
Python Debugging Outside
the “Bochs”

HITBSecConf2008 - Dubai
Ero Carrera - ero.carrera@gmail.com

Reverse Engineer at zynamics GmbH

&

Independent Information Security Researcher

mailto:ero.carrera@gmail.com
mailto:ero.carrera@gmail.com

Talk outline

Introduction

The Tool. System architecture

The Extensions

Demos

Obtaining the Tool

Increasing quantities of malware

Need to automate analysis, specifically unpacking

Packer specific unpacking algorithms are a lot of work,
dedicated person/team

Automation and generic unpacking can be tackled with
sandboxes/emulation

The Context: Anti-Virus
Industry

Sandboxes are a lot of work

API emulation

CPU attributes and particularities

Endless cat & mouse game

APIs not emulated exactly are trivial to exploit

Choosing and Approach

Why to attempt to re-implement all of Window's APIs?

Lower level, full-system, emulation could allow to run a
full Window O.S.

No need to worry about getting APIs right

Or VM detection*

Or anti-debug tricks

Choosing and Approach

A CPU emulator or binary translation provides a
scenario where we only need to focus on low level
details

Advantages: full control

Drawbacks: speed

Choosing and Approach

Binary translation

Valgrind, QEmu

Partial Emulation, (Para)Virtualization

VMWare, Virtual PC, VirtualBox, Parallels
Workstation, Virtual Iron, Xen, Denali, etc

Full Emulation

Simics, Bochs

Available Options

Chose Bochs [http://bochs.sourceforge.net/]

It’s a full emulator

Allows for detailed and fine grained access and control
of the emulated environment

Has a powerful instrumentation interface

Supports state save/restore

Bochs allows to play in "God mode"

The Tool

http://bochs.sourceforge.net/%5D
http://bochs.sourceforge.net/%5D

Tracing

Advanced heuristics

Behavioral analysis

See things that can't be seen with other tools/
environments

All while not having to care too much about Anti-Virtual
Machine and Anti-Debugging techniques

What could we do with it?

One sees a lot of (too much?) data, which is both good
and bad

Has to filter individual processes

Page directory base/CR3, tracking OS structures

Anti-Bochs tricks? Possible, like everywhere, but we
have a lot of control, unlike other environments

See Peter Ferrie’s Attacks on Virtual Machine
Emulators [http://pferrie.tripod.com/papers/attacks.pdf]

Potential Issues

http://pferrie.tripod.com/papers/attacks.pdf%5D
http://pferrie.tripod.com/papers/attacks.pdf%5D

The debugger only implements limited features

It's not scriptable

Can't interact with other tools

The instrumentation interface requires to recompile
Bochs for any modifications

Shortcomings

Option: --enable-debugger --enable-disasm

Bochs will provide with an interactive debugger

Commands:

continue, step, quit, vbreak, lbreak, pbreak, info break,
bpe, bpd, delete, x, xp, info {cpu, registers, sse, mmx,
fpu, etc}, disassemble, trace {on,off}, instrument
{start,stop,reset,print}, etc

The Standard Debugger

Option: --enable-instrumentation

Bochs will compile in a module of our choosing

The module can implement functions that will be called
on specific events

some of those are... (all fully documented in
instrument/instrumentation.txt)

Instrumentation

void bx_instr_init(unsigned cpu);

void bx_instr_shutdown(unsigned cpu);

void bx_instr_fetch_decode_completed(
unsigned cpu, bxInstruction_c *i);

void bx_instr_prefix(unsigned cpu, Bit8u prefix);

void bx_instr_inp(Bit16u addr, unsigned len);

void bx_instr_outp(Bit16u addr, unsigned len);

void bx_instr_inp2(Bit16u addr, unsigned len, unsigned val);

void bx_instr_outp2(Bit16u addr, unsigned len, unsigned val);

Instrumentation Callbacks

void bx_instr_lin_access(
unsigned cpu, bx_address lin,
bx_address phy, unsigned len, unsigned rw);

void bx_instr_mem_data(
unsigned cpu, bx_address linear, unsigned len, unsigned rw);

void bx_instr_phy_read(
unsigned cpu, bx_address addr, unsigned len);

void bx_instr_phy_write(
unsigned cpu, bx_address addr, unsigned len);

Memory Accesses

void bx_instr_new_instruction(unsigned cpu);

void bx_instr_cnear_branch_taken(
unsigned cpu, bx_address new_eip);

void bx_instr_cnear_branch_not_taken(unsigned cpu);

void bx_instr_ucnear_branch(
unsigned cpu, unsigned what, bx_address new_eip);

void bx_instr_far_branch(
unsigned cpu, unsigned what,
Bit16u new_cs, bx_address new_eip);

Flow related

Architecture Overview

Instrumentation Interface

Debugger

Instrumentation Events

Devices

Bochs CPU

Memory
Linear memory accesses

Physical memory accesses

Instruction fetching

Instruction decoding

Instruction execution

Branching near/far

Prefix execution

Interrupts

Halt

Reset

...

IN/OUT

Hardware interrupts

Shares the same components

Added a Python interpreter command line instead of
the debugger

Exposed the instrumentation

The instrumentation interface can now be controlled
dynamically from the new Python debugger

Improving Bochs

Architecture Overview II

Dynamic Instrumentation

Interface

Python

Debugger

Instrumentation Events

Devices

Bochs CPU

Memory
Linear memory accesses

Physical memory accesses

Instruction fetching

Instruction decoding

Instruction execution

Branching near/far

Prefix execution

Interrupts

Halt

Reset

...

IN/OUT

Hardware interrupts

Bochs’ debugger would be great if it supported
scripting

Having great scripting languages, there’s no need to
invent a new one

Why Python?
It’s easy to embed and extend applications with

Provides with an endless stream of tools and modules

The Enhanced Debugger

Once having a Python interpreter it only made sense to
expose the instrumentation interface

Dynamic callback allow for on-demand usage of the
instrumentation interface

Having full speed when needed...

and full control when desired

It exposes all the fine granularity provided by the
standard instrumentation interface

The Enhanced
Instrumentation Interface

Once we:

have the latest version of Bochs

applied the corresponding patch

configured Bochs with the option:

--enable-debugger --enable-instrumentation=python_hooks

and compiled, Bochs should be ready

Enabling it All

The module bx will provide with most of the original
debugger's functionality

The cpu module will provide with means of reading and
writing to the CPU

The dbg module encapsulates extra functionality
allowing to set callbacks to the instrumentation
interface

Inside the Python-enabled
Debugger

Provided by the dbg module
INSTR_INIT, INSTR_SHUTDOWN, INSTR_RESET, INSTR_HLT, INSTR_NEW_INSTRUCTION,
INSTR_CNEAR_BRANCH_TAKEN, INSTR_CNEAR_BRANCH_NOT_TAKEN, INSTR_UCNEAR_BRANCH,
INSTR_FAR_BRANCH, INSTR_INTERRUPT, INSTR_EXCEPTION, INSTR_HWINTERRUPT,
INSTR_MEM_CODE, INSTR_MEM_DATA, INSTR_LIN_ACCESS, INSTR_PHY_READ, INSTR_PHY_WRITE,
INSTR_WRMSR, INSTR_INP, INSTR_OUTP, INSTR_OPCODE, INSTR_FETCH_DECODE_COMPLETED,
INSTR_PREFIX, INSTR_BEFORE_EXECUTION, INSTR_AFTER_EXECUTION, INSTR_REPEAT_ITERATION,
INSTR_CACHE_CNTRL, INSTR_TLB_CNTRL, INSTR_PREFETCH_HINT

Callbacks

import dbg
dbg.set_callback(dbg.INSTR_INTERRUPT, process_int)
dbg.read_memory_block_linear(cpu.get(cpu.EIP), 1024)

Setting Registers

import cpu

eax_value = cpu.get(cpu.EAX)

cpu.set(cpu.EAX, eax_value + 10)

Jumping over code. If the instruction to jump over is 3
bytes long

cpu.set(cpu.get(cpu.EIP) + 0x3)

Tracing Instruction Execution

import bx
import dbg
import cpu
import time

def process_instruction(cpu_num):
eip = cpu.get(cpu.EIP)
print ‘Executing at %08x’ % eip
time.sleep(.5)

dbg.set_callback(
dbg.INSTR_NEW_INSTRUCTION, process_instruction)

bx.cont()

Tracing Memory Accesses
import bx
import dbg
import cpu
import time

BX_READ, BX_WRITE, BX_RW = 0, 1, 2
access_type = dict((

(0, ‘BX_READ’),
(1, ‘BX_WRITE’),
(2, ‘BX_RW’)))

def process_mem_access(cpu_num, linear_addr, length, rw):
eip = cpu.get(cpu.EIP)
print ‘Accessing[%s] address %08x at %08x’ % (

access_type[rw], linear_addr, eip)
time.sleep(.5)

dbg.set_callback(dbg.INSTR_MEM_DATA, process_mem_access)

bx.cont()

Detecting Suspicious
Behavior

[EIP:0120d667] Detected: LOCK Instruction (suspicious): F0 86 18 ...

[EIP:0114bce0] Detected: RDTSC Instruction (suspicious)

[EIP:0121753a] Detected: TIB/TIB.ExceptionList access [7ffdf000]

[EIP:012175c4] Detected: VirtualPC test A: 0F 3F 07 0B 64 8F 05

[EIP:01217760] Detected: VMWare communications channel test

[EIP:0121777a] Detected: TIB/TIB.ExceptionList access [7ffdf000]

[EIP:009086cd] Detected: TIB.Self access [7ffdf018]

[EIP:0082b4c9] Detected: PEB.GlobalFlag access [7ffdc068]

[EIP:012443f7] Detected: LOCK Instruction (suspicious): F0 86 18 0A ...

[EIP:00912210] Detected: PEB.BeingDebugged access [7ffdc002]

[EIP:00411bee] Detected: SLDT: 0F 00 45 F8 0F B6 45 F9 50 0F ...

Packer Execution Traces
(ASPack 2.12)

Packer Execution Traces (tElock)

Packer Execution Traces (Yoda's
Protector v1.02)

Scanning memory for strings

Tracing API Calls

Tracing Sys-Calls

Getting the TIB and PEB

Demos

Like Bochs, It's free!

http://bochs.sourceforge.net/

Has been contributed to the Bochs project

So far it’s available as a patch (Python extensions for
debugger and instrumentation interface):

http://sourceforge.net/tracker/index.php?
func=detail&aid=1937046&group_id=12580&atid=312580

Getting your hands on it

http://bochs.sourceforge.net
http://bochs.sourceforge.net

Q&A

