X.25 (in)SECURITY in year 2005: What, Why, When, Who, How OR...

(not anymore) uncovered data networks, (yet) covered targets.

[real life & field experiences on an underestimated and still actual security issue]

HITB 2005,

29th September

Kuala Lampur (MY)

Raoul Chiesa, T.S.T.F.
Telecom Security Task
Force

Disclaimer

- X.25 protocol's theories and specs have been **intentionally uncovered** in this document.
- We do not recommend that you use this material for unauthorised access to telecommunications operators', private companies' or governments' infrastructures and/or systems.
- We cannot be held responsible if you decide nevertheless to explore such networks and systems, find them fascinating, start getting sloppy and leave tracks that finally gets you busted.
- The information contained within this presentation **does not infringe** on any intellectual property nor does it contain tools or recipe that could be in breach with known laws.
- The X.25 addresses used in the slides can be **sometimes real and sometimes fake**: in the first case they are out-of-date, else they've been used for clear example purposes.
- In any case, the real X.25 addresses mentioned as evidences have been taken from **public source** and their publication does not mean in any case an invitation to attack or test the connected systems.
- Quoted trademarks belongs to registered owners

Agenda

- Intros
- /your nightmare starts here/
- (a brief) technical overview
- So, how does it work?
- Understanding NUAs and DNICs
- The history always teach...
- Some (cool) evidences!
- Differences between X.25 and the Internet
- Attacker's typologies, preferred targets
- Conclusions
- Q&A
- /end of nightmare/

TSTF: a short intro

- Founded by professionals and specialists.
- Located in Asia, Europe, USA.
- 30 years combined telecommunications experience.
- 50 years combined information security experience.
- A unique view on telco security nobody else does it.
- Our field experience in worldwide networks makes the working difference, and let us know how to secure your infrastructures. For real.
- We know the slang, the terms, the devices and the techniques to use on X.25 networks as no one else does: we are the best on this topic and we know it.
- Active research (papers, tools, forums).
- Self-funded, no business cunts running it, no VCs.

The Speaker

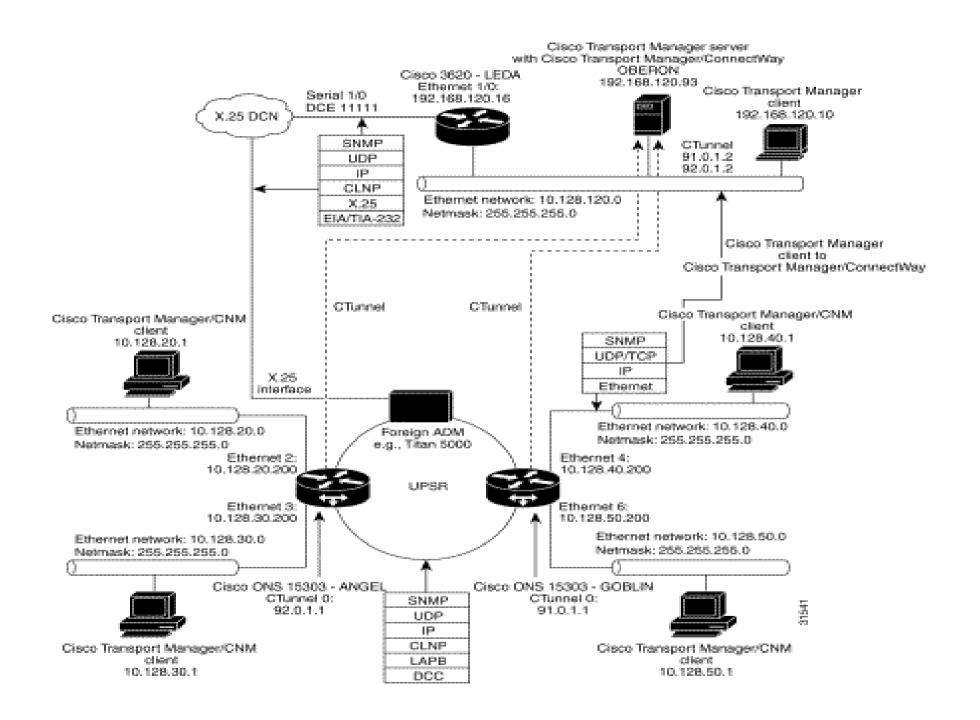
- (direct) hacking experiences from 1986 to 1995
- Busted in the "Ice Trap" operation (13th December, 1995) managed by Criminalpol, Interpol and FBI
- Ethical hacker since that (well... I grow up;)
- Professional Penetration tester (1996 -> today)
- Chief Technical Officer, @ Mediaservice.net Srl, a vendor-independent security consulting company based in Europe (Italy)
- OSSTMM (Open Source Security Testing Methodology Manual) Official Key Contributor (2002, 2003, 2004, 2005)
- Board of Directors Member:
 - T.S.T.F. (Telecom Security Task Force, <u>www.tstf.net</u>)
 - ISECOM (Institute for Security and Open Methodologies, www.isecom.org)
 - CLUSIT (Italian Computer Security Association, <u>www.clusit.it</u>)
 - OWASP Italy Chapter (Open Web Applications Security Project, <u>www.owasp.org</u>)

"X.25 is used in a Packet Switched Network and in 1964 was designed by Paul Baran of the RAND Corporation for use with the Public Data Network (PDN) and unreliable analog telephone services.

The idea was to connect a dumb terminal to a packetswitched network.

In 1976 X.25 became a standard under the CCITT, now the International Telecommunications Union - Telecommunication Standardization Sector (ITU-T)."

Why are we talking about X.25 security in 2005?


- This speech is oriented towards network security while **working in X.25 worldwide environments** and its legal working framework.
- The information contained is based on personal, company's and other international researchers' professional **penetration testing experiences** and field observations.
- During the 90's we encountered a **huge number** of breaches on tested infrastructures, usually getting access via the main X.25 link. More than 90% of them was insecure.
- We kept on finding **open doors** while pentesting companies with X.25 leased lines (1999->2003); these doors always brought the Tiger Team to the **core of the target network**.
- New connections and new services that lay on X.25 communications still get launched, also when if you don't know it or even think of.
- We are now in year **2005**, and new breaches are still upcoming.

Introduction – What's this?

- An International Packet Switched Data Network (PSDN).
- A model **very similar** to Public Switched Telephone Networks (PSTN).
- 3 main packet type: **Data**, **Control**, **Facilities**.
- International standards (X.25/X.29, X.28, X.75, X.121) created by ITU (International Telecommunications Union, Switzerland) in the 70's.
- **First commercial global data network.** Widely used 'cause it was the only applicable choice (Internet was only available for the academics and the government's employees) from 70's to 80's; in the '90 many commercial companies went to the Internet, **but they kept their X.25 access** and contracts (that, usually, are <u>still active</u>, even if they forgot about it!).
- X.25 networks owned both by national telcos (**mainly**) and private operators.
- Multinationals, Governments and private SMEs with worldwide or interregional quality data-connection needing, are the typical key clients.

Introduction – How it works?

- Each subscriber has an **international X.25 address** N.U.A. Network User Address assigned to a **leased line**, with one or more **logical channels**.
- Subscriber A can call Subscriber B in order to establish a **switched virtual circuit** (SVC) call or a **permanent virtual circuit** (PVC).
- Only traffic is billed, customer doesn't pay the connection-time.
- Both on SVCs and PVCs links is possible to talk over many different protocols (host-to-host, SNA, proprietary, voice, Kermit....).
- X.3 PAD capabilities are implemented in **major OS**:
 - *NIX
 - linux
 - VMS/OpenVMS
 - AS400
 - old stuff
 - strange/unknown systems (so many !!).

X.25 in ISO/OSI

```
Application
     Presentation
6
5
      Session
4
      Transport
3
     Network
                           X.25
                                              X.75
                           --!----| MLP |----!
2
     Datalink
                   |HDLC|
                                LAPB & LAP-D
     Physical [X.25.1, X.21, X.21bis, V.24, V.35]
1
```

X.25 in ISO/OSI

(datalink-layer and network layer)

- The Datalink Layer (X25.1)
- a) LAPB (Link Access Protocol Balanced)
- b) LAP-D (Link Access Protocol for D-channel)
- c) LAP-M (Link Access Protocol for Modems)
- d) MLP (Multi-Link Procedure)
- e) LLC (Logical Link Control)
- The Network Layer (X25.2)
- a) PLP (X.25 Packet Layer Protocol)
 - Multiplexing of VCs on PSDN
 - VCs Switching/Routing between WAN's nodes
- b) PVC (Permanent Virtual Circuit) e SVC (Switched Virtual Circuit)
- c) VCI (Virtual Channel Identifier)
- d) Call Setup
- e) X.121 and LCN

X.121: ITU recomendations (international data links)

LCN: Routing (basing on X.121 specs); subaddressing functions.

X.25 in ISO/OSI higher layers [Focus on X.25 User Facilities]

- User Facilities are defined by ITU recomendations
- Each carrier implements different, customized U.F.

• X.25 User Facilities:

Network User Identification

The NUI is never sent to remote node: it is verified on local PSDN switches (ACPs). NUI format is different from network to network.

ROA selection

This function let control the call routing: it recalls back the loose source routing in the IP world.

Call redirection

As in PSTN world, it's possible to have certain calls redirect to other DTEs.

Hunt Group

Again another analogy with PSTN and PBXs world: a load balancing is possible for incoming calls.

Mnemonic codes

Some X.25 networks let the subscribers choose alphanumeric mnemonic codes, that are assigned to the real NUA. This makes easy the dialup connections via ACP (X.28 PAD).

How do I access to it?

- TONS of X.25 assigned networks worldwide (all the countries of the globe).
- +100 of them are still active and in use.

worldwide: SprintNet/MCI (formerly aka Telenet), SITA (airports)

the big ones: BT Tymnet, At&t/Accunet, Datex-P, C&W, ...

the "pac" ones: Itapac, Transpac, Iberpac, Austpac, Datapac, MAYPAC...

the "net" ones: Isranet, Pacnet, Rosnet, ...


- Many ways to access to X.25 networks, legally and not:
- Direct connection to a X.25 network from an X.25 leased line;
- X.28 PAD via Dialup using a NUI;
- X.28 PAD via toll-free Dialup, with or w/o NUI (national's and international carrier's on 800 #s);
- "Official" Internet -> X.25 Gateways (PADs);
- (Hacked) Systems linked both to the Internet and to a X.25 network directly and/or via LAN/WAN;
- X.25 over TCP XoT (RFC1613).
- Outdials, CCs or abused PBXs are often used to call X.28 PADs.
- → ...the backtracing investigation technique won't so be easily applicable (or nearly impossible to do);
- ...it's possible to use NUIs from other countries (phreaking and social engineering can help definitely a lot here)

X.25 Addressing

- Hosts are identified by:
 - NUAs: one system can have multiple assigned NUAs or linked on more networks with same NUA and different DNIC (SprintNet->WW Partners)
 - ...but you may also find more systems linked to a single NUA (subaddressing)
 - Mnemonics: only on some public network eg Tymnet, SprintNet, Autonet
 ...think of 031069 Tymnet-gw and of private X.25 networks.
- X.25 addressess are reserved and should not be disclosed
- X.121 address: DNIC + NUA = 15 digits max.
- DNIC: 4 digits international code: DCC + NCC
- DCC assigned on a geographical basis by ITU (world's areas)
- NUA: 12 digits max (typically 6->10). In many networks they have a structure derived from the PSTN numbering planning (area codes referred to towns/areas of the country)

- Example: DNIC (4)		AC(3)	NPA(5)	
	3110	212	10126	(USA, Sprintnet, NYC)
→	2802	21	229	(Cyprus, Limassol)

DNIC World Areas

Zone	Continent/Area
1	Satellite connections for InmarSAT Voice/Dati(Atlantic, Pacific and Indian
	oceans)
2	Europe, Ex URSS
3	North America, Central America, some Carribean areas
4	Asia
5	Oceania
6	Africa
7	Part of Central America, Carribean and South America

Annex to ITU Operational Bulletin No. 798 – 15.X.2003

INTERNATIONAL TELECOMMUNICATION UNION

T\$B
TELECOMMUNICATION
STANDARDIZATION BUREAU
OF ITU

LIST OF DATA NETWORK IDENTIFICATION CODES (DNIC) (According to ITU-T Recommendation X.121)

(POSITION ON 15 OCTOBER 2003)

```
INDONESIA
INDONESIA. Annex to ITU OB 714-E - 11 - 15.04.2000
INMARSAT (OCEANI)
INMARSAT 111 1 Atlantic Ocean-East
111 2 Pacific Ocean
111 3 Indian Ocean
111 4 Atlantic Ocean-West
IRAN
IRAN (REPUBLIQUE ISLAMIQUE D') 432 1 IranPac
IRLANDA
IRLANDE 272 1 International Packet Switched Service
IRELAND 272 3 EURONET
IRLANDA 272 4 EIRPAC (Packet Switched Data Networks)
272 8 PostNET (PostGEM Packet Switched Data Network)
ISLANDA/ICELAND
ISLANDE 274 0 ISPAK/ICEPAC
ISRAELE
ISRAEL 425 1 ISRANET
ITALIA
ITALIE 222 1 Rete Telex-Dati (Amministrazione P.T. / national)
ITALY 222 2 ITAPAC X.25
ITALIA 222 3 PAN (Packet Network)
222 6 ITAPAC - X.32 PSTN, X.28, D channel
222 7 ITAPAC International
223 3 ALBADATA X.25
223 4 Trasmissione dati a commutazione di pacchetto X.25 (UNISOURCE ITALIA S.p.A.)
223 5 Trasmissione dati a commutazione di pacchetto X.25 (INFOSTRADA S.p.A.)
223 6 Trasmissione dati a commutazione di pacchetto X.25 (WIND Telecomunicazioni S.p.A.)
JAPAN/GIAPPONE
JAPON 440 0 GLOBALNET (Network of the Global VAN Japan Incorporation)
JAPAN 440 1 DDX-P (NTT Communications Corporation)
JAPON 440 2 NEC-NET (NEC Corporation)
440 3 JENSNET (JENS Corporation)
440 4 JAIS-NET (Japan Research Institute Ltd.)
440 5 NCC-VAN (NRI Co., Ltd.)
440 6 TYMNET-JAPAN (JAPAN TELECOM COMMUNICATIONS SERVICES CO., LTD.)
440 7 International High Speed Switched Data Transmission Network (KDD)
440 8 International Packet Switched Data Transmission Network (KDD)
441 2 Sprintnet (Global One Communications, INC.)
441 3 KYODO NET (UNITED NET Corp)
441 5 FENICS (FUJITSU LIMITED)
441 6 HINET (HITACHI Information Network, Ltd.)
441 7 TIS-Net (TOYO Information Systems Co., Ltd.)
441 8 TG-VAN (TOSHIBA Corporation)
JAPON 442 0 Pana-Net (MATSUSHITA ELECTRIC INDUSTRIAL CO. LTD.)
JAPAN 442 1 DDX-P (NTT Communications Corporation)
```

JAPON 442 2 CTC-P (CHUBU TELECOMMUNICATIONS CO., INC.)

DNICs -

Each country has got at least one X.25 network...

The Australia case

DNICs -

2

Australian Network Identifiers:

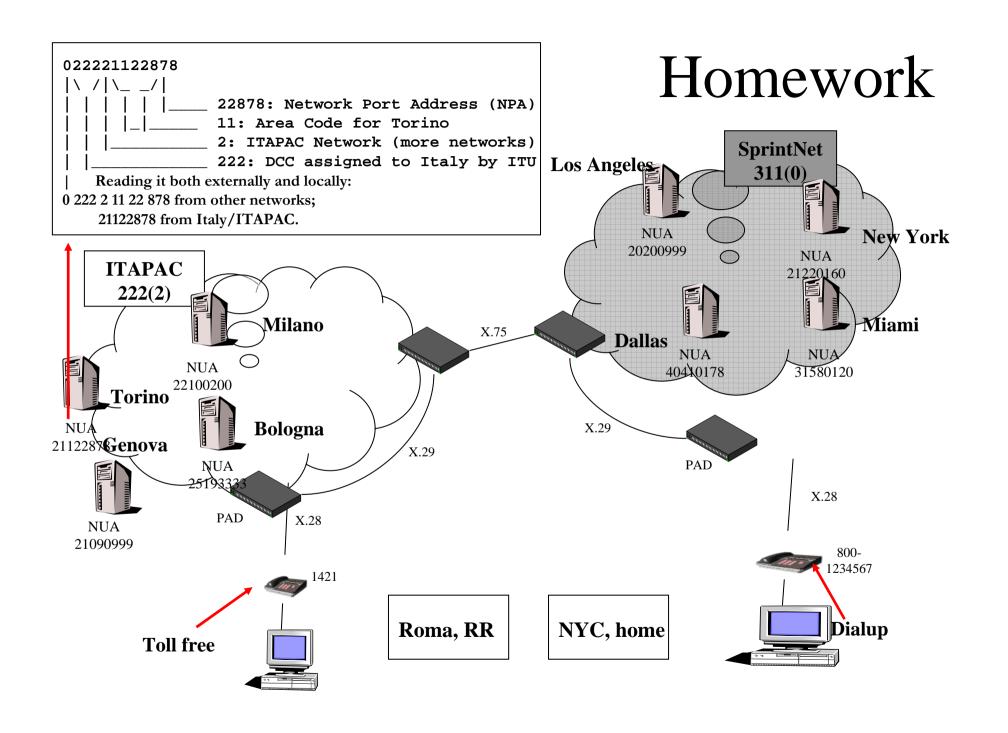
Prefix	Allocation Date	Organisation	
5052	30 June 1991	Telstra Corporation Ltd	
5053	30 June 1991	Telstra Corporation Ltd	
5054 1	6 September 1994	AAPT Ltd	—Sub-carrier
5054 2	6 September 1994	AAPT Ltd	Sub-carrier
5054 3	6 September 1994	AAPT Ltd	
5056 0	16 February 1994	SingCom (Australia) Pty Ltd	Sub-carrier
5056 8	16 February 1994	SingCom (Australia) Pty Ltd	Sub-Carrier
5056 9	16 February 1994	SingCom (Australia) Pty Ltd	
5057 3000	30 June 1991	Fujitsu Australia Ltd	
5057 3500	19 February 1992	Department Of Defence	
5057 90	17 November 1993	Department Of Defence	——Critical
5057 91	17 November 1993	Department Of Defence	(and shared!)
5057 99	23 February 1995	Telstra Corporation Ltd	(and bharea .)

5052 = Austpac

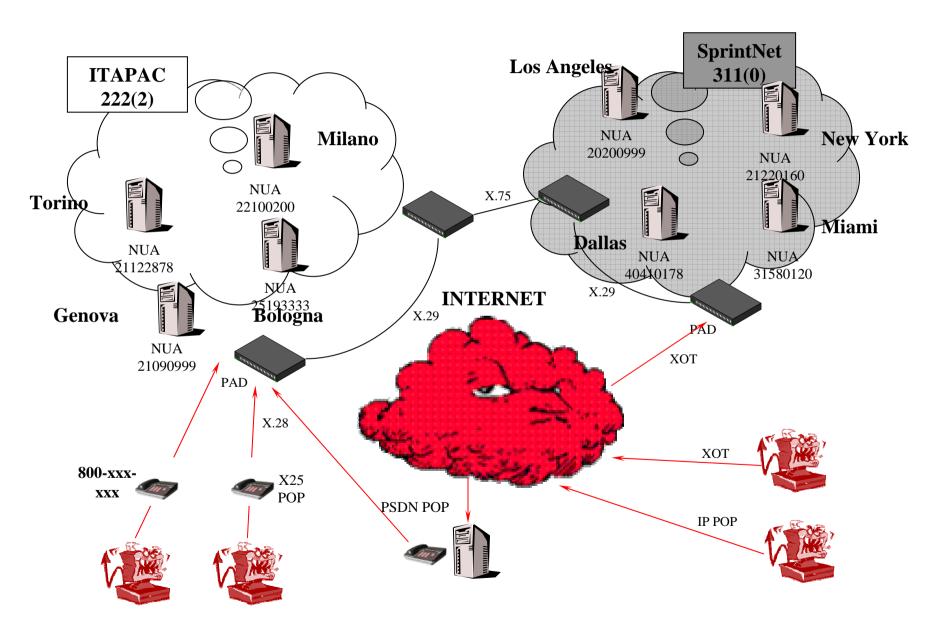
5053 = Austpac International (formerly Midas / OTC Data Access)

5054 = Australian Teletex Network

5057 = Australian Private Networks


NB The allocation dates are official allocation dates, not necessarily actual dates. Austpac existed long before 1991.

313 1	RCAG Telex Network	1
313 2	Compuserve Network Services	
313 3	RCAG XNET Service	
313 4	AT+T/ACCUNET Packet Switched Capability	IDNICs -3
313 5	ALASCOM/ALASKANET Service	DINICS -3
313 6	Geisco Data Network	
313 7	International Information Network Services - INFONET Service	
313 8	Fedex International Transmission Corporation - International Document Transmission Service	The U.S.A. case
313 9	KDD America, Inc. – Public Data Network	The U.S.A. case
314 0	Southern New England Telephone Company - Public Packet Network	
314 1	Bell Atlantic Telephone Companies - Advance Service	
314 2	Bellsouth Corporation - Pulselink Servie	
314 3	Ameritech Operating Companies - Public Packet Data Networks	—Data carriers
314 4	Nynex Telephone Companies - Nyex Infopath Service	
314 5	Pacific Telesis Public Packet Switching Service	
314 6	Southwestern Bell Telephone Co Microlink II Public Packet Switching Service	
314 7	U.S. West, Inc Public Packet Switching Service	
314 8	United States Telephone Association - to be shared by local exchange telephone companies	
314 9	Cable & Wireless Communications, Inc Public Data Network	
315 0	Globenet, Inc Globenet Network Packet Switching Service	
315 1	Data America Corporation - Data America Network	
315 2	GTE Hawaiian Telephone Company, Inc Public Data Network	
315 3	JAIS USA-NET Public Packet Switching Service	
315 4	Nomura Computer Systems America, Inc NCC-A VAN public packet switching service	
315 5	Aeronautical Radio, Inc GLOBALINK	
315 6	American Airlines, Inc AANET	
315 7	COMSAT Mobile Communications - C-LINK	M14:4:1-
315 8	Schlumberger Information Network (SINET)	— Multinationals
315 9	Westinghouse Communications - Westinghouse Packet Network	
316 0	Network Users Group, Ltd WDI NET packet	
316 1	United States Department of State, Diplomatic Telecommunications Service	
	Black Packet Switched Data Network	— Spy Game ? ;)
316 2	Transaction Network Services, Inc TNS Public Packet-switched Network	
316 6	U.S. Department of Treasury Wide Area Data Network	
-		=


DNICs - 4

The Malaysia case

502 0 502 1	COINS Global Frame Relay Malaysian Public Packet Switched Public Data Network (MAYPAC)
502 3 502 4	Corporate Information Networks ACASIA-ASEAN Managed Overlay Network
502 6 502 7	Mutiara Frame Relay Network Mobile Public Data Network (WAVENET)
502 8	Global Management Data Services (GMDS)
	502 1 502 3 502 4 502 6

Hackwork

TO SCAN FOR CARRIER TONES, PLEASE LIST DESIRED AREA CODES AND PREFIXES

PRFX NUMBER CODE PRFX NUMBER CODE PRFX NUMBER CODE PRFX

(311) 437 (311) 767

X.25 Wardialing scanning for targets 1/2

```
Scanning from NUA: 0280221000 started on 15-OCT-1994 15:29:30.75
0280221091 %COM
                 DROP STATION
0280221092 %COM
                    ECHO STATION
0280221093 %COM
                    TRAFFIC GENERATOR
0280221101 %CLR OCC
0280221102 %CLR DTE
0280221106 %CLR DTE
0280221107 %COM
0280221108 %CLR DTE
0280221117 %CLR OCC
0280221118 %CLR DTE
0280221121 %COM
                    MINISTRY OF HEALT, VAX/VMS
0280221122 %COM
                    IBM AIX UNIX
0280221125 %CLR DTE
0280221147 %CLR_RPE SUBADDRESS 48 CYTA Pager via x.25
0280221199 %COM
                    CISCO
0280221206 %COM LOGON: ??
0280221225 %COM
                    CISCO
0280221229 %COM CISCO BYBLOS BANK S.A.L. - LIMASSOL/CYPRUS ACS-CYPRUS
LINE 6
                    COM/DTE
0280221248 %COM
0280221273 %CLR DTE
0280221274 %CLR OCC
0280221276 %CLR
Scanning ended with NUA: 0280221396 on 15-OCT-2000 15:46:36.32
```

X.25 Wardialing scanning for targets 2/2

```
- 202 - ONTARIO - Up to 700
20200115
               VAX/VMS
20200116
              VAX/VMS
              Diand Information System
20200156
               $ UNIX
20200214
                         (gtagmhs2)
            METS Dial-In Server Enter your login:
20200230
2020024098
              Control Port on Node Ottawa 6505 PAD
20200286
              $ VAX/VMS
2020032099
              MPX.25102: PASSWORD
20200321
               SunOS
                       Rel 4.1.3 (X25)
20200322
              SunOS
              INETCO
20200330
                         Magicbank
20200342
              VAX/VMS
20200497
202005421
              $ VAX/VMS
               SunOS Rel 4.1.3 (TMS470)
20200548
20200582
               $ VAX/VMS Production System
```

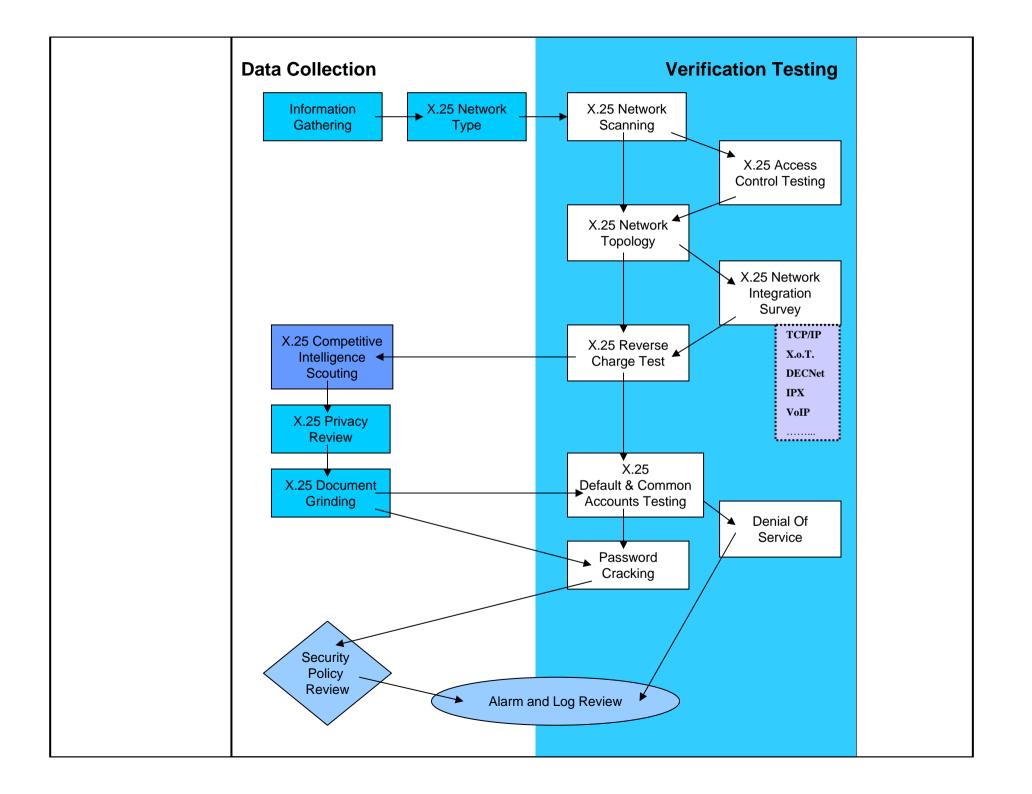
Historical (big) problems

- 80's: CCC members Pengo and Hagbard breaked into US Military, Government and Gov. Contractors computer systems, calling from Datex-P and using a TymNet gateway to access LBNL Laboratories.
- 1989: the CITIBANK's CitiSaudi scandal and the Melbourne connection.
- 15 jan 1990: MOD & LOD hacking groups crashed the AT&T interregional and international phone system. They also used X.25 links to get the final access.
- 90's: The Aussie scene: Electron, The Force, Phoenix and the Primos scanner.
- 90's: Kevin Mitnick got the SAS and eavesdropped on the FBI (the Russia and China NYC embassies tale).
- 90's: NUA scanners available for PRIMOS, VMS, *NIX, DOS, Windows.
- **90's**: Kevin Poulsen used to play with COs via X.25.
- 1994-95: AT&T, GTE and others major US telcos got hacked via X.25 (.....)
- **Recent years**: worldwide famous ADM group released their own scanner (ADMx25 by Antilove).
- Recent years: **Multithread** and **multichannel** Sun Solaris X.25 scanner available in the wild: it's able to scan a whole country if a few hours.
- 2003-05: Russian crackers perform mass huge scannings over SprintNet international networks and dialups (intl' reverse charge scans).

TLC carriers have always been targets (and will always be)

Welcome to At&T node attmail Unix System V/386 Release 3.2B attmail login:

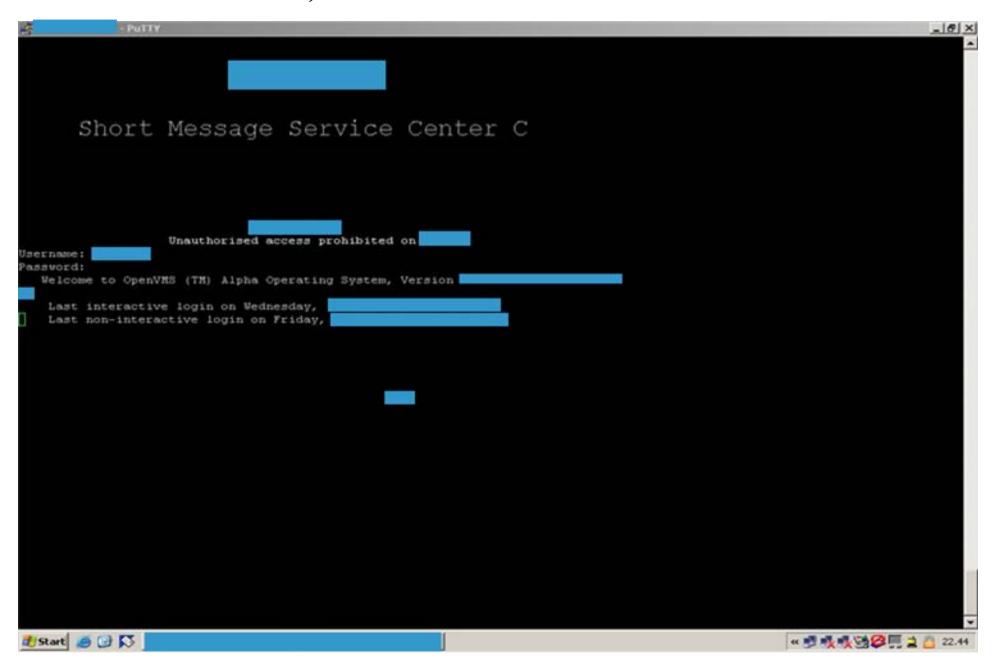
Connected to 0420160014025

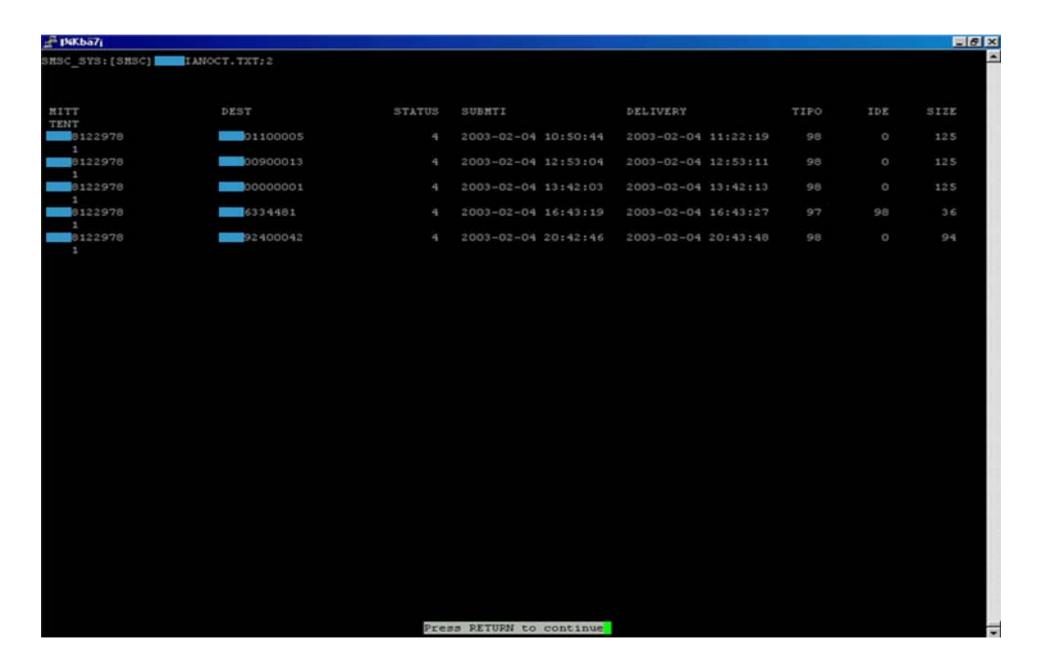

TLC carriers have always been targets (2)

User Access Verification

Username:

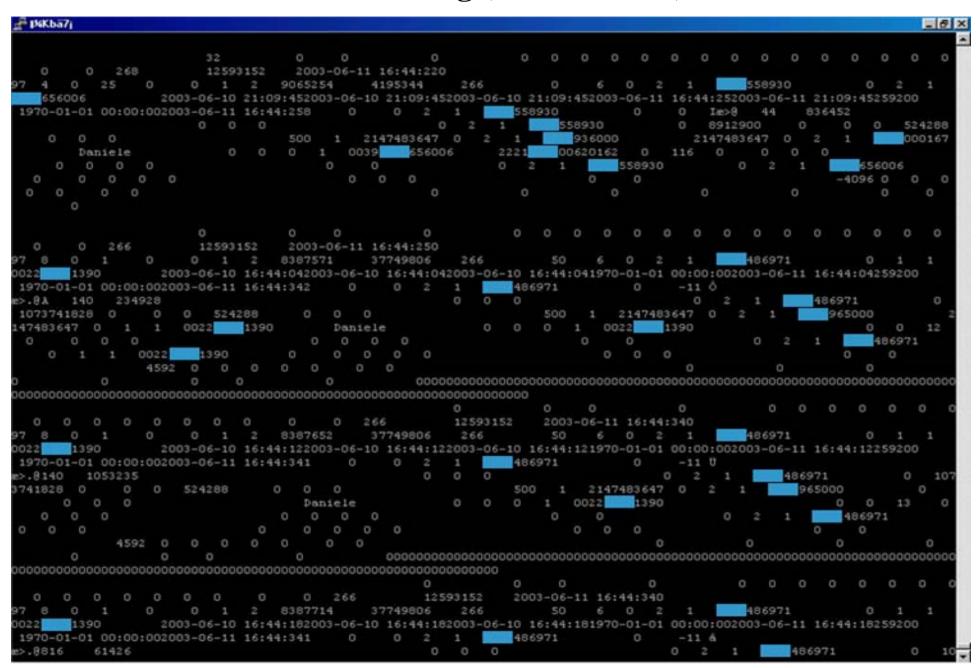
Differences with the Internet


- X.25 Addressing is reserved: scanning is the mostly used way to find targets.
- WAN concept: a NUA can **open a whole new world** to the attacker.
- No TCP/IP stack, **no "exploiting" concept** (a kind of...).
- Primarily **brute force attacks** on login (always works!).
- Old school hacking, social engineering and smartness may help a lot.
- There are a few X.25 walkers all over the world: **no kiddies, no noise, no game's playing**.
- If he isn't a walker, he's an attacker: probably the **highest skill level** you've ever encountered with.
- There are also just **a few X.25 security experts** all over the world.


Major Target Areas

- Subscribers
- X.25 subscribers **always** run huge data networks.
- It's like having an **open door to the world**, that directly brings up strangers into our bedroom.
- Monitoring **isn't easy at all**, requires specific skills and the knowledge of high-level attackers' habits.
- Attackers abuse of X.25 resources to **scan for new targets**: this means **money** that will be billed to you as well as **legal problems** |(if someone will ever realize what happened).
- Services
- Telco Management Network (Central Offices, Switches, etc..)
- GSM and 3G SMSCs
- Bank to Bank transfers (SWIFT); E-payments (POS)
- Worldwide Logistics & Transports
- Heavy Industry
- Travelling and Hotels agencies/environments (airports and flight companies as well)
- Chemical and Pharmaceutical
- SAP and similars
- WHQ -> HQ -> Branches World Wide

Uh, is this an SMSC???


Processed SMSs: "FROM", "TO"

SMS Processing que (!)

```
# Dikba7i
                                                                                                                     - 8 X
                     9180988FFFFFFF 000000000000000000000000 FFFFFF 9
                                                                           000000000000000000
5:55:02.18|04400403|MSISDN not found in cache
5:55:02.18|04400403|ISID inserted in cache
15:55:02.18:04400403:MSISDN inserted in cache
5:55:02.18|04400403|Context new 823
15:55:02.18|04400403|IOS received
S:55:02.18|04400403|SAD DECODE ADDR: Encoded address 000C91
                                                             185900FFFFFFFF -> address 0039 819500
15:55:02.18|04400403|SAD DECODE ADDR: Decoded address 819500 TELEPHONE NATIONAL
15:55:02.16|04400403|TP-MTI -----01 SMS-SUBMIT (in the direction MS to SC)
15:55:02.18|04400403|TP-RD
                            ---- Accept duplicate message
15:55:02.18|04400403|TP-VPF
                            ---10--- TP-VP field present and integer represented (relative)
15:55:02.18|04400403|TP-SRR
                            -- 0---- A status report is not requested
15:55:02.18|04400403|TP-UDHI -1---- The beginning of the TP-UD field contains a header in addition to the short message
                            O----- TP-Reply-Path parameter is not set in this SMS-SUBMIT/DELIVER
15:55:02.18|04400403|TP-RP
15:55:02.18|04400403|TP-MR
                            11100111 Message reference number 231
15:55:02.18|04400403|TP-DA
                            00001010 Address length 10
15:55:02.18|04400403|TP-DA
                            -000---- TON -> Unknown
5:55:02.18|04400403|TP-DA
                            ----0001 NPI -> ISDN/telephone numbering plan (E.164/E.163)
15:55:02.18|04400403|TP-DA
                            00110011
15:55:02.18|04400403|TP-DA
                            00100011
15:55:02.18|04400403|TP-DA
                            01100011 36
                            01111001 97
5:55:02.18|04400403|TP-DA
15:55:02.18|04400403|TP-DA
                            00010110 61
15:55:02.181044004031TP-DA
                                      Address:
                                                369761
15:55:02.18|04400403|TP-PID
                            00---- Protocol or Telematic interworking
5:55:02.18|04400403|TP-PID
                            -- 0---- SME to SME protocol
15:55:02.18|04400403|TP-PID
                            ---00000 SM-AL protocol
5:55:02.18|04400403|TP-DCS
                            0000---- General Data Coding indication
15:55:02.18|04400403|TP-DCS
                            --0---- Uncompressed
5:55:02.18|04400403|TP-DCS
                            --- O---- No message class meaning
15:55:02.18|04400403|TP-DCS
                            ---- Default alphabet
                            11111111 Validity period : 63 week(s)
5:55:02.18|04400403|TP-VP
                            00110010 50
15:55:02.18|04400403|TP-UDL
S:55:02.18|04400403|TP-UDHL
                            00000101 5
15:55:02.18|04400403|..IEI
                            00000000 Concatenated short messages, 8-bit reference number
5:55:02.18|04400403|..IEIDL 00000011 3
15:55:02.18|04400403|..IEDa
                             00110110 54 reference number
15:55:02.18|04400403|..IEDb
                             00000010 2 maximum number of short messages
15:55:02.18|04400403|..IEDc
                             00000010 2 sequence number
15:55:02.18|04400403|Event: 00, State: 00, Action: 01
15:55:02.18|04400403|Save DATIND data
15:55:02.18|04400403|NRT: recognised address as type EMPTY
15:55:02.18|04400403|SAD RAW ENCODE: Encoding 500 369761 as an TELEPHONE UNKNOWN address
15:55:02.18|04400403|SAD RAW ENCODE: Encoded address 000A81
                                                            637916FFFFFFFFF
                                                 Press RETURN to continue
```

SMS sniffing (in real time!)

Attackers' typology

- "Newbies" (Russia & South America scene)
- Lonely attackers, old school hackers
- Security researchers / Elite hackers (la crème)
- Criminal organizations (w/insiders on target)
- Industrial spies
- Intelligence Agencies' agents
- (cyber) Terrorists (?)

The honey prizes: OS for prime time

• OS that you may find on X.25 networks

-	AOS/VS
-	BBS Systems
_	Rull PAD (Rul

- Bull PAD (Bull DPX/2)

- CICS/VTAM

- Cisco IOS

- CDC NOS – Control Data Corporation

- DEC VAX/VMS and AXP/OpenVMS

- DEC Ultrix

- DEC Terminal Decserver

- DG/UX Aviion General

- DOS

- DRS/NX

- GS/1

- HP 3000

- HP/UX 9000

- IBM Aix

- IBM OS/400 (AS/400)

- IRIX SGI

- IRIS Operating System (PDP and others)

- Linux

- Motorola XMUX (Gandalf)

- Northern Telecom PBXs

- PACX/Starmaster (Starmaster Gandalf)

- Pick Systems

- PRIMOS Prime Computer

- RSTS

- SCO

- Shiva LAN Router

- Sun Solaris

- TOPS 10/20

- Unknown systems (you will find many of them)

- VCX Pad

- VM/CMS

- VM/370

- XENIX

- WANG Systems

NOTE: This list is an extract from the upcoming white paper "The (un)official Systems Catalogue", by Raoul Chiesa

The nightmares of the past

• Based on a TSTF 5-years study, encompassing 21 network operators:

100% could be hacked from the Internet

90% could be hacked through PSTN, X.25 or ISDN

72% had a security incident in the last 2 years

23% had appropriate perimeter security control

0% had all their mission-critical hosts secured

0% had comprehensive database security in place

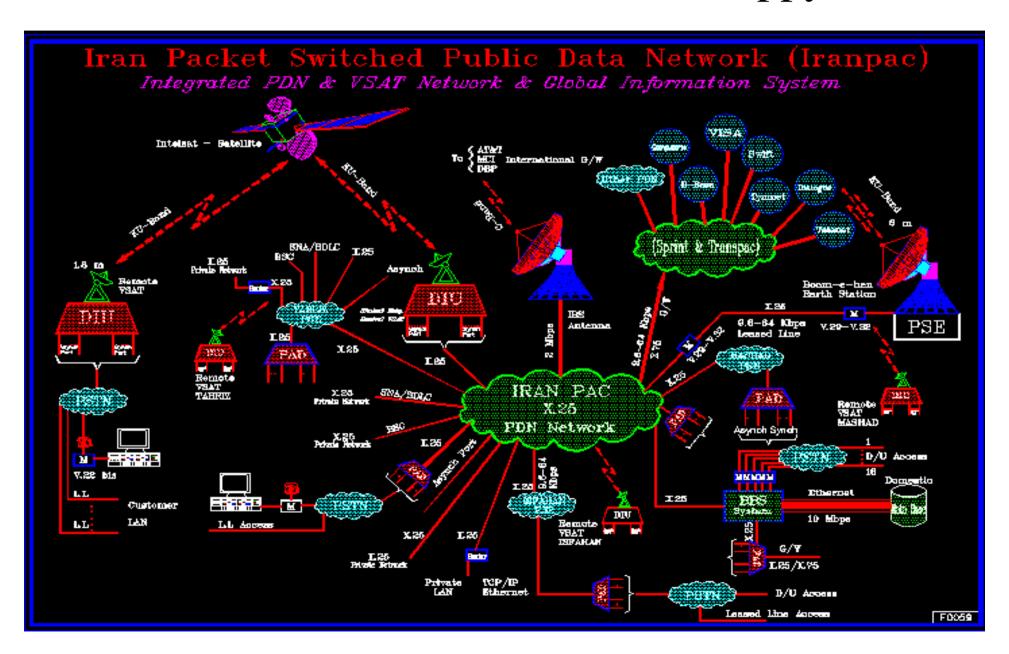
0% had integrity measures protecting billing data

• Based on a 15 years personal background and knowledge:

1% of the Top 1.000 companies and nations' critical infrastructures with X.25 links worldwide are somehow "not penetrable".

YES, 1% ONLY.

The nightmares of today


X.25 hacking is **still** a very attractive target.

- TELCOS. Bypassing toll, getting services without fees, setting up premium numbers, amusing CDRs, getting fun with calls details&logs.
- MOBILE OPERATORS. As above, plus everytime you send an SMS:)
- MULTINATIONALS. Privacy invasions, industrial espionage, exciting hacking playground.
- FINANCE. The easiest way to get into legacy production systems. Also, POS heavily use X.25.
- GOVERNMENT. Many countries still hang up on their national X.25 network for their official gov' stuff.
- NATIONAL CRITICAL INFRASTRUCTURES. Many countries (East Europe, Africa) still manage their national N.C.I. via X.25 management links.

Hot Points: strange things and possible problems that had already happened

- The security problem here is **really underestimated**.
- Everybody "forgot" about their X.25 direct links.
- Closed countries didn't open to the Internet if not recently, but since more than a decade they're opened to X.25 (unauthorized) access. (IRAN, CHINA)
- Some network **kindly gives** out X.25 addresses' lists. (INDIA)
- When calling a NUA, you could also **reach an airplane** flying over the Atlantic Ocean. (INMARSAT)

Let's make an X.25 hacker happy

How to help an X.25 hacker

Inet DIRECTORY ENQUIRY SERVICE			
DIRECTORY ENQUIRY SERVICENMC VER 2 NETWORK : RABMN, INDIA PAGE 0			
NETWORK#	NAME / ORGANISATION	LOCATION	
404100000162	A C C	WADI	
404100010681	ACC	BILASPUR	
404100000589	ACC	BOMBAY	
404100000381	ACC	CHAIBASA	
404100000055	ACC	JAMUL	
404100000420	ACC	KYMORE	
404100010162	ACC	WADI	
404100010589	ACC	BOMBAY	
404100010626	A P RAYONS	KAMALAPURA	
404100010625	A P RAYONS	HYDERABAD	
404100000172	ANAND BAZAR PATRIKA	BOMBAY	
404100010882	ANAND BAZAR PATRIKA	CALCUTTA	
404100000362	ANAND BAZAR PATRIKA	NEW DELHI	
404100010172	ANAND BAZAR PATRIKA	BOMBAY	
404100000821	BARC	BOMBAY	

How to excite an X.25 hacker

The addressing plan for AMSS is treated in [3]. The scope and impact of the AMSS addressing plan is limited to the AMSS subnetwork. Systems not directly attached to the AMSS network are not affected by the AMSS addressing plan.

The two principal types of ATN systems which use the AMSS subnetwork are airborne routers and air/ground routers. The AMSS address of an airborne router is formatted using BCD-encoded digits as follows:

<AMSS airborne address> :: <DNIC> '5' <AES> > <D>

<DNIC>:: '1111' (AOR-E satellite) or '1112' (POR satellite) or

'1113' (IOR satellite) or '1114' (AOR-W satellite)

<AES> :: 8-digit BCD-encoded 24-bit address of aircraft

<D> :: Optional subaddress digit

The digit '5' following the DNIC is a discriminator indicating that the address refers to an airborne system. A example AMSS address of an airborne router flying over the Atlantic (Ocean) may be (1111.5.46721005.)

The AMSS address of an air/ground router is formatted using BCD-encoded digits as follows:

<AMSS ground address> :: '26' <DNIC> <NTN>

<DNIC> :: 4-digit DNIC of the ground network as registered in

[X.121] or by international convention (e.g. SITA's DNIC

is '1116').

<NTN> :: Up to 9-digit network terminating number (DTE network)

(address)) of the air/ground router on the provider's

network identified by the ASNID.

The digits '26' comprise a prefix indicating that the address is used to access an internetwork router within the AMSS addressing plan. As an example, a SITA air/ground router AMSS address may be (26.1116.2331123.)

X.25 Interception & real-time Investigation

• Getting the datas and the evidences from an X.25 incident...

...it's not impossible.

If you (know HOW to do it.

Timestamp VC Snid Direction Pkt Type Size Mod PacketId

```
10:15:16:98
                      outgoing
              10
                 Α
                                           126 octets
                                    Data
                                                         8
                                                                 137
     D=0 LGN=0
                  LCN=10 LCI=10
                                              P(R)=4
                                     P(S)=3
                                                        M = 0 \quad O = 0
                          48 47 2e 57 41 2f 45 31 * ...V..VHHG.WA/E1 *
10 0a 86 56 2e 0d 56 48
42 54 55 4b 2f 49 31 31 47 49 41 2f 50 a0 25 d9 * BTUK/I11GIA/P.%. *
0d 56 47 59 41 0d 55 4e
                          42 2b 49 41 54 41 3a 31
                                                  * .VGYA.UNB+IATA:1 *
2b 31 47 2b 46 53 2b 39
                          38 30 34 30 37 3a 31 30
                                                    * +1G+FS+980407:10 *
31 35 2b 54 32 27 55 4e
                          48 2b 31 2b 48 53 46 52
                                                    * 15+T2'UNH+1+HSFR *
45 51 3a 39 34 3a 31 3a
                          49 41 27 4f 52 47 2b 46
                                                    * EQ:94:1:IA'ORG+F *
                                                    * S:LON'LTS+*R'UNT *
53 3a 4c 4f 4e 27 4c 54
                          53 2b 2a 52 27 55 4e 54
                                                    * +4+1'UNZ+1+T2'
2b 34 2b 31 27 55 4e 5a
                          2b 31 2b 54 32 27
```

Take care when asking for help

- Traditional security shops: zero knowledge of X.25 security problems, telcos, poor understanding of global WANs logicals & procedures.
- **Traditional telcos consultants**: very poor knowledge of security issues.
- **X.25 carriers**: they'll try to sell you IP connections instead of fixing your X.25 and Frame Relay links, and they'll suggest you to migrate everything you have onto the IP world.
- Your **loved and trusted security consultant**: in this case he probably doesn't even know what you are talking about.
- The "Big 5" audit firms: focused on policies, no real expertise (they outsource their jobs to us).
- **In-house resources**: Very dangerous. Internal fraud overlooked. Interdepartmental ego problems. Good security and bad security looks the same.

Conclusions

Doing Nothing...

- ... with your PSDN infrastructure today is like doing nothing with your Internet hosts in the 90's and with your Wi-Fi networks in 2000: **how many hackers** played with your datas?
- ...in critical environments, the above is simply an invitation for disaster.

Bibliography

RFCs

- RFC 874 A Critique Of X.25
- RFC 877 Standard For Transmission Of IP Datagrams Over Public Data Networks
- RFC 1356 Multiprotocol Interconnect On X.25 And ISDN In The Packet Mode
- RFC 1090 SMTP On X.25
- RFC 1381 SNMP MIB Extension For X.25 LAPB
- RFC 1382 SNMP MIB Extension For The X.25 Packet Layer
- RFC 1461 SNMP MIB Extensions For Multiprotocol Interconnect Over X.25

Tutorials

- RIM Remote System Neurocactus Ezine
- Hacking UNIX Tutorial By Sir Hackalot
- Advanced Hacking VAX's VMS By Lex Luthor
- Guide to Gandalf XMUXs By Deicide
- B4B0 Ezine #7: Hacking The Shiva LAN-Rover By Hybrid
- The Complete Hewlett Packard 3000 Hacker's Guide By AXIS
- X.25 And LAPB Commands For Cisco Routers
- A Novice's Guide To Hacking By The Mentor
- The Beginner's Guide To Hacking On Datapac By The Lost Avenger and UPI
- **NEOPHYTE'S GUIDE TO HACKING** (1993 Edition) By Deicide

Bibliography

Online material

- I network X.25:Comprensione della struttura di rete, Tecniche di intrusione ed Identificazione degli attacchi, by Raoul Chiesa and Marco Ivaldi, Italian Black Hats Technical Paper #1 (Italian only, 95 pages). http://www.blakhats.it/papers/x25.pdf/
- Libnet-X.25: The Preamble
- Protocol Vulnerabilities within the X.25 Networking suite.
- X.25 Standards and ITU Recommendations (http://www.itu.int/).
- X25US (http://www.x25us.net/).
- X25 Trace: X.25 network tracing for Internet users, by Dennis Jackson, JANET-CERT Coordinator, U.K.
- A novice Guide to X.25 Hacking, by Anonymous
- Desktop Guide to X.25 Hacking in Australia, by Epic Target
- Accessing Telecom Australia's AUSTPAC service By Softbeard
- **The Force Files** By The Force
- Austpac.notes by Vorper VII
- Globetrotter Ezine By The Force
- The Alt.2600 Hack FAQ By Simple Nomad

Literature

- Underground By Suelette Dreyfuss (Australia)
- The Cuckoo's Egg, Clifford Stoll, Pocket Books, 1989 (USA)
- Cyberpunks: Outlaws and hackers on the Computer Frontier, Katie Hafner & John Markoff, Touchstone Books 1991 USA
- Out Of The Inner Circle By Bill Landreth, McGraw Hill Internetworking Handbook
- An Introduction To Packet Switched Networks Parts I and II, Telecom Security Bulletin File Written By Blade Runner

Greetings

X.25 gurus

machine

Emmanuel Gadaix

Philippe Langlois

Vanja

Raist

Synack

Raptor

The Force (and the aussie scene)

Friends

Venix

d0

xant

dialtone

naif

rpunk and people at #x.25 (efnet)

Fyodor

The Xfocus team

Jim Geovedi

Anthony Zboralski

Fabrice Marie

Telcos

...just for being there:)

All of the HITB staff

For this great security event.

TSTF Contacts

Asia/Far East

Emmanuel Gadaix eg@TSTF.net

Northern Europe

Philippe Langlois pl@TSTF.net

Southern Europe

Raoul Chiesa rc@TSTF.net

North America

Tony Bannister tb@TSTF.net

I hope you enjoyed this "nightmare"

Thanks:)

QUESTIONS?