
On Intrusion Resiliency
 Tim Lawless, CISSP <lawless@wwjh.net>

Abstract

This paper puts forth the concept of intrusion resiliency as an emergent
behavior that occurs within coupled intrusion detection and intrusion
response mechanisms when the mechanisms, as a whole, exhibit a key
set of identified attributes. In illustrative example of how these
attributes interact with each other to produce this behavior is given in
the form of the Saint Jude Linux Kernel Module.

Introduction

During recent years, significant strides have been made in the identification and

elimination of software flaws that open up windows of exposure during which the
integrity of host systems may be assailed. Unfortunately, the increased awareness and
attention that security-related software flaws have drawn has come with a cost. The rate
at which new vulnerabilities are being discovered and published is increasing at super-
linear rates, according to data compiled by CERT/CCi, and SecurityFocus.comii (Figure
1). This growth directly translates into more frequent windows of exposure during which
host systems are susceptible to being compromised.

A Window of exposure opens for host systems of a particular class each time

vulnerability is discovered1. In the case of unpublished or private vulnerabilities, these
windows of exposure don’t readily close, and may be exploited extensively prior to the
knowledge of their existence becomes public2. The “threat-space” that these unpublished
vulnerabilities occupy will likely expands in proportion to the space occupied by public
vulnerabilities as a result of new movements within the underground to conceal
vulnerabilities from public disclosureiii iv.

1 This does beg the eternal question: If a buffer overflow occurs in a trusted binary and no researcher is

around to discover it, is there vulnerability?
2 And still, after it is known that a vulnerability exists – the task remains to identify where the vulnerability

is, and subsequently identify a resolution to the vulnerability while not effecting mission critical services.

1
Rev 1.2, 2/12/2002

CERT/CC Vulnrabilities Per Year (1997-2001 projected)

311 262
417

1090

2302

0

500

1000

1500

2000

2500

1997 1998 1999 2000 2001*

Year

N
um

be
r o

f V
ul

nr
ab

ili
tie

s

Number of Vulnrabil ities Per Year

Figure 1 – Number of Vulnerabilities/Year

When faced with these new, and likely unpublished, vulnerabilities -- and their

associated exploits -- the various perimeter-based defensive mechanisms may offer little
or no protection. Without known vulnerability information to use in populating signature
databases, analysts protecting hosts systems are forced to wade through alarms generated
by anomaly detectors -- weeding out the new and unknown attacks from the background
noise.

Advancing the threat further are new classes of improved delivery mechanisms such as

the worm strategy first developed at Xerox Parcv, later employed by R. Morrisvi and
reborn in recent months in the form of both UNIX and Windows wormsvii viii.
Advancements and new theories within the attack-delivery community promise to reduce
the time needed to expend the population of vulnerable hosts from days to hoursix.

To address these issues, the concept of survivable systems is emerging in the hopes of

producing classes of hosts that can survive an attack against present but unknown
vulnerabilities that may be delivered via an unknown but aggressive attack vector, all the
while maintaining an acceptable level of operation3. Intrusion Resiliency, as a concept is
a subset of the survivable systems (WORD), that attempts to identify intrusion incidents
prior to their occurrence, but at extremely short distance from the incident occurrence.

Timeline of an Intrusion Incident

Typically, when an intrusion attempt occurs, an assailant targets a system with an end-
game goal for the intrusion attempt. The assailant wishes to acquire either an access
privilege or piece of information not previously held. Ultimately, the goal is achieved by
performing a series of events over a period of time that allows the assailant to circumvent

2
Rev 1.2, 2/12/2002

3 And that is a mouthful.

any measures that may normally impede their activityx. The final event that transitions a
host system into a compromised state, signaling the achievement of the assailant’s goal,
is the intrusion event. One may conceptualize the sequence of events that lead up to the
intrusion event, and the events that follow may a timeline of an intrusion incident.

Figure 2 – Timeline of an Intrusion

Damage Begins

Positioning for
IR Mechinisms Intrusion Event

Pre-Intrusion
Events

Post-Intrusion Events
& Recovery

 The pre-intrusion event time period is spent conducting intelligence-gathering
operations, staging and delivering of the attack that generates the intrusion event.
Typically this is the period of time that intrusion detection mechanisms are desired to
detect the pre-cursors to the intrusion event, such as port scanning, failed authentication
attempts, or file access failures.

During the pre-intrusion time span, the universe of potential sequences of events that

may lead to the actual intrusion event decreases as the assailant advances towards their
goal. The sequences that emerge contain behavior that may be described as a Markov
Chain, with the set of possible next-steps diminishing as the assailant progresses towards
their goal.

On the other end of the timeline of an intrusion, the potential for damage begins upon

the conclusion of the intrusion event and continues to accumulate until such time that a
response can be mounted to contain and extenuate the incident. Methods to contain this
damage through compartmentalization of process-bound resources exist; however within
the compartment, the intrusion is unfettered, and any trust relationships or
communication channels between compartments represent possible vectors by which the
intrusion may further spread – compromising additional compartments.

After containment, recovery begins where the damage that was caused is assessed and

repaired. It is important to note that an intrusion, in itself, does not cause damage; it is the
means by which damage latter occurs via the loss of integrity, confidentially, or
availability. If it were possible to detect and neutralize an intrusion before the potential
for damage presented itself, then the impact of the intrusion would be the same as if no
intrusion ever occurred.

Intrusion Resiliency

Quite simply, Intrusion Resiliency is the emergent behavior of a system that results

from the introduction of a security mechanism that permits the host system to detect the
presence of ongoing and successful attacks against vulnerabilities, known and unknown,

3
Rev 1.2, 2/12/2002

and subsequently adjust the host’s behavior in such a way as to neutralize the attack. By
a similar token, the mechanisms that endow their host-system with this behavior are
themselves an Intrusion Resiliency System.

Within the timeline of an intrusion, the Intrusion Resiliency System will assert itself

during the actual intrusion event. In comparison, traditional protective mechanisms
attempt to inhibit the attack, and detective mechanisms pick up on latent artifacts of the
intrusion.

Intrusion Resiliency systems are comprised of a detector and a responder. The detector

may be based on currently existing or emerging intrusion detection methodologies, but
must operate with a level of certainty that will permit a response without outside
intervention or oversight. The responder will, by any means, terminate, divert, or
otherwise neutralize the detected intrusion activity.

The Intrusion Resiliency behavior of the detector–responder combination seemingly

emerges when the resultant mechanism exhibits certain attributes critical to achieving the
resiliency to an intrusion. These attributes are Independence, Immediacy, Intercedency
and Dominance.

Independence
The mechanisms of the intrusion resiliency system must be capable of operating

independent of external intervention once deployed. The sources of any external
intervention represent a trusted source that would be able to affect the operational
performance of the intrusion resiliency mechanisms, opening up a channel by which the
mechanisms’ protection could be neutralized. This requirement has several implications
on the nature of the detective mechanism that may be used.

The isolated and automated nature of the mechanisms requires that the detection

mechanism must exhibit an exceptionally low level of false positives. This precluded
traditional anomaly based detectors that require external verification of their results by an
analyst.

Further, regular updates to a database of known attacks or patterns of misuse can not be

presumed – hence, Misuse Signature Detection is not usable. Without the ability to
update a rule-base of known attacks, the effectiveness of these detectors degrades as a
function of time.

To achieve a high level of accuracy within the detection mechanism, while successfully
detecting new or unknown attacks, and maintain an independence from external sources,
new hybrid methodologies such as model based or state-transition based detection
engines may prove to be appropriatexi. The current examples of these emergent detection
methodologies yield a higher, and more acceptable, accuracy in their detection – though,
at the additional cost of needing to perform extended sampling of behavior on the target
system to be protected. In the case of some detection methodsxii, slight deviations within

4
Rev 1.2, 2/12/2002

the target system’s configuration can cause the target system to generate false positives
until such time that a resampling is performed.

Immediacy
While events occur within the target systems that are monitored, the detection

mechanisms must make immediate determination that the events are acceptable, or
indicative of an intrusion event. In the event that the event is flagged as an intrusion
event, then a response must be initiated. Immediacy may be implemented as either
temporal immediacy or sequential immediacy.

Immediacy is ideally temporally immediate, but also may rather sequentially

immediate. As long as any state changes that occur as a result of the intrusion event are
contained to the system on which the event occurred, and that system is not able to effect
or initiate a state change on other, external, systems – then sequential immediacy is
acceptable. This sequential immediacy may be implemented through a mechanism, such
as a state-rollback to the state just prior to the state identified with the intrusion event.

The author has only experimented at length with temporal immediacy; however work

has been done in an attempt to achieve sequential immediacy. A brief analysis was
undertaken to determine the ease or benefit of using sequential immediacy; however,
initial results appeared to indicate that true sequential immediacy would not be possible
from an autonomous system – since the system would not truly be able to roll back its
own state completely while maintaining a form of situational awareness to grant the
system the ability to stave off the intrusion event upon the occurrence after the rollback.

Intercedency
The placement of the mechanisms that comprise the intrusion resiliency system is

critical to achieving immediate and effective detection and response. By placing the
mechanisms within a target system in such a way that the mechanisms have an
opportunity to intercede during the intrusion event -- intercepting the intrusion before the
attack objective is realized -- the host system may avert the damage associated with the
intrusion. In strategy, this intercedency is similar to the NIDS practice of an application
firewall where transactions are authenticated and validated before being passed on to
vulnerable systems that the firewall attempts to protect vulnerable internal systems.

The placement of the mechanisms in temporal relation to the intrusion event may vary;

the only requirement is that all paths along the attack-tree, which lead to the intrusion
event, must be intercept-able. However, it may be found to be beneficial to temporally
locate the mechanisms as near to the actual intrusion event’s conclusion as possible, in
order to minimize the uncertainty for which the detection mechanism must compensate,
and subsequently the potential for erroneous results (false positive or negative).

 Referring back to the attack tree methodology, as an attacker nears the goal; fewer

remaining possible forward paths will exist towards the goal. Prior to the realization of

5
Rev 1.2, 2/12/2002

the goal, all possible paths converge into a single path that leads to the intrusion event
itself. Any appearance of atomism of an event is only an illusion that results from the
level of granularity inherent in view of the attack model.

Dominance
When a method or device successfully inhibits attacks against a desirable target, it

should be expected that the defensive mechanism or device would itself become a target
of attacks. To be able to operate continuously in the face of such attacks, intrusion
resiliency mechanisms must maintain dominance over any possible vectors of attack.

This attribute is the only of the three attributes that is transient. It should be expected

that any single method of maintaining dominance over an attack on the Intrusion
Resiliency mechanism would be overcome after an unknown period of time. To counter
this problem, multiple defensive strategies may be deployed to improve the survivability
of the intrusion resilience mechanism. Detailed below are but a few:

Secrecy4
This is the most tenuous, but also one of the most effective methods to achieve

and maintains dominance of the intrusion resilience mechanisms. If an attacker is
unaware of the nature and presence of the mechanisms, the task of countering the
mechanisms is multi-fold times more difficult.

Once an attacker becomes aware of the presence of an Intrusion Resiliency

mechanism, either by analysis of a failed attack or through out of band channels,
the effectiveness of this strategy is nullified.

If this strategy is used, it is beneficial to minimize the amount of debugging

information supplied to an attacker when an attack fails by concealing the
mechanisms presence, introducing conflicting and erroneous data, or presenting
the attacker with a simulated environment, permitting the intruder to operate
under the false assumption that the attack succeeded.

Partnering

4 It should be noted, for completeness, that this is not truly the use of ‘obscurity’ decried
by many as giving a false sense of security. Secrecy, as a tactical tool, is only a force
multiplier. If the strength of a security mechanism is nil, then the effect of secrecy in
connection with that mechanism is equally nil. However, if secrecy and misinformation
are used to augment the effectiveness of a security mechanism that provides a positive
protection, then the multiplicative effect is truly useful in inhibiting an attacker from
circumventing the protective devices while evading detection.

6
Rev 1.2, 2/12/2002

In some scenarios, it is not possible for a defensive mechanism to protect itself
from subversion while at the same time protecting a target resource. In these
situations, a level of protection may be achieved by bundling protective
mechanisms together, where a portion of the mechanisms consider their
counterpart mechanisms to be their target resource.

Each individual mechanism should be capable of operating autonomously of its

‘partner’, reducing the risk of a cascade effect if one resource should successfully
be neutralized. If the partner’s purpose is not to protect, but to act as an agent for
the recovery of its target resource, this tactic may prove even more profitable.

Out of Vector Placement

By placing the mechanisms outside the operational reach of attackers, such as
behind the resource or system that is being protected, the mechanisms operate
from a position of natural dominance.

Care should be taken to identify vectors where dominance by out-of-vector

placement may be inverted. An example would be a kernel-based IDS mechanism
being defeated by hostile code loaded via the kernel modules or DDI5 interface on
a Linux or Sun box. In cases where dominance inversion may occur, it is
necessary to mitigate the risk through the employment of multiple dominance
strategies.

Saint Jude, Linux Kernel Module (LKM)

What follows is an illustration each of the preceding attributes of an Intrusion

Resiliency System as they exhibit their selves in the Saint Jude Linux Kernel Module.

Background

The Saint Jude LKM is a kernel-based intrusion detection system that achieves a level

of intrusion resiliency for root-privilege escalation intrusions on Linux systems by
monitoring privilege transitions. When running in a production environment, the Saint
Jude LKM identifies root account privilege escalation attacks of known and unknown
type, from sources internal and external to the host system, and neutralizes the attacks by
aborting or diverting the attack. The detection is performed at the last possible moment
prior to the protected system being transitioned into a root-compromised state by
monitoring system activity from within the key system-calls that are member to a
privilege-transition attack.

5 Linux Kernel Modules and Sun Device Drivers execute a segment of code upon loading in order to

initialize internal data structures. This code operates with the privilege of the kernel, and is not restricted
in what actions it may actually perform. One possible action could be to utilize the elevated kernel
privilege to disable, evade, or pervert intrusion detection mechanisms from operating. For more
information reference, “kernel rootkits”

7
Rev 1.2, 2/12/2002

Figure 3 - Exploit Without St Jude

Figure 4 - Exploit with St Jude

Independence

At the core of the Saint Jude LKM Intrusion Detection System is the Saint Jude Model.

The Saint Jude model was designed to describe privilege transitions6 within a UNIX
environment and detect when a privilege transition occurs as the result of an intrusion
event. A full definition of the model is available in “Saint Jude, The Model”xiii

The model operates by associating a set of allowable transitions to each privileged

process operating within the system. The process is restricted to only performing the
defined transitions. If an unprivileged process acquires privilege through one of the
defined means, such as a setuid binary, a transition set is associated with based on the

6 A “Privilege Transition” is a transition into or within a privileged state, account, or role. In the case of

UNIX, the root account is an example of a privileged account. Processes within the running system
perform transitions by 1) altering privilege state (acquiring, changing, or dropping), or 2) execution of a
new application (and thereby transferring the privilege to the new application associated with the
process).

8
Rev 1.2, 2/12/2002

means by which the process came into its privilege. The set of allowable transitions is
only permitted to shrink, as to prevent circuitous attacks on the system’s integrity.

The result of this ‘rule based anomaly detection’xiv is that the rule base need only be

updated when the system’s configuration changes significantly. Any deviations from the
rule base are treated as indicative of an intrusion, and require no external verification.
The granularity of the model is such that slight modifications to the operational systems
are possible without invalidating the model of the systems behavior. Such modifications
include minor upgrades and patches to applications that require privileged access, and
addition of new applications that do not require privileged access in order to operate.

Immediacy

The first implementations of the Saint Jude model operated on Solaris systems as a perl

script that would monitor output from the BSMxv subsystem to identify intrusion events.
In the field, this proved successful in detecting intrusions, but not in completely
eliminating damage. The problems with the user-space perl implementation were not with
the perl program itself; it was the way in which the perl implementation received its data
and the associated latency.

The information was present; the problem was that the information was not immediately

available. This window of opportunity that was opened for hostile agents, though short,
was unacceptable. During those few seconds, a hostile agent could damage or destroy the
running system, neutralize the intrusion detection mechanism, or insert methods of re-
entry that would go undetected by the intrusion detection mechanism.

In analyzing the problems, the only apparent solution was to go into the kernel and get

the data, instead of waiting for the data to emerge from the kernel via the BSM
subsystem. Further, it seemed necessary that the actual analysis of the data would have to
also occur within the kernel, since the latency in re-exporting the data to an external
process would neutralize most of the benefits of having the data available immediately.

Interposition

The re-implementation of the Saint Jude model was done within the Linux kernel. The

Linux system was chosen as the implementation candidate due to its open source code
tree and ready information about the inner-workings of the kernel. Key system functions,
which were identified in earlier implementations, were mapped to system calls within the
Linux kernel. References within the kernel to the individual system calls were replaced
with references to new wrapper functions. Within the wrappers functions, processing
would be performed and the original system calls called.

One of the wrapper functions, the execve call, contained the actual analysis and

response engines. This is the terminal system call before an intrusion occurs: with an

9
Rev 1.2, 2/12/2002

intruder spawning an application (i.e., a command shell) on the remote host with the
heightened privileges of the attacked application.

Interposing the analytical engine and the data collection points within the operating path

of the attack provides the opportunity to determine immediately that an event is an
intrusion, and respond before the intrusion event completes. If an intrusion is detected,
the system call diverts execution away from the original system call, rather directing the
execution to a response function that would terminate the offending process (and all of its
associated processes) or redirect the execution to a program to do data collection for later
forensic analysis.

Dominance

Already mentioned was the concern that the user-space perl implementation of the Saint

Jude model experienced latency in receiving system status information. This latency
directly translates into a delay in detection and subsequence response to any intrusion
event. Once transitioned into the privileged state, an intruder would only need to transmit
a SIG_KILL signal to the intrusion detection engine to terminate it. With the entire
model implemented as a kernel module, terminating the detection engine becomes less
trivial

The Saint Jude LKM operates wholly from within the kernel, and with the privilege and

authority associated with ring zero software. From this position it is not normally
vulnerable to attacks originating from within the protected systems’ user space. By the
design of the Linux operating system non-privileged processes are unable to affect the
kernel, except through well-defined and validated points such as system calls. In some
configurations it is possible for the root account to modify the kernel memory through the
kmem device or by using other hostile kernel modules.

From the point of a non-privileged process, the Saint Jude module is out of bounds and

inaccessible. The user processes are incapable of arbitrarily aborting, modifying,
terminating, or otherwise neutralizing the module’s activities.

Although the arguments passed to monitored system calls pass through the Saint Jude

system call wrappers, application of strict bounds checking and scrubbing of data prior to
any usage eliminates the possibility of an attack of the module via interface flaws.
Further, mitigation of any unforeseen architectural issues may be managed so that errant
calls to uninitilized memory result in a kernel panic, rather then transference of control to
injected code.

For processes that operate with the root privilege, there are two primarily profitable

vectors that may be used to attack an intrusion detection system operating within the
kernel: direct modification of kernel memory or replacement of the on-disk copies of the
kernel and modules. In the more recent work on Saint Jude’s kernel module
implementation, care has been taken to address each of these threats by (a) partnering

10
Rev 1.2, 2/12/2002

with other mechanisms7 to protect the kernel and intrusion detection engine by monitor
the integrity of the kernel memory, (b) limiting the ability of root processes to directly
modify kernel memory through the kmem device, (c) disabling the ability to modify
system files critical to system boot, and (d) obfuscating detectable patterns in the engine’s
code that may be used to acquire a point of reference within kernel memory.

As a final means to strengthen the defensive posture of the module and the protected

system, the module may optionally be configured to emit no reference to its activities
within the system. In this mode, the module simply protects the system without
generating output or status information. A redirected response would be necessary if a
silent alarm is desired to be sounded, such as generating a SNMP trap or sending a
message to a remote system.

Future work on concealment and misdirection will focus on run-time encoding and

decoding of the on-disk and in-memory copies of Saint Jude, as to further blind potential
assailments of the system.

Conclusion

With the rate of vulnerability development unlikely to show any signals of reversing the

current acceleration, even if faced by proposed governmental regulations, the role of
defending systems from hostile entities will be required to transform from its present
state of detecting events after their occurrence, to a more proactive defensive posture
embodied in the concept of Intrusion Resiliency. Saint Jude is but only a simple example
of how a first-generation Intrusion Resiliency system may look and operate. As Time
progresses, and with the addition of advancing artificial intelligence technology, Intrusion
Resiliency systems will emerge that are simpler to configure, and operate over a broader
definition of an intrusion.

7 The Saint Michael Kernel Module was integrated into Saint Jude Kernel Module for the purpose of

monitoring and defending kernel integrity after activation. Named after the Archangel Michael, defender
of heaven and patron saint of guards and law enforcement officers, the Saint Michael Kernel Module
monitors various portions of the kernel’s text and data sections for indications of modifications that are
caused by rootkits attempting to perform acts of concealment.
The Saint Michael Kernel Module may be found at http://sourceforge.net/projects/stjude

11
Rev 1.2, 2/12/2002

i http://www.cert.org/statistics
ii http://www.securityfocus.com/vulns/stats.shtml
iii http://anti.security.is
ivhttp://www.microsoft.com/technet/treeview/default.asp?url=/technet/columns/security/noarch.asp
v The “Worm” Programs – Early Experience with a Distributed Computation. John F. Shoch and Jon A
Hub, Xerox Palo Alto Research Center.
vi http://www.worm.net/
vii http://www.whitehats.com/library/worms/lion/
viii http://www.eeye.com/html/Research/Advisories/AL20010717.html
ix “Warhol Worms, The Potential for Very Fast Internet Plagues

http://www.cs.berkeley.edu/~nweaver/warhol.html
x Counterpane, Attack Trees (Doctor Dobbs Journal, December 1999)

http://www.counterpane.com/attacktrees-ddj-ft.html
xi T.D. Garvey and T. Lunt. Model-based intrusion detection. In Proc. 14th Nat. Computer Security
Conference, pages 372--385, Washington, DC, October 1991
xii Anil Somayaji and Stephanie Forrest. Automated Response using System-Call Delays. In Proceedings of
the 9th Annual USENIX Security Symposium.
xiii http://www.wwjh.net/stjude/StJudeModel-Rev-1.02.pdf
xiv Rebecca Bace, Intrusion Detection. Macmillan Technical Publishing, 2000.
xv http://docs.sun.com/ab2/coll.47.8/SHIELD/@Ab2TocView?Ab2Lang=C&Ab2Enc=iso-8859-
1&DwebQuery=BSM&oqt=BSM

12
Rev 1.2, 2/12/2002

