
Become fully aware of the potential

dangers of ActiveX attacks

Brian Mariani – Senior Security Auditor - Consultant @
High Tech Bridge SA (http://www.htbridge.ch)
CHFI, ECSA, CEH, CCSA, RHCE, MSCE, CCNA, CCNP, CCSP, CCIE(Written)

http://www.htbridge.ch/

Agenda

 What are ActiveX?

 Security problems related to ActiveX.

 What kind of security holes can be discovered?

 Overview of an ActiveX attack.

 Discovering security holes in ActiveX.

 ActiveX fuzzers.

 My name is COMraider!

 Discovering an ActiveX security hole with COMRaider.

 Analysing the vulnerability with and Antipacker, WinDBG & IDA.

 Demo (Tracing the exploit and triggering the flaw).
.

What are ActiveX? (1)

 Component Object Model (COM) is a standard binary-interface for software componentry

introduced by Microsoft in 1993.

 The term COM is often used in the Microsoft software that encompasses the OLE, OLE

Automation, ActiveX, COM+ and DCOM technologies.

 It’s a kind of a group of methods developed for sharing information and functionality among

programs.

 These objects are like small programs or "applets" and a number of programs like Office and

Internet Explorer (IE) are designed to be able to interact with them. (Word, Powerpoint)

What are ActiveX? (2)

 Do you remember the old and handy spell checker? Other Microsoft programs such as

Outlook, Word, can make use of it. In fact, any program with the appropriate interface can use

the spell checker.

 An ActiveX control can be automatically downloaded and executed by Internet Explorer.

Once downloaded, the control in effect becomes a part of the operating system.

 For example, Internet Explorer can read PDF files using ActiveX controls from Adobe Reader.

Adobe reader ActiveX being loaded

 AcroPDF.dll file was loaded at base memory address 0x6e00000.

 AcroPDF.fra file was also loaded at address 0x042e0000.

 IE can now use ActiveX methods to load PDF file from the Nasa Website.

Loading ActiveX from an HTML

document

CLASSID' is a unique registry-identifying component

that is used to identify an ActiveX control.

A name is asigned to the id TAG which will

be later instantiated.

We can now call the method into the ActiveX

control using the name passed in the id Tag

Tasks behind the loading process

 First of all internet explorer will process the 'OBJECT' tag in the browser code.

 Then it will determine after checking different things if it needs a download.

 The browser will process the 'CAB' file and the 'INF' file.

 Later the control and its dependencies will be installed.

 Finally, the ActiveX control will show up on the screen.

Security issues

 The interactivity and ease of programming of ActiveX controls has a price and these controls are
a major source of security problems.

 Security holes have been found all the time in ActiveX for many years now, and these
components are a favourite target of viruses or malware writers.

 Microsoft has continually tightened up security over the years both in Windows and in Internet
Explorer but security issues remain!

 Note that browsers such as Firefox ,Chrome, Opera, and Safari do not support ActiveX but NPAPI
(Netscape Plugin Application Programming Interface). This has been a factor taken into account
for many security-conscious computer users who prefer these other browsers.

ActiveX (Safe for Initialization)

 When a control is initialized, it can receive data from an arbitrary source from either a local or a
remote URL for initializing its state.

 This is a potential security hazard because the data could come from an untrusted source.

 Controls that guarantee no security breach regardless of the data source are considered safe for
initialization.

 There are two methods for indicating that your control is safe for initialization.

 The first method uses the Component Categories Manager to create the appropriate entries in the system
registry.

 The second method implements an interface named IObjectSafety on your control. If Internet Explorer
determines that your control supports IObjectSafety, it calls theIObjectSafety: :SetInterfaceSafetyOptions
method before loading the control in order to determine if it is safe for initialization.

ActiveX (Safe for Scripting)
 Allowing ActiveX Controls to be accessed from scripts raises several new security issues.

 Even if a control is known to be safe in the hands of a user, it is not necessarily safe when
automated by an untrusted script.

 For example, MS-Word is a “trusted tool” from a “trusted source”, but a malicious script can use its
automation model to delete files on the user's computer, install macro viruses or even
worse.

 There are two methods for indicating that your control is safe for scripting.

 The first method uses the Component Categories Manager to create the appropriate entries in the system
registry.

 The second method implements the IObjectSafety interface on your control. If Internet Explorer determines
that your control supports IObjectSafety, it calls the IObjectSafety: :SetInterfaceSafetyOptions method
before loading the control in order to determine if it is safe for scripting.

ActiveX signed & unsigned

 Users will download ActiveX controls from unknown sites fully trusting the content and they end
up with lot of damage done to their system or lose data through online theft.

 This is the reason why Microsoft came out with the signature system for the ActiveX controls.

 This system enables a programmer to digitally sign their controls with the help of an online
signature authority.

 When you visit a Web page that uses the control, your browser can verify the identity. This does
not guarantee that the control is safe, but at least you have some hope that you know who
really wrote the control.

Security holes found in ActiveX (1)

 All kind of security holes can be discovered in ActiveX components.

 Buffer Overflow, Stack Overflow, Heap Overflow.

 Insecure methods (Methods which are not carrying out the proper checks before doing some
tasks)

 McAffe Police Manager ActiveX overwrites the boot.ini file.

Security holes found in ActiveX (2)

Overview of an ActiveX attack (1)

 The attacker sends a customized email to the victim using Social engineering
techniques inviting him to visit a URL.

 The victim gets caught with the customized email and launches IE with the evil URL.

Victim

Attacker

The Wild

Hacked or

propietary web

server hosting

the evil web

page

Overview of an ActiveX attack (2)

 If Internet Explorer has high security options activated, the browser will display an

alert risk message.

 If Internet Explorer has the option “Allow active content to run in files on my

Computer” activated, no warning will be displayed.

 End users often accept blocked ActiveX alerts!

Victim

Attacker

The Wild

Hacked or

propietary web

server hosting

the evil web

page

Overview of an ActiveX attack (3)

 An evil task is triggered often a buffer, stack or heap overflow, executing a shellcode
which establishes a connection with the attacker computer or server.

Victim

Attacker

The Wild

Hacked or

propietary web

server hosting

the evil web

page

On the hunt for ActiveX security holes

 Manually or automated analysis of source code is used to hunt security vulnerabilities.

 Hunting these holes is a tedious task, especially if you do not have access to source code.

 Analysis of binary files could be a BIG task.

 Hopefully there are a bunch of decent pieces of code that help security specialists to discover
them.

Fuzzing ActiveX controls

 Fuzz testing or fuzzing is a software testing technique, often automated or semi-
automated, that involves providing invalid, unexpected, or random data to the inputs
of a computer program, hoping that the application crashes.

 We have four pretty good pieces of software that are able to fuzz ActiveX controls
in an easy and simple way.

 Some of them are:

 ComRaider by David Zimmer @ Verisign.

 Dranzer by Carnigie Mellon University.

 AxMan by H. D. Moore @ Metasploit. (Only for IE 6)

 FuzzWare from Dave @ Fuzzware.net

Let’s get in touch with ComRaider (1)

 Capability to easily enumerate safe for

scripting objects.

 Ability to scan for COM objects by path,

filename, or guid (Global unique id)

 Integrated debugger to monitor exceptions

and log Api (Application Programming

Interface)

 Enumerate and view controls with killbit

set.

Let’s get in touch with ComRaider (2)

 Capability to filter methods only by the

fuzzable ones.

 Enumeration of the Library, Class, Interface

and methods.

Let’s get in touch with ComRaider (3)

 The function prototype gives us a rough idea

about the functions parameters.

 We are able to fuzz the member of a class or

even the entire class.

 In this particular method GetAVDoc

ComRaider has prepared four WSF

(Windows Scripting Files) to fuzz it.

Let’s get in touch with ComRaider (4)

 This is the form which houses our built in

debugger and will launch all of our WSF files

while monitoring for exceptions.

 The second down is the exception list

which is used to display error information.

 The third listview represents windows which

will be displayed and closed during the

scripts run.

 The bottom is the API Log.

Let’s get in touch with ComRaider (5)

 Once the tests are completed, we can click

on any of the items on the file list to view its

output.

Let’s get in touch with ComRaider (7)

 Here you can see a partial listing of the

exception environment including the

registers.

 Other information available for each crash

includes:

 Exception address, exception code, exception

instruction.

 SEH chain.

 Registers with data dereferencing.

 Call stack.

 Once debug tests have been run, you can

then analyze the results for exploitabilty.

Analysis of an ActiveX vulnerability

with COMRaider and IDA

 We are going to analyze an ActiveX stack buffer overflow vulnerability in a
widespread BarCode ActiveX discovered by myself using Windows SP2/IE 8.0

 To accomplish this task we first fuzz the ActiveX with ComRaider to catch all the
exceptions.

 After that, we know the vulnerable method, and the type of vulnerability we are
dealing with.

 The next step consists in analysing the ActiveX file to know if it’s packed, otherwise
static analysis will be tedious.

 Later we inspect the file with IDA to statically find the vulnerable method.

 Then we can prepare our working environment in WinDBG to understand the flaw
and code the exploit.

 Later we trace the flaw dynamically to understand and test the exploitation process.

Let’s fuzz the method

 At this point we open the BarCodeAx.dll file. We can see plenty of method to fuzz.

 In this particular case we select the BeginPrint method, which is using a variable of
type string.

Triggering an exception

 After fuzzing the method the screenshot shows us that the COMraider has triggered
two different exceptions from the first WSF file, and the second one is very
interesting!

 At this time we know that the BeginPrint method is vulnerable, an overflow is
triggered passing at least 1044 bytes.

Taking a look at the exception

 At this point it is obvious that we are dealing with a stack buffer overflow
vulnerability. The large buffer passed has effectively overwritten EBP and EIP
registers.

Analysing the ActiveX DLL file

 After opening the file with a PE analyzer we can clearly understand that the file was
packed.

 Text section is not there, and the characteristics of each and every section are
exactly the same which is not a normal case of a PE file.

 Finally, the signature of the file lets us know that the ASPack packer was used to
make the analysis more complicated.

Analysing the ActiveX file

 Opening the file with IDA confirms us that the file was packed.

 There are plenty of file depackers out there, StripperX could be one choice.

Preparing our debugging environment

 We set up our environment with two memory windows one to follow the stack and
the other one to see data and of course, one registers window.

 A command and a disassembly windows are needed too.

 Finally we might want to save our workspace!

Placing breakpoints

 Oleaut32.dll is the module which deals with execution of ActiveX Ole automation.

 So we are going to place to unresolved breakpoint which is activated whenever the module with
the reference is resolved. (bu oleaut32!DispCallFunc)

 The second breakpoint will be at the very next call ecx instruction from the
Oleaut32!DispCallFunc, which is the call which enters in our method.

Finding the method dinamycally and

statically

 The memory offset of the method must be calculated to find the correct memory
address from the ImageBase in IDA which is 0x1000000.

 In WinDBG we can list the start and end addresses of modules with the (lm m
module_name) command

 Offset of the entry point of BeginPrint = Address of the method – ImageBase.

Are we at the right place?

 At the present time we can successfully compare our dynamic and static code.

 We can be sure that we are at the right place.

 The instructions shown up in WinDBG and IDA are exactly the same.

Knowing the actual thread stack

 After the overflow occurs, we can calculate the thread stack size using the !address @esp command,
doing this will permit us to quickly figure out useful information to code the exploit.

 After the top and bottom values of actual stack have been calculated, we must know how many
parameters the BeginPrint function is accepting.

Knowing the parameters using IDA

 The BeginPrint function is receiving two parameters.

Calculating our evil buffer size

 The buffer size goes from the address 0x016CC910 to address 0x016CCBA0 which was the old
return address of Oleaut32!DispCallFunc.

 At this moment the address 0x016CCBA0 is already overwritten with a CALL ESP address which
belongs to the user32.dll module at 0X77DBF9E3.

CALL ESP from user32.dll module

 We can find opcodes from a module using FindJump or manually using IDA

Collecting all the information

 At this point we can calculate how many bytes we need to overwrite EIP and EBP.

 We can also determine how many bytes we have on hand to inject our payload. In this case
56236 bytes. This is not always the case!

Which part of the code is responsible for this

overflow?

 Since the parameter involved in the buffer overflow is pPrinterName, the overflow occurs when a
call to strcpy is being done without any check.

 It is very funny to see that a size check using strlen to compute the number of bytes has been
done after the call to strcpy routine!

Coding the exploit

 We define a 656 bytes buffer to overwrite EIP & EBP.

 We use a call esp address at user32.dll module to overwrite the old pointer to
Oleaut32!DispCallFunc function.

 A buffer of 8 bytes is also created replacing the two parameters of the BeginPrint function.

 Finally the payload (opens port 4444) is added and the BeginPrint method is called.

Windows 7 and Internet Explorer protections

 DEP Windows Data Execution Prevention /NX memory pages marked as non
executable.

 ASLR (Address space layout randomization) moves executable images into random
locations when a system boots, making it harder for exploit code to operate
predictably

 Internet Explorer 8 and 9 will enable DEP/NX protection when run on an operating
system with the latest service pack.

 Hopefully others techniques as ROP, .NET user control, actionscript/java, heap
spraying, jit-spray can help you bypass these protections.

Preventing ActiveX attacks

 Turn on the killbit of the control.

 Unregister the ActiveX can be also a way to protect you against an ActiveX attack.

 Security patches.

 Audit any new ActiveX you install in your PC. (Fuzzing)

 Make the right choice about your Internet Browser!

DEMO (Tracing & executing the exploit)

Become fully aware of the potential

dangers of ActiveX attacks

Questions?

brian.mariani@htbridge.ch

