
FireQOS Reference

Copyright (c) 2004,2013-2014 Costa Tsaousis costa@tsaousis.org
Copyright (c) 2012-2014 Phil Whineray phil@sanewall.org

Version 2.0.0 (Built 24 Oct 2014)

Contents

1 FireQOS Reference 2

1.1 Running and Configuring FireQOS 2

1.1.1 fireqos(1) . 2

1.1.2 fireqos.conf(5) . 5

1.2 Organising Traffic with FireQOS 8

1.2.1 fireqos-interface(5) . 8

1.2.2 fireqos-class(5) . 10

1.2.3 fireqos-match(5) . 14

1.3 Optional Parameters for FireQOS Commands 16

1.3.1 fireqos-params(5) . 16

1.3.2 fireqos-params-class(5) . 17

1.3.3 fireqos-params-match(5) 23

1

mailto:costa@tsaousis.org
mailto:phil@sanewall.org

The latest version of this manual is available online as a PDF, as single page
HTML and also as multiple pages within the website.

1 FireQOS Reference

1.1 Running and Configuring FireQOS

1.1.1 fireqos(1)

NAME

fireqos - an easy to use but powerful traffic shaping tool

SYNOPSIS

fireqos CONFIGFILE [start | debug] [– conf-arg . . .]

fireqos { stop | clear_all_qos }

fireqos status [name [dump [class]]]

fireqos { dump | tcpdump } name class [tcpdump-arg . . .]

fireqos { drops | overlimits | requeues } name

DESCRIPTION

FireQOS is a helper to assist you configure traffic shaping on Linux.

Run without any arguments, fireqos will present some help on usage.

When given CONFIGFILE, fireqos will use the named file instead of
/etc/firehol/fireqos.conf as its configuration.

The parameter name always refers to an interface name from the configuration
file. The parameter class always refers to a named class within a named interface.

It is possible to pass arguments for use by the configuration file separating any
conf-arg values from the rest of the arguments with --. The arguments are
accessible in the configuration using standard bash(1) syntax e.g. $1, $2, etc.

COMMANDS

start; debug Activates traffic shaping on all interfaces, as given in the configu-
ration file. When invoked as debug, FireQOS also prints all of the tc(8)
commands it executes.

2

http://firehol.org/fireqos-manual.pdf
http://firehol.org/fireqos-manual.html
http://firehol.org/fireqos-manual.html
http://firehol.org/fireqos-manual/

stop Removes all traffic shaping applied by FireQOS (it does not touch QoS on
other interfaces and IFBs used by other tools).

clear_all_qos Removes all traffic shaping on all network interfaces and re-
moves all IFB devices from the system, even those applied by other tools.

status Shows live utilisation for the specified interface. FireQOS will show you
the rate of traffic on all classes, adding one line per second (similarly to
vmstat, iostat, etc.)
If dump is specified, it tcpdumps the traffic in the given class of the interface.

tcpdump; dump FireQOS temporarily mirrors the traffic of any leaf class to
an IFB device. Then it runs tcpdump(8) on this interface to dump the
traffic to your console.
You may add any tcpdump(8) parameters you like to the command line,
(to dump the traffic to a file, match a subset of the traffic, etc.), for example
this:

fireqos tcpdump adsl-in voip -n

will start a tcpdump of all traffic on interface adsl-in, in class voip. The
parameter -n is a tcpdump(8) parameter.

Note
When FireQOS is running in tcpdump mode, it locks itself and
will refuse to run in parallel with another FireQOS altering the
QoS, or tcpdumping other traffic. This is because FireQOS
reserves device ifb0 for monitoring. If two FireQOS processes
were allowed to tcpdump in parallel, your dumps would be wrong.
So it locks itself to prevent such a case.

drops Shows packets dropped per second, per class, for the specified interface.

overlimits Shows packets delayed per second, per class, for the specified inter-
face.

requeues Shows packets requeued per second, per class, for the specified inter-
face.

FILES

/etc/firehol/fireqos.conf

3

SEE ALSO

• fireqos.conf(5) - FireQOS configuration file

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

• tc(8) - show / manipulate traffic control settings

• tcpdump(8) - show / manipulate traffic control settings

4

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual
http://lartc.org/manpages/tc.html
http://www.tcpdump.org/manpages/tcpdump.1.html

1.1.2 fireqos.conf(5)

NAME

fireqos.conf - FireQOS configuration file

DESCRIPTION

This file defines the traffic shaping that will be applied by fireqos(1).

The default configuration file is /etc/firehol/fireqos.conf. It can be over-
ridden from the command line.

A configuration consists of a number of input and output interface definitions
(see fireqos-interface(5)). Each interface can define any number of (optionally
nested) classes (see fireqos-class(5)) which shape the traffic which they match
(see fireqos-match(5)).

SPEED UNITS

In FireQOS, speeds can be expressed in the following units:

#bps # bytes per second

#kbps; #Kbps # kilobytes per second

#mbps; #Mbps # megabytes per second

#gbps; #Gbps # gigabytes per second

#bit # bits per second

#kbit; #Kbit; # # kilobits per second (default)

#mbit; #Mbit # megabits per second

#gbit; #Gbit # gigabits per second

#% In a class, uses this percentage of the enclosing rate.

Note
The default, kbit is different to tc(8) which assumes bytes per second
when no unit is specified.

5

EXAMPLE

incoming traffic from my ADSL router
interface eth2 adsl-in input rate 10500kbit adsl remote pppoe-llc

class voip commit 100kbit pfifo
match udp ports 5060,10000:10100 # asterisk sip and rtp
match udp ports 16393:16402 # apple facetime

class realtime commit 10%
match tcp port 22,1195:1198,1753 # ssh, openvpn, pptp
match udp port 53 # dns
match proto GRE
match icmp
match tcp syn
match tcp ack

class clients commit 10%
match tcp port 20,21,25,80,143,443,465,873,993 # mail, web, ftp, etc

unmatched traffic goes here (’default’ is a special name)
class default max 90%

I define torrents beneath the default class, so they slow
down when the default class is willing to get bandwidth

class torrents max 90%
match port 51414 # my torrent client

outgoing traffic to my ADSL router
interface eth2 adsl-out output rate 800kbit adsl remote pppoe-llc

class voip commit 100kbit pfifo
match udp ports 5060,10000:10100 # asterisk sip and rtp
match udp ports 16393:16402 # apple facetime

class realtime commit 10%
match tcp port 22,1195:1198,1753 # ssh, openvpn, pptp
match udp port 53 # dns
match proto GRE
match icmp
match tcp syn
match tcp ack

class clients commit 10%
match tcp port 20,21,25,80,143,443,465,873,993 # mail, web, ftp, etc

unmatched traffic goes here (’default’ is a special name)

6

class default max 90%

I define torrents beneath the default class, so they slow
down when the default class is willing to get bandwidth

class torrents max 90%
match port 51414 # my torrent client

SEE ALSO

• fireqos(1) - FireQOS program

• fireqos-interface(5) - QOS interface definition

• fireqos-class(5) - QOS class definition

• fireqos-match(5) - QOS traffic match

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

• tc(8) - show / manipulate traffic control settings

7

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual
http://lartc.org/manpages/tc.html

1.2 Organising Traffic with FireQOS

1.2.1 fireqos-interface(5)

NAME

fireqos-interface - create an interface definition

SYNOPSIS

{ interface | interface4 } device name direction [optional-class-params] { rate |
commit | min } speed

interface46 . . .

interface6 . . .

DESCRIPTION

Writing interface or interface4 applies traffic shaping rules only to IPv4
traffic.

Writing interface6 applies traffic shaping rules only to IPv6 traffic.

Writing interface46 applies traffic shaping rules to both IPv4 and IPv6 traffic.

The actual traffic shaping behaviour of a class is defined by adding classes. See
fireqos-class(5).

Note
To achieve best results with incoming traffic shaping, you should
not use 100% of the available bandwidth at the interface level.
If you use all there is, at 100% utilisation of the link, the neighbour
routers will start queuing packets. This will destroy prioritisation.
Try 85% or 90% instead.

PARAMETERS

device This is the interface name as shown by ip link show (e.g. eth0, ppp1,
etc.)

name This is a single-word name for this interface and is used for retrieving
status information later.

direction If set to input, traffic coming in to the interface is shaped.
If set to output, traffic going out via the interface is shaped.

8

optional-class-params For a list of optional class parameters which can be
applied to an interface, see fireqos-params-class(5).

speed For an interface, the committed speed must be specified with the rate
option. The speed can be expressed in any of the units described in
fireqos.conf(5).

EXAMPLES

To create an input policy on eth0, capable of delivering up to 1Gbit of traffic:

interface eth0 lan-in input rate 1Gbit

SEE ALSO

• fireqos.conf(5) - FireQOS configuration file

• fireqos-class(5) - QOS class definition

• fireqos-params-class(5) - QOS class parameters

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

9

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual

1.2.2 fireqos-class(5)

NAME

fireqos-class - traffic class definition

SYNOPSIS

{class|class4|class6|class46} [group] name [optional-class-params]

{class|class4|class6|class46} group end

DESCRIPTION

There is also an optional match parameter called class; see fireqos-params-
match(5).

Writing class inherits the IPv4/IPv6 version from its enclosing interface (see
fireqos-interface(5)).

Writing class4 includes only IPv4 traffic in the class.

Writing class6 includes only IPv6 traffic in the class.

Writing class46 includes both IPv4 and IPv6 traffic in the class.

The actual traffic to be matched by a class is defined by adding matches. See
fireqos-match(5).

The sequence that classes appear in the configuration defines their priority. The
first class is the most important one. Unless otherwise limited it will get all
available bandwidth if it needs to.

The second class is less important than the first, the third is even less important
than the second, etc. The idea is very simple: just put the classes in the order
of importance to you.

Classes can have their priority assigned explicitly with the prio parameter. See
fireqos-params-class(5).

Note
The underlying Linux qdisc used by FireQOS, HTB, supports only 8
priorities, from 0 to 7. If you use more than 8 priorities, all after the
8th will get the same priority (prio 7).

All classes in FireQOS share the interface bandwidth. However, every class
has a committed rate (the minimum guaranteed speed it will get if it needs to)
and a ceiling (the maximum rate this class can reach, provided there is capacity
available and even if there is spare).

10

Classes may be nested to any level by using the class group syntax.

By default FireQOS creates nested classes as classes directly attached to their
parent class. This way, nesting does not add any delays.

FireQOS can also emulate new hardware at the group class level. This may
be needed, when for example you have an ADSL router that you connect to via
Ethernet: you want the LAN traffic to be at Ethernet speed, but WAN traffic at
ADSL speed with proper ADSL overheads calculation.

To accomplish hardware emulation nesting, you add a linklayer definition
(ethernet, adsl, atm, etc.), or just an mtu to the group class. FireQOS will
create a qdisc within the class, where the linklayer parameters will be assigned
and the child classes will be attached to this qdisc. This adds some delay to
the packets of the child classes, but allows you to emulate new hardware. For
linklayer options, see fireqos-params-class(5).

There is special class, called default. Default classes can be given explicitly in
the configuration file. If they are not found in the config, FireQOS will append
one at the end of each interface or class group.

PARAMETERS

group It is possible to nest classes by using a group. Grouped classes must be
closed with the class group end command.

name This is a single-word name for this class and is used for displaying status
information.

optional-class-params The set of optional class parameters to apply to this
class.
The following optional class parameters are inherited from the interface
the class is in:

• ceil

• burst

• cburst

• quantum

• qdisc

If you define one of these at the interface level, then all classes within the
interface will get the value by default. These values can be overwritten by
defining the parameter on the class too.
Optional class parameters not in the above list are not inherited from
interfaces.

11

EXAMPLES

To create a nested class, called servers, containing http and smtp:

interface eth0 lan input rate 1Gbit
class voip commit 1Mbit

match udp ports 5060,10000:10100

class group servers commit 50% # define the parent class
match tcp # apply to all child classes

class mail commit 50% # 50% of parent (’servers’)
match port 25 # matches within parent (’servers’)

class web commit 50%
match port 80

class group end # end the group ’servers’

class streaming commit 30%

To create a nested class which emulates an ADSL modem:

interface eth0 lan output rate 1Gbit ethernet
class lan

match dst 192.168.0.0/24 # LAN traffic

class group adsl rate 10Mbit ceil 10Mbit adsl remote pppoe-llc
match all # all non-lan traffic in this emulated hardware group

class voip # class within adsl
match udp port 5060

class web # class within adsl
match tcp port 80,443

class group end

SEE ALSO

• fireqos-params-class(5) - QOS class parameters

• fireqos(1) - FireQOS program

• fireqos.conf(5) - FireQOS configuration file

• fireqos-interface(5) - QOS interface definition

12

• fireqos-match(5) - QOS traffic match

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

13

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual

1.2.3 fireqos-match(5)

NAME
fireqos-match - QOS traffic match

SYNOPSIS
{match|match4|match6|match46} optional-match-params

DESCRIPTION
Writing match inherits the IPv4/IPv6 version from its enclosing class (see fireqos-
class(5)).
Writing match4 includes only IPv4 traffic in the match.
Writing match6 includes only IPv6 traffic in the match.
Writing match46 includes both IPv4 and IPv6 traffic in the match.
You can add as many match statements as you like to a FireQOS configuration.
They assign traffic to a class: by default to the class after which they are declared.
The sequence that matches appear in the configuration defines their priority,
with the first match being given a prio of 10, with 10 added for each subsequent
match (10, 20, 30, . . .).
Matches can have their priority assigned explicitly with the prio parameter. See
fireqos-params-match(5).
If one match statement generates multiple tc(8) filter statements, all filters
generated by the same match statement will have the same prio.

Note
match rules are attached to the parent of the class they appear
in. Within the configuration they are written under a class, but in
reality they are attached to their class parent, so that they classify
the parent’s traffic that they match, into the class.

It is also possible to group all match statements together below the classes. This
allows them to be arranged in preferred order, without the need for any explicit
prio parameters. In this case however, each match statement must specify to
which class it classifies the packets it matches, using the class parameter. See
fireqos-params-match(5) and the examples below.

PARAMETERS

optional-match-params The set of optional parameters which describe this
match. See fireqos-params-match(5).

14

EXAMPLES

Match traffic within classes:

interface eth0 lan output rate 1Gbit
class voip

match udp ports 5060,10000:10100
class dns

match udp port 53
class mail

match tcp port 25

Matches split out and explicitly assigning traffic to classes (N.B. without the
class parameters, all traffic would be classified into ‘mail’):

interface eth0 lan output rate 1Gbit
class voip
class dns
class mail

match udp ports 5060,10000:10100 class voip
match tcp port 25 class mail
match tcp port 80 class web

SEE ALSO

• fireqos-params-match(5) - QOS match parameters

• fireqos(1) - FireQOS program

• fireqos.conf(5) - FireQOS configuration file

• fireqos-interface(5) - QOS interface definition

• fireqos-class(5) - QOS class definition

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

• tc(8) - show / manipulate traffic control settings

15

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual
http://lartc.org/manpages/tc.html

1.3 Optional Parameters for FireQOS Commands

1.3.1 fireqos-params(5)

NAME

fireqos-params - shared class/match parameters

SYNOPSIS

prio

priority

DESCRIPTION

Some optional parameter names are the same for both class and match. This
page exists as a placeholder to help you find the appropriate documentation.

If you are searching for FireQOS parameters in general, see both fireqos-params-
class(5) and/or fireqos-params-match(5) depending upon your need.

prio For the class version, see fireqos-params-class(5).
For the match version, see fireqos-params-match(5).

priority For the class version, see fireqos-params-match(5).
For the match version, see fireqos-params-class(5).

SEE ALSO

• fireqos-params-class(5) - QOS class parameters

• fireqos-params-match(5) - QOS match parameters

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

16

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual

1.3.2 fireqos-params-class(5)

NAME

fireqos-params-class - optional class parameters

SYNOPSIS

rate | commit | min speed

ceil | max speed

minrate speed

{ qdisc qdisc-name | pfifo|bfifo|sfq|fq_codel|codel|none } [options “qdisc-options”]

prio { 0..7 | keep | last }

{ linklayer linklayer-name } | { adsl {local|remote} encapsulation } | ethernet |
atm

mtu bytes

mpu bytes

tsize size

overhead bytes

r2q factor

burst bytes

cburst bytes

quantum bytes

priority | balanced

DESCRIPTION

All of the options apply to interface and class statements.

Units for speeds are defined in fireqos.conf(5).

rate, commit, min

When a committed rate of speed is provided to a class, it means that the
bandwidth will be given to the class when it needs it. If the class does not need
the bandwidth, it will be available for any other class to use.

For interfaces, a rate must be defined.

For classes the rate defaults to 1/100 of the interface capacity.

17

ceil, max

Defines the maximum speed a class can use. Even there is available bandwidth,
a class will not exceed its ceil speed.

For interfaces, the default is the rate speed of the interface.

For classes, the defaults is the ceil of the their interfaces.

minrate

Defines the default committed speed for all classes not specifically given a rate
in the config file. It forces a recalculation of tc(8) r2q.

When minrate is not given, FireQOS assigns a default value of 1/100 of the
interface rate.

qdisc qdisc-name, pfifo, bfifo, sfq, fq_codel, codel, none

The qdisc defines the method to distribute class bandwidth to its sockets. It is
applied within the class itself and is useful in cases where a class gets saturated.
For information about these, see the Traffic Control Howto

A qdisc is only useful when applied to a class. It can be specified at the interface
level in order to set the default for all of the included classes.

To pass options to a qdisc, you can specify them through an environment variable
or explicitly on each class.

Set the variable FIREQOS_DEFAULT_QDISC_OPTIONS_qdiscname in the
config file. For example, for sfq:

FIREQOS_DEFAULT_QDISC_OPTIONS_sfq="perturb 10 quantum 2000".

Using this variable each sfq will get these options by default. You can still
override this by specifying explicit options for individual qdiscs, for example to
add some sfq options you would write:

class classname sfq options "perturb 10 quantum 2000"

The options keyword must appear just after the qdisc name.

prio (class)

Note
There is also a match parameter called prio, see fireqos-params-
match(5).

18

http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/classless-qdiscs.html

HTB supports 8 priorities, from 0 to 7. Any number less than 0 will give priority
0. Any number above 7 will give priority 7.

By default, FireQOS gives the first class priority 0, and increases this number by
1 for each class it encounters in the config file. If there are more than 8 classes,
all classes after the 8th will get priority 7. In balanced mode (see balanced,
below), all classes will get priority 4 by default.

FireQOS restarts priorities for each interface and class group.

The class priority defines how the spare bandwidth is spread among the classes.
Classes with higher priorities (lower prio) will get all spare bandwidth. Classes
with the same priority will get a percentage of the spare bandwidth, proportional
to their committed rates.

The keywords keep and last will make a class use the priority of the class just
above / before it. So to make two consecutive classes have the same prio, just
add prio keep to the second one.

linklayer linklayer-name, ethernet, atm

The linklayer can only be given on interfaces. It is used by the kernel to
calculate the overheads in the packets.

adsl

adsl is a special linklayer that automatically calculates ATM overheads for
the link.

local is used when the ADSL modem is directly attached to your computer (for
example a PCI card, or a USB modem).

remote is used when you have an ADSL router attached to an ethernet port of
your computer.

When one is using PPPoE pass-through, so there is an ethernet ADSL modem
(not router) and PPP is running on the Linux host, the option to choose is
local.

Note
This special case has not yet been demonstrated for sure. Experiment
a bit and if you find out, let us know to update this page. In practice,
this parameter lets the kernel know that the packets it sees, have
already an ethernet header on them.

encapsulation can be one of (all the labels on the same line are aliases):

• IPoA-VC/Mux or ipoa-vcmux or ipoa-vc or ipoa-mux,

19

• IPoA-LLC/SNAP or ipoa-llcsnap or ipoa-llc or ipoa-snap

• Bridged-VC/Mux or bridged-vcmux or bridged-vc or bridged-mux

• Bridged-LLC/SNAP or bridged-llcsnap or bridged-llc or bridged-snap

• PPPoA-VC/Mux or pppoa-vcmux or pppoa-vc or pppoa-mux

• PPPoA-LLC/SNAP or pppoa-llcsnap or pppoa-llc or pppoa-snap

• PPPoE-VC/Mux or pppoe-vcmux or pppoe-vc or pppoe-mux

• PPPoE-LLC/SNAP or pppoe-llcsnap or pppoe-llc or pppoe-snap

If your adsl router can give you the mtu, it would be nice to add an mtu parameter
too. For detailed info, see here.

mtu

Defines the MTU of the interface in bytes.

FireQOS will query the interface to find its MTU. You can overwrite this
behaviour by giving this parameter to a class or interface.

mpu

Defines the MPU of the interface in bytes.

FireQOS does not set a default value. You can set your own using this parameter.

tsize

FireQOS does not set a default size. You can set your own using this parameter.

overhead

FireQOS automatically calculates the bytes overhead for ADSL. For all other
technologies, you can specify the overhead in the config file.

r2q

FireQOS calculates the proper r2q factor, so that you can control speeds in steps
of 1/100th of the interface speed (if that is possible).

Note
The HTB manual states that this parameter is ignored when a
quantum have been set. By default, FireQOS sets quantum to
interface MTU, so r2q is probably is ignored by the kernel.

20

http://ace-host.stuart.id.au/russell/files/tc/tc-atm/

burst

burst specifies the number of bytes that will be sent at once, at ceiling speed,
when a class is allowed to send traffic. It is like a ‘traffic unit’. A class is allowed
to send at least burst bytes before trying to serve any other class.

burst should never be lower that the interface mtu and class groups and interfaces
should never have a smaller burst value than their children. If you do specify
a higher burst for a child class, its parent may get stuck sometimes (the child
will drain the parent).

By default, FireQOS lets the kernel decide this parameter, which calculates the
lowest possible value (the minimum value depends on the rate of the interface
and the clock speed of the CPU).

burst is inherited from interfaces to classes and from group classes to their
subclasses. FireQOS will not allow you to set a burst at a subclass, higher than
its parent. Setting a burst of a subclass higher than its parent will drain the
parent class, which may be stuck for up to a minute when this happens. For
this check to work, FireQOS uses just its configuration (it does not query the
kernel to check how the value specified in the config file for a subclass relates to
the actual value of its parent).

cburst

cburst is like burst, but at hardware speed (not just ceiling speed).

By default, FireQOS lets the kernel decide this parameter.

cburst is inherited from interfaces to classes and from group classes to their
subclasses. FireQOS will not allow you to set a cburst at a subclass, higher to
its parent. Setting a cburst of a subclass higher than its parent, will drain the
parent class, which may be stuck for up to a minute when this happens. For
this check to work, FireQOS uses just its configuration (it does not query the
kernel to check how the value specified in the config file for a subclass relates to
the actual value of its parent).

quantum

quantum specifies the number of bytes a class is allowed to send at once, when it
is borrowing spare bandwidth from other classes.

By default, FireQOS sets quantum to the interface mtu.

quantum is inherited from interfaces to classes and from group classes to their
subclasses.

21

priority, balanced

These parameters set the priority mode of the child classes.

priority priority is the default mode, where FireQOS assigns an incremental
priority to each class. In this mode, the first class takes prio 0, the second
prio 1, etc. When a class has a higher prio than the others (higher =
smaller number), this high priority class will get all the spare bandwidth
available, when it needs it. Spare bandwidth will be allocate to lower
priority classes only when the higher priority ones do not need it.

balanced balanced mode gives prio 4 to all child classes. When multiple
classes have the same prio, the spare bandwidth available is spread among
them, proportionally to their committed rate. The value 4 can be overwrit-
ten by setting FIREQOS_BALANCED_PRIO at the top of the config
file to the prio you want the balanced mode to assign for all classes.

The priority mode can be set in interfaces and class groups. The effect is the
same. The classes that are defined as child classes, will get by default the
calculated class prio based on the priority mode given.

These options affect only the default prio that will be assigned by FireQOS.
The default is used only if you don’t explicitly use a prio parameter on a class.

Note
There is also a match parameter called priority, see fireqos-params-
match(5).

SEE ALSO

• fireqos(1) - FireQOS program

• fireqos.conf(5) - FireQOS configuration file

• fireqos-interface(5) - QOS interface definition

• fireqos-class(5) - QOS class definition

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

22

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual

1.3.3 fireqos-params-match(5)

NAME

fireqos-params-match - optional match parameters

SYNOPSIS

at { root | name }

class name

syn|syns

ack|acks

{ proto|protocol protocol [,protocol. . .] } |tcp|udp|icmp|gre|ipv6

{ tos | priority } tosid [,tosid. . .]

mark mark [,mark. . .]

{ port | ports } port[:range] [,port[:range]. . .]

{ sport | sports } port[:range] [,port[:range]. . .]

{ dport | dports } port[:range] [,port[:range]. . .]

{ ip | net | host } net [,net. . .]

src net [,net. . .]

dst net [,net. . .]

prio id

DESCRIPTION

These options apply to match statements.

at

By default a match is attached to the parent of its parent class. For example,
if its parent is a class directly under the interface, then the match is attached
to the interface and is compared against all traffic of the interface. For nested
classes, a match of a leaf, is attached to the parent class and is compared against
all traffic of this parent class.

With the at parameter, a match can be attached any class. The name parameter
should be a class name. The name root attaches the match to the interface.

23

class

Defines the name of the class that will get the packets matched by this match.

By default it is the name of the class the match statement appears under.

Note
There is also a class definition for traffic, see fireqos-class(5).

syn, syns

Match TCP SYN packets. Note that the tcp parameter must be specified.

If the same match statement includes more protocols than TCP, then this match
will work for the TCP packets (it will be silently ignored for all other protocols).

For example, syn is ignored when generating the UDP filter in the below:

match tcp syn
match proto tcp,udp syn

ack, acks

Same as syn, but matching TCP ACK packets.

proto, protocol, tcp, udp, icmp, gre, ipv6

Match the protocol in the IP header.

tos, priority

Match to TOS field of ipv4 or the priority field of ipv6. The tosid can be a
value/mask in any format tc(8) accepts, or one of the following:

• min-delay, minimize-delay, minimum-delay, low-delay, interactive

• maximize-throughput, maximum-throughput, max-throughput, high-
throughput, bulk

• maximize-reliability, maximum-reliability, max-reliability, reliable

• min-cost, minimize-cost, minimum-cost, low-cost, cheap, normal-service,
normal

Note
There is also a class parameter called priority, see fireqos-params-
class(5).

24

mark (QOS)

Match an iptables(8) MARK. Matching iptables(8) MARKs does not work on
input interfaces. You can use them only on output. The IFB devices that are
used for shaping inbound traffic do not have any iptables hooks to allow matching
MARKs. If you try it, FireQOS will attempt to do it, but currently you will get
an error from the tc(8) command executed.

ports, sports, dports

Match ports of the IP header. ports will create rules for matching source and
destination ports (separate rules for each). dports matches destination ports,
sports matches source ports.

ip, net, host, src, dst

Match IPs of the IP header. ip, net and host will create rules for matching
source and destination IPs (separate rules for each). src matches source IPs
and dst destination IPs.

Note
If the class these matches appear in are IPv4, then only IPv4 IPs
can be used. To override use match6 ... src/dst *IPV6_IP*

Similarly, if the class is IPv6, then only IPv6 IPs can be used. To
override use match4 ... src/dst *IPV4_IP*.

You can mix IPv4 and IPv6 in any way you like. FireQOS supports inheritance,
to figure out for each statement which is the default. For example:

interface46 eth0 lan output rate 1Gbit # ipv4 and ipv6 enabled
class voip # ipv4 and ipv6 class, as interface is both

match udp port 53 # ipv4 and ipv6 rule, as class is both
match4 src 192.0.2.1 # ipv4 only rule
match6 src 2001:db8::1 # ipv6 only rule

class4 realtime # ipv4 only class
match src 198.51.100.1 # ipv4 only rule, as class is ipv4-only

class6 servers # ipv6 only class
match src 2001:db8::2 # ipv6 only rule, as class is ipv6-only

To convert an IPv4 interface to IPv6, just replace interface with interface6.
All the rules in that interface, will automatically inherit the new protocol. Of
course, if you use IP addresses for matching packets, make sure they are IPv6
IPs too.

25

prio (match)

Note
There is also a class parameter called prio, see fireqos-params-
class(5).

All match statements are attached to the interface. They forward traffic to their
class, but they are actually executed for all packets that are leaving the interface
(note: input matches are actually output matches on an IFB device).

By default, the priority they are executed, is the priority they appear in the
configuration file, i.e. the first match of the first class is executed first, then the
rest matches of the first class in the sequence they appear, then the matches of
the second class, etc.

It is sometimes necessary to control the order of matches. For example, when
you want host 192.0.2.1 to be assigned the first class, except port tcp/1234 which
should be assigned the second class. The following will not work:

interface eth0 lan output rate 1Gbit
class high

match host 192.0.2.1

class low
match host 192.0.2.1 port 1234 # Will never match

In this case, the first match is assigned priority 10 and the second priority 20.
The second match will never match anything, since all traffic for the host is
already matched by the first one.

Setting an explicit priority allows you to change the order in which the matches
are executed. FireQOS gives priority 10 to the first match of every interface,
20 to the second match, 30 to the third match, etc. So the default is 10 x the
sequence number. You can set prio to overwrite this number.

To force executing the second match before the first, just set a lower priority for
it. For example, this will cause the desired behaviour:

interface eth0 lan output rate 1Gbit
class high

match host 192.0.2.1

class low
match host 192.0.2.1 port 1234 prio 1 # Matches before host-only

26

SEE ALSO

• fireqos(1) - FireQOS program

• fireqos.conf(5) - FireQOS configuration file

• fireqos-match(5) - QOS traffic match

• FireHOL Website

• FireHOL Online PDF Manual

• FireHOL Online HTML Manual

27

http://firehol.org/
http://firehol.org/firehol-manual.pdf
http://firehol.org/manual

	FireQOS Reference
	Running and Configuring FireQOS
	fireqos(1)
	fireqos.conf(5)

	Organising Traffic with FireQOS
	fireqos-interface(5)
	fireqos-class(5)
	fireqos-match(5)

	Optional Parameters for FireQOS Commands
	fireqos-params(5)
	fireqos-params-class(5)
	fireqos-params-match(5)

