
A simple tutorial about Win32 ShellcodingA simple tutorial about Win32 Shellcoding

With the following multicolored pictures i try,to point out the tools and the easiest 
way(not the best, for the best look at www.metasploit.com) to construct a win32 
shellcode.This paper aims on people, which have read some papers about Bofs and 
shellcoding for Linux, but never have written some assembler codes for Win32.In 
this paper i only use hardcoded function-addresses.
The tools you need are:

-VC6

-a Texteditor

-the sourecode and binarys of the following tools and the sourcecodes i use in the 
tutorial are here (http://www.delikon.de/shellbuch/tools.zip)

For comments visit me at www.delikon.de or mail at ich@delikon.de



This is the code we want to disassemble .It consists of 2 functions.

1. the execution of a CMD-shell and

2. a exit(1) call, this call is very important,because if we use the shellcode in a 
bufferoverlow, and close the shell we would cause an error.



Now we will debug your code, the first thing to do, put the cursor right behind the 
exit(1) call and start the code



Now we start the disassembly.



Now copy everything from main till call exit

Now copy everything from main till call exit



Now paste everything in __asm{}



We will left only the important lines of code,because your goal is to code a very 
small shellcode .



Now we need the two function addresses of WinExec and ExitProcess.

For that we use depends.exe(from the Microsoft SDK) and open with depends the 
compiled file.

The address of WinExec is the kerneladdress + the Entry Point of WinExec = 
0x77e70000+0x00018601=0x77e88601 now do the same with ExitProcess (Maybe 
you have different addresses).



The only thing which is left, is to move the addresses into eax and call it . Now 
compile the code and start it, if the code looks like this picture but don't work, 
you have used the wrong addresses.



After everything works well now, please copy the code in a arbitrary file and 
delete the "ptr" string, because nasm doesn't know this syntax, and write for the 
header "BITS 32"



now compile the file 2.asm with nasm, and generate with my tool makeshell.exe 
this shellcode.

-nasm -s -fbin 2.asm

-makeshell.exe 2

now you can find the shellcode in the file shellcode.c, he will work well(compile it 
and test it) but it contains NULL-BYTES which can cause problems. 



To get away the NULL-BYTES, we have to Xor the shellcode.Please use for this 
my tool encode.exe. 

-encode 2 0x95 >>db-array.txt

Encode checks if the are any null-bytes or bytes which you cannot use in 
windows-file-names, because you never know for what you need the 
shellcode(look at the winhelp32.exe overflow).At this picture is everything 
allright.Now paste this array in a decryption-code,because without you cannot 
use this shellcode.



Now check if it looks like this.Dont't forget to paste the right xor byte in . in this 
case 0x95.



Now the only thing to do is to compile it and generate the c-code.

-nasm -s -fbin decode.asm

-makeshell decode

...and every Null-byte is gone(\x00).

Finished.

For remote hacks you need another command. This one ->'cmd /c net share 
c=c:"'. With this command you can share the c: drive with the world

The sourcecodes for this shellcode you can find 
here(http://www.delikon.de/zips/remote.zip)


