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ABSTRACT 
 
The goal of a network-based intrusion detection system (IDS) is to identify patterns of known 
intrusions (misuse detection) or to differentiate anomalous network activity from normal network 
traffic (anomaly detection). Data mining methods have been used to build automatic intrusion 
detection systems based on anomaly detection. The goal is to characterize the normal system 
activities with a profile by applying mining algorithms to audit data so that abnormal intrusive 
activities can be detected by comparing the current activities with the profile. A major difficulty 
of any anomaly-based intrusion detection system is that patterns of normal behavior change over 
time and the system must be retrained.  An IDS must be able to adapt to these changes, and be 
able to distinguish these changes in normal behavior from intrusive behavior. The goal of this 
paper is to provide a general framework for an adaptive anomaly detection module that utilizes 
fuzzy association rule mining. 
 
 
1. INTRODUCTION 
 
With the ever-increasing growth of computer networks and emergence of electronic commerce in 
recent years, computer security has become a priority. Since intrusions take advantage of 
vulnerabilities in computer systems or use socially engineered penetration techniques,  intrusion 
detection is often used as another wall of protection in addtion to intrusion prevention techniques 
such as user authentication. Intrusion detection is not an easy task due to the vastness of the 
network activity data and the need to regularly update the IDS to cope with new, unknown attack 
methods or upgraded computing environments. 
 
Mukherjee, Heberlein, and Levitt (1994) defined intrusion detection as identifying unauthorized 
use, misuse, and abuse of computer systems by both inside and outside intruders. There are many 
categories of network intrusions (Graham 1999). Examples include SMTP (SendMail) attacks, 
password guessing, IP spoofing, buffer overflow attacks, multiscan attacks, denial of service 
(DoS) such as ping-of-death, SYN flood, etc. Intrusion detection techniques can broadly be 
divided into two categories: misuse detection and anomaly detection (Sundaram 1996). Misuse 
detection is based on knowledge of system vulnerabilities and known attack patterns, while 
anomaly detection assumes that an intrusion will always reflect some deviation from normal 
patterns. Many AI techniques have been applied to both misuse detection and anomaly detection. 



Pattern matching systems like rule-based expert systems, state transition analysis, and genetic 
algorithms are direct and efficient ways to implement misuse detection. On the other hand, 
inductive sequential patterns, artificial neural networks, statistical analysis and data mining 
methods have been used in anomaly detection. 
 
The goal of mining association rules is to derive multi-feature (attribute) correlations from a 
database table (Agrawal, Imielinski, and Swami 1993). It has been observed that program 
executions and user activities exhibit frequent correlations among system features. Audit data 
can be formatted into a database table where each row is an audit record and each column is a 
field (system feature) of the audit records. Lee and Stolfo (1998) extended the basic association 
rule algorithms to capture consistent behavior in program execution and user activities The rules 
mined from audit data are merged and added into an aggregate rule set to form the user’s normal 
profile. To analyze a user login session, frequent patterns are mined from the sequence of 
commands during the session and this new pattern set is compared with the established profile 
pattern set. Similarity functions are used to evaluate deviations to generate alarms in case of 
intrusive behaviors. 
 
A major problem for such an IDS is that it can give false alarms in cases where there are 
modifications in the normal system behavior.  The IDS must be capable of adapting to these 
changes and the user profile must be updated at regular intervals. One straightforward approach 
can be to generate a new user profile with each set of new audit data. This approach is not 
computationally feasible and can cause the system to incorporate patterns of intrusive behavior 
as normal. The paper discusses some of the issues encountered in developing an adaptive IDS 
using data mining techniques and outlines a general framework of an adaptive IDS. 
 
The remainder of the paper is organized as follows. Section 2 provides a background of related 
work. Section 3 discusses some technical issues that need to be addressed to develop an adaptive 
intrusion detection system. Section 4 provides a rough archtitecture of an adaptive IDS. Finally, 
the paper ends with concluding remarks in Section 5. 
 
 
2. BACKGROUND AND RELATED WORK 
 
The goal of mining association rules is to derive correlations between the features of a database 
table. An association rule is an implication of the form X → Y [c,s], where X and Y are disjoint 
itemsets, s is the support of X∪ Y (indicating the percentage of total records that contain both X 
and Y), c is the confidence of the rule and is defined as sX∪ Y/sX (Agrawal, Imielinski, and  Swami 
1993). It has been observed that program executions and user activities exhibit frequent 
correlations among system features. A typical example of an association rule obtained from audit 
data can be ftp → get[.4,.1], which implies 40% of the time when the user uses the ftp command, 
get command is also invoked and doing so constitutes 10% of the commands issued by the user. 
Audit data can be formatted into a database table where each row is an audit record and each 
column is a field (system feature) of the audit records. 
 
Lee and Stolfo (1998) utilized the basic association rules algorithms to mine rules from system 
audit data into an aggregate rule set to form the user’s normal profile.  Two rules are merged if 



their right and left hand sides are exactly the same or their RHSs can be combined and LHSs can 
also be combined, and the support and confidence values are close. For example, service=http → 
src_bytes=20 and service=http → src_bytes=30 can be combined into service = http → 20 ≤ 
src_bytes ≤ 30. Any subsequent system activities are analyzed to mine frequent patterns and the 
new pattern set is compared with the normal profile. Similarity functions are used to evaluate 
deviations involving missing or new rules, violation of the rules (same antecedent but different 
consequent), and significant changes in support of the rules. For example, if the new set has n 
patterns and m patterns among them can be merged with patterns in the profile set, then the 
similarity score can be m/n. 
 
Audit data contains quantitative features. During mining, the quantitative data are partitioned 
into intervals. But a sharp boundary problem results from this partition that may create problems 
in intrusion detection. For example, let us assume [a1..ap] and [ap+1..an] are two intervals for a 
quantitative attribute A, ap has a support of 15%, ap+1 has a support of 5%, and the support 
threshold is 10%. Even if ap+1 lies near a high support value, it may not gain enough support. 
Now, if the interval [a1..ap] is mined as normal pattern, the interval [ap+1..an] will be considered 
as abnormal.  Similarly, an intrusive pattern with a small variance may fall inside [ap+1..an] and 
remain undetected. To overcome this boundary problem, Luo and Bridges (2000) developed an 
intrusion detection system that integrates fuzzy logic with data mining algorithms (association 
rules and frequent episodes). They categorize quantitative features into categories having fuzzy 
membership values. For example the feature datasize can be divided into three categories low, 
med, and high. If the feature is not fuzzy, then a particular value of datasize would fall into 
exactly one category and would have a membership of 1 for that category and 0 for all other 
categories. But if it is a fuzzy feature, then a particular value of datasize can fall into more than 
one category with some fuzzy membership values. The authors used a normalized measure to 
compute the fuzzy membership values. For example, a particular value of datasize can be "low" 
with 0.9 and "med" with 0.1. 
 
Though the system works well generally, the selection of fuzzy membership function parameters 
is done by experience that may lead to some false alarms. Shi (2000) used genetic algorithms to 
automatically optimize the fuzzy-membership function parameters. In his approach, he defined a 
chromosome to consist of a sequence of the fuzzy function parameters. The process starts with a 
random initial population of chromosomes where each chromosome is a possible set of 
parameters. A fitness function is used that gives preferences to high similarity between rules 
mined from reference and non-intrusive data and to low similarity between rules mined from 
reference and intrusive data. The process evolves a population of chromosomes to come up with 
an optimized set of parameters. As a continuation of this work, Bridges and Vaughn (2000) 
proposed a prototype intelligent intrusion detection system (IIDS) utilizing fuzzy mining and 
genetic algorithms. 
 
 
3. PROBLEM DESCRIPTION AND RELATED ISSUES 
 
A major shortcoming of current IDSs that employ data mining methods is that they can give a 
series of false alarms in cases of a noticeable systems environment modification. There can be 
two types of false alarms in classifying system activities in case of any deviation from normal 



patterns: false positives and false negatives. False positive alarms are issued when normal 
behaviors are incorrectly identified as abnormal and false negative alarms are issued when 
abnormal behaviors are incorrectly identified as normal. Though it’s important to keep both 
types of false alarm rates as low as possible, the false negative alarms should be the minimum to 
ensure the security of the system. 
 
To overcome this limitation, an IDS must be capable of adapting to the changing conditions 
typical of an intrusiuon detection environment. For example, in an academic environment, the 
behavior patterns at the beginning of a semester may be different than the behavior patterns at 
the middle/end of the semester. If the system builds its profile based on the audit data gathered 
during the early days of the semester, then the system may give a series of false alarms at the 
later stages of the semester.  
 
System security administrators can tune the IDS by adjusting the profile, but it may require 
frequent human intervention. Since normal system activities may change because of 
modifications to work practices, it is important that an IDS should have automatic adaptability to 
new conditions. Otherwise, an IDS may start to lose its edge. Such adaptability can be achieved 
by employing incremental mining techniques. Such an adaptive system should use real time data 
(log of audit records) to constantly update the profile. 
 
One straightforward approach can be to regenerate the user profile with the new audit data. But 
this would not be a computationally feasible approach. When the current usage profile is 
compared with the initial profile, there can be different types of deviation as mentioned in 
section 2. Each of these deviations can represent an intrusion or a change in behavior. In case of 
a change in system behaviors, the base profile must be updated with the corresponding change so 
that it does not give any false positives alarms in future. This means that the system needs a 
mechanism for deciding whether to make a change or reject it. If the system tries to make a 
change to the base profile every time it sees a deviation, there is a potential danger of 
incorporating intrusive activities into the profile. The IDS must be able to adapt to these changes 
while still recognizing abnormal activities. If both intrusive behavior a a change in normal 
behavior occur during a particular time interval, the problem becomes more complicated. Again, 
determining which rules to add and which to remove is critical. There are also additional issues 
that need to be addressed in case of updating. The system should adapt to rapid changes as well 
as gradual changes in system behavior. Selecting the time interval at which the update should 
take place is also an important issue. If the interval is too long, the system may miss some rapid 
changes or short-term attacks. If the interval is too small, the system may miss some long-term 
changes. 
 
So, we consider two problems as the major issues in developing an adaptive intrusion detection 
system. One is to select the time when the update should be made. The other is to select a 
mechanism to update the profile. To tackle the first issue, we can continuously measure the 
similarity between each day’s activity and the profile and utilize this similarity trace. If the 
similarity stays above a threshold level, then the profile is taken to be a correct reflection of the 
current activities. If the similarity goes down below the threshold level, then there can be two 
possibilities: either the behavioral patterns are changing or the system is under attack. To take 
care of these two possibilities, we need to measure the rate of change in the similarity. If an 
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abrupt change is encountered, it is interpreted as an intrusion, and that time window will not be 
used to update the profile. If a gradual negative change is encountered, then that time window 
will be used to update the profile. We can assume that behavioral change occurs gradually, not 
abruptly. This is illustrated in Figure 1. The activities before point A are considered to be normal 
and the profile does not need any update. Between points A and B, the patterns represent some 
behavioral change and the profile needs to be updated. Between points C and D, the patterns 
represent intrusive behavior and no update is made. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Change of similarity with time 
 
 
It is not computationally feasible to archive audit data for a long time. Therefore, we will need to 
employ a sliding window technique to update the base profile. We can assume that system 
activities before a certain period of time are too old to characterize the current behavior, i.e., the 
audit records before that period are unlikely to contribute towards the rules that represent system 
activities. We can define an overlapping sliding window [t1, t2, ... , tn] of n days. The update 
technique would reject transactions outside the sliding window as they are assumed to be old and 
outdated. As mentioned in Toivonen (1996), we would maintain both the strong rules (having 
high enough support and confidence) and the negative border (support and confidence are less 
than but close to the thresholds). As time goes on, a strong rule may start losing its support and 
confidence and rules in the negative border may start gaining support and confidence. We would 
discard some strong rules (loosing support and confidence in subsequent time windows) in the 
process and include some new rules. Though we will maintain both the strong rules and negative 
border of the strong rules, we will only use the strong rules to compute the similarity. This will 
facilitate the updating process in case of gradual behavior changes. 
 
The last issue is which technique to apply to update the profile rule set that would minimize the 
amount of recomputation. The problem of maintaining discovered association rules was first 
studied in Cheung et al. (1996). They described the Fast Update Algorithm (FUP) for 
incrementally maintaining association rules from large databases. The incremental database is 
scanned for large itemsets of the original database to update their support counts in the modified 
database and only the itemsets passing the support threshold test with respect to the new 
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modified database are retained. At the same time, all new large itemsets in the incremental 
database are created and the original database is scanned to retain ones passing the support 
threshold test with respect to the new modified database. The problem with FUP is that it can 
handle the maintenance problem only in case of insertions. Cheung, Lee, and Kao (1997) 
described a more general incremental updating technique FUP2 for maintaining the association 
rules that can handler insertions, deletions, and modifications of transactions in the database. For 
insertions, FUP2 is equivalent to FUP. For deletions, FUP2 is a complementary algorithm of 
FUP. We will employ FUP2 since in each transition from one time window to another, some 
audit records will be deleted (the least recent ones) and some audit records will be added (the 
most recent ones). 
 
 
4. A FRAMEWORK FOR AN ADAPTIVE INTRUSION DETECTION SYSTEM 
 
In this section we propose a rough framework for the adaptive maintenance of the profile rule set 
that can overcome the need for recomputation of the rules without sacrificing the detection 
capabilities. The profile rule ser can be updated by adding new rules, deleting old rules, or by 
modifying existing rules. Existing rules can be modified by changing their support and 
confidence. The flexible framework will exploit the rule generated during the earlier stages. We 
will store some rules that do not have sufficient support and confidence to be considered as 
strong at that time in addition to the strong rules. We will employ an overlapping sliding window 
approach that generates rules from recent data avoiding the use of old data. The profile will be 
maintained by periodic updates where strong rules and negative borders are added and other 
rules are discarded. The central idea behind the sliding window approach is the concept of a time 
window, an interval of time outside of which audit records are considered too old to reflect 
current system activities. The time window therefore acts to filter out outdated audit data and 
tries to build a profile based on only recent data that reflects the recent system activities. 
 
Figure 2 presents an architecture for our framework. The process begins with an initial set of 
audit data. Genetic algorithms (Shi 2000) would be used to tune the fuzzy membership function 
parameters. Then fuzzy association rule mining will be applied to mine rules into a normal 
profile. During each time window, the audit data in the incremental part will be mined and 
compared with the profile rule set. There can be three possibilities. If the similarity stays above 
threshold, no update is needed and the system continues with the current profile. If similarity 
goes below threshold with a sharp negative change, intrusion will be signaled and the profile will 
not be updated. If similarity goes below threshold with gradual change, the profile will be 
updated with the audit data in the current time window. 
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Figure 2: The framework of the Adaptive Intrusion Detection System 
 
 
5. CONCLUSION 
 
Data mining methods provide automatic intrusion detection capabilities. They mine knowledge 
from audit data to characterize normal and abnormal user behavior. Some of the works done to-
date were introduced in the paper. One of the major limitations of the systems is that they lack 
adaptability to changing behavior patterns. In this paper, we outlined a framework for an 
adaptive intrusion detections system using fuzzy data mining. There is one issue that we will 
address in future works. We haven’t given any direction about how to tackle a time window that 
contains both intrusive data and non-intrusive data representing a behavioral change. We have to 
perform some drill-down operation to individual rules to distinguish between suspicious and 
non-suspicious rules as done in Barbara, Jajodia, and Wu (2000). There is one more area where 
we need to give some attention. The system in its current status, works with a static set of fuzzy 
membership function parameters determined at the beginning. But these values also need to 
tuned dynamically. 
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