
Combining Signature-Based and Anomaly-Based
Intrusion Detection Systems

James Fell
Supervisor: John Clark

March 2002

Contact: mail@jamesfell.co.uk

Submitted for Third Year Project
BEng Computer Science

Department of Computer Science
University of York

1

Abstract

Intrusion detection is a relatively new addition to the field of computer security. It is
concerned with software that can distinguish between legitimate users and malicious
users of a computer system and make a controlled response when an attacker is
detected.

This project investigates the combination of two different approaches to intrusion
detection. Signature-based systems and anomaly-based systems have both been used
for several years but have not been combined together when monitoring network
traffic.

The project includes the implementation and documentation of a prototype Intrusion
Detection System running on an Internet host in Bradford.

2

1 INTRODUCTION...5

2 OVERVIEW OF INTRUSION DETECTION..7

2.1 Host based, Network based and Hybrid IDS..7

2.2 Distributed IDS..8

2.3 Misuse Detection..8

2.4 Anomaly Detection...10

2.5 Ethics of Intrusion Detection..10

2.6 Defeating Intrusion Detection Systems..11

2.7 Offensive Uses of Intrusion Detection Systems...12

2.8 Measuring the Efficiency of an Intrusion Detection System..12

2.9 The Future of Intrusion Detection..14

2.10 Chapter Summary...15

3 SYSTEM SPECIFICATION AND DESIGN..16

3.1 Objective...16

3.2 Constraints...16

3.3 Choice of Programming Language...16

3.4 Development Platform...17

3.5 System Architecture...17
3.5.1 Misuse Detection Engine...18
3.5.2 Anomaly Detection Engine..19
3.5.3 NIDS Console...21

3.6 Chapter Summary...22

4 ATTACKS AND SYSTEM RESPONSE..23

4.1 Selection of Attacks..23

4.2 Information Gathering..24
4.2.1 FIN Port Scan...24
4.2.2 FTP Probe...26
4.2.3 Web Server Probe..27
4.2.4 Microsoft FrontPage Server Extensions Probe...27
4.2.5 Telnet Probe..28
4.2.6 SOCKS Proxy Probe..28

4.3 Exploiting a Known Vulnerability..29
4.3.1 Microsoft IIS 5.0 .printer Buffer Overflow...29

4.4 Denial-of-Service Attack..31

3

4.4.1 SYN Flooding...32

4.5 Chapter Summary...33

5 EVALUATION AND FURTHER WORK..34

5.1 Strengths...34
5.1.1 Strengths of the Misuse Detection Engine...34
5.1.2 Strengths of the Anomaly Detection Engine..34
5.1.3 Strengths of the Combination of Both Engines...34
5.1.4 Usage of System Resources...35
5.1.5 Use of Generic Intrusion Detection Methods..35
5.1.6 User Interface...35

5.2 Weaknesses...36
5.2.1 Weaknesses of the Misuse Detection Engine...36
5.2.2 Weaknesses of the Anomaly Detection Engine..36
5.2.3 Dependence on Third Party Software..37

5.3 Future Work...37
5.3.1 Adding Host-based Elements..37
5.3.2 Handling Encrypted Traffic..37
5.3.3 Method of Capturing Packets...38
5.3.4 Hardening the Intrusion Detection System...38
5.3.5 Improvements to the Anomaly Detection Engine...38
5.3.6 Improvements to the Misuse Detection Engine...38
5.3.7 Response to Intrusions...39
5.3.8 Improvements to the NIDS Console...39

5.4 Chapter Summary...39

6 SUMMARY AND CONCLUSIONS..40

6.1 Summary of Previous Chapters..40

6.2 Project Conclusions...40

7 APPENDIX A – REFERENCES..42

8 APPENDIX B – ATTACK SIGNATURES..44

9 APPENDIX C – NIDS SOURCE CODE..45

4

1 Introduction

For several years now, society has been dependent on information technology. With
the rise of the Internet and e-commerce this is truer now than ever. People rely on
computer networks to provide them with news, stock prices, email and online
shopping. People’s credit card details, medical records and other personal information
are stored on computer systems. Many companies have a web presence as an essential
part of their business. The research community uses computer systems to carry out its
work and share knowledge. National infrastructure components such as the power
grid are controlled by computer. The integrity and availability of all these systems
needs to be defended against a number of threats. Amateur hackers, rival corporations,
terrorists and even foreign governments have the motive and capability to carry out
sophisticated attacks against computer systems. Therefore the field of computer
security has become vitally important to the safety and economic well being of
society as a whole.

Every organisation using information systems must take computer security seriously.
The first step is to produce a security policy defining what behaviour is and is not
allowed. This policy can restrict which web sites users are allowed to visit, which files
each user is allowed to access and which applications each user is allowed to use. The
policy should identify which members of the organisation are responsible for security
and how they should respond to different types of incident. The policy is then
enforced using a variety of security measures. Access controls such as file
permissions and username/password pairs may be used. Technologies such as
firewalls and cryptographic protocols are also deployed in an attempt to prevent
unauthorised access to systems and data.

The systems must be defended from insider misuse as well as external attackers. To
provide accountability, system usage is usually logged. These logs provide evidence
of misuse and can be used to identify the user(s) responsible. However, at large sites it
is impractical for humans to monitor the log files due to their huge size. It is also
becoming more and more difficult to spot misuse due to the increasing number and
sophistication of attacks.

This has led to the field of automated intrusion detection. Rather than have system
administrators constantly observing firewall logs and watching out for malicious
behaviour, software exists to perform this function. The basic idea behind an Intrusion
Detection System (IDS) is to monitor system usage and somehow identify behaviour
that may go against the security policy. There are several approaches to this including
neural networks, expert systems and statistical modelling. These will all be covered in
chapter two. When malicious behaviour is identified, the system can just notify a
system administrator or it can take steps to deal with the attack itself. In the latter
case, the IDS could add rules to the firewall to deny access to the attacker (if external)
or disable a particular user account.

This project will involve the design and implementation of a prototype Intrusion
Detection System that can be used to monitor TCP network traffic to an Internet host
and identify attacks. The IDS will be a hybrid system combining two different
techniques in order to gain the benefits of both. The remaining sections of this report
are as follows:

5

 Chapter 2: Overview of Intrusion Detection – This section covers past research
into the field of intrusion detection. Different approaches to the problem are
covered and notable papers are referenced. The ethical issues of intrusion
detection are covered. Methods of attacking, subverting and defeating intrusion
detection systems are detailed followed by possible offensive uses of IDS. Ways
of evaluating intrusion detection systems based on their ability to detect attacks
are discussed. Finally, the likely direction of future research in the field is
commented on.

 Chapter 3: System Specification and Design – A specification for combining both
anomaly detection and misuse detection in a network-based IDS is proposed. All
design decisions are justified and compared to their alternatives.

 Chapter 4: Attacks and System Response – The IDS is tested to observe how it
responds to both legitimate use and misuse.

 Chapter 5: Evaluation and Future Work – The successes and failures of this

project are discussed. Possible improvements are identified and long-term
research issues are proposed.

 Chapter 6: Summary and Conclusions – Closing comments.

 Appendices – The content of the attack signature database and the source code of
the IDS are given. Research papers referenced are also listed.

6

2 Overview of Intrusion Detection

Detecting computer break-ins and other malicious behaviour is a signal detection
problem. The aim is to distinguish malicious use (signal) from legitimate use (noise).
There are currently several different approaches to this problem and several different
Intrusion Detection System (IDS) implementations available. Below we examine
issues concerning the development, testing and operational use of intrusion detection
systems.

2.1 Host based, Network based and Hybrid IDS

The two main types of intrusion detection system are host-based IDS and network-
based IDS. Network-based IDS (NIDS) monitors traffic between hosts whereas host-
based IDS monitors activity on the hosts themselves. Host-based IDS usually
examines user activity and network based IDS usually examines packet logs from a
sniffer or protocol analyser. A sniffer is a program that reads raw packets off a
network, usually after putting the network interface (eg ethernet card) into
promiscuous mode. In promiscuous mode, the network interface will examine all
traffic that it can access on the local network segment rather than just the packets
addressed to itself.

An example of a host based IDS is Psionic HostSentry [22, Psionic], which is a
system that performs Login Anomaly Detection (LAD). HostSentry keeps a record of
login time and location for each user as well as activity during each session and uses
this information to spot intruders masquerading as legitimate users. The following is
from [22, Psionic]: “This tool allows administrators to spot strange login behavior and
quickly respond to compromised accounts and unusual behavior. HostSentry
incorporates a dynamic database and actually learns the user login behavior. Modular
signatures to detect unusual events then utilize this behavior.”

Another host-based system is Tripwire [23, Tripwire]. Tripwire detects changes to the
file system on the host it is monitoring by creating a unique fingerprint for each file
and generating an alert whenever the file’s signature changes. The signature is
generated by applying a hash function to a portion of the file. This system will detect
intrusions when the attacker installs a ‘root kit’ with Trojaned versions of system
commands such as ‘ps’ (UNIX command to list current processes). This is a common
technique used by intruders to ensure they maintain access to the system and are not
detected by the system administrator. Also available are Tripwire for Routers and
Switches and Tripwire for Web Pages. Tripwire for Routers and Switches works as
already explained but with router configuration files. Tripwire for Web Pages defends
against web site defacements by detecting changes to HTML web pages.

A typical example of a network-based IDS is Snort [24, Snort]. The following is taken
from the Snort documentation: “Snort is a lightweight network intrusion detection
system, capable of performing real-time traffic analysis and packet logging on IP
networks. It can perform protocol analysis, content searching/matching and can be
used to detect a variety of attacks and probes”. Snort can defend a single machine or
an entire network segment as it can put the network interface into promiscuous mode.

7

As described in [12, Inella], network based systems such as Snort cannot detect
attacks if the traffic is encrypted (for example when secure sockets layer (SSL) is in
use). This is because the NIDS requires access to the data part of the packets, not just
the headers, to detect intrusions. In the future, encrypted traffic is likely to be used
more and more. This is likely to become a very serious problem for network-based
systems.

Network-based systems also cannot be used to defend switched networks unless the
IDS is incorporated into the switch itself or the switch supports port mirroring. This is
because the NIDS network interface needs to be able to see all packets on the
network, not just the ones addressed to the system on which the NIDS is running.

Some intrusion detection systems make use of both host based and network based
elements. These are one type of hybrid intrusion detection system. An example of this
is the Distributed Intrusion Detection System (DIDS) mentioned in [17, Axelsson].
This system has both a host monitor that performs host-based intrusion detection and
a LAN monitor that analyses packets on the network.

2.2 Distributed IDS

A problem with having a fixed centralised host for intrusion detection analysis is that
the bigger the network is, the more power is demanded of this host. This makes it
impractical for large networks. Instead, [1, White and Pooch] suggests that each host
run a process, called a Cooperating Security Manager (CSM), which analyses the
activity on that host. The individual CSMs share information on users who are active
on more than one host. Each CSM consists of five components. The Local Intrusion
Detection System component detects intrusions on the host the CSM is running on.
The Distributed Intrusion Detection component communicates with other CSMs on
the network. The User Tracking System keeps a record of which hosts a user is logged
into. The Intruder Handling System component works out the best course of action
once an intrusion is detected and the User Interface component interacts with the
security officer. A “suspicion level” is produced for every user on the network
indicating how likely it is that he or she is acting maliciously. This is useful, as it is
not always possible to give a simple yes or no answer to the question of whether a
given user is acting improperly. This kind of IDS will scale well to very large
networks.

Host based, network based and distributed systems all make use of either misuse
detection or anomaly detection to distinguish between malicious and legitimate use.
These are now described below.

2.3 Misuse Detection

The misuse detection approach to intrusion detection is based on somehow defining
what malicious behaviour is and then monitoring for it. This approach is very good at
detecting attacks which are known but will miss new attack methods unless they are

8

just minor variations on old attacks. There are a number of approaches to misuse
detection.

[3, Garvey and Lunt] proposes creating a set of scenario models. A scenario model
specifies the steps involved in a known attack in terms of user actions. This is
described as an extension to IDES (Intrusion Detection Expert System) involving
model-based reasoning. During operation, there is a set of ‘active models’. These are
the scenario models which the IDS currently has evidence to suggest are occurring.
Based on this, the ‘anticipator’ part of the system predicts what user actions should
occur next. The ‘planner’ part of the system uses this expected user action to work out
what will be expected to appear in the audit logs. The ‘interpreter’ part compares this
to what actually happens and updates the set of active models based on this. This
whole process is repeated until the evidence for a particular scenario exceeds a
specified threshold, at which point an intrusion has been detected.

According to the paper, this technique will be very fast as the IDS only needs to
examine the parts of the audit data which are relevant to the active scenario models,
rather than examining the whole audit data. However, it seems likely that IDES must
actually examine audit data relevant to all scenario models, not just the active models,
in order to keep the set of active models up to date. Of course, this is still a subset of
the whole audit data.

When applying misuse detection to TCP/IP network traffic, an attack signature
database such as that generated by arachNIDS (Advanced Reference Archive of
Current Heuristics for Network Intrusion Detection Systems) at
http://whitehats.com/ids/ can be used. These databases have a small signature for each
attack in the form of source and destination port, header flags and a small string
present in the data part of the packet. An example of such an attack signature is:

alert TCP $EXTERNAL any -> $INTERNAL 27665 (msg: "IDS525/ddos-trin00-
attacker-to-master-gOrave"; flags: A+; content: "gOrave";)

This signature can be used to detect network traffic that indicates the host being
defended has a copy of the trin00 master on it. Trin00 is a distributed denial of service
(DDoS) tool that consists of a client, a server (master) and an agent. The master
program is installed on compromised hosts, allowing the attacker to launch DoS
attacks by remote control from the client program. By default, the master listens on
port 27665 for TCP connections and requires the password “gOrave”. These default
values are what allows the above signature to work. Of course, the attacker can
always recompile the master to listen on a different port and use a different password.
Signatures like this can be generated for many known attacks and used by an IDS to
perform misuse detection.

 Signatures of attacks directed specifically at web servers are covered in [6,
Zenomorph]. This paper describes a number of things to look for in the content of
requests made by web clients. It covers syntax that might indicate attempts at
exploiting web server and CGI vulnerabilities, such as encoding requests in
hexadecimal, common commands requested by attackers and evidence of buffer
overflow attempts. It is not a detailed paper on IDS, and only covers signatures for
attacks on web servers.

9

2.4 Anomaly Detection

In contrast to misuse detection, anomaly detection works by building a model to
represent normal system usage and then monitoring for anything that does not fit this
model. This approach is good at detecting new attacks that a system using misuse
detection would miss.

One approach to this is the use of expert systems. This is used in the Multics Intrusion
Detection and Alerting System (MIDAS) and is described in [4, Sebring et al.]. An
expert system consists of a set of facts (knowledge base) and a set of rules. Each time
a user action occurs it is added to the fact base. MIDAS keeps a statistical model for
each user indicating how they normally use the system. This consists of mean and
standard deviation values for occurrences of different activities. If a user varies from
his mean by more than some multiple of his standard deviation a fact would be
asserted and added to the knowledge base.

Neural networks can be trained to recognise ‘normal’ system usage and treat
everything else as anomalous. [19, Ryan et al] covers a system called Neural Network
Intrusion Detector (NNID) which recognises users based on which commands are
executed and how frequently within a user session. This allows the detection of an
intruder who masquerades as a legitimate user.

Host based systems which apply anomaly detection to user behaviour will have
problems building models for users with erratic behaviour. Users who modify their
behaviour slowly over a period of time can also change their model to the point where
malicious behaviour is considered ‘normal’ and will not generate an alert.

When applying anomaly detection to TCP/IP network traffic, statistics can be used to
detect unusual traffic. A mean and standard deviation model representing the traffic
between the hosts can be constructed by the IDS. This will show what kind of traffic
is ‘average’ and how much it is allowed to differ from this by. Alternatively, these
values can be set manually.

A slightly different approach to anomaly detection is proposed in [7, Sasha]. This
paper proposes that a rigid definition of allowed use is specified and any activity that
does not fit this definition is flagged. The author refers to this as ‘strict anomaly’
detection or ‘not use’ detection. However, this is referred to in [17, Axelsson] as
specification-based intrusion detection and is said to be a variation of misuse
detection rather than anomaly detection as it has no self-learning component. This
approach would entirely eliminate false positives as anything outside the set of
allowed actions must be of security relevance. It should also detect all current and
future attacks as these too will be outside the set of allowed actions. However, [7,
Sasha] does not give a detailed proposal for how this rigid definition of allowed use is
to be specified.

10

2.5 Ethics of Intrusion Detection

Since intrusion detection involves monitoring people’s activity there is an issue of
privacy to address. [5, Shaefer] is a short paper covering the legal and ethical issues. It
is noted that a company has a right to protect its computer systems but employees and
other users also have a right to privacy. It is particularly noteworthy that one of the
reasons a company wants to protect its computer systems is to protect the privacy of
customers whose personal data may be stored. A balance between privacy and
security must be reached.

Monitoring employees can lead to low morale and resentment as they feel that they
are not trusted and are constantly under suspicion. The aim is to monitor in such a
way that it is for the users’ good as well as the company’s, as is the case with
monitoring luggage at airports. These issues influence the decision of exactly what the
IDS should monitor. For example, most people would think that monitoring how
many failed login attempts they make would not invade their privacy but logging
every keystroke they make would be.

2.6 Defeating Intrusion Detection Systems

Although not much research has been done into techniques for defeating IDS several
methods are known about. [18, Ptacek and Newsham] covers three classes of attack:
insertion; evasion; and denial of service. Insertion and evasion both work because the
IDS is not able to predict whether any given machine it is protecting will see any
given packet it has captured. Different operating systems and TCP/IP stack
implementations react differently to identical traffic. Some packets will be rejected
and others will not. Insertion occurs when an attack is interspersed with packets that
the IDS will process but the target system will not. Evasion occurs when an attack is
interspersed with packets that the IDS will reject but the target system will process. In
both cases, the stream of traffic seen by the IDS is different to the stream of traffic
seen by the target system. This can result in the IDS not detecting the attack.

Denial-of-service attacks are used to shut down the IDS before attacking the rest of
the network. DoS attacks can exploit a software bug to crash the system or exhaust
one or more resources by flooding the system with traffic. If an IDS is on the
receiving end of a flood attack it may spend so long processing the flood of packets
that by the time it comes to process the real attack it is too late.

[20, Rain Forest Puppy] covers the tactics used by Whisker, a CGI vulnerability
scanner, to evade detection by IDS. Most of its techniques work by changing the
appearance of HTTP requests without changing their meaning. For example, a
common CGI vulnerability that people scan for is the phf script that used to be
installed by default with the Apache web server. This script has a vulnerability
allowing people to run commands on the server as whatever user Apache is running as
(sometimes root!) from their web browser. To get a listing of the /etc/passwd file to
run a dictionary attack against you would type the following into your browser:

http://victim.com/cgi-bin/phf?Qalias=x%0a/bin/cat%20/etc/passwd

11

This would run ‘/bin/cat /etc/passwd’ on the server and the output would be displayed
in your browser. This is a well-known attack and so most misuse IDS will detect it
with a signature for ‘/cgi-bin/phf’ appearing in web requests. So, Whisker sends a
request for ‘/./cgi-bin/./phf’ and goes undetected.

2.7 Offensive Uses of Intrusion Detection Systems

An interesting application of misuse NIDS for attack rather than defence is a
technique known as passive network mapping. By monitoring traffic a NIDS can
work out which services and operating systems are running not only on local
computers but also on any remote networks which local users communicate with.
Traditionally attackers have used active mapping for network discovery. Active
mapping involves sending out packets and listening for responses to construct a model
of a target network. Passive mapping differs in that it does not involve sending
packets, only observing network traffic. Instead of using signatures that represent
attacks, the NIDS uses signatures that represent different operating systems and
services. Signatures for services can be based on standard ports and server banners.
For example, seeing the string ‘Microsoft IIS 5.0’ in a packet originating from port 80
on a system means it is probably running Microsoft’s IIS 5 web server. Signatures for
operating systems can be based on the way different operating systems treat identical
packets due to having different TCP/IP stack implementations. This is covered in [25,
Fyodor].

Using a NIDS in this way has a couple of advantages over the traditional approach to
network discovery. When using active mapping only systems which happen to be
switched on at the time the network is scanned will be probed. Passive mapping will
allow the discovery of systems with low uptime. Another big advantage is that passive
mapping does not involve generating any traffic and is therefore invisible. The
packets sent during active mapping can be blocked by firewalls and will be detected
by the network being scanned.

Installing such a modified misuse NIDS on key traffic choke points would result in a
large amount of information about networks being gathered invisibly prior to
launching an attack. Some more information on passive techniques is available in [24,
Nazario].

2.8 Measuring the Efficiency of an Intrusion Detection System

The efficiency of an Intrusion Detection System can be measured by the number of
false positives and false negatives it produces. A false positive is produced if the IDS
claims there has been an intrusion when there has not. A false negative occurs if the
IDS fails to detect an intrusion.

[9, Abren] covers the calculation of the Bayesian Detection Rate (BDR) for a system.
This is the probability that there has been an intrusion, given that the IDS claims there
has been. The formula given is shown below :

P(Ii | Ai) = (P(Ii) P(Ai | Ii)) / (P(Ii) . P(Ai | Ii) + P(Ij) P(Ai | Ij))

12

Where Ii = Intrusive behaviour
Ij = Normal behaviour
Ai = Alarm
Aj = No alarm

Thus it can be seen that lowering the rate of false positives (and hence P(Ai | Ij)) will
increase the Bayesian Detection Rate. The above formula can be used to evaluate an
IDS by recording the number of false positives, false negatives and true positives over
a period of time. In [9, Abren], this is used to compare a number of commercial
intrusion detection systems.

In order to know when a false positive, false negative or true positive has occurred we
need to generate traffic consisting of a mix of attacks and legitimate use. There are a
number of scripting languages designed for simulating attacks. Two of these are
NASL [15, Deraison] (Nessus Attack Scripting Language) and CASL [16, NAI Inc]
(Custom Audit Scripting Language). The Nessus security scanner includes a NASL
interpreter that can be used to run NASL scripts on Linux machines. NASL allows
easy use of sockets allowing all sorts of probes and attacks to be implemented
quickly. For example, a simple TCP port scanner can be written in a few lines. The
following code is taken from [15, Deraison]:

start = prompt(“First port to scan?”);
end = prompt(“Last port to scan?”);

for (i = start; i<end; i=i+1) {
soc = open_sock_tcp(i);
if (soc) {

display(“Port “,i ,” is open\n”);
close(soc);

}
}

NASL also allows easy spoofing of IP addresses, mainly useful for applying denial of
service (DoS) attacks.

CASL is fairly similar. The following is taken from [16, NAI Inc]: “CASL is a high-
level programming language designed to write programs (often called scripts) that
simulate low-level attacks or information gathering checks on networks. To write
programs that simulate an attack or information gathering check, you need to write
code that constructs packets and then sends those packets to a host on a network just
as an actual attack or information gathering check would. You can execute the
programs you create in CASL to determine if a network is vulnerable to the attack or
the information gathering check simulated by the programs”.

A sample TCP stealth port scanner is given in [16, NAI Inc]. This differs from the port
scanner given in NASL above in that no full connections are made to the server being
probed. A TCP SYN packet is sent to each port to see if a TCP ACK is returned. The
code is as follows:

#include "tcpip.casl"
#include "packets.casl"
for(i =1; i <1023; i =i + 1) {

13

OurSYN = copy SYN;
OurSYN.tcp_source = 10;
OurSYN.tcp_destination = i;
OurIP = copy TCPIP;
OurIP.ip_source = 127.0.0.1;
OurIP.ip_destination = 127.0.0.2;
OurPacket = [OurIP,OurSYN];
ip_output(OurPacket);
OurFilter = ["src host ", 127.0.0.2, " and tcp src port ",i];
ReadPacket = ip_input(2000, OurFilter);
if(!ReadPacket)

continue;
if(size(ReadPacket) < size(IP) + size(TCP))

continue;
ReadIP=extract ip from ReadPacket;
ReadTCP=extract tcp from ReadPacket;
if(ReadTCP.tcp_ack != 1

|| ReadTCP.tcp_syn != 1
|| ReadTCP.tcp_rst == 1)

continue;
print("Port", i, "Alive");

}

2.9 The Future of Intrusion Detection

Above we have described issues concerning the development, testing and operational
use of intrusion detection systems. The field of intrusion detection is still in its
infancy and there are many areas that require further work. Some of the main
problems that need to be addressed in the field are as follows:

1. It is currently impossible to detect misuse in encrypted network traffic.
Increasingly, secure protocols such as secure shell (ssh) and secure HTTP (https)
are being used. When using these protocols network traffic is encrypted to defeat
the use of packet sniffers on systems between the client and server. Unfortunately,
this also means that a NIDS cannot use attack signatures to detect misuse. This is
because the NIDS requires access to the data part of the packets, not just the
headers, to detect intrusions.

2. There is a need to make the IDS itself more resistant to attack. As the popularity
and awareness of intrusion detection systems rises, attackers will concentrate on
ways of either evading or disabling the IDS itself before attacking the rest of the
network. [18, Ptacek and Newsham] covers such techniques in detail.

3. Currently most IDS products react to detected attacks merely by logging them or
contacting the system administrator. Ideally, the IDS should be able to take the
necessary actions to deal with the attack itself. This could involve terminating
network connections, blocking IP addresses at the firewall, or, in a military
context, launching an attack against the intruder. Presently, intrusion detection
systems are not sufficiently accurate to trust them with this power. Attackers could
actually use the IDS to help with the attack by tricking it into throwing specific
users off the system or closing particular connections. This could be done by
carrying out attacks with the source spoofed as the user to disconnect.

14

4. When designing host-based intrusion detection systems it has been common
practice for some time to include both misuse detection and anomaly detection.
This gives a system with the benefits of both approaches; it can detect both known
attacks and novel attacks. However, network-based intrusion detection systems
usually depend solely on misuse detection. Research should be done into applying
both misuse detection and anomaly detection to network traffic and so producing a
NIDS with the strengths of both approaches.

2.10 Chapter Summary

We have examined past work in the field of intrusion detection. We have detailed
different approaches to intrusion detection and different systems that have been
implemented in the past. Four areas in which current research is currently lacking
have been identified. The rest of this project focuses on the design, implementation
and evaluation of a solution to point four from section 2.9 above.

15

3 System Specification and Design

This chapter explains the aims of the project and how these are met. Justification for
each technique used is given.

3.1 Objective

The objective of the project is to produce an application to detect both malicious and
anomalous behaviour on a computer network by monitoring TCP traffic. While using
both misuse detection and anomaly detection together is common practice in host-
based IDS, research on combining these two methods in a network-based IDS is
scarce. Network based intrusion detection systems usually depend solely on misuse
detection. For this reason, it was decided to design and implement a NIDS with two
attack detection engines; misuse detection and anomaly detection. This should result
in a NIDS which can accurately detect and classify known attacks whilst also
detecting novel attacks.

3.2 Constraints

The deadline for completion of this project is the 14th of March 2002. A Linux server
with a T1 connection to the Internet is available for development and testing. Due to
the short amount of time available, only a prototype system will be produced and
documented. This will demonstrate the concepts involved and reveal opportunities for
further research.

The system should be easy to port from one platform to another and require as little
memory and processor power as possible. Flexibility and extensibility are both key
requirements.

3.3 Choice of Programming Language

As most of the work carried out by the IDS is processing, manipulating and
comparing strings it was decided to implement the system in PERL (Practical
Extraction and Report Language). PERL is a high level scripting language with good
support for string manipulation such as finding regular expressions and performing
sorting. It allows easy execution of shell commands and I/O redirection thus allowing
a PERL script to start another application and read its output. This ability is required
for collecting and reading network traffic.

Another advantage of PERL is that it is interpreted rather than compiled. This
removes the need for time-consuming recompilation every time a small change to the
code is made. This reduces the overall development time which is important because
of the small time scale of this project.

A disadvantage of using an interpreted language is that the software will not run as
fast as it would if a compiled language was used. For this prototype system, an
interpreted language should be sufficient and the advantage mentioned above is more

16

important. For a final version a compiled language would be used to minimise the
amount of processing power required by the NIDS. This will be particularly important
when running the software on a network with a lot of traffic.

PERL is also highly portable and system independent as interpreters are available for
most operating system and hardware combinations. This allows the prototype system
to be tested on different systems if needed.

More details of the PERL scripting language can be found in [26, Schwartz and
Christiansen].

The other programming language that was considered for use is C/C++. As this is a
compiled language it has the disadvantage described above. Every time a small
change is made to the source code the software would need recompiling thus
increasing development time. Another problem with C/C++ is that it does not have the
same high level support for string operations that are present in PERL. For example,
to search for regular expressions in strings would require extra functions to be written
if using C/C++.

3.4 Development Platform

The whole system is being developed on an Internet connected Linux server in
Bradford that is being used by a small company to develop CGI software for Internet-
aware embedded systems. The prototype IDS is used to alert the owners on detection
of an external attack. The system is running the Linux Mandrake 8.0 operating system
and the Bastille firewall which is filtering all ports except 22 (SSH) and 80 (HTTP).
All TCP traffic between the server and its clients is logged by the packet sniffer
TCPdump [8, Bejtlich]. This includes packets addressed to all ports even though the
operating system will drop those not addressed to 22 or 80. This way the NIDS will
not need any changes if the firewall rules are altered at some future date. Ports 22 and
80 are unfiltered as the server is running Secure Shell (SSH) and the Apache web
server.

3.5 System Architecture

Figure 1 shows the architecture of the NIDS. TCPDump was chosen as the packet
sniffer because it is the most functional sniffer available free of charge.

When the NIDS is first run it starts up TCPDump and pipes its output to the NIDS'
own input. The output from the packet sniffer is constantly read by the NIDS which
processes it and reads it into a data structure (Figure 2). This data structure is accessed
by both the misuse detection engine and the anomaly detection engine for analysis.
The data structure only stores the last one hundred packets and therefore requires a
small and constant amount of memory.

17

Figure 1: NIDS Architecture

3.5.1 Misuse Detection Engine

The misuse detection engine makes use of an attack signature database adapted from
that generated by [21, arachNIDS]. An original attack signature database could have
been created by running a vulnerability scanner such as Nessus against a system
running a packet sniffer. Unique attack signatures could have been extracted from the
output of the sniffer. However, creating a signature database in this way is outside the
scope of this project. The database produced from [21, arachNIDS] has a small
signature for each attack in the form of source and destination port, header flags and a
small string present in the data part of the packet. This is used by the NIDS to detect
attacks on a packet by packet basis. An advantage of this is that the implementation is
relatively straightforward and also attacks are detected almost instantly. A
disadvantage is that attacks broken over two or more packets using fragmentation will
be missed. Commercial standard NIDS operate on streams rather than individual
packets as they reassemble fragmented packets. Implementing this was outside the
scope of the prototype system.

18

PACKET SNIFFER
(TCPDUMP)

TRAFFIC
BETWEEN
CLIENT AND
SERVER

ATTACK
SIGNATURE
DATABASE

MISUSE
DETECTION
ENGINE

ANOMALY
DETECTION
ENGINE

MEAN AND
STANDARD
DEVIATION
MODEL OF TCP
TRAFFIC

NIDS
CONSOLE

UPDATE MODEL

KNOWN ATTACK DETECTED

ANOMALY DETECTED

SNIFFER
OUTPUT

READ DATABASE

READ MODEL

DATA
STRUCTURE

The engine compares all the signatures in the database to the sniffer data, essentially
comparing strings. This part of the NIDS is very similar to existing systems such as
Snort. It will efficiently detect a wide range of known attacks such as attempts to
exploit known software vulnerabilities. If a match is found a message reflecting this is
sent to the console.

Packet n Packet n+1
Time

Source IP Address

Destination IP Address

Source Port
Destination Port
SYN
ACK
RST
FIN
URG
PSH
Data Portion Of Packet

Figure 2: Data Structure for Storing Packets Internally

3.5.2 Anomaly Detection Engine

The job of the anomaly detection engine is to build and maintain a statistical model
representing the traffic between the server and its clients. The model consists of mean
and standard deviation values for occurrences per hundred packets of many different
properties of the traffic. This just requires keeping counters and doing some
calculations every hundred packets. Therefore it is less processor-intensive than other
approaches such as neural networks. When traffic is detected which does not fit in
with the model (i.e. in one hundred packets the recorded number of occurrences for
one or more traffic property falls outside mean two standard deviations) a message
is sent to the console indicating that an anomaly has been detected.

An example of this working is the detection of a SYN flood attack. SYN flooding is
an old and once very popular denial of service (DoS) attack. When System1
establishes a TCP connection to a given port on System2 the first part is known as the
three-way handshake. It consists of System1 sending a packet to System2 with the
SYN (synchronise) flag set. System2 then replies to System1 by sending a packet with
both the SYN and the ACK (acknowledge) flags set. At this point System1 sends
another packet to System2 that also has the SYN and ACK flags set and the
connection is now established. If for some reason the final part of that interaction
failed to happen, System2 would wait usually for several minutes before aborting. For
this period the connection is in the WAIT state. It is neither established or not. Most
operating systems can only queue a small number (eg ten) of connections in the WAIT

19

state. Normally this would be fine as the three-way handshake is fast and the queue
would never need to hold ten connections in this state at once. If, however, an attacker
sends several packets with the SYN flag set and spoofs the source IP address to be
that of an unreachable system then System1 will never send the final packet of the
three-way handshake (because System1 does not really exist). System2’s connection
queue will be full and that port on System2 will no longer be reachable. As keeping
the queue full only requires the attacker to send a very small number of forged packets
to System2 every few minutes it is perfectly possible to shut down several servers that
have T3 lines using only a 14.4 Kbps modem. However, during a SYN flood the
number of received packets with the SYN flag set would be greater than the mean
value + twice the standard deviation value as appears in the statistical model of
normal traffic and so this would be flagged by the anomaly detection engine.

The anomaly detection part of the IDS is very good at detecting any attack which
involves sending a lot of packets. It is also capable of detecting novel malicious
behaviour that is missed by the misuse detection engine. The attributes measured for
the statistical model are as follows:

 A frequency histogram of the occurrences of different source ports is kept for both
incoming and outgoing packets.

 A frequency histogram is also kept for occurrences of different destination ports
for both incoming and outgoing packets.

 For each of the TCP flags (URG, ACK, PSH, RST, SYN and FIN) a count is kept
of how many incoming and outgoing packets are seen with that flag set.

 The time taken, in seconds, for one hundred packets to be logged is monitored.

Thus we can calculate a mean and a standard deviation for occurrences in both
incoming and outgoing packets of each possible source port, each possible destination
port and each TCP flag per hundred packets. A mean and a standard deviation value
are also calculated for the time taken to observe one hundred packets.

After the number of occurrences of these properties has been observed for a hundred
packets, whether or not an anomaly has occurred, the mean and standard deviation
values are recalculated as follows:

 New average = (((old average x e^-) + occurrences in last hundred) / (e^- + 1))

 New standard deviation = (((old standard deviation x e^-) + (new average -
occurrences in last hundred)) / (e^- + 1))

where is a weighting constant used to fix how much old traffic counts for compared
to the last hundred packets. The last hundred packets stored in memory can then be
overwritten as the cycle starts again. Every time the average and standard deviation
values are recalculated they are all written to a file called ‘model’. If the IDS is for
some reason shut down, when it is restarted it will read in the model file and carry on

20

from where it left off rather than having to start building the statistical model again
from scratch.

An example of this process is as follows. At a given point in time, the average number
of TCP packets per hundred with the ACK flag set is 57. The standard deviation is 12.
The IDS monitors traffic for another hundred packets and observes 52 TCP packets
with the ACK flag set. As 57-52=5 is less than 2x12=24 no anomaly has occurred.
The average is now recalculated as (((57 x e^-) + 52) / (e^- + 1)). The new standard
deviation is (((12 x e^-) + ((((57 x e^-) + 52) / (e^- + 1)) - 52)) / (e^- + 1)).

3.5.3 NIDS Console

Originally, the intention was to have the NIDS log all attacks to a file that would then
be presented to the user in an HTML page generated by a CGI script. This would
require the user to login to an interface whenever he or she wanted to check for recent
malicious activity. It was decided that it would be far better to have the NIDS get in
touch with the user than vice versa. This allows the user to make a much more timely
response to intrusions. The best way to do this is to have the NIDS send an email
whenever it detects an attack.

The console part of the IDS uses the UNIX command sendmail to notify the system
administrator by email whenever it is alerted by the misuse or anomaly detection
engines that an attack (or potential attack) has been detected. When the misuse
detection engine alerts the console, the originating IP address and the kind of attack
will be included in the resulting email. For example, when the misuse detection
engine detects an ftp probe an email such as the following results:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Misuse Detection Engine

Attacker’s IP: 212.69.227.182
Type of attack: Ftp-probe

When the anomaly detection engine alerts the console the email will just contain
information about whichever property of the traffic is outside its normal bounds. For
example, if the number of incoming packets with the SYN flag set and the number of
outgoing packets with the FIN flag set are both anomalous, an email such as this
would be sent to the system administrator:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Anomaly Detection Engine

21

For Incoming Packets With The SYN Flag Set, Average is
5.35415029597069, Allowed Deviation is 1.65944673996082,
and Counted is 61

For Outgoing Packets With The FIN Flag Set, Average is
3.8806840603014, Allowed Deviation is 0.740674554717149,
and Counted is 0

For the 100 packets this email refers to, the following
IP addresses were communicating with the server:
212.69.227.182 with 100 packets

One potential problem with this method of processing intrusions is that the attacker
can use it to launch a denial-of-service attack against the system administrator. For
example, every time someone tries to connect to port 21 on the server the sys admin
receives an email. If a malicious user writes a simple script which sits in an infinite
loop repeatedly trying to telnet to port 21 the system administrator’s email account
will be flooded with alerts from the NIDS. This is a problem in itself but it is also
possible that the attacker does this until the system administrator’s email account is
full and then launches a second attack, this time against the network. Since the NIDS
cannot email the sys admin (whose email account is now full) he or she may never
become aware of the secondary attack.

A solution might be to generate only one alert when multiple instances of the same
attack are detected from the same source in a short period of time. Even so, the same
problem could occur as the result of a distributed attack or someone trying a long list
of attacks against the server. The latter is common when using vulnerability scanners
such as Nessus to find security holes in a system.

3.6 Chapter Summary

The prototype intrusion detection system described above was implemented in
approximately 1000 lines of PERL. The email address of the system administrator to
send the alerts to is specified internally at the top of the script. So is the value of
lambda to be used by the anomaly detection engine. The software is then started by
simply issuing the following command:

[root@server]# perl ids.pl &

This starts the software as a background process that will continue running even after
the user has logged out.

We will now examine the system’s response to a range of malicious activities.

22

4 Attacks and System Response

To evaluate the success of the prototype NIDS an attempt to hack the development
server was simulated and the NIDS’ responses were observed throughout. The attacks
that made up the stages of the hacking attempt were all launched from a PC running
Linux Mandrake 7.1 and using a dial-up connection into the Legend ISP.

The attacks used were chosen due to their popularity amongst the cracker community.
The Computer Emergency Response Team (CERT) keeps track of current activity by
analysing incident reports and maintains a list of the current most common malicious
activity on their web site at http://www.cert.org/. A good idea of which attacks against
web servers occur most often was also gained by monitoring the Apache web server
logs on the development server.

The purpose and technical details of each chosen attack are explained followed by the
method used by the NIDS to detect it. This chapter demonstrates how the prototype
system reacts to some of the most common attacks threatening computer systems
today.

4.1 Selection of Attacks

I wanted to demonstrate the entire sequence of actions that make up a typical attempt
at attacking a remote computer system. The first stage of an attack is usually
information gathering. This includes port scans to determine which services are
running and probes for specific services and vulnerabilities. After the initial
information gathering stage is complete the attacker will usually attempt to exploit a
known vulnerability in the server software discovered on the system to gain
unauthorised access. If all attempts to gain access fail, the frustrated attacker may well
decide to launch a denial of service attack as a last resort. For each of these three
stages, we chose one or more attacks. Each chosen attack is now detailed along with
its reasons for being chosen.

Information gathering:

 FIN scan – This is a popular form of stealth scanning. As no connection is actually

established to the ports being scanned it goes undetected by some intrusion
detection systems.

 FTP probe – As a commonly running service with known weaknesses it is very
common to check for the existence of an FTP server.

 Web server probe – Many vulnerabilities have been found in web server software
(particularly that written by Microsoft). As a common service the presence of a
web server is often checked for.

 Microsoft FPSE probe – This is a very insecure piece of software that has resulted
in many defaced web sites and is commonly checked for.

23

 Telnet probe – Telnet is also a very common service with known security issues
and so often checked for.

 SOCKS proxy server probe – This service is popular with attackers who wish to
hide their identities when attacking more systems.

Exploit a known vulnerability:

 MS IIS 5.0 .printer buffer overflow – This vulnerability allows a remote user to
execute any desired command and affects a lot of systems being used to host web
sites. Very many attempts at exploiting this vulnerability were seen in the Apache
logs on the development server, probably due to automated propagation
techniques being used by current Internet worms such as Code Red.

Launch a denial-of-service attack:

 SYN flood – This Denial-of-Service attack exploits an inherent weakness in the
TCP protocol to shut down one or more ports on a server. It was used to great
effect in September 1996 when the PANIX ISP in New York was shut down for
over a week by an attacker who remains unidentified. Although people are
increasingly turning to distributed attacks and the SYN flood can now be defended
against it is still used from time to time. The difficulty of legally demonstrating a
distributed DoS attack (legally acquired access to many Internet hosts would be
needed) also led to the choice of this method of attack.

4.2 Information Gathering

To begin with, we are assumed to know nothing about the target server. We do not
know which ports are open, which are closed and which are filtered. We do not know
the operating system being used or which services are enabled. Before gaining access
to the system we need more knowledge about it.

4.2.1 FIN Port Scan

A port scan is a technique for determining which ports on a target system are listening
and hence which services are likely to be running. This is an important first stage to
attacking a system as it may reveal that servers with known remotely exploitable
vulnerabilities are running. It usually consists of sending a packet to each port and
seeing how it responds. During a FIN port scan a packet with the FIN flag set is sent
to each port on the target system. Closed ports respond with a RST packet whereas
open (and, unfortunately, firewalled) ports do not reply. As all ports on the
development system are either open or firewalled this particular type of port scan will
not reveal any useful information in this case.

To carry out this attack we used the Linux tool nmap written by Fyodor. Nmap is the
most popular and fully featured network discovery tool available for free. It can carry
out several different types of port scan, remote OS detection [25, Fyodor] and produce
decoy scans to make tracing the source very difficult. The following command was
executed:

24

[root@titan]# nmap –sF server

Carrying out a full scan would have been time consuming and unnecessary as the
misuse detection engine operates on a packet by packet basis and the anomaly
detection engine will detect anomalies every hundred packets. The port scanner was
allowed to run for a couple of minutes and then it was terminated. The following alert
was then received from the NIDS (edited for brevity):

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Anomaly Detection Engine

For Incoming Packets To Destination Port 81, Average is
0, Allowed Deviation is 0, and Counted is 2

For Incoming Packets To Destination Port 94, Average is
0, Allowed Deviation is 0, and Counted is 2

For Incoming Packets To Destination Port 101, Average is
0, Allowed Deviation is 0, and Counted is 2

For Incoming Packets To Destination Port 165, Average is
0, Allowed Deviation is 0, and Counted is 2

For Incoming Packets To Destination Port 166, Average is
0, Allowed Deviation is 0, and Counted is 2

For Incoming Packets From Source Port 55043, Average is
12.4491850432782, Allowed Deviation is 4.70007463118913,
and Counted is 45

For Incoming Packets From Source Port 55044, Average is
11.2042665389504, Allowed Deviation is 4.23006716807021,
and Counted is 52

For Incoming Packets With The SYN Flag Set, Average is
40.9284811398537, Allowed Deviation is 13.088693875117,
and Counted is 1

For Incoming Packets With The FIN Flag Set, Average is
26.3003823738576, Allowed Deviation is 7.6974903206533,
and Counted is 97

For time taken for 100 packets, Average is
200.37386327306138 seconds, Standard Deviation is
17.95984673992142 seconds, and Observed is
92.66944936596734 seconds

25

For the 100 packets this email refers to, the following
IP addresses were communicating with the server:
212.69.227.182 with 100 packets

This shows that the misuse detection engine did not detect the port scan but the scan
resulted in anomalous traffic being detected by the anomaly detection engine. Packets
addressed to a lot of ports that have never received packets before are seen. Almost all
these packets have the FIN flag set and almost none of them have the SYN flag set.
An increase in the volume of traffic is seen and all these packets have come from one
IP address. This would lead a competent security officer to suspect that a FIN scan is
in progress from 212.69.227.182.

As the FIN scan did not produce any information to help with our attack we assume
that the closed ports are all filtered by a firewall. We move on to checking for specific
services and vulnerabilities.

4.2.2 FTP Probe

Whenever an incoming packet is addressed to port 21 and has the SYN flag set it is
classified as an FTP probe by the misuse detection engine. The server is not running
the FTP service and therefore any connection attempts to port 21 are assumed to be
somebody with hostile intent checking for the existence of this service prior to
mounting an attack. Many vulnerabilities have been found in commonly used versions
of FTP servers (especially WU (Washington University) FTP). Known vulnerabilities
have included buffer overflows (buffer overflows will be covered in section 4.3.1) and
problems associated with allowing anonymous access. Even if the particular version
of the FTP server found to be running has no known vulnerabilities a brute force
password attack can be launched. It is therefore very common for an attacker to check
for the existence of an FTP server on a target system.

To test for the existence of an FTP daemon the standard Linux telnet client was used
to attempt to connect to port 21:

[root@titan]# telnet server 21
Connection refused by server

As FTP is not running (and port 21 is filtered by the firewall anyway) the connection
was refused by the server. On the development server, FTP (and also telnet) has been
replaced by the SSH (Secure Shell) service which listens on port 22. SSH allows
encrypted file transfers and shell sessions thus reducing the threat to security posed by
sniffers.

After attempting to telnet to port 21 the following email was received from the NIDS:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Misuse Detection Engine

26

Attacker’s IP: 212.69.227.182
Type of attack: Ftp-probe

This shows that the single-packet probe did not cause anomalous traffic but was
detected by the misuse detection engine.

4.2.3 Web Server Probe

To find out if a web server is running on the system the following was typed into a
web browser:

http://server/

This revealed a web page indicating that a web server is indeed running. As accessing
the web server is perfectly legitimate this was not flagged by the misuse detection
engine or classed as anomalous by the anomaly detection engine. We move on to
checking for a specific vulnerability related to web server software.

4.2.4 Microsoft FrontPage Server Extensions Probe

Whenever an incoming packet is addressed to port 80 and contains the string _vti_pvt
in its data portion it is classified as a Microsoft FrontPage Server Extensions probe by
the misuse detection engine. A default installation of MS FPSE has world-readable
password files in a folder called /_vti_pvt/ which can be accessed with a web browser.
If the password files are downloaded by an attacker they can often be cracked with a
dictionary attack program such as the popular ‘John the Ripper’. A dictionary attack is
a way of finding plain-text passwords from an encrypted password file. Every word in
a dictionary is encrypted and compared to each encrypted string in the password file.
A match in encrypted strings indicates that a password has been discovered. This is
often very successful as most people choose passwords based on real words. Large
word lists for this purpose can be downloaded off various web sites. The
compromised accounts can then be used to alter the web site or access restricted areas
using the MS FrontPage client application. This is a favourite technique of novice
web defacers as it is easy and a list of vulnerable sites can be obtained by simply
going to the Altavista search engine and typing:

link:/_vti_pvt/services.pwd

This will return a list of sites spidered by Altavista that are running MS FPSE and
have a world-readable password file.

To test for the existence of MS FPSE the following was typed into a web browser:

http://server/_vti_pvt/

27

As Microsoft FrontPage Server Extensions is not installed and hence there is no
/_vti_pvt folder the connection resulted in a 404 File Not Found error. The following
email was then received from the NIDS:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Misuse Detection Engine

Attacker’s IP: 212.69.227.182
Type of attack: FrontPage-probe

4.2.5 Telnet Probe

Whenever an incoming packet is addressed to port 23 and has the SYN flag set it is
classified as a telnet probe by the misuse detection engine. The server is not running
the telnet service and therefore any connection attempts to port 23 are assumed to be
somebody with hostile intent checking for the existence of this service prior to
mounting an attack. Telnet servers are vulnerable to brute force attacks (trying lots of
passwords for different usernames) if any users have weak passwords.

To test for the presence of a telnet daemon the standard Linux telnet client was used to
attempt to connect to port 23:

[root@titan]# telnet server
Connection refused by server

As telnet is not running (and port 23 is filtered by the firewall anyway) the connection
was refused by the server. The following email was then received from the NIDS:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Misuse Detection Engine

Attacker’s IP: 212.69.227.182
Type of attack: Telnet-probe

4.2.6 SOCKS Proxy Probe

A common technique used by attackers to obfuscate their location is to attack through
one or more anonymous SOCKS proxies. An anonymous SOCKS proxy will forward
TCP, UDP and ICMP packets from a client to a server and then forward the server’s
response back to the client. The server will only log the IP address of the SOCKS
proxy, not the IP address of the real client. Many such proxies exist on the Internet.
Often they have been set up to allow Internet access from a LAN via only one

28

machine. Unfortunately, people do not realise that their proxies are accepting external
connections as well as connections from the LAN. It is common practice for people in
the cracker community to scan large ranges of IP addresses for proxies and lists of
them are published on various web sites.

By default, SOCKS proxies run on port 1080 and so whenever an incoming packet is
addressed to that port and has the SYN flag set it is classified as a SOCKS probe by
the misuse detection engine. The server is not running the SOCKS service and
therefore any connection attempts to port 1080 are assumed to be somebody with
hostile intent checking for the existence of this service prior to mounting an attack.

To probe for the presence of a SOCKS proxy the standard Linux telnet client was
used to attempt to connect to port 1080:

[root@titan]# telnet server 1080
Connection refused by server

As SOCKS is not running (and port 1080 is filtered by the firewall anyway) the
connection was refused by the server. The following email was then received from the
NIDS:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Misuse Detection Engine

Attacker’s IP: 212.69.227.182
Type of attack: socks-probe

4.3 Exploiting a Known Vulnerability

As the information gathering stage revealed the presence of a web server, we try a
common web server attack.

4.3.1 Microsoft IIS 5.0 .printer Buffer Overflow

Buffer overflow attacks first became really popular in November 1996 when Phrack
Magazine (http://www.phrack.com/) published an article called “Smashing the Stack
for Fun and Profit”. This article explained the technical details of exploiting buffer
overflow conditions to gain unauthorised access to systems. Buffer overflows occur
when a program attempts to write more data to a buffer (for example an array) than it
can contain. The memory after the end of the buffer is overwritten by the data.

An example of this is if some user input is written to an array of type char[] by the
strcpy() function in a C program. The function does not bother to check the size
of the array against the size of the data being written to it. If the array is 10 bytes long
but we give 15 bytes of input, the 5 bytes of memory after the array will be

29

overwritten with the last 5 bytes of the data we supplied. An example of a situation
where this might occur is when a program prompts a user for a username and
password. The programmer might have specified an array of 20 bytes to read the
username into but someone can give a string longer than this at the login prompt.

The reason this can be useful to an attacker is that during a function call the
arguments are placed on the stack along with the return address. If an argument is
bigger than expected its last few bytes can overwrite the return address. Hence an
attacker can cause execution of the program to skip to a chosen address in memory.
The new return address should be chosen to be the address of the beginning of the
buffer. The data at the beginning of the buffer should be some machine code that the
attacker wants to execute. When the function call finishes, instead of execution
returning to the point just after where the function call was made it starts executing
the data originally passed in as an argument. These instructions are usually chosen so
as to send a command shell back to the attacker.

Since 1996, many buffer overflow vulnerabilities have been found in many pieces of
software and exploit code made public. In May 2001 the eEye Security Group [27,
eEye] found a buffer overflow vulnerability in Microsoft’s IIS 5.0 web server. This
allows remote attackers to run commands on vulnerable Windows machines with
SYSTEM privileges (similar to root on UNIX machines). This vulnerability affected a
huge number of web sites on the Internet and proved very popular with the cracker
community. The Code Red worm used this as its method of propagation, penetrating
approximately 250,000 systems in 24 hours.

To attempt to exploit this vulnerability a NASL script that was written by John Lampe
and included with Nessus was used. The main part of this script is shown below:

port = get_kb_item("Services/www");
if(!port)port = 80;
if(get_port_state(port)) {
 soc = open_sock_tcp(port);
 if(!soc)exit(0);
 req = http_get(item:"/", port:port);
 send(socket:soc, data:req);
 r = recv_line(socket:soc, length:4096);
 close(soc);
 if(!r)exit(0);
 mystring = string("GET /NULL.printer HTTP/1.1\r\n");
 mystring = string (mystring, "Host: ", crap(420),
"\r\n\r\n");
 mystring2 = string ("GET / HTTP/1.0\r\n\r\n");
 soc = open_sock_tcp(port);
 if(!soc) {exit(0);}
 else {
 send(socket:soc, data:mystring);
 close(soc);
 soc2 = open_sock_tcp(port);
 send(socket:soc2, data:mystring2);
 incoming = recv(socket:soc2, length:1024);

30

 if(!incoming){
 security_hole(port);
 exit(0);
 }
 }
}

This script first attempts to open a socket to port 80 on the target system. If this is
successful it then sends the following HTTP request:

GET /NULL.printer HTTP/1.1
Host: [420 random characters go here]

If the host is vulnerable this will crash the web server. The script then sends the
following HTTP request:

GET / HTTP/1.1

If this does not elicit a response, the web server is assumed to have crashed and
therefore is vulnerable to the buffer overflow. The Windows operating system will
restart the web server after a few minutes at which point it can be used to gain remote
access to the system.

To run the script it was loaded into the Nessus vulnerability scanner. This then
executed the script with the development server as the target system. As the
development server is running the Apache web server Nessus reported back that the
target was not vulnerable and so could not be exploited in this way. The following
alert was then received from the NIDS:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Misuse Detection Engine

Attacker’s IP: 212.69.227.182
Type of attack: iis5-printer-overflow

This shows that our attempted exploit was detected by the misuse detection engine.
The system detected this attack by checking for incoming packets addressed to port
80 with the string ‘.printer’ appearing in the data portion of the packet.

4.4 Denial-of-Service Attack

As all attempts to gain access to the system have failed, a typical move would be to
launch a denial of service attack.

31

4.4.1 SYN Flooding

The SYN flood denial-of-service attack was described in section 3.5.2 of this report. It
is based on sending a flood of forged TCP packets, with the SYN flag set, to a specific
port on a target system. The source IP of the packets is spoofed to be that of a non-
existent system. The attack results in that particular port on the target being unable to
respond to legitimate users. For example, to stop the users of a network receiving their
incoming email an attacker could SYN flood port 110 (POP3) on the network’s mail
server.

To carry out this attack the synk4.c program was used. The attack program was used
to SYN flood port 25 on the development server. Obviously the attack itself failed
since this port is filtered by the firewall and there is no SMTP server running anyway.
However, the incoming packets were still processed by the IDS.

The command syntax for synk4 is:

synk4 Source-IP Destination-IP Low-Port High-Port

If zero is used for the Source-IP field synk4 will use a different random unreachable
source IP address for each packet it sends. The low-port and high-port fields allow the
user to specify a range of ports to be flooded. To restrict the attack to just one port
both fields can be given the same value. The following command was issued:

[root@titan]# ./synk4 0 server 25 25

This launched a stream of SYN packets to port 25 on the development server. Each
packet had a different, spoofed, unreachable source IP address. Whilst running, synk4
displays a counter to indicate how many packets it has sent so far. Even on a dial-up
connection the counter goes up much faster than is needed to successfully shut down a
single port. The SYN flooder was allowed to send about 100 packets and then
deactivated. As expected, the forged packets resulted in an alert from the NIDS. For
the sake of brevity, only the parts of the email considered important are shown:

To: sysadmin@wherever.com
From: ids@wherever.com
Subject: Alert From NIDS

From Anomaly Detection Engine

For Incoming Packets To Destination Port 25, Average is
9.25472805368193, Standard Deviation is 2.2473957528348,
and Counted is 88

For Incoming Packets With The SYN Flag Set, Average is
5.35415029597069, Standard Deviation is 1.65944673996082,
and Counted is 94

For time taken for 100 packets, Average is
200.37386327306138 seconds, Standard Deviation is

32

17.95984673992142 seconds, and Observed is
12.66944936596734 seconds

For the 100 packets this email refers to, the following
IP addresses were communicating with the server:
[There is a list here of about 100 (forged) IP addresses]

The email shows an unusually high number of packets addressed to port 25 and an
unusually high number of packets with the SYN flag set. It also shows a huge
decrease in the amount of time taken to observe 100 packets and hence a huge
increase in volume of traffic. Whilst interpreting emails from the anomaly detection
engine is not as easy as interpreting emails from the misuse detection engine it is still
fairly obvious that a SYN flood attack against the SMTP port is underway. As the
packets are spoofed there is no way for the NIDS to identify the true source of the
attack.

4.5 Chapter Summary

It has been shown that during the course of a typical hacking attempt the prototype
system will respond to several of the attacker’s actions. The system administrator
would be alerted as soon as information gathering has begun and can respond before
the attacker moves on to the later stages of the intrusion attempt. It has been seen that
the anomaly detection engine is good at detecting attacks and probes that involve the
attacker sending many packets. For example, flooding DoS attacks and port scans
both produce anomalous traffic. Attacks consisting of a small number of packets are
less likely to be detected unless they are flagged by the misuse detection engine.

33

5 Evaluation and Further Work

In this chapter we look at the strengths and weaknesses of the prototype intrusion
detection system that we have produced. Possible work to be done in the future is
planned from the weaknesses found.

5.1 Strengths

This section describes the most noteworthy advantages of the features of the prototype
system.

5.1.1 Strengths of the Misuse Detection Engine

We saw in chapter four that the attacks in the signature database are all detected by
the misuse detection engine resulting in the attacker’s IP address being emailed to the
system administrator along with a simple, natural language, description of the attack.
As misuse detection is performed on a packet by packet basis, these attacks are
detected almost instantly. Real-time detection is important, as response time is a
critical factor when dealing with an ongoing attack.

Adding new signatures to the database (such as when a new vulnerability has been
discovered) is a simple task. For each new attack all that is needed is a line indicating
whether the offending packet will be incoming or outgoing, which TCP flags will be
set, any particular source or destination port used, and any string contained in the
packet.

5.1.2 Strengths of the Anomaly Detection Engine

Anomalous traffic is assumed to be indicative of hostile behaviour by one or more
external users. Events detected by the anomaly detection engine that would not be
detected by misuse detection include: a sudden increase or decrease in the volume of
traffic; fluctuations in the amount of traffic going to and from a given port; and
fluctuations in the number of packets with a given flag set. Whenever a set of one
hundred packets is found to be anomalous, precise details of the anomaly are emailed
to the system administrator along with a list of all the external IP addresses appearing
in that set of packets. The IP addresses are broken down by percentage of traffic to
show how active each external user was during the period in question. This provides
all the information necessary for a security officer to diagnose the cause of the
anomalous traffic and make the necessary response.

5.1.3 Strengths of the Combination of Both Engines

The most obvious overall strength of the system produced in this project is the use of
both misuse detection and anomaly detection. As was originally theorised in chapter
three and then demonstrated in chapter four, the combination of these two methods
allows detection of a wider range of attacks than either can achieve on its own. It was

34

seen in chapter four that the anomaly detection engine is good at detecting activities
that involve the attacker sending a large number of packets. This applies not only to
existing attacks but to future attacks also. The misuse detection engine is excellent at
detecting known attacks on a packet-by-packet basis. The two detection engines
complement each other well and give the best chance of detecting any given attack.

5.1.4 Usage of System Resources

An important issue when deploying an intrusion detection system is how much of a
drain it will have on system resources. This is especially true if, as in our case, the
IDS is running on the same system that it is defending. For the prototype, the IDS
itself is about 42Kb long and the statistical model, used by the anomaly detection
engine to represent the network traffic, is approximately 1Mb. The model is kept both
on disk and in memory. The attack signature database, also kept both on disk and in
memory, is about 1Kb in size. This means a total of approximately 1Mb of disk space
and RAM is used by the prototype system. As most systems today are equipped with
64Mb or 128Mb of RAM and at least 20Gb of hard disk the IDS is unlikely to cause
memory or disk space problems. Apart from RAM and disk space, the other system
resource that could be drained is processor time. On the development server, a 500
MHz Pentium, no noticeable decrease in speed resulted from running the IDS. This
compares well with other systems. For example, SecureNet Pro from Intrusion Inc
(http://www.extranet.co.nz/) which performs network-based misuse detection is
advertised as having the following system requirements:

 Pentium II 400 MHz processor
 128 MB RAM
 250 MB disk space

5.1.5 Use of Generic Intrusion Detection Methods

Both the misuse detection engine and the anomaly detection engine could be easily
adapted to take a different input. The techniques of pattern matching and statistical
modelling could both be used on something other than TCP packets. Packets of other
protocols would be easy to process but the system could be applied to data of other
forms too. For example, pattern matching and statistical modelling could both be used
to monitor command usage in a host-based IDS scenario.

5.1.6 User Interface

Originally, the intention was to have the NIDS log all attacks to a file in much the
same way as Snort does. A user interface could then be written as a CGI script that
could be accessed through a web browser. After providing authentication, the user
could view a report of attacks in HTML form. However, this would require the user to
login to the interface on a regular basis to check for recent malicious activity. It was
decided that it would be far better to have the NIDS get in touch with the user than
vice versa. This allows the user to make a much more timely response to intrusions.

35

5.2 Weaknesses

This section describes problems with the features of the prototype system and areas
that require improvements to be made.

5.2.1 Weaknesses of the Misuse Detection Engine

The misuse detection engine operates on a packet-by-packet basis. Each packet
captured by the sniffer is checked against each attack signature in the database. This is
vulnerable to a way of attacking without detection. As some network devices can deal
with larger packets than others, TCP allows packets to be fragmented if they are too
large. This takes one packet and breaks it into two or more packets that are
transmitted separately and then re-assembled on reception at the other end of the
communication link. Those attack signatures that rely on a string in the data portion to
detect attacks will not work if the packets are fragmented in such a way that the string
is broken over two or more packets. For example, an attacker could use the MS IIS
5.0 .printer buffer overflow covered in chapter four without being detected by the
misuse detection engine providing the string used in the signature is split over two
packets.

Another, less serious, problem with the misuse detection engine is that after updating
the attack signature database the IDS must be restarted. This in itself is not really a
problem but it is likely to be forgotten by some users. If somebody relying on the
system for security adds a new signature to the database when a new vulnerability is
discovered but then forgets to restart the system he or she will have a false sense of
security. The user will believe that the IDS will detect the new attack when in fact it
will not until it is restarted. This problem arises due to the fact that the attack
signature database is read from file when the IDS is started and stored in RAM to give
optimum speed. Subsequent changes to the file will not be read into RAM until next
time the system is started.

5.2.2 Weaknesses of the Anomaly Detection Engine

Whilst alerts from the misuse detection engine give precise details of which attack has
been carried out and from which IP address, alerts from the anomaly detection engine
are not quite as easy to interpret. Knowledge of the TCP protocol and specific attacks
is required to work out the cause of the anomalous traffic. As stated at the beginning
of the project, one of the main purposes behind automated intrusion detection is to
remove the need for a human expert. The anomaly detection engine fulfils the other
IDS requirement of removing the need for a human to check log files but it still
requires a knowledgeable person to determine the likely cause of an anomaly.

There is also a way for an attacker to greatly reduce the value of alerts generated by
the anomaly detection engine. If the attacker knows that his actions will cause an
anomaly, he can add a lot of other packets at random so that the alert generated by the
IDS will be almost impossible to interpret. If the junk packets all have spoofed source
IP addresses it will not even be possible to work out which external user is causing the

36

anomalies. For example, if an attacker carries out a port scan we would normally get
an alert from the IDS showing a lot of packets from a single machine all addressed to
different ports on our server. However, if the attacker mixed in a lot of packets with
random flags set, addressed to random ports and with random spoofed source IP
addresses it would be practically impossible to tell what is going on.

5.2.3 Dependence on Third Party Software

The intrusion detection system produced in this project requires the user to obtain and
install the packet sniffer, TcpDump. Apart from the inconvenience, possible problems
could result from differences in output between different versions and a possible lack
of availability in the future. The prototype system was developed using version 3.6.2
of the software. It is possible that older or future versions may present captured
packets in a slightly different way. For example some of the fields may be in a
different order. This would cause the IDS to behave incorrectly.

5.3 Future Work

This section describes both possible solutions to some of the weaknesses from section
5.2 and also future research that could be done.

5.3.1 Adding Host-based Elements

The most promising area for future development of the system we have produced is
adding host-based elements. This would result in a system combining both misuse
detection and anomaly detection in both a network-based and host-based context! The
aim would be to perform host-based intrusion detection on the activities of remote
users who have established ftp or telnet sessions. This could again be achieved by
examining the output of the packet sniffer. The commands being executed by remote
users would be visible in the data parts of the packets. A statistical model of issued
commands could be maintained by the anomaly detection engine in much the same
way a model representing the network traffic is kept. Attack signatures consisting of
particular commands known to indicate malicious behaviour (eg ‘cat /etc/passwd’)
could be used by the misuse detection engine.

5.3.2 Handling Encrypted Traffic

The problem of performing intrusion detection on encrypted traffic could in part be
dealt with by whichever server software the encrypted traffic is addressed to (eg the
ssh daemon) co-operating with the IDS. If the ssh daemon shares the relevant
encryption key with the IDS then it can decrypt and examine the data. If the IDS
obtains the packet header and encrypted data from the sniffer and then obtains the
encryption key from the relevant daemon it can perform misuse detection as normal.
This, however, would require modification of all the daemons that use encrypted
traffic and so is probably not a practical solution.

37

5.3.3 Method of Capturing Packets

Instead of relying on TCPDump it would be worth writing some packet capturing
software specifically for the IDS. This would eliminate the problems with relying on
third party software already described. There is a library of packet capturing routines
called libpcap available free of charge. However, this part of the IDS would have to
be written in C if using libpcap and so would require recompilation on porting to
another system.

It would also be useful to capture and process UDP and ICMP packets as well as the
TCP packets already being dealt with.

5.3.4 Hardening the Intrusion Detection System

Further research should be done into making the IDS itself resistant to attack. If an
attacker is aware that a network has an IDS running, he or she may decide to try to
disable it before attacking the rest of the network. One area that should be looked at is
preventing a user who has established a remote session to the server from shutting
down the IDS. Currently, the IDS can be shut down by simply obtaining its process
identifier and using the UNIX ‘kill’ command. Although this requires the user to be
logged in as root it would still be a good idea to design some way of requiring an
extra password to shut the IDS down.

5.3.5 Improvements to the Anomaly Detection Engine

The anomaly detection engine depends on creating and maintaining an accurate model
of normal traffic in order to detect anomalous traffic. The task of detecting anomalous
traffic could be performed with greater success if more properties of the network
traffic were monitored and incorporated into the statistical model. For example, the
anomaly detection engine could also monitor the size of packets, the number of
fragmented packets and the spread of TCP sequence numbers used.

It would be useful for the anomaly detection engine to attempt to resolve IP addresses
to host names prior to passing them to the console. This would make identifying the
ISP of the attacker, and therefore who to report them to, quicker and easier.

5.3.6 Improvements to the Misuse Detection Engine

The misuse detection engine should reassemble fragmented packets before checking
for a match with the signature database. TCP packets have sequence numbers and a
flag indicating whether or not fragmentation has occurred. These could be used by the
IDS to do the necessary reassembly. If this feature were added it would allow the
misuse detection engine to catch attacks that have the signature string broken over
two or more packets.

Extra syntax could also be added to the way attack signatures are specified so that
attacks involving specific sequences of packets could be detected. For example, both

38

the port scan and the SYN flood performed in chapter four are known attacks and so
should be detected by the misuse detection engine. The current method of specifying
signatures only allows for the detection of single packet attacks.

As with the anomaly detection engine, it would be useful for the misuse detection
engine to attempt to resolve IP addresses to host names prior to passing them to the
console.

5.3.7 Response to Intrusions

Some experimentation should be done with methods of dealing with attacks that could
be performed by the IDS. For example, the misuse detection engine could
automatically block the IP address of each detected attacker for a few hours by
temporarily inserting a new firewall rule.

5.3.8 Improvements to the NIDS Console

Alternative methods of the NIDS sending alerts to the system administrator should be
explored. The user could then choose one or more preferred methods. One possibility
is for the NIDS to use SMS messaging to send alerts as text messages to the
administrator’s mobile phone. There are servers known as SMS gateways on the
Internet which will receive data from another Internet host and forward it to a mobile
phone network. These usually require a fee but would make a useful addition to the
system. A potential problem is the large size of some of the alerts compared to the size
of a mobile phone LCD display. Alerts from the misuse detection engine would
probably be okay but alerts generated by the anomaly detection engine would often be
too large to read on a mobile phone. A compromise would be to send a text message
informing the administrator that an alert has been generated and that he should check
his email. This would be useful to an administrator who is often away from his
computer.

5.4 Chapter Summary

In this chapter we had a critical look at the prototype system that we have produced
and talked about both its strengths and its weaknesses. We suggested some possible
solutions to the weaknesses we found and also some areas for future research.

39

6 Summary and Conclusions

In this final chapter we summarise each of the previous chapters and present the
conclusions we have drawn from the work carried out.

6.1 Summary of Previous Chapters

 Chapter 1: Introduction –The importance of intrusion detection was explained
within the wider context of computer security.

 Chapter 2: Overview of Intrusion Detection – Past research into the field of

intrusion detection was described and notable papers were reviewed.

 Chapter 3: System Specification and Design –A specification for combining both
anomaly detection and misuse detection in a network-based IDS was proposed.

 Chapter 4: Attacks and System Response – An attempt to hack the development
server was simulated and the NIDS’ responses were observed.

 Chapter 5: Evaluation and Future Work – The successes and failures of this

project were discussed and long-term research issues were identified.

6.2 Project Conclusions

The main conclusion drawn from this project is that it is both feasible and
advantageous to include both a signature-based and an anomaly-based detection
engine when producing a NIDS. Although the short amount of time available made it
impossible to carry out very thorough testing of the prototype system, it was seen to
detect many stages of a typical hacking attempt. Some actions were detected as
misuse, others as anomalies. This suggests that further work on the prototype could
produce a system capable of detecting a very wide range of attacks.

The implemented prototype system required minimal system resources. This showed
that misuse detection and anomaly detection could be combined without resulting in a
system requiring a lot of memory or a particularly fast CPU. The prototype did not
even need a dedicated system. It ran on the same host that it was monitoring.

The prototype was also flexible enough to allow it to be applied to things other than
TCP packets without major changes to the code. The system’s modular design means
that it could be easily extended to include more functionality.

Despite the challenge of dealing with encrypted traffic, it seems likely that network-
based intrusion detection systems will continue to grow in popularity. As e-commerce
continues to grow and web sites become more popular the field of intrusion detection
is likely to concentrate on monitoring network traffic for external attackers rather than
monitoring users who are logged in and executing commands. The popularity of web
site defacement amongst a mostly teenaged cracker community is likely to remain for

40

a long time. Compromised e-commerce sites can result in credit card information
being taken and public embarrassment for the company. With attackers using tools
that scan entire ISPs for a known vulnerability it is increasingly important that
systems to detect this kind of activity are in place.

In the field of computer security, the constant race between attacker and defender is
one that usually sees the defender struggling to keep up. Attackers discover a new
vulnerability to exploit or create a whole new attack paradigm (such as the shift to
distributed denial of service attacks in 1999) and then weeks or months pass before
the majority of system administrators take the necessary defensive steps. For this
reason there would be great gains from incorporating the most sophisticated anomaly
detection possible into future NIDS. An intrusion detection system that would reliably
detect novel attacks would be a hugely powerful defensive weapon.

41

7 Appendix A – References

[1, White and Pooch] Cooperating Security Managers: Distributed IDS, Gregory
White and Vdo Pooch, 1996

[2, Cohen] The Structure of Intrusion and Intrusion Detection, Fred Cohen, May 16th
2000

[3, Garvey and Lunt] Model-Based Intrusion Detection, Thomas Garvey and Teresa
Lunt, 1991

[4, Sebring et al.] Expert Systems in Intrusion Detection: A Case Study, Sebring et al.

[5, Shaefer] Employee Privacy and Intrusion Detection Systems: Monitoring On The
Job, Shaefer

[6, Zenomorph] Fingerprinting Port 80 Attacks: A Look Into Web Server, And Web
Application Attack Signatures, Zenomorph

[7, Sasha] A Strict Anomaly Detection Model for IDS, Sasha/Beetle, Phrack 56 0x0b

[8, Bejtlich] Interpreting Network Traffic: A Network Intrusion Detector’s Look at
Suspicious Events, Richard Bejtlich, 14th May 2000

[9, Abren] NIDS on Mass Parallel Processing Architecture, Wanderley J Abren Jr,
Phrack 57 0x0c

[10, Rowland and Clark] Automated Intrusion Detection : Theory and Practice, Leigh
Rowland and John Clark, 1995

[11, Sasha] Holistic Approaches to Attack Detection, Sasha, Phrack 57 0x0b

[12, Inella] The Evolution of Intrusion Detection Systems, Paul Inella, November
16th 2001

[13, Anderson] Computer Security Threat Monitoring and Surveillance, James
Anderson, April 15th 1980

[14, Bace and Mell] Intrusion Detection Systems, Rebecca Bace and Peter Mell,
August 2001

[15, Deraison] The Nessus Attack Scripting Language Reference Guide, Renaud
Deraison

[16, NAI Inc] CASL for Linux Red Hat 5.x Programming Guide Version 2.0, Network
Associates Inc, 1999

[17, Axelsson] Research in IDS: A Survey, Stefan Axelsson, August 19th 1999

42

[18, Ptacek and Newsham] Insertion, Evasion and Denial of Service: Eluding
Network Intrusion Detection, Thomas H. Ptacek and Timothy N. Newsham, January
1998

[19, Ryan et al] Intrusion Detection with Neural Networks, Ryan, Lin and
Miikkulainen, 1998

[20, Rain Forest Puppy] A Look at Whisker’s Anti-IDS Tactics, Rain Forest Puppy,
December 1999

[21, arachNIDS] Advanced Reference Archive of Current Heuristics for Network
Intrusion Detection Systems, Max Butler, http://www.whitehats.com/ids/

[22, Psionic] Psionic HostSentry, Information and Download,
http://www.psionic.com/products/hostsentry.html

[23, Tripwire] Tripwire home page, http://www.tripwire.com/downloads/

[24, Nazario] Passive System Fingerprinting using Network Client Applications, Jose
Nazario, November 27 2000

[25, Fyodor] Remote OS Detection via TCP/IP Stack fingerprinting, Fyodor, October
18 1998

[26, Schwartz and Christiansen] Learning PERL Second Edition, Randal Schwartz
and Tom Christiansen, July 1997

[27, eEye] Buffer overflow in Microsoft IIS 5.0, May 2001,
http://www.eeye.com/html/Research/Advisories/AD20010501.html

43

http://www.eeye.com/html/Research/Advisories/AD20010501.html

8 Appendix B – Attack Signatures

The following five attack signatures are those that make up the database used by the
misuse detection engine of the prototype system. They were chosen due to their
frequency of use by the cracker community. A full version of the system would most
likely use several hundred signatures. These five are, however, sufficient to
demonstrate the principle.

EXTERNAL any INTERNAL 21 Ftp-probe S NULL
EXTERNAL any INTERNAL 23 Telnet-probe S NULL
EXTERNAL any INTERNAL 1080 Socks-Proxy-probe S NULL
EXTERNAL any INTERNAL 80 Frontpage-probe NULL 7674695f707674
EXTERNAL any INTERNAL 80 http-iis5-printer-eeye A
8bc483c01133c966b92001803003

44

9 Appendix C – NIDS Source Code

To request a copy of the source code for research purposes please contact me using
the email address on the front page.

45

	1 Introduction
	2 Overview of Intrusion Detection
	2.1 Host based, Network based and Hybrid IDS
	2.2 Distributed IDS
	2.3 Misuse Detection
	2.4 Anomaly Detection
	2.5 Ethics of Intrusion Detection
	2.6 Defeating Intrusion Detection Systems
	2.7 Offensive Uses of Intrusion Detection Systems
	2.8 Measuring the Efficiency of an Intrusion Detection System
	2.9 The Future of Intrusion Detection
	2.10 Chapter Summary

	3 System Specification and Design
	3.1 Objective
	3.2 Constraints
	3.3 Choice of Programming Language
	3.4 Development Platform
	3.5 System Architecture
	3.5.1 Misuse Detection Engine
	3.5.2 Anomaly Detection Engine
	3.5.3 NIDS Console

	3.6 Chapter Summary

	4 Attacks and System Response
	4.1 Selection of Attacks
	4.2 Information Gathering
	4.2.1 FIN Port Scan
	4.2.2 FTP Probe
	4.2.3 Web Server Probe
	4.2.4 Microsoft FrontPage Server Extensions Probe
	4.2.5 Telnet Probe
	4.2.6 SOCKS Proxy Probe

	4.3 Exploiting a Known Vulnerability
	4.3.1 Microsoft IIS 5.0 .printer Buffer Overflow

	4.4 Denial-of-Service Attack
	4.4.1 SYN Flooding

	4.5 Chapter Summary

	5 Evaluation and Further Work
	5.1 Strengths
	5.1.1 Strengths of the Misuse Detection Engine
	5.1.2 Strengths of the Anomaly Detection Engine
	5.1.3 Strengths of the Combination of Both Engines
	5.1.4 Usage of System Resources
	5.1.5 Use of Generic Intrusion Detection Methods
	5.1.6 User Interface

	5.2 Weaknesses
	5.2.1 Weaknesses of the Misuse Detection Engine
	5.2.2 Weaknesses of the Anomaly Detection Engine
	5.2.3 Dependence on Third Party Software

	5.3 Future Work
	5.3.1 Adding Host-based Elements
	5.3.2 Handling Encrypted Traffic
	5.3.3 Method of Capturing Packets
	5.3.4 Hardening the Intrusion Detection System
	5.3.5 Improvements to the Anomaly Detection Engine
	5.3.6 Improvements to the Misuse Detection Engine
	5.3.7 Response to Intrusions
	5.3.8 Improvements to the NIDS Console

	5.4 Chapter Summary

	6 Summary and Conclusions
	6.1 Summary of Previous Chapters
	6.2 Project Conclusions

	7 Appendix A – References
	8 Appendix B – Attack Signatures
	9 Appendix C – NIDS Source Code

