
Hacking the Cell ArchitectureHacking the Cell Architecture

 Rodrigo Rubira Branco (BSDaemon)
Oger Systems Principal Security Researcher

Scanit R&D Lab
rodrigo *noSPAM* scanit dot net

bsdaemon *noSPAM* risesecurity dot org

AgendaAgenda

In-depth technical analysis of the cell architecture

Programming the cell architecture
- Running a program inside the spu
- Using DMA in spu

Security issues in Cell
- Memory protection inside spu
- DMA

Exploiting a vulnerable program running inside the spu

Injectin our code – shellcode development and issues

What else can we do?

Acknowledges

Try it!Try it!

Ill try to not be boring!

This presentation have been splitted in three portions:

- Cell Theory – Inside the Cell Architecture Internals
- Cell Programming – Giving an overview of the

programming resources that we will use
- Cell Samples – Those are the live samples

prepared for this presentation

What is Cell?What is Cell?

The so called 'Cell Broadband Engine
Architecture (TM)'

It's a powerful, new and really improved
computer architecture

Used in the Playstation 3 and also in big blade
Machines

Cell HistoryCell History

• IBM, SCEI/Sony, Toshiba Alliance formed in 2000
• Design Center opened in March 2001

– Based in Austin, Texas
• Single CellBE operational Spring 2004
• 2-way SMP operational Summer 2004
• February 7, 2005: First technical disclosures
• October 6, 2005: Mercury announces Cell Blade
• November 9, 2005: Open source SDK & simulator
published
• November 14, 2005: Mercury announces Turismo Cell

offering
• February 8, 2006: IBM announced Cell Blade
• July 17, 2006: SDK 1.1 available

Systems and Technology Group

Cell WorkaroundsCell Workarounds

• Power Wall

– Limits in CMOS technology

– Hard limit to acceptable system power

• Memory Wall

– Processor frequency vs. DRAM memory latency

• Frequency Wall

– Diminishing returns from deeper pipelines

Cell Basic Design ConceptCell Basic Design Concept

 Compatibility with 64b Power Architecture™
– Builds on and leverages IBM investment and community

 Increased efficiency and performance
– Attacks on the “Power Wall”

• Non Homogenous Coherent Multiprocessor
• High design frequency @ a low operating voltage with advanced power

management
– Attacks on the “Memory Wall”

• Streaming DMA architecture
• 3-level Memory Model: Main Storage, Local Storage, Register Files

– Attacks on the “Frequency Wall”
• Non Homogenous Coherent Multiprocessor
• Highly optimized implementation
• Large shared register files and software controlled branching to allow

deeper pipelines

 Interface between user and networked world
– Image rich information, virtual reality
– Flexibility and security
– Multi-OS support, including RTOS / non-RTOS

Cell Architecture ComponentsCell Architecture Components

• Heterogeneous multi-core
system architecture

– Power Processor Element
for control tasks

– Synergistic Processor
Elements for data-intensive
processing

• Synergistic Processor
Element (SPE) consists of

– Synergistic Processor Unit
(SPU)

– Synergistic Memory
Flow Control (MFC)

• Data movement and
synchronization

• Interface to high-
performance Element
Interconnect Bus

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

MFC

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

Cell Processor ComponentsCell Processor Components

Power Processor Element (PPE):
• General purpose, 64-bit RISC

processor (PowerPC AS 2.0.2)
• 2-Way hardware multithreaded
• L1 : 32KB I ; 32KB D
• L2 : 512KB
• Coherent load / store
• VMX-32
• Realtime Controls

– Locking L2 Cache & TLB
– Software / hardware managed TLB
– Bandwidth / Resource Reservation
– Mediated Interrupts

In the Beginning
 – the solitary Power Processor

Custom Designed
 – for high frequency, space,
 and power efficiency

96 Byte/Cycle

Element Interconnect Bus

Power Core
(PPE)

L2 Cache

 NCU

Element Interconnect Bus (EIB):
• Four 16 byte data rings supporting multiple

simultaneous transfers per ring
• 96Bytes/cycle peak bandwidth
• Over 100+ simultaneous bus transactions
• Each EIB bus data port supports

25.6Gbytes/sec (assuming 3.5 Ghz core
frequency) in each direction

Memory Management & Mapping
• SPE Local Store aliased into PPE system memory
• MFC/MMU controls / protects SPE DMA accesses

– Compatible with PowerPC Virtual Memory
Architecture

– SW controllable using PPE MMIO
• DMA 1,2,4,8,16,128 -> 16Kbyte transfers for I/O

access
• Two queues for DMA commands: Proxy & SPU

L
oc

al
 S

to
re

S
P

U
 M

F
C

N

A
U

C

L

oc
al

 S
to

re

S
P

U
 M

F
C

N

A
U

C

 Lo
cal S

to
re

 S
P

U
 M

F
C

N

A
U

C

 Lo
cal S

to
re

 S
P

U
 M

F
C

N

A
U

C

 Local Store

 SPU MFC

N

AUC

 Local Store

 SPU MFC

N

AUC

 Local Store

 SPU MFC
N

AUC

 Local Store

 SPU MFC
N

AUC

96 Byte/Cycle

Element Interconnect Bus

Power Core
(PPE)

L2 Cache

 NCU

Synergistic Processor Element (SPE):
• Provides the computational performance
• Simple RISC User Mode Architecture

– Dual issue VMX-like
– Graphics SP-Float
– IEEE DP-Float

• Dedicated resources: unified 128x128-bit RF,
256KB Local Store

• Dedicated DMA engine: Up to 16 outstanding
requests

Cell Processor ComponentsCell Processor Components

Memory Interface Controller (MIC):
• Dual XDRTM controller (25.6GB/s @ 3.2Gbps)
• ECC support
• Suspend to DRAM support

Broadband Interface Controller (BIC):
 Provides a wide connection to external devices
 Two configurable interfaces (60GB/s @ 5Gbps)

– Configurable number of bytes
– Coherent (BIF) and / or

I/O (IOIFx) protocols
 Supports two virtual channels per interface
 Supports multiple system configurations

IOIF0

20 GB/sec
BIF or IOIF0

IOIF1

 Southbridge
 I/O

5 GB/sec

 L
oc

al
 S

to
re

S
P

U
 M

F
C

N

A
U

C

 L
oc

al
 S

to
re

S
P

U
 M

F
C

N

A
U

C

 Lo
cal S

to
re

 S
P

U
 M

F
C

N

A
U

C

 Lo
cal S

to
re

 S
P

U
 M

F
C

N

A
U

C

 Local Store

 SPU MFC

N

AUC

 Local Store

 SPU MFC

N

AUC

 Local Store

 SPU MFC
N

AUC

 Local Store

 SPU MFC
N

AUC

96 Byte/Cycle

Element Interconnect Bus

Power Core
(PPE)

L2 Cache

 NCU

 MIC

25 GB/sec
XDR DRAM

Cell Processor ComponentsCell Processor Components

I/O Bus Master Translation (IOT)
 Translates Bus Addresses to System Real Addresses
 Two Level Translation

– I/O Segments (256 MB)
– I/O Pages (4K, 64K, 1M, 16M byte)

 I/O Device Identifier per page for LPAR
 IOST and IOPT Cache – hardware / software managed

IOIF0

20 GB/sec
BIF or IOIF0

 MIC

25 GB/sec
XDR DRAM

IOIF1

 Southbridge
 I/O

5 GB/sec

 L
o

ca
l S

to
re

S
P

U
 M

F
C

N

A
U

C

 L
oc

al
 S

to
re

S
P

U
 M

F
C

N

A
U

C

 Lo
ca

l S
to

re

 S
P

U
 M

F
C

N

A
U

C

 Lo
ca

l S
tore

 S
P

U
 M

F
C

N

A
U

C

 Local Store

 SPU MFC

N

AUC

 Local Store

 SPU MFC

N

AUC

 Local Store

 SPU MFC
N

AUC

 Local Store

 SPU MFC
N

AUC

96 Byte/Cycle

Element Interconnect Bus

Power Core
(PPE)

L2 Cache

 NCU

IIC IOT

Internal Interrupt Controller (IIC)
 Handles SPE Interrupts
 Handles External Interrupts

– From Coherent Interconnect
– From IOIF0 or IOIF1

 Interrupt Priority Level Control
 Interrupt Generation Ports for IPI
 Duplicated for each PPE hardware thread

Cell Processor ComponentsCell Processor Components

Debugging CellDebugging Cell

Linux on CellLinux on Cell

• Provided as patched to the 2.6.15 PPC64 Kernel

– Added heterogeneous lwp/thread model
• SPE thread API created (similar to pthreads library)
• User mode direct and indirect SPE access models
• Full pre-emptive SPE context management
• spe_ptrace() added for gdb support
• spe_schedule() for thread to physical SPE assignment

– currently FIFO – run to completion
– SPE threads share address space with parent PPE process

(through DMA)
• Demand paging for SPE accesses
• Shared hardware page table with PPE

– PPE proxy thread allocated for each SPE thread to:
• Provide a single namespace for both PPE and SPE threads
• Assist in SPE initiated C99 and POSIX-1 library services

– SPE Error, Event and Signal handling directed to parent PPE
thread

– SPE elf objects wrapped into PPE shared objects with extended
gld

– All patches for Cell in architecture dependent layer (subtree of
PPC64)

– The Play3 contains:

• 8 SPUs

• 1 reserved for redundancy

• 1 used as hypervisor when using a Custom OS (our case)

Linux on CellLinux on Cell

Extensions to LinuxExtensions to Linux

System Call Interface

exec Loader
File System
Framework

Device
Framework

Network
Framework

Streams
Framework

SPU Management
Framework

Privileged
Kernel

Extensions

Firmware / Hypervisor

ILP32 Processes LP64 Processes

 Cell Reference System Hardware

32-bit GNU Libs (glibc,etc)

64-bit Linux Kernel

64-bit GNU Libs (glibc)

 SPUFS
FilesystemMisc format bin

SPU Object
Loader Extension

Multi-large page, SPE event & fault handling, IIC & IOMMU support

Cell BE Architecture Specific Code

SPU Allocation, Scheduling
 & Dispatch Extension

PPC32 Apps. Cell32 Workloads PPC64 Apps.Cell64 Workloads

std. PPC32
elf interp

SPE Object Loader
Services

std. PPC64
elf interp

Programming Models Offered: RPC, Device Subsystem, Direct/Indirect Access
Hetergenous Threads -- Single SPU, SPU Groups, Shared Memory

SPE Management Runtime
Library (64-bit)

System Call Interface

exec Loader
File System
Framework

Device
Framework

Network
Framework

Streams
Framework

SPU Management
Framework

Privileged
Kernel

Extensions

Firmware / Hypervisor

ILP32 Processes LP64 Processes

 Cell Reference System Hardware

32-bit GNU Libs (glibc,etc)

64-bit Linux Kernel

64-bit GNU Libs (glibc)

 SPUFS
FilesystemMisc format bin

SPU Object
Loader Extension

Multi-large page, SPE event & fault handling, IIC & IOMMU support

Cell BE Architecture Specific Code

SPU Allocation, Scheduling
 & Dispatch Extension

PPC32 Apps. Cell32 Workloads PPC64 Apps.Cell64 Workloads

std. PPC32
elf interp

SPE Object Loader
Services

SPE Management Runtime
Library (32-bit)

std. PPC64
elf interp

Programming Models Offered: RPC, Device Subsystem, Direct/Indirect Access
Hetergenous Threads -- Single SPU, SPU Groups, Shared Memory

SPE Management Runtime
Library (64-bit)

• SPUFS Filesystem /spu/thread#/
•open, read, write, close

•mem – access to local storage
•regs – access to 128 – 128 bit registers
•mbox – spe->ppe mailbox
•Iiox - spe-> ppe interrupt mailbox
•xbox_stat - obtain mailbox status
•signal1 – signal notification 1 access
•signal2 – signal notification 2 access
•signalx_type – signal type to OR or overwrite
•npc - read/write SPE next program counter
•Fpcr – spe floating point control/status register
•Decr – spe decrementer
•decr_status – spe decrementer status
•spu_tag_mask – access tag query mask
•Event_mask – access spe event_mask
•Srr0 – access spe state restore register 0

Extensions to LinuxExtensions to Linux

System Call Interface

exec Loader
File System
Framework

Device
Framework

Network
Framework

Streams
Framework

SPU Management
Framework

Privileged
Kernel

Extensions

Firmware / Hypervisor

ILP32 Processes LP64 Processes

 Cell Reference System Hardware

32-bit GNU Libs (glibc,etc)

64-bit Linux Kernel

64-bit GNU Libs (glibc)

 SPUFS
FilesystemMisc format bin

SPU Object
Loader Extension

Multi-large page, SPE event & fault handling, IIC & IOMMU support

Cell BE Architecture Specific Code

SPU Allocation, Scheduling
 & Dispatch Extension

PPC32 Apps. Cell32 Workloads PPC64 Apps.Cell64 Workloads

std. PPC32
elf interp

SPE Object Loader
Services

SPE Management Runtime
Library (32-bit)

std. PPC64
elf interp

Programming Models Offered: RPC, Device Subsystem, Direct/Indirect Access
Hetergenous Threads -- Single SPU, SPU Groups, Shared Memory

SPE Management Runtime
Library (64-bit)

• SPUFS Filesystem /spu/thread#/
•open, mmap, close

•mem – problem state access to Local Storage
•signal1 – direct application access to Signal 1
•signal2 – direct application access to Signal 2
•cntl – direct application access to SPE controls, DMA
Queues, mailboxes

Extensions to LinuxExtensions to Linux

System Call Interface

exec Loader
File System
Framework

Device
Framework

Network
Framework

Streams
Framework

SPU Management
Framework

Privileged
Kernel

Extensions

Firmware / Hypervisor

ILP32 Processes LP64 Processes

 Cell Reference System Hardware

32-bit GNU Libs (glibc,etc)

64-bit Linux Kernel

64-bit GNU Libs (glibc)

 SPUFS
FilesystemMisc format bin

SPU Object
Loader Extension

Multi-large page, SPE event & fault handling, IIC & IOMMU support

Cell BE Architecture Specific Code

SPU Allocation, Scheduling
 & Dispatch Extension

PPC32 Apps. Cell32 Workloads PPC64 Apps.Cell64 Workloads

std. PPC32
elf interp

SPE Object Loader
Services

SPE Management Runtime
Library (32-bit)

std. PPC64
elf interp

Programming Models Offered: RPC, Device Subsystem, Direct/Indirect Access
Hetergenous Threads -- Single SPU, SPU Groups, Shared Memory

SPE Management Runtime
Library (64-bit)• SPE Task Control System Calls

•Sys_spu_create_thread – allocates an spe
task/context and creates a directory in spufs
•Sys_spu_run – activates an SPE task.context on a
physical SPE and blocks in the kernel as a proxy
thread to handle SPE events, mmu faults and errors

Extensions to LinuxExtensions to Linux

System Call Interface

exec Loader
File System
Framework

Device
Framework

Network
Framework

Streams
Framework

SPU Management
Framework

Privileged
Kernel

Extensions

Firmware / Hypervisor

ILP32 Processes LP64 Processes

 Cell Reference System Hardware

32-bit GNU Libs (glibc,etc)

64-bit Linux Kernel

64-bit GNU Libs (glibc)

 SPUFS
FilesystemMisc format bin

SPU Object
Loader Extension

Multi-large page, SPE event & fault handling, IIC & IOMMU support

Cell BE Architecture Specific Code

SPU Allocation, Scheduling
 & Dispatch Extension

PPC32 Apps. Cell32 Workloads PPC64 Apps.Cell64 Workloads

std. PPC32
elf interp

SPE Object Loader
Services

SPE Management Runtime
Library (32-bit)

std. PPC64
elf interp

Programming Models Offered: RPC, Device Subsystem, Direct/Indirect Access
Hetergenous Threads -- Single SPU, SPU Groups, Shared Memory

SPE Management Runtime
Library (64-bit)

• SPE Management Library – spe tasks
•spe create group, create thread
•spe get/set affinity, get/set context
•spe get event, get group, get_ls, get_ps_area, get_threads
•spe get / set priority, get policy
•spe group defaults, group max
•spe kill / wait
•spe open / close image
•spe write signal, read in_mbox, write out_mbox, read mbox status
•ppe initiated spe DMAs

Extensions to LinuxExtensions to Linux

Hello word PPU/SPU

““Hello World!”Hello World!” – SPE – SPE

• SPE Program

• SPE Makefile

#include <stdio.h>

int main()
{
 printf("Hello world!\n");
 return 0;
}

PROGRAM_spu := hello_spu
LIBRARY_embed := hello_spu.a
IMPORTS = $(SDKLIB_spu)/libc.a
include $(TOP)/make.footer

• PPU program

• PPU Makefile

#include <stdio.h>
#include <libspe.h>
extern spe_program_handle_t hello_spu;
int main(void)
{
 int speid, status;
 speid = spe_create_thread (0, &hello_spu, NULL, NULL, -1, 0);
 spe_wait(speid, &status, 1);
 return 0;
}

DIRS = spu
PROGRAM_ppu = hello_ppu
IMPORTS = ../spu/hello_spu.a -lspe
include $(TOP)/make.footer

““Hello World!”Hello World!” – PPE – PPE

PPE and SPE Synergistic ProgrammingPPE and SPE Synergistic Programming

#include <stdio.h>

#include <libspe.h>

extern spe_program_handle_t hello_spu;

int main(void)

{

 int speid, status;

 speid = spe_create_thread (0, &hello_spu, NULL, NULL, -1, 0);

 spe_wait(speid, &status, 1);

 return 0;

}

#include <stdio.h>

#include <cbe_mfc.h>

#include <spu_mfcio.h>

int main(unsigned long long speid, unsigned long long argp, unsigned long long envp)

{

 printf("Hello world!\n");

 return 0;

}

PPE
Code

SPE
Code

Backup Slide – “Hello World”Backup Slide – “Hello World”

Library Calls from SPULibrary Calls from SPU

• When the SPU needs to do any standard library calls, like
printf or exit, it has to call back to the main thread

– Using the stop-and-signal assembly instruction with
standardized argument value

– That value is returned from the ioctl call and the user
thread must react to that. This means copying the
arguments from the SPE Local Store, execute the
library call and calling the ioctl again

stop u14 - Stop and signal. Execution is stopped, the current
address is written to the SPU NPC register, the value u14 is
written to the SPU status register, and an interrupt is sent to the
PowerPC® Processor Unit (PPU).

Cell Primary Communication MechanismsCell Primary Communication Mechanisms

• DMA transfers, mailbox
messages, and signal-
notification

• All three are implemented
and controlled by the SPE’s
MFC

Local
Store

SXU

DMA
Queue

DMA Engine

Bus I/F Control MMIO

MMU RMT
Atomic
Facility

Data Bus
Snoop Bus
Control Bus
Xlate Load/Store
MMIO

• Main mechanism for SPUs to

– access main storage

– maintain synchronization with other processors and devices in the
system

• Can be issued either SPU via its MFC by PPE or other device, as follows:

– Code running on the SPU issues an MFC command by executing a
series of writes and/or reads using channel instructions

– Code running on the PPE or other devices issues an MFC command by
performing a series of stores and/or loads to memory-mapped I/O
(MMIO) registers in the MFC

• MFC commands are queued in one of two independent MFC command
queues:

– MFC SPU Command Queue — For channel-initiated commands by the
associated SPU

– MFC Proxy Command Queue — For MMIO-initiated commands by the
PPE or other device

MFC (Memory Flow Control) CommandsMFC (Memory Flow Control) Commands

 MFC commands that transfer data are referred to as DMA
commands

 Transfer direction for DMA commands referenced from the SPE

 Into an SPE (from main storage to local store)  get

 Out of an SPE (from local store to main storage)  put

DMA CommandsDMA Commands

• DMA get from main memory into local store

(void) mfc_get(volatile void *ls, uint64_t ea, uint32_t size,
 uint32_t tag, uint32_t tid, uint32_t rid)

• DMA put into main memory from local store

(void) mfc_put(volatile void *ls, uint64_t ea, uint32_t size,

 uint32_t tag, uint32_t tid, uint32_t rid)

• To ensure order of DMA request execution:

– mfc_putf : fenced (all commands executed before within the same tag
group must finish first, later ones could be before)

– mfc_putb : barrier (the barrier command and all commands issued
thereafter are not executed until all previously issued commands in
the same tag group have been performed)

DMA GET/PUT CommandsDMA GET/PUT Commands

• DMA transfers

– transfer sizes can be 1, 2, 4, 8, and n*16 bytes (n integer)

– maximum is 16KB per DMA transfer

– 128B alignment is preferable

• DMA command queues per SPU

– 16-element queue for SPU-initiated requests

– 8-element queue for PPE-initiated requests

 SPU-initiated DMA is always preferable

 DMA tags

– each DMA command is tagged with a 5-bit identifier

– same identifier can be used for multiple commands

– tags used for polling status or waiting on completion of DMA commands

• DMA lists

– a single DMA command can cause execution of a list of transfer requests (in LS)

– lists implement scatter-gather functions

– a list can contain up to 2K transfer requests

DMA ResourcesDMA Resources

• Address in the other SPE’s local store is represented as a 32-bit
effective address (global address)

• SPE issuing the DMA command needs a pointer to the other SPE’s local
store as a 32-bit effective address (global address)

• PPE code can obtain effective address of an SPE’s local store:

#include <libspe.h>

speid_t speid;

void *spe_ls_addr;

spe_ls_addr = spe_get_ls(spuid);

• Effective address of an SPE’s local store can then be made available to
other SPEs (e.g. via DMA or mailbox)

SPE2SPE DMASPE2SPE DMA

This is just a simple program to show how to send/receive
information using DMA

Will be expanded in next sections

Simple DMA DemoSimple DMA Demo

Backup Slide - Simple DMA DemoBackup Slide - Simple DMA Demo

This is just a simple program to show how to send/receive
information using DMA between SPUs.

DMA Demo Between SPUsDMA Demo Between SPUs

Backup Slide - Between SPUsBackup Slide - Between SPUs

Debugging the SPE
What is going on?

• SPU_INFO=1

– Implemented within libspe runtime library

– When loading SPE ELF executable, prints message
Loading SPE program : NNN
SPU LS Entry Addr : NNN

– Before starting up new SPE thread, prints message
Starting SPE thread 0x..., to attach debugger
use: spu­gdb ­p NNN

• SPU_DEBUG_START=1

– Includes everything done by SPU_INFO=1

– Waits until debugger is attached (or signal received)

Since each SPU register can hold multiple fixed (or floating) point values of different sizes, GDB

offers to us a data structure that can be accessed with different formats:

(gdb) ptype $r70
type = union __gdb_builtin_type_vec128 {
 int128_t uint128;
 float v4_float[4];
 int32_t v4_int32[4];
 int16_t v8_int16[8];
 int8_t v16_int8[16];
}

So, specifying the field in the data structure, we can update it:

(gdb) p $r70.uint128
$1 = 0x00018ff000018ff000018ff000018ff0
(gdb) set $r70.v4_int32[2]=0xdeadbeef
(gdb) p $r70.uint128
$2 = 0x00018ff000018ff0deadbeef00018ff0

Debug HINTDebug HINT

Exploiting Software Vulnerabilities

“The SPU Local Store has no memory protection, and memory access
wraps from the end of Local Store back to the beginning. An SPU
program is free to write anywhere in Local Store
including its own instruction space. A common problem in
SPU programming is the corruption of the SPU program text when the
stack area overflows into the program area. This problem typically does
not become apparent until some later point in the program execution
when the program attempts to execute code in area that was corrupted,
which typically results in an illegal instruction exception. Even with a
debugger it can be difficult to track down this type of problem because
the cause and effect can occur far apart in the program execution.
Adding printf's just moves the failure point around. “

Memory OverflowsMemory Overflows

SPU Memory LayoutSPU Memory Layout

0x3FFFF

0x00000

SPU ABI reserved usage

Runtime stack

Global data

.Text

Stack Grows from
the higher address
to the lower address

Exploit SampleExploit Sample

Exploiting problems in the DMA communications between
PPU-SPU and SPU-SPU.

The attacker can take complete control over the application
running in the SPU... They can later force one SPU
to exploit others, using the SPU-SPU communications.

For sure, it's not a problem in the architecture, but with
programmers if they don't write secure code.

Backup Slide - Exploit SampleBackup Slide - Exploit Sample

ScenarioScenario

ScenarioScenario

If a code like this are been used to receive a value from user and then
pass it through DMA, but the static value are used to define the buffer
lenght, the concatenation will force an overflow.

This can be used in a DMA communication, permitting the attacker to
take control of a SPU.

Also, between SPUs this could occur.

The simulator has a feature that monitors selected addresses or regions of Local Store
for read or write accesses. This feature can identify stack overflow conditions.

Invoked in the simulator command window as follows:

enable_stack_checking [spu_number] [spu_executable_filename]

This procedure uses the nm system utility to determine the area of Local Store that will
contain program code and creates trigger functions to trap writes by the SPU into this
region.

Note: The simulator's method of detecting stack overflow only looks for stack overflow
into the text and static data segments and thus does not detect stack overflows into the
heap.

The same approach used by this TCL function can be used to monitor other portions and
structures.

Easy to find?Easy to find?

What else can we do?What else can we do?

• Nick Breese presented his CrackStation project in Blackhat this year

• Since he sent it to me before the conference, I prepared this presentation
without redundancies...

• It used the SIMD capabilities and big registers provided by

the architecture to crack passwords ;)

• Since the SPU access are controlled by the PPE, the idea of run system
integrity protections inside de SPE cannot be done

• Hint: The SMM manipulation library have been
released in Phrack #65 (this month - April/2008)

• IBM Researchers released a study about the usage of the Cell SPU as a
Garbage Collector Co-processor

• I have not tried to see if there is a JTAG-enabled interface in those Cell
machines (blade and PS3) to try the RISCWatch

AcknowledgesAcknowledges

• I would like to tks to Scanit and Oger Systems
for give me a PS3 to prepair this presentation

• I used lots of copy+paste from IBM

 training materials in this presentation, so tks
to the authors! - Pay attention to copyrights

• I also need to tks to my research partners at
Rise Security and Filipe Balestra

• Special tks to Andre Detsch, the Cell

 Kernel Guru for sharing with me his
experiences and insights

• Also, special tks to the HITB organizers for
trust me (again!)

• Let's party folks!

 THANK YOUTHANK YOU
Questions & Maybe,

Answers

End! Really is?End! Really is?

ReferencesReferences

– Cell resource center at developerWorks
• http://www-128.ibm.com/developerworks/power/cell/

– Cell developer's corner at power.org
• http://www.power.org/resources/devcorner/cellcorner/

– The cell project at IBM Research
• http://www.research.ibm.com/cell/

– The Cell BE at IBM alphaWorks

• http://www.alphaworks.ibm.com/topics/cell

– IBM Power Architecture
• http://www-03.ibm.com/chips/power/

– Cell BE documentation at IBM Microelectronics
• http://www-

306.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engi
neCell

– Linux info at the Barcelona Supercomputing Center website
• http://www.bsc.es/projects/deepcomputing/linuxoncell

