataset

3 DESCRIPTION

malheur is a tool for the automatic analysis of malware behavior (program behavior
recorded from malicious software in a sandbox environment). The tool has been
designed to support the regular analysis of malicious software and the development
of detection and defense measures. malheur allows for identifying novel classes
of malware with similar behavior and assigning unknown malware to discovered
classes. It supports four basic actions for analysis which can be applied to reports of
recorded behavior:

Extraction of prototypes.

From a given set of reports, malheur identifies a subset of prototypes repre-
sentative for the full data set. The prototypes provide a quick overview of
recorded behavior and can be used to guide manual inspection.

Clustering of behavior.

malheur automatically identifies groups (clusters) of reports containing simi-
lar behavior. Clustering allows for discovering novel classes of malware and
provides the basis for crafting specific detection and defense mechanisms, such
as anti-virus signatures.

Classification of behavior.

Based on a set of previously clustered reports, malheur is able to assign un-
known behavior to known groups of malware. Classification enables identify-
ing novel and unknown variants of malware and can be used to filter program
behavior prior to manual inspection.

Incremental analysis.

malheur can be applied incrementally for analysis of large data sets. By pro-
cessing reports in chunks, the run-time as well as memory requirements can be
significantly reduced. This renders long-term application of malheur feasible,
for example for daily analysis of incoming malware programs.

A detailed description of these techniques as well as technical background on anal-
ysis of malicious software is provided in the following articles:

2



Automatic Analysis of Malware Behavior using Machine Learning. Konrad Rieck,
Philipp Trinius, Carsten Willems, and Thorsten Holz Journal of Computer Se-
curity, 19(3), 2011

A Malware Instruction Set for Behavior-Based Analysis. Philipp Trinius, Carsten
Willems, Thorsten Holz, and Konrad Rieck Technical report TR-2009-07, Uni-
versity of Mannheim, 2009

The input of malheur is a dataset containing reports of malware behavior. The dataset
is provided either as a directory or a compressed archive containing the reports.
malheur supports the following formats for compressed archives: tar.gz, zip, pax
and cpio. A report is a textual document describing the recorded activity of a mal-
ware program, where individual events are separated by delimiter characters, such
as white space or carriage return. The events in a report are expected to be in sequen-
tial order if n-grams with n > 1 are extracted. If the behavior is represented using
the malware instruction set (MIST) further options may be selected.

The result of an analysis is written to outfile, a textual file containing columns corre-
sponding to particular analysis results. By default outfile is set to malheur.out.

The configuration and internal state of malheur are stored in the directory maldir.
If this directory does not exist, it is created and the system wide configuration is
copied. A detailed description of the malheur configuration is provided in §5. By
default maldir is set to ˜/.malheur.

4 ACTIONS & OPTIONS

malheur supported different actions for analysis of a dataset. For all actions the re-
ports are first mapped to a high-dimensional vector space, such that each report is
represented as a feature vector. Recorded events or n-grams of events are reflected in
different dimensions and the dissimilarity of behavior can be assessed geometrically
by computing distances and angles.

distance

If this action is specified, malheur computes a distance matrix for dataset. The
entry (i,j) of this matrix reflects the distance (dissimilarity) of the reports i and j.
The distance values lie in the range 0 to sqrt(2). The distance matrix is written
to outfile.

prototype

If this action is specified, malheur determines a set of prototypes representing
dataset. The prototypes are selected from the contained reports, such that the
distance from any report to its nearest prototype is minimized. The prototype
assignment of dataset is written to outfile.

3



cluster

If this action is specified, malheur performs a clustering of dataset. The cluster-
ing is first determined on prototypes and then propagated to all reports. Small
clusters with too few members are merged in a rejection cluster. The prototypes
representing accepted clusters are stored as internal state of malheur for later
classification and incremental analysis. The clustering of dataset is written to
outfile.

classify

If this action is specified, malheur performs a classification of dataset. Each re-
port is either assigned to the nearest prototype of a known cluster or rejected
as unknown. This action requires that a clustering has been performed before-
hand and an internal state of malheur exists. The classification of dataset is
written to outfile.

increment

If this action is specified, malheur performs an incremental analysis of the re-
ports. The reports are first classified to known clusters as in the action classify.
Reports rejected from classification are then clustered as in the action cluster.
The prototypes of the accepted clusters and the rejected reports are written to
the internal state of malheur for further incremental analysis. The classification
and clustering of dataset are written to outfile.

protodist

If this action is specified, malheur computes a distance matrix for prototypes.
The entry (i,j) of this matrix reflects the distance (dissimilarity) of the proto-
types i and j. The distance values lie in the range 0 to sqrt(2). This action
requires that either a prototype extraction, a clustering or an incremental anal-
ysis has been performed beforehand. The distance matrix is written to outfile.

malheur also supports the following command-line options which are used to further
control the analysis process

-m maldir

This option specifies the malheur directory maldir which holds the configura-
tion and internal state of malheur. If the directory does not exist, it is created
and the system wide configuration is copied.

-o outfile

This option specifies the output file outfile for analysis. The file is created dur-
ing analysis and the results are stored in textual form.

-r

This option resets the internal state of malheur. Prototypes of clusters and
rejected reports from previous runs of malheur are removed.

-v

This option is used to increase the verbosity of malheur during analysis, where
the verbosity level corresponds to the number of ”-v” options.

4



-h

This option prints a brief help screen.

-V

This option prints a version and copyright string.

5 CONFIGURATION

The configuration file malheur.cfg in maldir determines how the malware behavior in
a data set is analysis. The configuration contains five groups of settings which are
described in the following.

All parameters of the configuration can be also specified on the command line. That
is, if a parameter is defined in the configuration as xx = ”yy”; in the group zz, it can
be alternatively supplied as a command-line option by –zz.xx ”yy” to malheur.

input = {

format = ”mist”;
This parameter specifies the input format. Supported values are ”text”
for textual and XML reports, and ”mist” for reports using the malware
instruction set (MIST).

mist level = 2;
This parameter specifies the MIST level. If the input format is set to
”mist”, this parameter controls the analysis level of MIST instructions,
otherwise it is ignored.

mist rlen = 0;
This parameter specifies the report truncation length. If the input format
is set to ”mist”, this parameter controls the truncation of MIST reports,
otherwise it is ignored. If set to 0 the parameter is ignored in all cases.

mist tlen = 0;
This parameter specifies the thread truncation length. If the input format
is set to ”mist”, this parameter controls the truncation of MIST threads,
otherwise it is ignored. If set to 0 the parameter is ignored in all cases.

};

features = {

ngram delim = ”%0a%0d”;
This parameter defines characters for delimiting events in report files. The
characters can be either specified as regular bytes or as hexadecimal num-
bers prefixed by ”%”. If no characters are specified, the reports are ana-
lyzed at byte-level, as if each byte would reflect one event.

ngram len = 2;
This parameter specified the length of n-grams. If the events in the reports
are not sequential, this parameter should be set to 1. In all other cases,

5



it determines the length of event sequences to be mapped to the vector
space, so called n-grams.

vect embed = ”bin”;
This parameter specifies how the feature are embedded in the vector space.
Support values are ”bin” for associating each dimension with a binary
value or ”cnt” for associating each dimension with a count value for the
occurrences of features.

lookup table = 0;
This parameter is used to enable an optional feature lookup table. The
table can be used during debugging and verbose output for tracing di-
mensions in feature vectors back to events. For performance reasons it
should be disabled by default.

hash seed1 = 0xc0cac01a;

hash seed2 = 0xadd511fe;
To enable efficient comparison of feature vectors, malheur internally rep-
resents string features as 64 bit hash values using MD5. These two param-
eters allow to change the seed of the MD5 hash and should be initialized
to random values, which protects from targeted collision attacks. The re-
maining risk of collisions is minimal: (a) the number of unique features
per report is limited to several thousands, and (b) in case of a collision the
respective features can not be predicted.

};

prototypes = {

max dist = 0.65;
This parameter specifies the maximum distance to a prototype. During
analysis prototypes are selected in a way such that the distance from each
report to its nearest prototype is below this value. The parameter lies in
the range 0 to sqrt(2). If set to 0 all reports are considered as prototypes.

max num = 0;
This parameter defines the maximum number of prototypes. During anal-
ysis prototypes are selected until this value is reached. If too many proto-
types are determined, this parameter can be used to reduce computational
costs at the price of a coarser approximation. If set to 0 this parameter is
ignored.

};

cluster = {

link mode = ”complete”;
This parameter specifies the clustering mode. Supported values are ”com-
plete” for complete-linkage clustering, ”average” for average-linkage clus-
tering and ”single” for single-linkage clustering.

min dist = 0.95;
This parameter defines the minimum distance between clusters. The clus-
tering operates in a bottom-up manner. That is, clusters are successfully

6



merged until the minimum distance between the closest pair of clusters is
above this value. The parameters lies in the range 0 to sqrt(2).

reject num = 10;
This parameter specifies the minimum number of members in a clusters.
Small clusters containing less members than this value are rejected. The
corresponds reports are assigned to a global rejection cluster. If set to 0,
all clusters are accepted.

shared ngrams = 0.0;
This parameter allows to extract shared n-grams for each clusters. The
shared n-grams are determined by merging the members in each cluster
and identifying all n-grams shared by at least the given ratio of members.
The resulting list of shared n-grams is appended to outfile. If set to 0.0,
this feature is disabled. Note that if shared n-grams are enabled, a feature
lookup table is maintained which consumes extra memory.

};

classify = {

max dist = 0.68;
This parameter defines the maximum distance to prototypes during clas-
sification. Reports that are closer to the nearest prototype than this value
are assigned to the cluster represented by prototype, whereas reports that
are farther away than this value are rejected from classification. The pa-
rameter lies in the range 0 to sqrt(2). If set 0 all reports are classified,
irrespective of the distance to a prototype.

};

6 FILES

/etc/malheur.cfg

The system wide configuration file of malheur. See §5 for further details.

˜/.malheur/malheur.cfg

Per user configuration file of malheur. See §5 for further details. If this file
does not exist, it is automatically created using the system wide configuration
as template.

˜/.malheur/prototypes.zfa

˜/.malheur/rejected.zfa

Internal state files of malheur containing compressed feature vector array (zfa)
of prototypes and rejected reports. The feature vectors are used for classifica-
tion and incremental analysis. See §4 for further details.

7



7 EXAMPLES

Distances of program behavior. The first example demonstrates how a distance ma-
trix is computed for the archive dataset.zip containing reports of program behavior.
The matrix is written to the file out.txt.

malheur -o out.txt -v distance dataset.zip

The distance matrix reflects the dissimilarity of behavior for each report in the archive.
The entries of the matrix range from 0 to sqrt(2), where small values indicate similar
behavior and larger values deviating behavior. The matrix can be used as the ba-
sis for several analysis and data mining techniques, such as hierarchical clustering,
nearest-neighbor classification or multi-dimensional scaling. It is a generic starting
point for research on analysis of malware behavior.

Extraction of prototypes. Manual inspection of several behavior reports is tedious
and annoying. The second example illustrates how prototypical reports are extracted
from the dataset dataset.zip. The prototypes are written to the file out.txt.

malheur -o out.txt -v prototype dataset.zip

From all the reports of program behavior, a small subset is selected which is repre-
sentative for the full data set. The elements of this subset are referred to as proto-
types. Prior to further analysis of a large data set, a quick inspection of prototypes
enables an overview of contained behavior and shows patterns typical for the data
set.

Clustering and classification. This example demonstrates how clustering and clas-
sification are applied for analysis of two data sets, dataset1.zip and dataset2.zip. The
clustering and classification results are written to out1.txt and out2.txt respectively.

malheur -o out1.txt -v cluster dataset1.zip
malheur -o out2.txt -v classify dataset2.zip

First, reports in the archive dataset1.zip are clustered into groups of similar behavior.
The groups can be used to discover novel malware classes or identify behavioral
patterns shared by several malware instances. Each cluster is represented by a small
set of prototypical reports, such that manual inspectation can usually be restricted to
prototypes. Second, the reports in dataset2.zip are assigned to the discovered groups.
This classification can be used to filter out variants of classes contained in dataset1.zip,
such that novel malware in dataset2.zip can be identified.

Incremental analysis. In the next example, Malheur is applied for incremental anal-
ysis of a larger data set split into three archives, namely dataset1.zip, dataset2.zip
and dataset3.zip. Results of this analysis are written to the files out1.txt, out2.txt and
out3.txt.

malheur -o out1.txt -v -r increment dataset1.zip
malheur -o out2.txt -v increment dataset2.zip
malheur -o out3.txt -v increment dataset2.zip

8



First, the archive dataset1.zip is processed using incremental analysis. The extra op-
tion -r is used to reset the internal state of Malheur, such that results from previous
incremental runs are discarded. Then, the files dataset2.zip and dataset3.zip are ana-
lyzed where for each archive first known behavior is identified using classification
and novel groups of malware are discovered using clustering. The intermediate re-
sults for each archive are stored in the Malheur home directory, by default ˜/.malheur.
The incremental analysis allows to process large data sets efficiently, where run-time
and memory requirements are significantly reduced in comparison to batch analysis.

Debugging. The reports of malware behavior are embedded in a vector space where
each report is represented by a sparse feature vector. To understand this representa-
tion and trace down problems, a lookup table can be enabled in the features setting
of malheur.cfg.

malheur -o /dev/null -vvv prototype dataset.zip

The above command extracts prototypes from the provided data set. However, it
also present a lot of verbose information on the reports and extracted prototypes. In
particular, for each prototype the corresponding feature vector is displayed. If the
lookup table is enabled, the dimensions of this vector are printed with respective
instruction n-grams (substrings composed of n instructions).

8 BUGS

The reports for analysis need to be textual documents. Although non-printable char-
acters may be contained in the report files, no occurrences of the NUL character
(0x00) are allowed. The behavior of malheur is undefined in this case.

The vectorial analysis underlying malheur does not handle null vectors, as they can
not be scaled to a fixed norm. Consequently, empty files are discarded during ex-
traction of feature vectors.

Depending on the linked version of libarchive, malheur may support different types
of archive formats. For example, zip archives of version 2 are not generally sup-
ported by libarchive. As a fallback, the use of tar archives is recommended.

9 COPYRIGHT

Copyright (c) 2009-2011 Konrad Rieck, Berlin Institute of Technology.

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation; either version 3 of the License, or (at your option) any later version. This
program is distributed without any warranty. See the GNU General Public License
for more details.

9


