

Writing Behind a Buffer

Angelo P. E. Rosiello

http://www.rosiello.org

rosiello.org

http://www.rosiello.org/

Outline
● Introduction.
● Processor Technology.
● Description of Process memory

organization: the main five segments.
● *) Description of adjacent memory

overwrite attack: pre-conditions and
effects.

● Adjacent memory overwrite attack:
analysis of a practical example.

● Exploiting the vulnerable code.
● What do we mean with "writing behind

a buffer"?
● Showing the new vulnerable code.

● Security Analysis of the introduced
example.

● Did we find something new? Explaining
reasons of our analysis.

● Conclusions.
● Questions and Answers.

rosiello.org

Introduction
● Adjacent memory attacks are known in the

literature but poor documented.
● Why?

– Statistically not numerous.
● Is it exploitable?

– Yes.
● Example of exploitable context: adjacent

locations of memory that can be concatenated.

rosiello.org

Processor Technology (1/2)
● We can distinguish three kind of processor

types:
– Single Purpose: digital circuit designed to execute

exactly one program which is hard-wired.
– Application Specific: instruction-set processor with

a custom ALU that can be programmed by writing
software (e.g. DSPs, microcontrollers).

– General Purpose: instruction-set processor with a
general ALU that can be programmed by writing
software.

rosiello.org

Processor Technology (2/2)

Controller

Datapath

Register
File
+

General
ALU

Program
Memory

total=0
for i=1 to...

Data
Memory

Controller

Datapath

Registers
+

Custom
ALU

Program
Memory

total=0
for i=1 to...

Data
Memory

Controll
er

Datapath

index
total

+

Data
Memory

Which Technology is Vulnerable?
* For practical reasons for the examples we will consider only GPP and in particular

Intel's architecture*
rosiello.org

GPP ASIP Single Purpose

Knowledge Requirements
● To fully understand the problem we need to

analyze:
– Memory organization of running processes.
– Memory adjacent overwriting attacks.
– Trivial buffer overflow attacks.

rosiello.org

Process Memory Organization

rosiello.org

Processes & Memory Organization
● A process can be defined as a running

program; a program is a passive entity, while a
process is an active entity.

● An operating system provides the environment
within which programs are executed. It loads
run-time instructions of a process in the
memory and allocates different memory
sections for its execution.

● The address space of a process can be divided
into five main sections...

rosiello.org

Five Segments (1/2)
● Code: executable code of the program.
● Data & BSS:

– BSS: not initialized data.
– Data: static data.
– Both allocated at compile-time.

rosiello.org

Five Segments
● Stack:

– Local variables.
– Particular useful for storing context and for function

parameters.
– It grows downward.

● Heap:
– All the remaining memory of the process.
– Allocated dynamically.
– It grows upward.

rosiello.org

Process Memory Dump

rosiello.org

Adjacent Memory Overwrite Attack

 This technique let an attacker exploit the
memory allocated into the stack for strings to
produce a buffer overflow and to gain the
control of the process execution flow.

rosiello.org

Adjacent Memory Overwrite Attack
● Last years some articles [Twitch, Hodson] came

out about exploiting non-terminated strings
adjacent memory spaces.

● Pre-conditions:
– the last null-byte terminating a buffer 'X' is

overwritten,
– a buffer 'Y' preceedes 'X'.

rosiello.org

Buffer Declaration

 When a buffer is declared it is finished into the
stack with a null-byte to separate it from the rest
of the stack.

rosiello.org

Buffer Declaration: an example
//Example 1
int main() {
 char buffer1[]=”ab”;
 char buffer2[]=”cd”;
 ;
 return 0;
}

Stack Memory
[c]
[d]

(X) [0x0]
[a]
[b]

[0x0]

buffer2 is near buffer1 and separated from it thanks its last null-byte.
Overwriting in some way the null-byte indicated with (X), buffer2 will
be concatenated to buffer1 containing the whole string “cdab”

rosiello.org

Dangerous Functions
● Many standard C functions that a programmer may

take to be safe against buffer overflows, do not
automatically terminate strings/buffers with a NULL
byte.

● Let's consider the function strncpy():
char * strncpy(char *dst, const char *src, size_t len)

“The strncpy() function copies at most len characters from src
into dst. If src is less than len characters long, the remainder

of dst is filled with `\0' characters. Otherwise, dst is not
terminated”

Strncpy(): Bad Scenario (1/2)
● Let's consider Twitch's example:

//Twitch's example

void func() {

char buf1[8];

 char buf2[4];

fgets(buf1, 8, stdin);

strncpy(buf2, buf1, 4); }

● If the user entered the string “iceburn”, printing buf2
we obtain: “icebiceburn”.

Strncpy(): Bad Scenario (2/2)
● Let's have a look at the stack:

Stack Memory
[i]
[c]
[e]

 [b]
[i]

[c]

........

● The strings got concatenated.

Instead of '\0'

Where is The Security Menace?

● Both “Example 1” and
Twitch's example don't
represent a vulnerable
scenario but if the new
concatenated string is
copied into some other
buffer, a buffer overflow
is possible.

● To stay clear, let's
consider another
example... rosiello.org

Practical Example
//Example 2

void function(char buffer2[32]) {

char buffer3[32];

strcpy(buffer3, buffer2);

}

int main() {

char buffer1[32]; //suppose buffer1 filled of chars

char buffer2[32]; //suppose buffer2 filled of chars

function(buffer2);

return 0;

}

 Example 2 is not
vulnerable but if the last
null byte of buffer2 is
overwritten, then an
overflow will occur
overwriting the instruction
pointer and giving the
attacker the chance to
gain the control of the
process' execution!

rosiello.org

Behind a Buffer

rosiello.org

What do We mean?
● Adjacent memory overwrite attacks showed us

the possibility to exploit the stack memory
organization concatenating two strings. This
happened because some functions do not
always terminate buffers with a NULL byte,
such as strncpy().

● Another vulnerable scenario exists and it is
specular to the one introduced in the previous
slides.

rosiello.org

Another Vulnerable Scenario
//Example 3

int main() {

 char buffer1[2];

 char buffer2[2];

/* some code here that fills buffer1
and buffer2 and returning an
integer value i */

 buffer1[i]='X';

 ;

 return 0;

}

Where is the problem here?
rosiello.org

Security Analysis
//Example 3

int main() {

char buffer1[2];

char buffer2[2];

int i;

/* some code here that fills buffer1
and buffer2, returning an integer
value: i */

buffer1[i]='X';

................;

return 0;

}

● Key security of
“Example 3” is the
value of the variable 'i'.

● What happens if 'i=-1'?
● The null-byte of

buffer2 will be
overwritten by 'X',
exactly as it happened
in “Example 2”.

rosiello.org

Something New?
● Adjacent memory overwrite attacks were at first

described as direct consequence of an unsafe
use of some standard C functions (e.g.
strncpy(), strncat(), etc.) that do not terminate
buffers with a null-byte but...
This approach is quite reductive and we showed that

the problem still remains also when those sensitive
functions aren't used at all!

rosiello.org

Conclusions
● During our discussion we considered memory

adjacent overwrite attacks but “writing behind a
buffer” could be extended to other vulnerable
contexts...

● While programming keep always in
consideration runtime memory accesses.

● Fortunately these kind of bugs are statistically
not numerous and with enough attention and a
good analysis-testing they can be completely
avoided.

rosiello.org

Questions & Answers

● Contact: angelo@rosiello.org
● Web site: http://www.rosiello.org

rosiello.org

mailto:angelo@rosiello.org
http://www.rosiello.org/

