
F R O M 0 T O 0 D A Y O N S Y

F I N D I N G L O W L E V E L V U

SEC Consult

F R O M 0 T O 0 D A Y O N S Y M B I A N

F I N D I N G L O W L E V E L V U L N E R A B I L I T I E S O N S Y M

S M A R T P H O N E S

Bernhard Müller

SEC Consult Vulnerability Lab, Vienna, 06/2009

V1.03 (public)

M B I A N

L N E R A B I L I T I E S O N S Y M B I A N

 Whitepaper: From 0 to 0day on Symbian

Page 2 of 40

Table of Contents

Abstract ..

Introduction ..

The state of vulnerability research on Symbian

The test device

ARMv5 vs ARMv6 architecture

Static analysis of XIP ROM Images

Dumping the smartphone ROM

Collecting information

Building a database of ROM image symbols

Annotating import and export tables

Searching for unsafe components

Debugging highly privileged processes

Run mode debugging overview

Hacking the phone

Platform security overview

Problems with platform security

The MapDrives exploit

Cracking AppTRK

Removing protection of ROM memory

Removing protection of system processes

Testing the patches

Interacting with AppTRK

Debugging with IDA Pro

Controlling AppTRK

(Ab-)using AppTRK: Automated multimedia Codec Fuzzing

Automating the fuzzing process

Writing a media Codec fuzzer

Findings analysis

Fuzzing results................................

Determining exploitability of specific bugs

Conclusion ..

Recommendations

Next steps ..

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

Table of Contents

..

..

bility research on Symbian ..

..

ARMv5 vs ARMv6 architecture ..

analysis of XIP ROM Images ..

Dumping the smartphone ROM ..

..

Building a database of ROM image symbols..

Annotating import and export tables ..

Searching for unsafe components ..

Debugging highly privileged processes ..

Run mode debugging overview ..

..

ity overview ..

Problems with platform security ..

..

..

Removing protection of ROM memory ..

Removing protection of system processes ..

..

..

..

..

)using AppTRK: Automated multimedia Codec Fuzzing ..

Automating the fuzzing process ..

Writing a media Codec fuzzer ..

..

..

Determining exploitability of specific bugs ..

..

..

..

SEC Consult Unternehmensberatung GmbH

.. 4

... 4

... 4

.. 5

... 6

.. 7

... 7

.. 8

.. 9

.. 11

.. 13

... 15

.. 15

... 16

... 16

.. 19

.. 19

... 20

... 21

... 21

... 22

.. 23

..................................... 23

... 24

....................................... 26

... 26

... 30

.. 31

.. 31

.. 33

.. 35

... 35

...................................... 36

 Whitepaper: From 0 to 0day on Symbian

Page 3 of 40

Symbian/ARM specific exploitation techniques

Symbian shellcode

Symbian rootkits

NokiaStalker IRC bot

Symbian OS is going open source!

Acknowledgements

References ..

About the author

About the SEC Consult Vulnerability Lab

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

Symbian/ARM specific exploitation techniques..

..

..

..

s going open source! ..

..

..

..

nsult Vulnerability Lab ..

SEC Consult Unternehmensberatung GmbH

... 36

.. 36

... 37

.. 38

.. 38

.. 39

.. 39

... 40

.. 40

 Whitepaper: From 0 to 0day on Symbian

Page 4 of 40

Being the most widespread smartphone operating system

remote attacks. However, the obscurity of the operating system, combined with restrictions

placed on end user devices and a lack of tools, make it

work with Symbian based phones

The goal of this whitepaper is to show that classic vulnerability analysis and exploitation is

possible on Symbian OS smartphones.

developed, and readily available standard software provided by Symbian has been modified

support debugging of memory mapped

1. Show how to statically analyze

export tables, searching for unsafe fun

2. Show how to enable

IDA Pro, by patching the AppTRK debug agent

3. Show other uses of

automated multimedia file fuzzer

4. List and analyze the results of fuzzing the

current Nokia smartphone

5. Discuss further ideas

for Symbian

The paper aims to show that it is possible to find and exploit bugs

preinstalled system application

that exploits and worms similar to those found on desktop systems may be possible on Symbian

based smartphones.

THE STATE OF VULNERA

Symbian OS is an unfriendly pl

processes crash on Symbian smartphones

going on when it happens. One

researchers. Many of those that are

the tools provided by Symbian

mechanisms that prevent tampering with system

1 52% share of the smartphone market as of April 2009, source:

http://metrics.admob.com/wp-content/uploads/2009/05/admob

2 Actually, this happens unintentionally all the time! On the first day I got my N96, I already managed to

crash its Bluetooth stack, by attempting to sync my contacts via SyncML. So, in a way, I found the first

“exploit” within two hours of working with the N96 (I found out later that this specific crash is caused by a

user panic 23 exception, so this one is n

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

ABSTRACT

Being the most widespread smartphone operating system1, Symbian OS is a worthwile target for

e obscurity of the operating system, combined with restrictions

placed on end user devices and a lack of tools, make it very difficult for security researchers to

work with Symbian based phones.

aper is to show that classic vulnerability analysis and exploitation is

smartphones. To this end, a set of methods and

developed, and readily available standard software provided by Symbian has been modified

gging of memory mapped execute-in-place ROM. In this paper we

how to statically analyze XIP ROM images (dumping, restoring import

export tables, searching for unsafe function calls)

how how to enable run mode debugging of system binaries running from ROM

Pro, by patching the AppTRK debug agent

other uses of the modified AppTRK. As an example, we will show

automated multimedia file fuzzer

ist and analyze the results of fuzzing the video- and audio codecs shipped

smartphones

iscuss further ideas and concepts, such as jailbreak shellcode, and

show that it is possible to find and exploit bugs on Symbian phones (even in

system applications) without having access to special development hardware, and

that exploits and worms similar to those found on desktop systems may be possible on Symbian

INTRODUCTION

THE STATE OF VULNERABILITY RESEARCH ON SYMBIAN

unfriendly place for the security researcher. While we often see system

on Symbian smartphones2, a huge effort is required to figure out what is

One big reason for this is that hardly any useful tools

f those that are available are hard to use or don’t work properly.

Symbian, as well as the smartphones themselves,

prevent tampering with system applications.

52% share of the smartphone market as of April 2009, source:

content/uploads/2009/05/admob-mobile-metrics-april

Actually, this happens unintentionally all the time! On the first day I got my N96, I already managed to

crash its Bluetooth stack, by attempting to sync my contacts via SyncML. So, in a way, I found the first

“exploit” within two hours of working with the N96 (I found out later that this specific crash is caused by a

user panic 23 exception, so this one is not really exploitable).

SEC Consult Unternehmensberatung GmbH

, Symbian OS is a worthwile target for

e obscurity of the operating system, combined with restrictions

difficult for security researchers to

aper is to show that classic vulnerability analysis and exploitation is

methods and tools has been

developed, and readily available standard software provided by Symbian has been modified to

In this paper we will:

(dumping, restoring import- and

running from ROM with

AppTRK. As an example, we will show a fully

codecs shipped with

and concepts, such as jailbreak shellcode, and an IRC bot trojan

on Symbian phones (even in

to special development hardware, and

that exploits and worms similar to those found on desktop systems may be possible on Symbian

YMBIAN

we often see system

a huge effort is required to figure out what is actually

tools are available to

t work properly. In addition,

themselves, contain security

april-09.pdf

Actually, this happens unintentionally all the time! On the first day I got my N96, I already managed to

crash its Bluetooth stack, by attempting to sync my contacts via SyncML. So, in a way, I found the first

“exploit” within two hours of working with the N96 (I found out later that this specific crash is caused by a

 Whitepaper: From 0 to 0day on Symbian

Page 5 of 40

There also exists a myth that traditional low level vulnerabilities, such as buffer overflows, do

not exist on Symbian OS smartphones

Symbian OS and the lack of tools,

researchers off the operating system.

As a result, only a few low level vulnerabilities on Symbian OS smartphones have been

discovered. In fact, a vulnerability search for “Symbian” on SecurityFocus returns only four

results, two of which describe potential memory corruption errors in preinstalled system

components4. Both vulnerabilities have been termed “denial of service”. It is however likely that

they have been given this status because no research has been done into the root

vulnerabilities. This theory is supported by

Silence” exploit, in which the discussion

phone5. It seems that the underlying error condit

not been investigated.

Some pioneer work, mainly regarding

Collin Mulliner (1). Other known

is regularly done by an active Symbian modding scene.

The test subject used in this project was

N96. The phone comes with S60 3rd Edition Feature Pack 2

The installed firmware version was

contains the complete version information:

• Software version: 11.018

• Software version date: 13

• Custom version: 11.018.280.2

• Custom version date: 16

• Language Set 001

• Model Nokia N96

• Type: RM-247

Like other smartphones the N

calendar, music- and media player,

TV application that uses the built in

purposes is its big 16 GB built in flash memory

3 While it is true that Symbian C++ idioms such as string descriptors offer protection from some forms of

buffer overflows, other forms of memory corruption may occur. In addition, as will be shown in this paper,

smartphones may ship with poorly ported software that uses unsafe standard C library functions.

4 „Symbian S60 Malformed SMS/MMS Remote Denial Of Service Vulnerability

http://www.securityfocus.com/bid/33072

“Nokia Series 60 BlueTooth NickName Remote Denial Of Service Vulne

http://www.securityfocus.com/bid/12743

5 http://berlin.ccc.de/~tobias/cos/s60

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

There also exists a myth that traditional low level vulnerabilities, such as buffer overflows, do

not exist on Symbian OS smartphones3. Besides the steep learning curve required to work with

the lack of tools, this may be an additional factor that

off the operating system.

low level vulnerabilities on Symbian OS smartphones have been

discovered. In fact, a vulnerability search for “Symbian” on SecurityFocus returns only four

f which describe potential memory corruption errors in preinstalled system

Both vulnerabilities have been termed “denial of service”. It is however likely that

they have been given this status because no research has been done into the root

This theory is supported by the original advisory on the well known

discussion of the bug is limited to the observable behavi

It seems that the underlying error condition, possibly an exploitable buffer overflow, has

regarding shellcode for Symbian, has recently been published

known efforts concentrate mainly on hacking platform security,

is regularly done by an active Symbian modding scene.

THE TEST DEVICE

The test subject used in this project was Nokia’s current generation multimedia smartphone, the

S60 3rd Edition Feature Pack 2, which is based on

The installed firmware version was 11.018.280.2 dating from October 2008

contains the complete version information:

Software version: 11.018

Software version date: 13-09-08

Custom version: 11.018.280.2

Custom version date: 16-10-08

N96 ships with a basic set of applications, like web browser,

and media player, plus some additional multimedia apps, for example a mobile

TV application that uses the built in DVB-H receiver. What makes this phone great for research

big 16 GB built in flash memory – we had to put lots of software and files on the

While it is true that Symbian C++ idioms such as string descriptors offer protection from some forms of

buffer overflows, other forms of memory corruption may occur. In addition, as will be shown in this paper,

p with poorly ported software that uses unsafe standard C library functions.

„Symbian S60 Malformed SMS/MMS Remote Denial Of Service Vulnerability”,

http://www.securityfocus.com/bid/33072

Nokia Series 60 BlueTooth NickName Remote Denial Of Service Vulnerability”,

http://www.securityfocus.com/bid/12743

http://berlin.ccc.de/~tobias/cos/s60-curse-of-silence-advisory.txt

SEC Consult Unternehmensberatung GmbH

There also exists a myth that traditional low level vulnerabilities, such as buffer overflows, do

steep learning curve required to work with

ctor that keeps security

low level vulnerabilities on Symbian OS smartphones have been

discovered. In fact, a vulnerability search for “Symbian” on SecurityFocus returns only four

f which describe potential memory corruption errors in preinstalled system

Both vulnerabilities have been termed “denial of service”. It is however likely that

they have been given this status because no research has been done into the root cause of the

well known “Curse for

observable behavior of the

an exploitable buffer overflow, has

has recently been published by

efforts concentrate mainly on hacking platform security, which

Nokia’s current generation multimedia smartphone, the

, which is based on Symbian OS v9.3.

from October 2008. The following list

96 ships with a basic set of applications, like web browser,

, for example a mobile

What makes this phone great for research

to put lots of software and files on the

While it is true that Symbian C++ idioms such as string descriptors offer protection from some forms of

buffer overflows, other forms of memory corruption may occur. In addition, as will be shown in this paper,

p with poorly ported software that uses unsafe standard C library functions.

 Whitepaper: From 0 to 0day on Symbian

Page 6 of 40

phone, and this way we simp

different to the versions used on other smartphones.

ARMV5 VS ARMV6 ARCHI

It is worth noting here that, while all Symbian OS phones run on ARM based ASICs, it makes a big

difference if the CPU built into the board is based on ARMv5 and lower, or ARMv6 and higher

architecture. The MMU has undergone a radical change in

provides a completely different vi

In short, for ARMv6 based architectures

“moving memory model”. The multiple memory model supports multiple page tables, whereas

the moving memory model moves blocks of memory in and out of a global page

physically tagged cache is used instead of a virtually tagged one.

as this paper is concerned, except that the memory mappings are also completely different in the

multiple model. Because the Nokia N96 runs on

addresses mentioned in this paper apply to the moving memory model.

Another new feature in ARMv6 is that the page table permissions have been enhanced with a

never execute bit. This is no problem in the scope of thi

execute code from data pages.

architecture if we want to write an actual exploit.

However, in principle everything discussed in this paper also applies to smartp

ARMv6 based ASICs.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

simply didn’t run out of space. Other than that, the base

different to the versions used on other smartphones.

ARMV5 VS ARMV6 ARCHITECTURE

It is worth noting here that, while all Symbian OS phones run on ARM based ASICs, it makes a big

the CPU built into the board is based on ARMv5 and lower, or ARMv6 and higher

The MMU has undergone a radical change in the ARMv6 architecture

provides a completely different virtual memory implementation for the new architecture

based architectures the “multiple memory model” is used instead of the

“moving memory model”. The multiple memory model supports multiple page tables, whereas

the moving memory model moves blocks of memory in and out of a global page

physically tagged cache is used instead of a virtually tagged one. This would not bother

as this paper is concerned, except that the memory mappings are also completely different in the

Because the Nokia N96 runs on ARMv5 based hardware, all virtual memory

addresses mentioned in this paper apply to the moving memory model.

Another new feature in ARMv6 is that the page table permissions have been enhanced with a

This is no problem in the scope of this paper, since we do not attempt to

execute code from data pages. But it is a problem that has to be circumvented in ARMv6

architecture if we want to write an actual exploit.

However, in principle everything discussed in this paper also applies to smartp

SEC Consult Unternehmensberatung GmbH

Other than that, the base OS is no

It is worth noting here that, while all Symbian OS phones run on ARM based ASICs, it makes a big

the CPU built into the board is based on ARMv5 and lower, or ARMv6 and higher

architecture, and Symbian

e new architecture.

the “multiple memory model” is used instead of the

“moving memory model”. The multiple memory model supports multiple page tables, whereas

the moving memory model moves blocks of memory in and out of a global page table, and a

This would not bother us as far

as this paper is concerned, except that the memory mappings are also completely different in the

, all virtual memory

Another new feature in ARMv6 is that the page table permissions have been enhanced with a

s paper, since we do not attempt to

But it is a problem that has to be circumvented in ARMv6

However, in principle everything discussed in this paper also applies to smartphones running on

 Whitepaper: From 0 to 0day on Symbian

Page 7 of 40

STATIC ANALYSIS OF X

On Symbian devices, preinstalled

execute-in-place (XIP) images. X

memory. The XIP ROM image

there are some differences that

During runtime, the ROM code

of the virtual memory map. For

Unfortunately for us, this means that nearly all additional information

The EPOC ROM-building tools perform the relocation

information. The import and relocation sections of an executable are no longer needed when th

executable is bound into a ROM. These sections are removed as p

process. Additionally, EPOC u

names are contained in the export directories of system DLLs.

In this chapter, we will show how to restore most of th

the ROM images. It will then be shown how to

potentially vulnerable components on our test device.

most likely exploitable, so we have a target for the vulnerability analysis and debugging done in

the later chapters.

An extensive primer on reverse engineering

by Shub Nigurrath of ARTeam

DUMPING THE SMARTPHO

As we already mentioned, the

directory, which means that it is seen by all processes running on the system. This is necessary

because all processes need to be able to

are contained in the ROM. So, while we cannot directly

directory Z:\sys\bin\, we can dump the virt

The easiest way to do this is to simply

file, and then extract the files

available, e.g. DumpTools by Zorn

In the firmware dump of the Nokia

than in the Windows XP System32 directory!

must be broken.

6 The starting address of the ROM mapping can be obtained with the UserSvr::RomHeaderAddress(

In S60 3rd Ed. FP2, the ROM is mapped

7 I could not find an “official” link for DumpTools, but it can easily be found via Google or a search on

http://www.symbian-freak.com

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

STATIC ANALYSIS OF XIP ROM IMAGES

reinstalled applications are stored on NOR flash in the form of prelinked

place (XIP) images. XIP refers to the ability to be executed directly out of

 format is based on the standard EPOC E32Image

there are some differences that affect the static analysis process.

code is mapped directly to a fixed address within

For this to work, the executable images must already

Unfortunately for us, this means that nearly all additional information is discarded at build time

building tools perform the relocation and strip the images

relocation sections of an executable are no longer needed when th

executable is bound into a ROM. These sections are removed as part of the ROM building

EPOC uses link-by-ordinal exclusively, which means that no function

names are contained in the export directories of system DLLs.

In this chapter, we will show how to restore most of the lost information for a static analysis of

. It will then be shown how to use the available information to search for

potentially vulnerable components on our test device. Our goal is to find components that are

have a target for the vulnerability analysis and debugging done in

An extensive primer on reverse engineering standard EPOC E32Image binaries has been written

by Shub Nigurrath of ARTeam (2).

DUMPING THE SMARTPHONE ROM

already mentioned, the contents of the NOR flash ROM is mapped

directory, which means that it is seen by all processes running on the system. This is necessary

all processes need to be able to run code inside system DLLs, such as

So, while we cannot directly access the protected files within

we can dump the virtual memory region containing the ROM mapping.

he easiest way to do this is to simply dump the contents of the relevant memory region

files contained in the ROMFS image. Tools that do this are already

by Zorn7.

he Nokia N96 we found a total of 3.287 DLL and EXE files

Windows XP System32 directory! We can safely assume that at least some of

The starting address of the ROM mapping can be obtained with the UserSvr::RomHeaderAddress(

ROM is mapped at address 0xF8000000.

I could not find an “official” link for DumpTools, but it can easily be found via Google or a search on

SEC Consult Unternehmensberatung GmbH

IMAGES

n NOR flash in the form of prelinked

IP refers to the ability to be executed directly out of the ROM

EPOC E32Image executable, but

 the global directory

already be relocated.

is discarded at build time.

images of their relocation

relocation sections of an executable are no longer needed when the

art of the ROM building

ordinal exclusively, which means that no function

for a static analysis of

use the available information to search for

components that are

have a target for the vulnerability analysis and debugging done in

EPOC E32Image binaries has been written

ROM is mapped into the global

directory, which means that it is seen by all processes running on the system. This is necessary

system DLLs, such as euser.dll, which

access the protected files within the

containing the ROM mapping.

dump the contents of the relevant memory region6 into a

ools that do this are already

a total of 3.287 DLL and EXE files – that’s more

assume that at least some of them

The starting address of the ROM mapping can be obtained with the UserSvr::RomHeaderAddress() API.

I could not find an “official” link for DumpTools, but it can easily be found via Google or a search on

 Whitepaper: From 0 to 0day on Symbian

Page 8 of 40

Now let’s have a look at the disassembly of a typical

example we will disassemble the Bluetooth engine server (btengsrv.exe).

random piece of code inside this executable at address FA715BC4.

Figure 1: Disassembly of a function in the btengsrv.exe XIP ROM image

As can be seen in the disassembly there are some function calls, but we can’t really tell if

are library functions since IDA Pro cannot resolve any import names. W

When we try to follow these function calls, we will end up at an import jump table starting at

address FA717B50:

.text:FA717B50 sub_FA717B50

.text:FA717B50 LDR PC, =0xF855E 9B5

.text:FA717B54 dword_FA717B54 DCD 0xF855E9B5

.text:FA717B58 sub_FA717B58

.text:FA717B58 LDR PC, =0xF8550 561

..text:FA717B5C dword_FA717B5C DCD 0xF8550561

.text:FA717B60 sub_FA717B60

.text:FA717B60 LDR PC, =0xF8550 61F

.text:FA717B64 dword_FA717B64 DCD 0xF855061F

(…)

Listing 1: XIP Rom disassembly without annotation

Since the image is already relocated,

locations within the ROM mapping

signatures here, because the ROM images may be compiled differently for a given smartphone

firmware version, i.e. the jump

To solve this problem and make th

necessary symbol information

implemented this by writing a script

firmware, added symbol names from the S60 SDK if available, and store

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

COLLECTING INFORMATION

t the disassembly of a typical EPOC ROM image in IDA Pro. In this

example we will disassemble the Bluetooth engine server (btengsrv.exe). We’ll

of code inside this executable at address FA715BC4.

: Disassembly of a function in the btengsrv.exe XIP ROM image

As can be seen in the disassembly there are some function calls, but we can’t really tell if

are library functions since IDA Pro cannot resolve any import names. We

try to follow these function calls, we will end up at an import jump table starting at

.text:FA717B50 sub_FA717B50

.text:FA717B50 LDR PC, =0xF855E 9B5

.text:FA717B54 dword_FA717B54 DCD 0xF855E9B5

.text:FA717B58 sub_FA717B58

.text:FA717B58 LDR PC, =0xF8550 561

..text:FA717B5C dword_FA717B5C DCD 0xF8550561

.text:FA717B60 sub_FA717B60

.text:FA717B60 LDR PC, =0xF8550 61F

.text:FA717B64 dword_FA717B64 DCD 0xF855061F

Listing 1: XIP Rom disassembly without annotation

Since the image is already relocated, the jump table contains stubs that jump directly into other

mapping. Unfortunately, it is impossible to apply any generic

signatures here, because the ROM images may be compiled differently for a given smartphone

 addresses will vary from phone to phone.

To solve this problem and make the disassembly more readable, we have to somehow collect the

 specifically for our ROM build, and make it available to IDA.

is by writing a script that collected all the available addresses for our specific

symbol names from the S60 SDK if available, and stored

SEC Consult Unternehmensberatung GmbH

ROM image in IDA Pro. In this

We’ll disassemble a

: Disassembly of a function in the btengsrv.exe XIP ROM image

As can be seen in the disassembly there are some function calls, but we can’t really tell if those

e will soon see why.

try to follow these function calls, we will end up at an import jump table starting at

the jump table contains stubs that jump directly into other

Unfortunately, it is impossible to apply any generic

signatures here, because the ROM images may be compiled differently for a given smartphone

e disassembly more readable, we have to somehow collect the

, and make it available to IDA. We

addresses for our specific

d everything into a

 Whitepaper: From 0 to 0day on Symbian

Page 9 of 40

SQLite database, which could

other purposes8. The basic functionality of the script will be described in the next section.

BUILDING

In order to be able to map function addresses to function names, ordinals and DLL names, we

will need the following information:

• Function addresses and ordinals of all exports in DLLs of our ROM dump: Can be

extracted from the ROM images themselves.

• Function names for system libraries: For many important

ordinal-to-name mappings

For S60, these SDKs can be obtained at the Forum Nokia website

To be able to extract the list of exports from the ROM images we have to look inside the image

headers. Symbian ROM images have a

the E32ImageHeader used in normal EPOC

Figure 2: TRomImageHeader

The number of exports and the address of the export directory

the file. The Perl code shown in listing 2

export table.

8 In this chapter, we show two applications of the symbols database. It has however been useful in a

number of other ways in this project, for example looking up function and DLL names when inspecting

crash dumps.

9 http://www.forum.nokia.com/Tools_Docs_and

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

 then be accessed by IDA Pro, but which also

The basic functionality of the script will be described in the next section.

BUILDING A DATABASE OF ROM IMAGE SYMBOLS

In order to be able to map function addresses to function names, ordinals and DLL names, we

g information:

Function addresses and ordinals of all exports in DLLs of our ROM dump: Can be

extracted from the ROM images themselves.

for system libraries: For many important DLLs, such as euser.dll,

name mappings can be found inside the import libraries found in public SDKs.

can be obtained at the Forum Nokia website9.

To be able to extract the list of exports from the ROM images we have to look inside the image

headers. Symbian ROM images have a TRomImageHeader, which is basically a shorter version of

used in normal EPOC E32 images. Its structure is shown in

: TRomImageHeader. Source: Symbian OS Internals (3)

the address of the export directory can be found at offset

shown in listing 2 can be used to extract the addresses of

In this chapter, we show two applications of the symbols database. It has however been useful in a

number of other ways in this project, for example looking up function and DLL names when inspecting

http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/Platforms/S60_Platform_SDKs/

SEC Consult Unternehmensberatung GmbH

lso proved useful for

The basic functionality of the script will be described in the next section.

In order to be able to map function addresses to function names, ordinals and DLL names, we

Function addresses and ordinals of all exports in DLLs of our ROM dump: Can be

, such as euser.dll, the

libraries found in public SDKs.

To be able to extract the list of exports from the ROM images we have to look inside the image

, which is basically a shorter version of

hown in Figure 2.

(3)

can be found at offset 0x3C into

can be used to extract the addresses of all entries in the

In this chapter, we show two applications of the symbols database. It has however been useful in a

number of other ways in this project, for example looking up function and DLL names when inspecting

_Code/Tools/Platforms/S60_Platform_SDKs/

 Whitepaper: From 0 to 0day on Symbian

Page 10 of 40

my $entryaddr = unpack("L", substr($img, 0x10, 4));

my ($nexports, $ expaddr) = unpack("LL", substr($img, 0x3C, 8));

print sprintf ("entrypoint address: 0x%04x
directory: 0x%04x\ n", $entryaddr, $nexports, $expaddr);

my $offs = $expaddr - $entryaddr + 0x78;

my @exports;

for (my $i = 0; $i < $nexports; $i++) {

my $addr = unpack("L", substr($img, $offs + $i * 4, 4));

push @exports, $addr;

print sprintf ("0x%08x\ n", $addr

}

Listing 2: Extracting the addresses of exported functions

For each entry that is found, we try

libraries shipped with the S60 SDK.

libraries are in the directory:

C:\S60\devices\S60_3rd_FP2_SDK_v1.1

A quick way to extract the export names from each import library is to use GNU nm, which can

easily be installed via the Cygwin setup. The following command retrieves all symbol names for

euser.dll from the corresponding import library euser.lib:

$ nm --demangle
/cygdrive/c/S60/devices/S60_3rd_FP2_SDK_v1.1/epoc32 /release/armv5/lib/euser.lib

euser{000a0000}-1.o:
 U #<DLL>euser{000a0000}[100039e5].dll#<
00000000 t $a
00000004 t $d
00000000 T PanicTFixedArray()
00000004 t theImportedSymbol

euser{000a0000}-10.o:
 U #<DLL>euser{000a0000}[100039e5].dll#<
00000000 t $a
00000004 t $d
00000000 T CHeartbeat::NewL(int)
00000004 t theImportedSymbol

euser{000a0000}-100.o:
 U #<DLL>euser{000a0000}[100039e5].dll#<
00000000 t $a
00000004 t $d
00000000 T TMonthName::TMonthName(TMonth)
00000004 t theImportedSymbol
(…)

Listing 3: Extracting symbols from an import library

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

my $entryaddr = unpack("L", substr($img, 0x10, 4));

expaddr) = unpack("LL", substr($img, 0x3C, 8));

print sprintf ("entrypoint address: 0x%04x \ nnumber of exports: 0x%04x
n", $entryaddr, $nexports, $expaddr);

$entryaddr + 0x78;

$nexports; $i++) {

my $addr = unpack("L", substr($img, $offs + $i * 4, 4));

n", $addr - 1);

the addresses of exported functions from a ROM

For each entry that is found, we try to look up the corresponding function names in the import

libraries shipped with the S60 SDK. In the version used for this project, 3rd

S60_3rd_FP2_SDK_v1.1\epoc32\release\armv5\lib\

k way to extract the export names from each import library is to use GNU nm, which can

easily be installed via the Cygwin setup. The following command retrieves all symbol names for

euser.dll from the corresponding import library euser.lib:

/cygdrive/c/S60/devices/S60_3rd_FP2_SDK_v1.1/epoc32 /release/armv5/lib/euser.lib

U #<DLL>euser{000a0000}[100039e5].dll#< \DLL>1

00000000 T PanicTFixedArray()
00000004 t theImportedSymbol

U #<DLL>euser{000a0000}[100039e5].dll#< \DLL>a

00000000 T CHeartbeat::NewL(int)
00000004 t theImportedSymbol

U #<DLL>euser{000a0000}[100039e5].dll#< \DLL>64

00000000 T TMonthName::TMonthName(TMonth)
00000004 t theImportedSymbol

Listing 3: Extracting symbols from an import library

SEC Consult Unternehmensberatung GmbH

nnumber of exports: 0x%04x \nexport

ROM DLL (Perl)

to look up the corresponding function names in the import
rd edition FP2, these

k way to extract the export names from each import library is to use GNU nm, which can

easily be installed via the Cygwin setup. The following command retrieves all symbol names for

/cygdrive/c/S60/devices/S60_3rd_FP2_SDK_v1.1/epoc32 /release/armv5/lib/euser.lib

 Whitepaper: From 0 to 0day on Symbian

Page 11 of 40

The S60 SDK provides import libraries for the most important components (including all the

documented APIs), but it is far from complete

create short function names, in the form o

After gathering the export addresses and symbol names for each DLL found in our ROM dump,

we store one entry per export into

• Module name

• Function address

• Export ordinal

• Full function name

• Short function name

When the database has been bu

from our ROM, and their corresponding symbol names.

$ sqlite3.exe all.db
SQLite version 3.6.14.2
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> select dllname,addr,ordinal,fname from symbols where dllna me='EUser.dll'
order by ordinal;
EUser.dll|4166372448|1|PanicTFixedArray()
EUser.dll|4166331014|2|CCirBuffer::Get()
EUser.dll|4166331050|3|CCirBuffer::Put(int)
EUser.dll|4166330976|4|CCirBuffer::CCirBuffer
EUser.dll|4166330976|5|CCirBuffer::CCirBuffer()
EUser.dll|4166330998|6|CCirBuffer::~CCirBuffer()
EUser.dll|4166330990|7|CCirBuffer::~CCirBuffer()
EUser.dll|4166330990|8|CCirBuffer::~CCirBuffer()
EUser.dll|4166337630|9|CHeartbeat::New(int)
EUser.dll|4166337736|10|CHeartbeat::NewL(int)
EUser.dll|4166337772|11|CHeartbeat::RunL()
EUser.dll|4166337766|12|CHeartbeat::Start(TTimerLoc kSpec, MBeating*)
EUser.dll|4166337618|13|CHeartbeat::CHeartbeat(int)
EUser.dll|4166337618|14|CHeartbeat::CHeartbeat
EUser.dll|4166337750|15|CHeartbeat::~CHeartbeat()
EUser.dll|4166337748|16|CHeartbeat::~CHeartbeat()
EUser.dll|4166337748|17|CHeartbeat::~CHeartbeat()
(…)

Listing 4 : Accessing the symbols database

With the help of the database, we should now be able

tables in our disassembly.

ANNOTATING

IDA Pro provides several scripting

because it allows us to use the Python SQLite module to a

The following small IDA Python script walks through the import jump table and uses the

function addresses to do a name lookup in the database.

10 It may be possible to get some of the missing symbol names from other SDKs (e.g. UIQ).

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

import libraries for the most important components (including all the

documented APIs), but it is far from complete10. For the remaining exports

short function names, in the form of [address]@[dllname]_[ordinal].

export addresses and symbol names for each DLL found in our ROM dump,

into our symbols database, consisting of:

the database has been built, we can use it to look up the list of export addresses

corresponding symbol names.

Enter ".help" for instructions
Enter SQL statements terminated with a ";"

dllname,addr,ordinal,fname from symbols where dllna me='EUser.dll'

EUser.dll|4166372448|1|PanicTFixedArray()
EUser.dll|4166331014|2|CCirBuffer::Get()
EUser.dll|4166331050|3|CCirBuffer::Put(int)
EUser.dll|4166330976|4|CCirBuffer::CCirBuffer ()
EUser.dll|4166330976|5|CCirBuffer::CCirBuffer()
EUser.dll|4166330998|6|CCirBuffer::~CCirBuffer()
EUser.dll|4166330990|7|CCirBuffer::~CCirBuffer()
EUser.dll|4166330990|8|CCirBuffer::~CCirBuffer()
EUser.dll|4166337630|9|CHeartbeat::New(int)
EUser.dll|4166337736|10|CHeartbeat::NewL(int)
EUser.dll|4166337772|11|CHeartbeat::RunL()
EUser.dll|4166337766|12|CHeartbeat::Start(TTimerLoc kSpec, MBeating*)
EUser.dll|4166337618|13|CHeartbeat::CHeartbeat(int)
EUser.dll|4166337618|14|CHeartbeat::CHeartbeat (int)
EUser.dll|4166337750|15|CHeartbeat::~CHeartbeat()
EUser.dll|4166337748|16|CHeartbeat::~CHeartbeat()
EUser.dll|4166337748|17|CHeartbeat::~CHeartbeat()

Listing 4 : Accessing the symbols database

With the help of the database, we should now be able restore the import jump tables and export

ANNOTATING IMPORT AND EXPORT TABLES

scripting interfaces. In our case, IDA Python is the most suitable,

use the Python SQLite module to access our database.

The following small IDA Python script walks through the import jump table and uses the

function addresses to do a name lookup in the database.

It may be possible to get some of the missing symbol names from other SDKs (e.g. UIQ).

SEC Consult Unternehmensberatung GmbH

import libraries for the most important components (including all the

For the remaining exports we automatically

export addresses and symbol names for each DLL found in our ROM dump,

use it to look up the list of export addresses for a DLL

dllname,addr,ordinal,fname from symbols where dllna me='EUser.dll'

EUser.dll|4166337766|12|CHeartbeat::Start(TTimerLoc kSpec, MBeating*)

restore the import jump tables and export

In our case, IDA Python is the most suitable,

The following small IDA Python script walks through the import jump table and uses the

It may be possible to get some of the missing symbol names from other SDKs (e.g. UIQ).

 Whitepaper: From 0 to 0day on Symbian

Page 12 of 40

import sqlite3

conn = sqlite3.connect('c: \
conn.text_factory = str

c = conn.cursor()

ea = ScreenEA()

while (Word(ea) == 0xf004):

 addr = Dword(ea + 4) - 1

 c.execute('select shortname,fname from symbols wher e addr =?',(addr,))
 row = c.fetchone()

 print addr, row

 MakeNameEx(ea, row[0], SN_NOCHECK)
 MakeComm(ea,row[1]);

 ea += 8

Listing 5: Annotating the import jump table with IDA Python

If we take another look at the fu

that most of the function names have been successfully resolved.

what the function is actually doing (in this case, calling the central repository APIs).

Figure

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

\ \n96_11_018.db')

while (Word(ea) == 0xf004):

c.execute('select shortname,fname from symbols wher e addr =?',(addr,))

MakeNameEx(ea, row[0], SN_NOCHECK)

Listing 5: Annotating the import jump table with IDA Python

at the function at address FA715BC4 after running the script

that most of the function names have been successfully resolved. It’s now much easier to

what the function is actually doing (in this case, calling the central repository APIs).

Figure 3: Annotated API functions in IDA Pro

SEC Consult Unternehmensberatung GmbH

c.execute('select shortname,fname from symbols wher e addr =?',(addr,))

Listing 5: Annotating the import jump table with IDA Python

nction at address FA715BC4 after running the script, we can see

much easier to deduce

what the function is actually doing (in this case, calling the central repository APIs).

 Whitepaper: From 0 to 0day on Symbian

Page 13 of 40

SEARCHING FOR UNSAFE

To select a target for the rem

components are potentially vulnerable

components that use insecure API

str(...) family11.

In Symbian, there are two implementations of the standard C APIs. The old one, which is still

shipped with devices running S60 3

estlib. Additionally, FP2 contains a more complete implementa

P.I.P.S. (“PIPS is POSIX on Symbian”) or OpenC. Both of them provide basic POSIX string

functions, such as strcpy() and strcat

To automate this, we first look up the addresses of the functions we are interested in, bot

estlib.dll and libc.dll. Then we parse the ROM images themselves for branch instructions to these

addresses. This functionality can easily

Let’s now look at some of the results:

ldr pc, 0xf88a633d (strcpy) in md

ldr pc, 0xf88aa203 (sprintf) in mdfh264payloadforma t.dll!

ldr pc, 0xf88a62bb (strcat) in mdfh264payloadformat .dll!

ldr pc, 0xf88aa203 (sprintf) in xmlsec.dll!

ldr pc, 0xf88a62bb (strcat) in progdownfs.dll!

ldr pc, 0xf88a633d (strcpy) in progdownfs.dll!

ldr pc, 0xf88a633d (strcpy) in WebCore.dll!

ldr pc, 0xf88aa203 (sprintf) in mdfvidrender.dll!

ldr pc, 0xf88a633d (strcpy) in mdfvidrender.dll!

ldr pc, 0xf88a62bb (strcat) in mdfvidrender.dll!

ldr pc, 0xf88a62bb (strcat) in wmare

ldr pc, 0xf88aa203 (sprintf) in wmarender.dll!

ldr pc, 0xf88a633d (strcpy) in wmarender.dll!

ldr pc, 0xf88a633d (strcpy) in vidsite.dll!

ldr pc, 0xf88aa203 (sprintf) in vidsite.dll!

ldr pc, 0xf88a62bb (strcat) in vidsite.dll!

ldr pc, 0xf88a62bb (strcat) in mp4fformat.dll!

ldr pc, 0xf88a633d (strcpy) in mp4fformat.dll!

ldr pc, 0xf88aa203 (sprintf) in mp4fformat.dll!

(...)

Listing 5: Partial list of invocations of unsafe string functions

11 Vulnerabilities may also exist in other components. However, as we did not want to make our lives

unnecessarily hard, we searched for the low hanging fruit (which incidentally is what an actual attacker

would do).

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

SEARCHING FOR UNSAFE COMPONENTS

remainder of the paper, we need some way to determine

components are potentially vulnerable. We will simply use the symbols database to look for

components that use insecure APIs, such as the string functions from the good old fashioned

In Symbian, there are two implementations of the standard C APIs. The old one, which is still

shipped with devices running S60 3rd edition FP2 (at least it was available on our N96), is called

estlib. Additionally, FP2 contains a more complete implementation of the POSIX standard, called

P.I.P.S. (“PIPS is POSIX on Symbian”) or OpenC. Both of them provide basic POSIX string

and strcat().

To automate this, we first look up the addresses of the functions we are interested in, bot

. Then we parse the ROM images themselves for branch instructions to these

addresses. This functionality can easily be built into another Perl script.

s now look at some of the results:

ldr pc, 0xf88a633d (strcpy) in md fh264payloadformat.dll!

ldr pc, 0xf88aa203 (sprintf) in mdfh264payloadforma t.dll!

ldr pc, 0xf88a62bb (strcat) in mdfh264payloadformat .dll!

ldr pc, 0xf88aa203 (sprintf) in xmlsec.dll!

ldr pc, 0xf88a62bb (strcat) in progdownfs.dll!

(strcpy) in progdownfs.dll!

ldr pc, 0xf88a633d (strcpy) in WebCore.dll!

ldr pc, 0xf88aa203 (sprintf) in mdfvidrender.dll!

ldr pc, 0xf88a633d (strcpy) in mdfvidrender.dll!

ldr pc, 0xf88a62bb (strcat) in mdfvidrender.dll!

ldr pc, 0xf88a62bb (strcat) in wmare nder.dll!

ldr pc, 0xf88aa203 (sprintf) in wmarender.dll!

ldr pc, 0xf88a633d (strcpy) in wmarender.dll!

ldr pc, 0xf88a633d (strcpy) in vidsite.dll!

ldr pc, 0xf88aa203 (sprintf) in vidsite.dll!

ldr pc, 0xf88a62bb (strcat) in vidsite.dll!

strcat) in mp4fformat.dll!

ldr pc, 0xf88a633d (strcpy) in mp4fformat.dll!

ldr pc, 0xf88aa203 (sprintf) in mp4fformat.dll!

Listing 5: Partial list of invocations of unsafe string functions

Vulnerabilities may also exist in other components. However, as we did not want to make our lives

rched for the low hanging fruit (which incidentally is what an actual attacker

SEC Consult Unternehmensberatung GmbH

ainder of the paper, we need some way to determine which

database to look for

, such as the string functions from the good old fashioned

In Symbian, there are two implementations of the standard C APIs. The old one, which is still

edition FP2 (at least it was available on our N96), is called

tion of the POSIX standard, called

P.I.P.S. (“PIPS is POSIX on Symbian”) or OpenC. Both of them provide basic POSIX string

To automate this, we first look up the addresses of the functions we are interested in, both inside

. Then we parse the ROM images themselves for branch instructions to these

Listing 5: Partial list of invocations of unsafe string functions

Vulnerabilities may also exist in other components. However, as we did not want to make our lives

rched for the low hanging fruit (which incidentally is what an actual attacker

 Whitepaper: From 0 to 0day on Symbian

Page 14 of 40

As can be seen in listing 5, potentially dangerous string func

libraries that seem to be some sort of parsers, or codecs, for video and audio file formats

(WebCore.dll also sounds interesting in the list above).

We can be almost certain that these modules are ports of standard C implemen

originally created for PCs, and

good chance that, since these unsafe functions are used at all, at least some of the components

are of poor quality, and may have bugs that

Another factor that makes these components interesting are the potential attack vectors that

would exist once a vulnerability is found. In modern smartphones, video and audio files

embedded into MMS messages. Since the MMS viewer uses the same codecs

audio files, any vulnerability in one of these codecs would be remotely exploitabl

This is why, for the rest of this paper, we will concentrate on the

our firmware. The techniques

other components!

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

, potentially dangerous string functions are imported by a lot of

libraries that seem to be some sort of parsers, or codecs, for video and audio file formats

(WebCore.dll also sounds interesting in the list above).

that these modules are ports of standard C implemen

 do not use the Symbian specific string handling

good chance that, since these unsafe functions are used at all, at least some of the components

of poor quality, and may have bugs that could turn out to be exploitable.

Another factor that makes these components interesting are the potential attack vectors that

would exist once a vulnerability is found. In modern smartphones, video and audio files

embedded into MMS messages. Since the MMS viewer uses the same codecs

vulnerability in one of these codecs would be remotely exploitabl

This is why, for the rest of this paper, we will concentrate on the multimedia codecs contained in

The techniques presented in the later chapters can however

SEC Consult Unternehmensberatung GmbH

tions are imported by a lot of

libraries that seem to be some sort of parsers, or codecs, for video and audio file formats

that these modules are ports of standard C implementations that were

do not use the Symbian specific string handling classes. There is a

good chance that, since these unsafe functions are used at all, at least some of the components

Another factor that makes these components interesting are the potential attack vectors that

would exist once a vulnerability is found. In modern smartphones, video and audio files can be

embedded into MMS messages. Since the MMS viewer uses the same codecs to play video and

vulnerability in one of these codecs would be remotely exploitable.

multimedia codecs contained in

later chapters can however be also applied to

 Whitepaper: From 0 to 0day on Symbian

Page 15 of 40

DEBUGGING

Now that we have determined that the multimedia codecs are probably broken,

shot and try to exploit them? An easy way to do this would be to create broken multimedia files,

feed them into MediaPlayer.exe

The only problem is, we can’t really see what happens.

attach the IDA Pro Symbian remote debugger to the MediaPlayer.exe process running on

smartphone: Not only does the IDA debugger not work with current TRKs, but we can’t at

the MediaPlayer-process even with the Carbide C++ debugger. Als

manage to attach to, the debugger does not show any code in the ROM section! We will deal with

these problems in the next chapter.

RUN MODE DEBUGGING O

Run mode debugging, which is very common in the embedded device industry,

method of debugging an application directly on the target device

host application (PC), and sends commands to

communication channel, such as

programs and attach to processes, set breakpoints, and read or set registers and memory. It also

reports back any relevant events, such as exceptions, back to the host system.

the architecture of the run mode debugger.

Figure 4: Run mode debugging architecture. Source:

In the case of Symbian, a run

AppTRK. AppTRK is a target-resident debug

a DLL, and a GUI application that allows

In principle, AppTRK remains transparent to the operating system and can be used to debug any

application running on the device.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

BUGGING HIGHLY PRIVILEGED PROCESSES

Now that we have determined that the multimedia codecs are probably broken,

An easy way to do this would be to create broken multimedia files,

feed them into MediaPlayer.exe, and see what happens.

The only problem is, we can’t really see what happens. The problems start as soon as

remote debugger to the MediaPlayer.exe process running on

: Not only does the IDA debugger not work with current TRKs, but we can’t at

even with the Carbide C++ debugger. Also, for the processes we

the debugger does not show any code in the ROM section! We will deal with

these problems in the next chapter.

RUN MODE DEBUGGING OVERVIEW

Run mode debugging, which is very common in the embedded device industry,

method of debugging an application directly on the target device. The debugger is run on the

host application (PC), and sends commands to an on device debug agent

communication channel, such as Bluetooth, IR or USB. The debug agent can be used to run

programs and attach to processes, set breakpoints, and read or set registers and memory. It also

reports back any relevant events, such as exceptions, back to the host system.

the architecture of the run mode debugger.

: Run mode debugging architecture. Source: Symbian OS Internals

run mode debugging facility is provided by the

resident debug agent that consists of a logical device driver

a DLL, and a GUI application that allows users to configure the application.

remains transparent to the operating system and can be used to debug any

the device. However, it cannot be used to debug the

SEC Consult Unternehmensberatung GmbH

OCESSES

Now that we have determined that the multimedia codecs are probably broken, why not give it a

An easy way to do this would be to create broken multimedia files,

as soon as we try to

remote debugger to the MediaPlayer.exe process running on the

: Not only does the IDA debugger not work with current TRKs, but we can’t attach to

for the processes we

the debugger does not show any code in the ROM section! We will deal with

Run mode debugging, which is very common in the embedded device industry, refers to the

he debugger is run on the

agent over a common

agent can be used to run

programs and attach to processes, set breakpoints, and read or set registers and memory. It also

reports back any relevant events, such as exceptions, back to the host system. Figure 4 shows

Symbian OS Internals (3)

the publicly available

device driver (LDD),

remains transparent to the operating system and can be used to debug any

not be used to debug the kernel or device

 Whitepaper: From 0 to 0day on Symbian

Page 16 of 40

drivers, since the debug agent itself requires kernel services to run.

partially documented in the CodeWarrior MetroTRK Reference

In order to prevent evildoers from messing around with

debug agent contains protection mechanisms that prevent the debugger from

processes with specific capabilities. Additionally, it does not allow reading

memory region. Since all preinstalled applications and modules have their code in ROM, th

means that only user installed applications can be debugged.

To overcome this problem, we will have to patch the debug

these protections. But we can

requires the TCB capability, it cannot be run without being signed with a

manufacturer certificate. As the name implies, these certificates are only handed out to phone

manufacturers. For this reason we have to apply a platform security hack before doing any

else.

The following chapter starts with a short discussion of platform security. After that, we will

describe how to exploit a known vulnerability to disable platform security on current S60 3

edition FP2 smartphones12.

PLATFORM SE

Platform security is the means by which Symbian OS attempts to protect its integrity. It has

mainly been implemented to protect unsuspecting

an exorbitant phone bill caused by malicious software ru

In Symbian, the process is the main unit of trust. Each process running on Symbian is assigned a

set of capabilities, which are used to decide which system APIs the process can access.

these capabilities can be granted by the user, but others require the application to prove its level

of trust with a valid signature. The most important APIs

trust (the “trusted computing base”)

Corporation or the phone manufacturer.

12 This worked on our Nokia N96 with its original S60 3

current version at least until March 2009. I did not want to u

I’m not sure if the bug has been fixed in newer versions. But this is actually not a big concern, since

platform security hacks are found on a regular basis! See

discussions on this topic.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

agent itself requires kernel services to run. The AppTRK inte

CodeWarrior MetroTRK Reference (4).

from messing around with important system services

contains protection mechanisms that prevent the debugger from

processes with specific capabilities. Additionally, it does not allow reading

memory region. Since all preinstalled applications and modules have their code in ROM, th

applications can be debugged.

To overcome this problem, we will have to patch the debug agent kernel driver and remove

these protections. But we cannot simply run a modified debug agent on the device

CB capability, it cannot be run without being signed with a

certificate. As the name implies, these certificates are only handed out to phone

manufacturers. For this reason we have to apply a platform security hack before doing any

HACKING THE PHONE

The following chapter starts with a short discussion of platform security. After that, we will

describe how to exploit a known vulnerability to disable platform security on current S60 3

PLATFORM SECURITY OVERVIEW

tform security is the means by which Symbian OS attempts to protect its integrity. It has

mainly been implemented to protect unsuspecting smartphone users of bad

an exorbitant phone bill caused by malicious software running on the phone.

In Symbian, the process is the main unit of trust. Each process running on Symbian is assigned a

set of capabilities, which are used to decide which system APIs the process can access.

these capabilities can be granted by the user, but others require the application to prove its level

of trust with a valid signature. The most important APIs, those within the innermost layer of

trust (the “trusted computing base”) can only be accessed with approval from Symbian

or the phone manufacturer.

This worked on our Nokia N96 with its original S60 3rd Ed. FP2 firmware installed, which was the most

current version at least until March 2009. I did not want to update the firmware during this project, and

I’m not sure if the bug has been fixed in newer versions. But this is actually not a big concern, since

platform security hacks are found on a regular basis! See http://www.symbian-freaks.com/

SEC Consult Unternehmensberatung GmbH

The AppTRK interface is

important system services, the AppTRK

contains protection mechanisms that prevent the debugger from attaching to

processes with specific capabilities. Additionally, it does not allow reading from the ROM

memory region. Since all preinstalled applications and modules have their code in ROM, this

kernel driver and remove

on the device – as it

CB capability, it cannot be run without being signed with a Nokia phone

certificate. As the name implies, these certificates are only handed out to phone

manufacturers. For this reason we have to apply a platform security hack before doing anything

The following chapter starts with a short discussion of platform security. After that, we will

describe how to exploit a known vulnerability to disable platform security on current S60 3rd

tform security is the means by which Symbian OS attempts to protect its integrity. It has

bad surprises, such as

In Symbian, the process is the main unit of trust. Each process running on Symbian is assigned a

set of capabilities, which are used to decide which system APIs the process can access. Some of

these capabilities can be granted by the user, but others require the application to prove its level

, those within the innermost layer of

essed with approval from Symbian

Ed. FP2 firmware installed, which was the most

pdate the firmware during this project, and

I’m not sure if the bug has been fixed in newer versions. But this is actually not a big concern, since

freaks.com/ for current

 Whitepaper: From 0 to 0day on Symbian

Page 17 of 40

Figure 5: Layers of trust in platform security. Source:

Let’s have a look at how this has been implemented.

set of capabilities. The programmer has to decide at build time which

required. The chosen capabilities are

When a program is started, and the image is loaded into memory, the loader

process with the capabilities

cannot be changed during runtime.

Capabilities are specified for executable files as well as for DLLs.

being loaded into privileged process

set of capabilities than itself, and a DLL cannot statically link t

capabilities.

So, what prevents us from simply giving our executable any capabilities we want?

a feature called “data caging”.

than the \sys\ path. This directory is protected by the

processes with the TCB (Trusted Computing Base) capability.

into this directory is never done dir

Figure 6: Data caging / capabilities overview. Source:

13 In Symbian, client server IPC is used for accessing files and many other operating system services. For

example, to open a file for reading, a process has to create a session with the fileserver. For a detailed

description of the Symbien client/server IPC concept, see

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

: Layers of trust in platform security. Source: Symbian OS Internals

et’s have a look at how this has been implemented. As we already said, each process has its own

The programmer has to decide at build time which

capabilities are then hardcoded into the header of the

When a program is started, and the image is loaded into memory, the loader

 specified in the header. The capabilities are set only once and

during runtime.

ies are specified for executable files as well as for DLLs. To prevent malicious code

being loaded into privileged processes, a process is not allowed to load a DLL that has a smaller

than itself, and a DLL cannot statically link to another DLL with a smaller set of

prevents us from simply giving our executable any capabilities we want?

a feature called “data caging”. The loader will refuse to load executables from directories other

This directory is protected by the fileserver13 and can only be written to by

processes with the TCB (Trusted Computing Base) capability. Installing executables and libraries

never done directly, but is done by the install server.

: Data caging / capabilities overview. Source: Symbian OS Internals

In Symbian, client server IPC is used for accessing files and many other operating system services. For

example, to open a file for reading, a process has to create a session with the fileserver. For a detailed

bien client/server IPC concept, see (3).

SEC Consult Unternehmensberatung GmbH

Symbian OS Internals (3)

As we already said, each process has its own

 capabilities will be

of the executable image.

When a program is started, and the image is loaded into memory, the loader associates the new

The capabilities are set only once and

To prevent malicious code from

load a DLL that has a smaller

o another DLL with a smaller set of

prevents us from simply giving our executable any capabilities we want? The answer is

from directories other

only be written to by

Installing executables and libraries

Symbian OS Internals (3)

In Symbian, client server IPC is used for accessing files and many other operating system services. For

example, to open a file for reading, a process has to create a session with the fileserver. For a detailed

 Whitepaper: From 0 to 0day on Symbian

Page 18 of 40

In order to install software on the device, users have to provide

install server. The SIS package contains the binary files as well as resources and metadata

required for the installation, and can

installation, the install server checks the

in the package. It then decides whether to allow or disallow the installation, based on

configuration of the device and on the signature of the SIS pa

Code signing certificates for developme

Symbian Signed website14. We

however important to note that the

be obtained through Symbian Signed

shows an overview of the available signing options and capabilities.

14 https://www.symbiansigned.com/

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

In order to install software on the device, users have to provide so called

The SIS package contains the binary files as well as resources and metadata

, and can be signed with a software certificate

he install server checks the set of capabilities requested by the binaries contained

It then decides whether to allow or disallow the installation, based on

and on the signature of the SIS package.

Code signing certificates for development or publishing purposes can be obtained at

We won’t go into detail about the different certificates here

however important to note that the most important capabilities, TCB, AllFiles and DRM

Symbian Signed without manufacturer approval. The table in

shows an overview of the available signing options and capabilities.

Figure 7: Symbian signed grid

https://www.symbiansigned.com/

SEC Consult Unternehmensberatung GmbH

called SIS packages to the

The SIS package contains the binary files as well as resources and metadata

signed with a software certificate. At the time of

the binaries contained

It then decides whether to allow or disallow the installation, based on the

nt or publishing purposes can be obtained at the

’t go into detail about the different certificates here. It is

TCB, AllFiles and DRM, cannot

. The table in Figure 7

 Whitepaper: From 0 to 0day on Symbian

Page 19 of 40

PROBLEMS WITH PLATFO

Observant readers may already have

pretty ‘unique’ ideas, a characteristic that applies to most of Symbian OS

with platform security is that it is much more complex than necessary.

really needed in Symbian OS, why not require the binaries themselves to be signed?

single security check would take place in a single

the program is executed. Instead, the integrity of the system depends on a lot of components

working together, and failure in any of these components compromises the whole system.

Additionally, the path based data caging

strategy. It is based solely on the assumption that

directories.

The first problem is that, obviously, this assumption does not hold

The Symbian designers thought of this

executables installed on removable media

integrated flash memory, and the loader checks

from removable media. But the fact that this s

the idea of path based data caging itself is

could also calculate a hash for

system file, and throw away the

Complexities like these also make the system prone to logical errors.

example above, which media is removable media and which is not?

bugs similar to the one shown in the next chapter.

The platform security vulnerability

has been posted on the Symbian Freak website in January 2009

The MapDrives method exploits a flaw in the executable loader. The problem lies in the fact that

a process with the DiskAdmin capability can

drive letters. By creating the subdirectories

directory to a new drive letter such as Y:, the attacker

under certain circumstances, seems like a valid exec

It is however not possible to execute files directly from the newly mapped

The attack only works if the loader is instructed to load an executable

specified.

15 One particularly funny idiom is the Symbian C++ exception handling with Leaves / CleanupStack. This

and other features of Symbian C++ are well described in

16 I really took effort in trying to get all the credits right in t

trace the origin of certain ideas. If anyone feels I’m in error here, don’t hesitate to email me, it will be

corrected!

17 http://www.symbian-freak.com/forum/viewtopic.php?t=28259

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

PROBLEMS WITH PLATFORM SECURITY

readers may already have noticed that the concept of platform security

pretty ‘unique’ ideas, a characteristic that applies to most of Symbian OS15.

with platform security is that it is much more complex than necessary. If trusted computing is

, why not require the binaries themselves to be signed?

would take place in a single component (the loader), at the moment

is executed. Instead, the integrity of the system depends on a lot of components

lure in any of these components compromises the whole system.

data caging mechanism does not seem like a very robust security

It is based solely on the assumption that executable files cannot be placed into certain

bviously, this assumption does not hold true for re

thought of this and implemented a hashing mechanism

installed on removable media are calculated and stored in a database on

, and the loader checks it for a valid hash before executing programs

But the fact that this secondary measure is even necessary show

data caging itself is worthless! If we have to store hashes anyway

hash for all binaries that are allowed to run, store that in a single locked

and throw away the complicated path protection rules, with the same effect.

make the system prone to logical errors. How do we decide

mple above, which media is removable media and which is not? These complexities result in

the one shown in the next chapter.

THE MAPDRIVES EXPLOIT

platform security vulnerability discussed in this chapter was discovered by DeltaF

has been posted on the Symbian Freak website in January 200917.

The MapDrives method exploits a flaw in the executable loader. The problem lies in the fact that

DiskAdmin capability can access an API that maps subdirectories

the subdirectories \sys\bin\ in an existing directory

directory to a new drive letter such as Y:, the attacker can place executable files into a path

seems like a valid executable path to the loader.

It is however not possible to execute files directly from the newly mapped \

the loader is instructed to load an executable, but no specific path is

One particularly funny idiom is the Symbian C++ exception handling with Leaves / CleanupStack. This

and other features of Symbian C++ are well described in (6).

I really took effort in trying to get all the credits right in this paper. However, it’s sometimes difficult to

trace the origin of certain ideas. If anyone feels I’m in error here, don’t hesitate to email me, it will be

freak.com/forum/viewtopic.php?t=28259

SEC Consult Unternehmensberatung GmbH

noticed that the concept of platform security contains some

. The main problem

trusted computing is

, why not require the binaries themselves to be signed? This way, a

), at the moment before

is executed. Instead, the integrity of the system depends on a lot of components

lure in any of these components compromises the whole system.

a very robust security

files cannot be placed into certain

for removable media.

mechanism: Hashes of

are calculated and stored in a database on the

efore executing programs

necessary shows that

have to store hashes anyway, then we

store that in a single locked

, with the same effect.

do we decide, in the

These complexities result in

vered by DeltaFox16 and

The MapDrives method exploits a flaw in the executable loader. The problem lies in the fact that

ubdirectories to unused

in an existing directory, and mapping this

can place executable files into a path that,

utable path to the loader.

\sys\bin\ directory.

, but no specific path is

One particularly funny idiom is the Symbian C++ exception handling with Leaves / CleanupStack. This

his paper. However, it’s sometimes difficult to

trace the origin of certain ideas. If anyone feels I’m in error here, don’t hesitate to email me, it will be

 Whitepaper: From 0 to 0day on Symbian

Page 20 of 40

As an example, let’s assume

E:\hack\sys\bin\. We then

RProcess::Create(“test.exe”), we instruct

will now search the \sys\bin\

point it will find our executable,

executable file, and loads it into memory, assigning it any cap

The following listing shows Symbian C++

subsequently uses the RFs::SetSubst

LOCAL_C void MainL()
{

_LIT(KPath,"E:\\ subst
RFs fs;
TInt i, err;
CleanupClosePushL(fs);
User::LeaveIfError(fs.Connect());
for (i = 0; i < 25; i++) {

err = fs.SetSubst(KPath, i);
}

 fs.Close();
 CleanupStack::PopAndDestroy();
}

Listing 6: Mapping a subdirectory to drive letters

It is important to note that a process run this way can have any capabilities, including AllFiles,

DRM and TCB.

Our main use of the exploit in this project was to break platform security on our test device

with platform security enabled, it would have been impossible to debug any

important processes. The techniques described in the following chapters can

reproduced only on a hacked device.

the time I’m writing this, is to use the MapDrives exploit explained in this chapter to install

additional “Symbian A” root certificates on the device.

we can install SIS packages with any capabi

yourself – readymade packages

Now that we can run modified software with any capabilities

modified version of the debug

let’s look at the files contained in the AppTRK S

• trkdriver.ldd: TRK kernel

• trkengine.dll: This DLL exports the debugging API to user mode applications.

the debug agent driver via the RBusLogicalChannel

• trkguiapp.exe: The executable that is used to initialize and configure the debugger

From a security perspective, it would make the most sense to put the protection mechanisms

into the device driver, so let’s assume

18 The version we used was AppTRK 3.0.8 for S60 3

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

ume that we place a file called “test.exe” inside

e then map the directory E:\hack\ to drive Y:.

we instruct the loader to execute a file called test.exe. The loader

 directories of all available drives for a file of this name.

executable, Y:\sys\bin\test.exe. In this case, the loader considers it a valid

executable file, and loads it into memory, assigning it any capabilities we may have specif

Symbian C++ code that establishes a session to the file server and

SetSubst() API to map a directory to all available drive letters.

subst \\");

CleanupClosePushL(fs);
User::LeaveIfError(fs.Connect());
for (i = 0; i < 25; i++) {

err = fs.SetSubst(KPath, i);

CleanupStack::PopAndDestroy();

Listing 6: Mapping a subdirectory to drive letters

important to note that a process run this way can have any capabilities, including AllFiles,

Our main use of the exploit in this project was to break platform security on our test device

with platform security enabled, it would have been impossible to debug any

The techniques described in the following chapters can

reproduced only on a hacked device. The way we did this, and also probably th

to use the MapDrives exploit explained in this chapter to install

root certificates on the device. Once these root certificates

we can install SIS packages with any capabilities we want. You also do not have to do any coding

packages exist out there which perform the whole process automatically.

CRACKING APPTRK

we can run modified software with any capabilities we want, we can try to create a

odified version of the debug agent that we can later use to debug system processes.

contained in the AppTRK SIS package18. The most important ones

kernel driver that implements the debugging function

trkengine.dll: This DLL exports the debugging API to user mode applications.

driver via the RBusLogicalChannel interface

trkguiapp.exe: The executable that is used to initialize and configure the debugger

perspective, it would make the most sense to put the protection mechanisms

assume that we can find them there.

TRK 3.0.8 for S60 3rd Ed. FP2.

SEC Consult Unternehmensberatung GmbH

inside the directory

drive Y:. By now calling

the loader to execute a file called test.exe. The loader

tories of all available drives for a file of this name. At some

loader considers it a valid

we may have specified.

code that establishes a session to the file server and

API to map a directory to all available drive letters.

important to note that a process run this way can have any capabilities, including AllFiles,

Our main use of the exploit in this project was to break platform security on our test device –

with platform security enabled, it would have been impossible to debug any of the more

The techniques described in the following chapters can therefore be

The way we did this, and also probably the easiest way at

to use the MapDrives exploit explained in this chapter to install

Once these root certificates are installed,

. You also do not have to do any coding

the whole process automatically.

, we can try to create a

to debug system processes. At first,

. The most important ones are:

driver that implements the debugging functionality

trkengine.dll: This DLL exports the debugging API to user mode applications. It accesses

trkguiapp.exe: The executable that is used to initialize and configure the debugger

perspective, it would make the most sense to put the protection mechanisms

 Whitepaper: From 0 to 0day on Symbian

Page 21 of 40

REMOVING P

The first thing we want to fix is the protection of ROM memory.

to trace the function flow from where the

trkengine.dll, all the way until

any interfering checks in between.

From the metrotrk.h header file contained in the IDA SDK, we know that the TRK message code

for TrkReadMemory is 0x10.

depending on this message code. When we start from there, we eventually end up at a call to

RBusLogicalChannel::DoControl() API that sends a request to the kernel driver.

there are no checks in between as far as trkengine.dll is concerned.

However, if we follow the respective request handler inside trkdriver.ldd, we will find tw

functions that perform a suspicious series of register comparisons.

integer argument and check if it is in a specific range, the first one representing the kernel data

sections of the moving and multiple memory models, the second o

memory mapped ROM section.

depends on the outcome of the comparison

are looking for.

Figure 8: Branches to memory protection checks (already annotated)

We can disable this check by introducing a jump over both comparison functions.

branch instruction at file offset 0x1250 (virtual address 0x91B4):

11 00 00 ea (branch +44)

REMOVING P

We can now read and debug

MediaPlayer.exe, or any other process with the DRM, AllFiles or TCB

This can also be fixed easily. The debug

the capabilities of a process. There are only five uses of this API within the driver, three of which

are in a single function at address 0xb714

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

REMOVING PROTECTION OF ROM MEMORY

The first thing we want to fix is the protection of ROM memory. One approach t

from where the TrkReadMemory message code is received by

all the way until the memory is actually read by trkdriver.ldd, and see if there are

any interfering checks in between.

.h header file contained in the IDA SDK, we know that the TRK message code

 There is a large jump table inside trkengine.dll that branches

depending on this message code. When we start from there, we eventually end up at a call to

RBusLogicalChannel::DoControl() API that sends a request to the kernel driver.

there are no checks in between as far as trkengine.dll is concerned.

However, if we follow the respective request handler inside trkdriver.ldd, we will find tw

functions that perform a suspicious series of register comparisons. Both functions take an

integer argument and check if it is in a specific range, the first one representing the kernel data

sections of the moving and multiple memory models, the second one the address ranges of the

memory mapped ROM section. There is also a subsequent call to Kern::ThreadRawRead() that

depends on the outcome of the comparisons, so we can safely assume that this is the check we

: Branches to memory protection checks (already annotated)

We can disable this check by introducing a jump over both comparison functions.

ch instruction at file offset 0x1250 (virtual address 0x91B4):

+44)

REMOVING PROTECTION OF SYSTEM PROCESSES

We can now read and debug within the ROM code range, but we still can’t attach to

MediaPlayer.exe, or any other process with the DRM, AllFiles or TCB capabilities!

. The debug driver uses the DThread::DoHasCapability(

the capabilities of a process. There are only five uses of this API within the driver, three of which

are in a single function at address 0xb714, and these are successive checks for the TCB, DRM and

SEC Consult Unternehmensberatung GmbH

One approach that can be used is

message code is received by

, and see if there are

.h header file contained in the IDA SDK, we know that the TRK message code

There is a large jump table inside trkengine.dll that branches

depending on this message code. When we start from there, we eventually end up at a call to the

RBusLogicalChannel::DoControl() API that sends a request to the kernel driver. As expected,

However, if we follow the respective request handler inside trkdriver.ldd, we will find two

Both functions take an

integer argument and check if it is in a specific range, the first one representing the kernel data

ne the address ranges of the

There is also a subsequent call to Kern::ThreadRawRead() that

, so we can safely assume that this is the check we

: Branches to memory protection checks (already annotated)

We can disable this check by introducing a jump over both comparison functions. We place a

within the ROM code range, but we still can’t attach to

capabilities!

DThread::DoHasCapability() API to check

the capabilities of a process. There are only five uses of this API within the driver, three of which

, and these are successive checks for the TCB, DRM and

 Whitepaper: From 0 to 0day on Symbian

Page 22 of 40

AllFiles capabilities. The function is called

instruction with a NOP (we need a return value of 0).

The patch is applied at file offset 0x3838 (virtual address 0xB79C):

00 00 a0 e0 (mov r0,0)

Figure 9: Disassembly of the target process capabilities check

To test the patches, we now replace the existing trkdriver.ldd in the C:

smartphone19.

With the patches in place, we can now try to load a ROM executable into IDA Pro,

breakpoints in ROM, and attach to the corresponding process. As an example, we can try

system server, such as PhoneServer.exe.

breakpoints and single stepping.

19 A „special“ file browser, such as Modo

discussion of platform security? To write into the /sys/bin/ directory on any drive, a process needs the

TCB capability. But such a process can not have a GUI, because none of the GUI DLLs has the TCB

capability, and a process cannot load a DLL with lower privileges than itself! This is one of the odd effects

of platform security. The Modo file browser solves this problem by being

server and a GUI app.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

function is called only once at 0xb79c, so we simply replace this branch

instruction with a NOP (we need a return value of 0).

The patch is applied at file offset 0x3838 (virtual address 0xB79C):

r0,0)

: Disassembly of the target process capabilities check (already annotated)

TESTING THE PATCHES

To test the patches, we now replace the existing trkdriver.ldd in the C:\sys\bin

, we can now try to load a ROM executable into IDA Pro,

attach to the corresponding process. As an example, we can try

system server, such as PhoneServer.exe. As can be seen in Figure 10, i

oints and single stepping.

browser, such as Modo by Leftup, is needed for this. Why special? Remember the

discussion of platform security? To write into the /sys/bin/ directory on any drive, a process needs the

ch a process can not have a GUI, because none of the GUI DLLs has the TCB

capability, and a process cannot load a DLL with lower privileges than itself! This is one of the odd effects

of platform security. The Modo file browser solves this problem by being split into two components, a

SEC Consult Unternehmensberatung GmbH

only once at 0xb79c, so we simply replace this branch

(already annotated)

bin\ directory on the

, we can now try to load a ROM executable into IDA Pro, set some

attach to the corresponding process. As an example, we can try a

, it works, including

y special? Remember the

discussion of platform security? To write into the /sys/bin/ directory on any drive, a process needs the

ch a process can not have a GUI, because none of the GUI DLLs has the TCB

capability, and a process cannot load a DLL with lower privileges than itself! This is one of the odd effects

split into two components, a

 Whitepaper: From 0 to 0day on Symbian

Page 23 of 40

Figure 10: Single stepping within the ROM code of a system server, in IDA

INTERACTING WITH APP

So far so good, we have now opened up the system for debugging, so let’s discuss some uses for

AppTRK.

The most obvious use of our cracked debug

Pro. This is useful to help reverse engineering the sys

thrown by system processes or other applications running from ROM.

versions of IDA Pro contain a Symbian remote debugger

conveniently debug processes from th

One problem we ran into was an undocumented change of the AppTRK

seems to have been introduced

Carbide.C++ and AppTRK 3 showed that all packets

exist in prior versions. Since the header was missing from IDA’s messages, the AppTRK did not

respond at all.

Luckily, the complete source code for the

SDK, so we simply added some code to create

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

: Single stepping within the ROM code of a system server, in IDA

INTERACTING WITH APPTRK

we have now opened up the system for debugging, so let’s discuss some uses for

DEBUGGING WITH IDA PRO

most obvious use of our cracked debug agent is remote debugging of processes with IDA

Pro. This is useful to help reverse engineering the system, and also to investigate

system processes or other applications running from ROM. For this purpose, current

versions of IDA Pro contain a Symbian remote debugger plugin, which allows the user to

from the familiar GUI.

One problem we ran into was an undocumented change of the AppTRK message

seems to have been introduced in version 3. Sniffing the serial port communications between

Carbide.C++ and AppTRK 3 showed that all packets contained an additional header that did not

Since the header was missing from IDA’s messages, the AppTRK did not

Luckily, the complete source code for the Symbian debugger plugin is contained in the IDA Pro

ded some code to create the header and recompiled the plugin.

SEC Consult Unternehmensberatung GmbH

: Single stepping within the ROM code of a system server, in IDA Pro

we have now opened up the system for debugging, so let’s discuss some uses for

is remote debugging of processes with IDA

tem, and also to investigate exceptions

For this purpose, current

plugin, which allows the user to

message protocol that

Sniffing the serial port communications between

additional header that did not

Since the header was missing from IDA’s messages, the AppTRK did not

plugin is contained in the IDA Pro

header and recompiled the plugin.

 Whitepaper: From 0 to 0day on Symbian

Page 24 of 40

// --- ----------------------

// Add header

void metrotrk_t::prepend_hdr(void)

{

 size_t len = pkt.size();

 prepend_byte((uchar)len);

 prepend_byte((uchar)len >> 8);

 prepend_byte(0x90);

 prepend_byte(0x01);

}

Listing 7: Code to prepend the additional header to a MetroTRK packet

The fix has been included in current versions of IDA Pro (>5.5)

Other than that, debugging should work normal

It is however not possible to connect to

and efile.exe, since this will hang the entire operating s

Besides GUI based debugging, there are plenty of other uses for AppTRK.

built a C++ DLL that exports the metrotrk_t class, which provides an interface to AppTRK.

of the required code already existed in IDA’s MetroTRK implementation, which we were kindly

allowed to borrow by the author, so all that was required was

The DLL exports an interface that is mostly self

instantiate an object of the metrotrk_t class

handle_notification() callback function.

from AppTRK.

Amongst other things, the following can be automated by using our DLL:

• Copying files to and from the device

• Installing .SIS packages

• Launching and terminating applications

• Getting a list of running processes

• Setting and deleting breakpoints

• Stopping and resuming threads of an attache

• Reading and writing registers and memory of an attached process

These functions should suffice for

create21. As an example, a fully automated file format fuzzer is shown in the next sectio

20 http://www.hex-rays.com/idapro/55/index.htm

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

--- ----------------------

void metrotrk_t::prepend_hdr(void)

size_t len = pkt.size();

prepend_byte((uchar)len);

prepend_byte((uchar)len >> 8);

Listing 7: Code to prepend the additional header to a MetroTRK packet

current versions of IDA Pro (>5.5)20.

Other than that, debugging should work normally for most processes, including system servers

It is however not possible to connect to processes that are part of the kernel, such as

this will hang the entire operating system, and with it the debug

CONTROLLING APPTRK

Besides GUI based debugging, there are plenty of other uses for AppTRK.

the metrotrk_t class, which provides an interface to AppTRK.

of the required code already existed in IDA’s MetroTRK implementation, which we were kindly

llowed to borrow by the author, so all that was required was some restructuring

exports an interface that is mostly self-explanatory. To use it, an application has to

the metrotrk_t class, and provide a function pointer to the

callback function. This function is called when a notification is received

llowing can be automated by using our DLL:

Copying files to and from the device

Installing .SIS packages

Launching and terminating applications

Getting a list of running processes

Setting and deleting breakpoints

Stopping and resuming threads of an attached process

Reading and writing registers and memory of an attached process

These functions should suffice for most dynamic vulnerability analysis tool

. As an example, a fully automated file format fuzzer is shown in the next sectio

rays.com/idapro/55/index.htm

SEC Consult Unternehmensberatung GmbH

--- ----------------------

Listing 7: Code to prepend the additional header to a MetroTRK packet

, including system servers.

that are part of the kernel, such as ekern.exe

ystem, and with it the debug agent.

 For this reason, we

the metrotrk_t class, which provides an interface to AppTRK. Most

of the required code already existed in IDA’s MetroTRK implementation, which we were kindly

some restructuring and porting.

To use it, an application has to

provide a function pointer to the

This function is called when a notification is received

dynamic vulnerability analysis tools we might want to

. As an example, a fully automated file format fuzzer is shown in the next section.

 Whitepaper: From 0 to 0day on Symbian

Page 25 of 40

The following listing shows the public int

struct __declspec(dllexport) metrotrk_t
{
(…)
public:
 metrotrk_t(void) {fp_handle_notification = NULL; de bug_debugger=0;}
 ~metrotrk_t(void) { term(); }
 void setdebug(bool which);
 bool init(int port);
 void term(void);
 bool reset(void);
 bool ping(void);
 bool connect(void);
 bool disconnect(void);
 bool set_notification_func(handle_notification_func h);
 bool support_mask(uchar mask[32], uchar *protocol_l evel);
 bool cpu_type(trk_cpuinfo_t *cpuinfo);
 int open_file(const char *name, trk_open_mode_t mod e);
 ssize_t write_file(int h, const void *bytes, size_t size);
 ssize_t read_file(int h, void *bytes, size_t size);
 bool seek_file(int h, uint32 off, int see
 bool close_file(int h, int timestamp);
 bool install_file(const char *fname, char drive);
 bool create_process(
 const char *fname,
 const char *args,
 trk_process_info_t *pi);
 int attach_process(int pid); //
 bool resume_thread(int pid, int tid);
 bool step_thread(int pid, int tid, int32 start, int 32 end, bool stepinto);
 bool suspend_thread(int pid, int tid);
 int add_bpt(int pid, int tid, int32 addr, size_t le n, int count, bool
thumb_mode);
 bool del_bpt(int bid);
 bool change_bpt_thread(int bid, int tid);
 bool terminate_process(int pid);
 ssize_t read_memory(int pid, int tid, int32 addr, v oid *bytes, size_t size);
 ssize_t write_memory(int pid, int tid, int32 addr, const void *bytes, s
size);
 bool read_regs(int pid, int tid, int regnum, int nr egs, uint32 *values);
 bool write_regs(int pid, int tid, int regnum, int n regs, const uint32 *values);
 bool get_process_list(proclist_t &proclist);
 bool get_thread_list(int pid, thread_
 bool poll_for_event(int timeout);
 int32 current_pid(void) const { return tpi.pid; }
 bool recv_packet(uchar *seq, int timeout);
 bool send_reply_ok(uchar seq);
 uchar extract_byte(int &i);
 uint16 extract_int16(int &i);
 uint3 2 extract_int32(int &i);
 string extract_pstr(int &i);
 string extract_asciiz(int &i);
};

Listing 8: Public methods exported by the metrotrk_t class

21 Unfortunately, although the message code exists, resetting the device is not supported by AppTRK. This

is bad because some tasks, such as on

case an occasional reboot would be beneficial. Maybe this feature can be introduced with further patches.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

The following listing shows the public interface of the metrotrk_t class.

struct __declspec(dllexport) metrotrk_t

metrotrk_t(void) {fp_handle_notification = NULL; de bug_debugger=0;}
~metrotrk_t(void) { term(); }

which);

bool set_notification_func(handle_notification_func h);
bool support_mask(uchar mask[32], uchar *protocol_l evel);
bool cpu_type(trk_cpuinfo_t *cpuinfo);
int open_file(const char *name, trk_open_mode_t mod e);
ssize_t write_file(int h, const void *bytes, size_t size);
ssize_t read_file(int h, void *bytes, size_t size);
bool seek_file(int h, uint32 off, int see k_mode); // SEEK_...
bool close_file(int h, int timestamp);
bool install_file(const char *fname, char drive);

trk_process_info_t *pi);
int attach_process(int pid); // returns tid
bool resume_thread(int pid, int tid);
bool step_thread(int pid, int tid, int32 start, int 32 end, bool stepinto);
bool suspend_thread(int pid, int tid);
int add_bpt(int pid, int tid, int32 addr, size_t le n, int count, bool

bool change_bpt_thread(int bid, int tid);
bool terminate_process(int pid);
ssize_t read_memory(int pid, int tid, int32 addr, v oid *bytes, size_t size);
ssize_t write_memory(int pid, int tid, int32 addr, const void *bytes, s

bool read_regs(int pid, int tid, int regnum, int nr egs, uint32 *values);
bool write_regs(int pid, int tid, int regnum, int n regs, const uint32 *values);
bool get_process_list(proclist_t &proclist);
bool get_thread_list(int pid, thread_ list_t *threadlist);
bool poll_for_event(int timeout);
int32 current_pid(void) const { return tpi.pid; }
bool recv_packet(uchar *seq, int timeout);
bool send_reply_ok(uchar seq);
uchar extract_byte(int &i);
uint16 extract_int16(int &i);

2 extract_int32(int &i);
string extract_pstr(int &i);
string extract_asciiz(int &i);

Listing 8: Public methods exported by the metrotrk_t class (C++ / WIN32)

ely, although the message code exists, resetting the device is not supported by AppTRK. This

is bad because some tasks, such as on-device fuzzing, tend to mess up the operating system, and in this

case an occasional reboot would be beneficial. Maybe this feature can be introduced with further patches.

SEC Consult Unternehmensberatung GmbH

metrotrk_t(void) {fp_handle_notification = NULL; de bug_debugger=0;}

bool step_thread(int pid, int tid, int32 start, int 32 end, bool stepinto);

int add_bpt(int pid, int tid, int32 addr, size_t le n, int count, bool

ssize_t read_memory(int pid, int tid, int32 addr, v oid *bytes, size_t size);
ssize_t write_memory(int pid, int tid, int32 addr, const void *bytes, s ize_t

bool read_regs(int pid, int tid, int regnum, int nr egs, uint32 *values);
bool write_regs(int pid, int tid, int regnum, int n regs, const uint32 *values);

(C++ / WIN32)

ely, although the message code exists, resetting the device is not supported by AppTRK. This

, tend to mess up the operating system, and in this

case an occasional reboot would be beneficial. Maybe this feature can be introduced with further patches.

 Whitepaper: From 0 to 0day on Symbian

Page 26 of 40

(AB-)USING APPTRK

In the previous chapters, we have used static analysis to search our ROM dump for suspicious

uses of unsafe string functions, and determined that the multimedia codecs on our N96 don’t

look very trustworthy. We have also placed a

DLL that provides us with an interface.

stuff to find some actual bugs.

does all the work for us.

As the target process, we choose

potentially vulnerable codecs to parse and playback multimedia files. It is important to note that

MediaPlayer.exe is not the only application using them: The MMS viewer has the capability to

play video files, and it loads the same DLLs for that purpose

easier to automate.

AUTOMATING THE FUZZI

We will now use the class we created in the

Since we want to create malicious multimedia files, we need some kind of file format fuzzer.

The goals for our fuzzer are the following: It should create the input files, upload them to the

phone from the host PC, and have them loaded by MediaPlayer.exe. It should then d

MediaPlayer.exe has crashed. If it has, it should determine the current register values and log

the incident, and after that, continue the fuzzing process. It should also be able to recover

automatically if the TRK crashes or the phone reboots

when it is put under stress.

Using the class we created in the previous chapter, we can easily start the MediaPlay

executable remotely. There is only one problem: On Symbian, while we can pass command line

arguments to MediaPlayer.exe, it

produced by our fuzzer?

One solution is to place a small launcher application on the device that uses the

CDocumentHandler::OpenFileL()

launches the appropriate handler appli

fuzzer can automatically target

Our launcher will be executed

that contains the filename of our input file.

application.

LOCAL_C void MainL() {

 CCommandLineArguments* args = CCommandLineArguments ::NewLC();
 TInt nArgs = args- >Count();

 if (nArgs != 2) {
 console- >Printf(_L("missing filename parameter! Exiting
 } else {
 TPtrC filename(args

 console- >Printf(_L("trying to handle file: %S

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

)USING APPTRK: AUTOMATED MULTIMEDIA CODEC

FUZZING

we have used static analysis to search our ROM dump for suspicious

uses of unsafe string functions, and determined that the multimedia codecs on our N96 don’t

We have also placed a modified debug agent on the device, and written a

L that provides us with an interface. Now, we will put all the pieces together and use all this

stuff to find some actual bugs. We should now easily be able to write a file format fuzzer that

As the target process, we choose MediaPlayer.exe (RealPlayer), since this application uses the

potentially vulnerable codecs to parse and playback multimedia files. It is important to note that

MediaPlayer.exe is not the only application using them: The MMS viewer has the capability to

ay video files, and it loads the same DLLs for that purpose. Fuzzing MediaPlayer.exe is however

AUTOMATING THE FUZZING PROCESS

We will now use the class we created in the previous chapter to automate the fuzzing process.

o create malicious multimedia files, we need some kind of file format fuzzer.

the following: It should create the input files, upload them to the

, and have them loaded by MediaPlayer.exe. It should then d

MediaPlayer.exe has crashed. If it has, it should determine the current register values and log

the incident, and after that, continue the fuzzing process. It should also be able to recover

automatically if the TRK crashes or the phone reboots, something that happens often in Symb

Using the class we created in the previous chapter, we can easily start the MediaPlay

executable remotely. There is only one problem: On Symbian, while we can pass command line

guments to MediaPlayer.exe, it just ignores them, so how do we tell it to open

solution is to place a small launcher application on the device that uses the

er::OpenFileL() API to launch our input files. This API looks at the filetype and

riate handler application. This approach also has the advantage that

target the default registered applications for any given

Our launcher will be executed via the AppTRK channel, and takes one command line argument

that contains the filename of our input file. Listing 9 shows the main function

CCommandLineArguments* args = CCommandLineArguments ::NewLC();
>Count();

>Printf(_L("missing filename parameter! Exiting

TPtrC filename(args ->Arg(1));

>Printf(_L("trying to handle file: %S \ n"), &filename);

SEC Consult Unternehmensberatung GmbH

IA CODEC

we have used static analysis to search our ROM dump for suspicious

uses of unsafe string functions, and determined that the multimedia codecs on our N96 don’t

agent on the device, and written a

ut all the pieces together and use all this

We should now easily be able to write a file format fuzzer that

MediaPlayer.exe (RealPlayer), since this application uses the

potentially vulnerable codecs to parse and playback multimedia files. It is important to note that

MediaPlayer.exe is not the only application using them: The MMS viewer has the capability to

Fuzzing MediaPlayer.exe is however

chapter to automate the fuzzing process.

o create malicious multimedia files, we need some kind of file format fuzzer.

the following: It should create the input files, upload them to the

, and have them loaded by MediaPlayer.exe. It should then determine if

MediaPlayer.exe has crashed. If it has, it should determine the current register values and log

the incident, and after that, continue the fuzzing process. It should also be able to recover

, something that happens often in Symbian

Using the class we created in the previous chapter, we can easily start the MediaPlayer.exe

executable remotely. There is only one problem: On Symbian, while we can pass command line

it to open the input files

solution is to place a small launcher application on the device that uses the

This API looks at the filetype and

This approach also has the advantage that our

given filetype.

command line argument

main function of the launcher

CCommandLineArguments* args = CCommandLineArguments ::NewLC();

>Printf(_L("missing filename parameter! Exiting \n"));

n"), &filename);

 Whitepaper: From 0 to 0day on Symbian

Page 27 of 40

 CDocumentHandler* handler =
 CleanupStack::PushL(handler);

 TDataType emptyDataType = TDataType();

 handler- >OpenFileL(filename, emptyDataType);
 }

 CleanupStack::PopAndDestroy(); // handler
 CleanupStack::PopAndDestroy(); // args
}

Listing 9:

The second problem we have to deal with is the occasional unexpected

device. To solve this problem we create another small application that we have automatically

started at boot time. All this application does is wait for two minutes, and then attempt to start

the AppTRK GUI, in an endless loop, using the RApaLsSession::StartApp() API (a new process

will be started only if no instance of trkguiapp.exe is running). We also have to configure th

phone to connect in PC Suite mode automatically.

LOCAL_C void MainL() {

 RProcess process;
 _LIT(KTrkPath, "");

 TThreadId app_threadid;
 CApaCommandLine* cmdLine;
 cmdLine=CApaCommandLine::NewLC();
 cmdLine-> SetExecutableNameL(_L("C:
 cmdLine- >SetCommandL(EApaCommandRun);
 RApaLsSession ls;
 User::LeaveIfError(ls.Connect());

 while(1) {
 User::After(120000000);
 User::LeaveIfError(
 }

 Cle anupStack::PopAndDestroy(); // cmdLine
}

Listing 10

Once we have installed our small helper apps on the phone, we can start

handles the upload and launching of files, and process debugging.

does the following:

1. Connect to AppTRK via USB

2. Copy input file to device

3. Start the launcher app, passing it the name of the input file

4. Wait until launcher app has run successfully

5. Terminate launcher app

6. Search for our target app

7. Attach to the target process

8. Wait a short time for event notificiations

9. In case of an exception, write logfile with register values

10. Terminate the target process

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

CDocumentHandler* handler = CDocumentHandler::NewL(NULL);
CleanupStack::PushL(handler);

TDataType emptyDataType = TDataType();

>OpenFileL(filename, emptyDataType);

CleanupStack::PopAndDestroy(); // handler
CleanupStack::PopAndDestroy(); // args

Listing 9: Target launcher application (Symbian C++)

The second problem we have to deal with is the occasional unexpected crash and

To solve this problem we create another small application that we have automatically

is application does is wait for two minutes, and then attempt to start

the AppTRK GUI, in an endless loop, using the RApaLsSession::StartApp() API (a new process

will be started only if no instance of trkguiapp.exe is running). We also have to configure th

phone to connect in PC Suite mode automatically. The code is shown in Listing 10.

TThreadId app_threadid;
CApaCommandLine* cmdLine;
cmdLine=CApaCommandLine::NewLC();

SetExecutableNameL(_L("C: \\sys\\bin\\ trkguiapp.exe"));
>SetCommandL(EApaCommandRun);

User::LeaveIfError(ls.Connect());

User::After(120000000);
User::LeaveIfError(ls.StartApp(*cmdLine,app_threadid))

anupStack::PopAndDestroy(); // cmdLine

10: Target watcher application (Symbian C++)

Once we have installed our small helper apps on the phone, we can start writing the code that

handles the upload and launching of files, and process debugging. We write a C++ program that

TRK via USB

Copy input file to device

Start the launcher app, passing it the name of the input file

Wait until launcher app has run successfully

Terminate launcher app

Search for our target application in the process list

Attach to the target process

Wait a short time for event notificiations

exception, write logfile with register values

target process

SEC Consult Unternehmensberatung GmbH

CDocumentHandler::NewL(NULL);

crash and restart of the

To solve this problem we create another small application that we have automatically

is application does is wait for two minutes, and then attempt to start

the AppTRK GUI, in an endless loop, using the RApaLsSession::StartApp() API (a new process

will be started only if no instance of trkguiapp.exe is running). We also have to configure the

The code is shown in Listing 10.

trkguiapp.exe"));

) ;

writing the code that

write a C++ program that

 Whitepaper: From 0 to 0day on Symbian

Page 28 of 40

The following code shows how we implemented

int handle_file_remote(char *sourcefile, char *targ etfile, char *appname) {
 proclist_t proclist; // list of process es
 thread_list_t threads; // list of threads
 trk_process_info_t pi;

 trk- >set_notification_func(&handle_notification);

 if (debuglevel > 1) {
 trk- >setdebug(true);
 }

if (!(copy_file(sourcefile, targetfile, trk))) {
 printf("Failed to copy file to target device. Exiti ng
 return 0;

}

if (!(trk- >create_process("C:
 &pi)) || !(trk- >get_thread_list(pi.pid, &threads)))

{
 printf("Failed to start launcher application. Exiti ng
 return 0;

}

trk- >resume_thread(pi.pid, threads.front().tid);

for(int i = 0; i < 10; i ++) {
 trk- >poll_for_event(1000);
}

trk- >terminate_process(pi.pid);

if (!trk- >get_process_list(proclist))
{

 printf("Failed to get list of running processes. Ex iting
 return 0;

}

 int real_pid = 0;

 for (int i=proclist.size()
 if (strstr(proclist[i].name.c_str(), appname)) {
 if (debuglevel) {
 printf("Handler application found!
proclist[i].name.c_str());
 printf("%s
 }
 real_pid = proclist[i].
 }
 }

 if (!real_pid) {
 printf("Failed to find handler application
 return 0;
 }

 if (!trk- >attach_process(real_pid)) {
 printf("Failed to attach to target process
 return 0;
 }

 for(int i = 0; i < 100; i ++) {

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

The following code shows how we implemented this by using our MetroTRK DLL.

int handle_file_remote(char *sourcefile, char *targ etfile, char *appname) {
proclist_t proclist; // list of process es
thread_list_t threads; // list of threads
trk_process_info_t pi; // info about debugged process

>set_notification_func(&handle_notification);

if (debuglevel > 1) {
>setdebug(true);

if (!(copy_file(sourcefile, targetfile, trk))) {
printf("Failed to copy file to target device. Exiti ng\

>create_process("C: \\sys\\bin\\ launcher.exe", targetfile,
>get_thread_list(pi.pid, &threads)))

printf("Failed to start launcher application. Exiti ng\

>resume_thread(pi.pid, threads.front().tid);

for(int i = 0; i < 10; i ++) {
>poll_for_event(1000);

>terminate_process(pi.pid);

>get_process_list(proclist))

printf("Failed to get list of running processes. Ex iting

i=proclist.size() -1; i >= 0; i--) {
if (strstr(proclist[i].name.c_str(), appname)) {

if (debuglevel) {
printf("Handler application found! \n",

printf("%s \ n", proclist[i].name.c_str());

real_pid = proclist[i]. pid;

printf("Failed to find handler application \n");

>attach_process(real_pid)) {
printf("Failed to attach to target process \n");

for(int i = 0; i < 100; i ++) {

SEC Consult Unternehmensberatung GmbH

this by using our MetroTRK DLL.

int handle_file_remote(char *sourcefile, char *targ etfile, char *appname) {

// info about debugged process

\ n");

launcher.exe", targetfile,

\ n");

printf("Failed to get list of running processes. Ex iting \n");

n", proclist[i].name.c_str());

 Whitepaper: From 0 to 0day on Symbian

Page 29 of 40

 trk-> poll_for_event(100);
 }

 trk- >terminate_process(real_pid);
 printf("Process terminated.

 return 0;
}

Listing 11: Remote file

Besides the code that copies and runs the file on the device, we need to register a notification

handler. If we receive a TrkNotifyStopped

case there is no other event that could have triggered this notification).

case TrkNotifyStopped:
{
 uint32 ea = extract_int32(i, pkt);
 uint32 pid = extract_int32(i, pkt);
 uint32 tid = extract_int32(i, pkt);

 printf("Exception: pid = %d, tid = %d, pc=0x%08x
 printf("Description: %s
 printf(" ---

 uint32 rvals[17];

 trk- >read_regs(pid, tid, 0, 17, rvals);

 for (int i = 0; i < 17; i++) {
 printf("%cR%d: %08X", i%4 == 0 ? '
 }

 printf("\n");
 trk->terminat e_process(pid);
}

Listing 12: Callback handler for

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

poll_for_event(100);

>terminate_process(real_pid);
printf("Process terminated. \n");

11: Remote file launcher and process debugger (C++ / WIN32)

code that copies and runs the file on the device, we need to register a notification

a TrkNotifyStopped notification, we have triggered an exception (in our

case there is no other event that could have triggered this notification).

uint32 ea = extract_int32(i, pkt);
uint32 pid = extract_int32(i, pkt);
uint32 tid = extract_int32(i, pkt);

printf("Exception: pid = %d, tid = %d, pc=0x%08x \ n", pid, tid, ea);
printf("Description: %s \n", desc.c_str());

--- \ n", pid, tid, ea);

>read_regs(pid, tid, 0, 17, rvals);

for (int i = 0; i < 17; i++) {
printf("%cR%d: %08X", i%4 == 0 ? ' \ n' : ' ', i, rvals[i]);

e_process(pid);

12: Callback handler for the TrkNotifyStopped message (C++ / WIN32)

SEC Consult Unternehmensberatung GmbH

debugger (C++ / WIN32)

code that copies and runs the file on the device, we need to register a notification

notification, we have triggered an exception (in our

n", pid, tid, ea);

n", pid, tid, ea);

n' : ' ', i, rvals[i]);

(C++ / WIN32)

 Whitepaper: From 0 to 0day on Symbian

Page 30 of 40

WRITING A

We will use a mutation based

collected a set of small video files that are encoded with different video and audio codecs

supported by Nokia smartphones.

files22. A similar technique of media format fuzzing is described in

For our fuzzing attempt we used a set of five input files which are listed in table

Filename

01_3gp_h263_AMR.3gp

02_3gp_mp4_mp2.3gp

03_mp4_h264_mp2.m4v

04_realvideo.rmvb

05_wmv_wm9.wmv

The following mutations were applied to each file:

• 32 random byte mutations (2048 mutations per file

• 64 random byte mutations (

• 64 random bit flips (2048 mutations per file

The fuzzing target was RealPlayer S60 HX cvs_cays_221 20080825 running on our Nokia

22 Actually, I wrote a second fuzze

targeted mutations of integer fields and character blocks. But as it turned out, random byte and bit fuzzing

found bugs much faster, so in the end I discarded the ‘advanced’ version.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

WRITING A MEDIA CODEC FUZZER

We will use a mutation based fuzzing approach. As templates for our fuzzed files, we have

collected a set of small video files that are encoded with different video and audio codecs

supported by Nokia smartphones. Our fuzzer mutates random sets of bytes, or bits, within these

ue of media format fuzzing is described in (5).

For our fuzzing attempt we used a set of five input files which are listed in table

File Size Container Video Codec

159 KB MPEG4 (3GPP

Media Release

4)

H.263

61.1 KB MPEG4 (3GPP

Media Release

4)

MPEG-4 Visual

157 KB MPEG-4 Advanced Video

Codec

Baseline@L1.3

128 KB RealMedia RealVideo 4 RV40

Based on AVC

(H.264), Real

Player 9

22.2 KB Windows

Media

VC-1

Windows Media

Video 9

Table 1: Fuzzer input files

following mutations were applied to each file:

32 random byte mutations (2048 mutations per file min.)

64 random byte mutations (2048 mutations per file min.)

2048 mutations per file min.)

The fuzzing target was RealPlayer S60 HX cvs_cays_221 20080825 running on our Nokia

fuzzer that used hachoir to dissect the media files, and was able to

targeted mutations of integer fields and character blocks. But as it turned out, random byte and bit fuzzing

found bugs much faster, so in the end I discarded the ‘advanced’ version.

SEC Consult Unternehmensberatung GmbH

As templates for our fuzzed files, we have

collected a set of small video files that are encoded with different video and audio codecs

Our fuzzer mutates random sets of bytes, or bits, within these

For our fuzzing attempt we used a set of five input files which are listed in table 1.

Audio Codec

Adaptive

Multi-Rate

 Advanced

Audio Codec

Version 4

Advanced Video

Advanced

Audio Codec

Version 4

RV40 Cooker

Based on

G.722.1, Real

Player 6

Windows Media

Windows

Media Audio

9.2

The fuzzing target was RealPlayer S60 HX cvs_cays_221 20080825 running on our Nokia N96.

r that used hachoir to dissect the media files, and was able to create

targeted mutations of integer fields and character blocks. But as it turned out, random byte and bit fuzzing

 Whitepaper: From 0 to 0day on Symbian

Page 31 of 40

Figure 11: The fuzzer running (longcat

As a result of our fuzzing attempt, we found that MediaPlayer.exe would crash in various ways

for all input files, except for the WMV /

exceptions were user panics,

attempted reads, writes or executes of invalid memory addresses.

The following table contains the

generating the list:

1. Data abort exceptions with a different PC

precise method, since the same root cause may lead to data abort

addresses. For this reason, the list of data abort exceptions

2. When a user panic exception is thrown

euser.dll. In this case, the values in registers R1 and R3 were inspected to eliminate

duplicates. However, for the same reason as above, not all duplicate bugs may have been

eliminated.

Because the bugs are unfixed a

code addresses of all data abort exceptions

include information about the byte positions or fields mutated within the files.

23 The results have been sent to Nokia and are under review at the

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

: The fuzzer running (longcat was inserted to hide PC addresses

FINDINGS ANALYSIS

As a result of our fuzzing attempt, we found that MediaPlayer.exe would crash in various ways

all input files, except for the WMV / Windows Media encoded video file.

exceptions were user panics, some of them were data abort exceptions

reads, writes or executes of invalid memory addresses.

FUZZING RESULTS

the list of the results. The following assumptions were

exceptions with a different PC were treated as separate bugs. This is not a

precise method, since the same root cause may lead to data abort

reason, the list of data abort exceptions may contain duplicates.

When a user panic exception is thrown, the program counter always points into

euser.dll. In this case, the values in registers R1 and R3 were inspected to eliminate

However, for the same reason as above, not all duplicate bugs may have been

Because the bugs are unfixed at the time of publication of this paper23, we have removed the

code addresses of all data abort exceptions from the result table. Additionally, we will not

include information about the byte positions or fields mutated within the files.

The results have been sent to Nokia and are under review at the time of this writing.

SEC Consult Unternehmensberatung GmbH

addresses)

As a result of our fuzzing attempt, we found that MediaPlayer.exe would crash in various ways

edia encoded video file. While many of the

some of them were data abort exceptions, resulting from

The following assumptions were made when

were treated as separate bugs. This is not a

precise method, since the same root cause may lead to data aborts at different code

may contain duplicates.

the program counter always points into

euser.dll. In this case, the values in registers R1 and R3 were inspected to eliminate

However, for the same reason as above, not all duplicate bugs may have been

, we have removed the

Additionally, we will not

include information about the byte positions or fields mutated within the files.

time of this writing.

 Whitepaper: From 0 to 0day on Symbian

Page 32 of 40

ID Input file

01e4c0b3 02 (MP4/MP2)

06b6d67a 02 (MP4/MP2)

072fd6ab 01 (h.263/AMR)

08db253b 04 (RealVideo)

09a10702 02 (MP4/MP2)

19dc61c1 04 (RealVideo)

270334f8 03 (h.264/mp2)

287d7bec 02 (MP4/MP2)

2b1be124 03 (h.264/mp2)

2e973d62 04 (RealVideo)

2f3eca69 04 (RealVideo)

365b6ddf 02 (MP4/MP2)

3eb2d38f 04 (RealVideo)

47267718 03 (h.264/mp2)

684ca479 03 (h.264/mp2)

68551fd5 04 (RealVideo)

6b3b3b34 03 (M4V)

7cd6c505 02 (MP4/MP2)

7d6ac7f4 03 (h.264/mp2)

88c573bc 04 (RealVideo)

92c4be96 02 (MP4/MP2)

937b5e94 03 (h.264/mp2)

9e490a1f 04 (RealVideo)

a5c2ff10 04 (RealVideo)

af2acdb7 02 (MP4/MP2)

b44110c3 03 (M4V)

cf2674ef 03 (h.264/mp2)

d1c130c4 02 (MP4/MP2)

d3c390bc 02 (MP4/MP2)

d5c18df2 03 (h.264/mp2)

d82f7cec 02 (MP4/MP2)

dc9923ac 03 (M4V)

dee1235d 03 (h.264/mp2)

df915a5d 03(MP4)

eb2aa88a 04 (RealVideo)

ef91d53b 02 (MP4/MP2)

f473afd9 03 (h.264/mp2)

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

Fuzzing mode Exception

Type

PC

random byte User Panic 23 0xf8556e5f

random byte User Panic 23 0xf8556e5f

bit flip Data abort [REMOVED]

random byte User Panic 45 0xf8556e5f

bit flip User Panic 23 0xf8556e5f

random byte Data abort [REMOVED]

random byte Data abort [REMOVED]

random byte User Panic 23 0xf8556e5f

 random byte Data abort [REMOVED]

random byte Data abort [REMOVED]

bit flip Data abort [REMOVED]

random byte User Panic 23 0xf8556e5f

random byte Data abort [REMOVED]

[REMOVED]

bit flip User Panic 23 0xf8556e5f

random byte User Panic 23 0xf8556e5f

random byte Data abort [REMOVED]

random byte User Panic 23 0xf8556e5f

bit flip User Panic 23 0xf8556e5f

 random byte Data abort [REMOVED]

random byte Data abort [REMOVED]

random byte User Panic 23 0xf8556e5f

bit flip Data abort [REMOVED]

random byte Data abort [REMOVED]

[REMOVED]

random byte Data abort [REMOVED]

bit flip User Panic 23 0xf8556e5f

random byte User Panic 23 0xf8556e5f

bit flip User Panic 23 0xf8556e5f

bit flip User Panic 23 0xf8556e5f

random byte User Panic 23 0xf8556e5f

 bit flip Data abort [REMOVED]

random byte User Panic 23 0xf8556e5f

random byte User Panic 23 0xf8556e5f

 bit flip Data abort [REMOVED]

random byte User Panic 23 0xf8556e5f

random byte Data abort [REMOVED]

[REMOVED]

random byte User Panic 23 0xf8556e5f

random byte User Panic 23 0xf8556e5f

Table 2: Fuzzing results

SEC Consult Unternehmensberatung GmbH

Module

 euser.dll

 euser.dll

[REMOVED] rarender.dll

 euser.dll

 euser.dll

ED] euser.dll

[REMOVED] STH264DecHw

Device.dll

 euser.dll

[REMOVED] STH264DecHw

Device.dll

[REMOVED] clntcore.dll

[REMOVED] clntcore.dll

 euser.dll

[REMOVED]

[REMOVED]

euser.dll

HxMmfCtrl.dll

 euser.dll

 euser.dll

[REMOVED] HxMmfCtrl.dll

 euser.dll

 euser.dll

[REMOVED] mdfh264paylo

adformat.dll

[REMOVED] mdfvidrender.

dll

 euser.dll

[REMOVED] euser.dll

[REMOVED]

[REMOVED]

mdfvidrender.

dll

MMFDevSound.

dll

[REMOVED] clntcore.dll

 euser.dll

 euser.dll

 euser.dll

 euser.dll

 euser.dll

[REMOVED] mdfh264paylo

adformat.dll

 euser.dll

 euser.dll

[REMOVED] euser.dll

 euser.dll

[REMOVED]

[REMOVED]

HxMmfCtrl.dll

ArmRV89Codec

.dll

 euser.dll

 euser.dll

 Whitepaper: From 0 to 0day on Symbian

Page 33 of 40

The results listed in this table apply to the

We also played the resulting files on

some of the files hanging or crashing the RealPlayer process or rebooting the phones, which

seems to indicate that at least some of the vulnerabilities may affect

models than the N96. This is to be expected, since the multimedia software

Nokia phones is similar to that of the N96. However this has not been tested systematic

DETERMINING EXPLOITA

The last question we want to answer is wh

the program counter, and therefore execution of arbitrary code, within the

We can forget about the user panic exceptions right away

exploitable24. For example, a user panic 23 is thrown when the process attempts to write data

into a string descriptor of insufficient size (the Symbian equivalent of a buffer overfl

is detected by the descriptor implementation before it happens, an

occurs.

What remains are the 14 detected

exploitable, the first thing we will be looking at is the

have a look at exception no. #

address [REMOVED]. Our symbol

Disassembling euser.dll at this address shows the following code:

Listing 13: Code inside euser.dll triggering the data abort

Initially, register R3 seems to point to some structure in

pointer at offset +16. This function

later. The exception happens when the

An inspection of the fuzzer logfile tells us the contents

Listing

R3 is pointing to an invalid memory location, which is why the data abort exception occurs.

24 It may actually happen that a user panic is caused by some kind of

corruption. But this is rather unlikely, and we will ignore the possibility in our further analysis.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

he results listed in this table apply to the Nokia N96 smartphone with firmware version

the resulting files on a Nokia E61i and a Nokia E71 with varying results, with

some of the files hanging or crashing the RealPlayer process or rebooting the phones, which

hat at least some of the vulnerabilities may affect other

models than the N96. This is to be expected, since the multimedia software

Nokia phones is similar to that of the N96. However this has not been tested systematic

DETERMINING EXPLOITABILITY OF SPECIFIC BUGS

question we want to answer is whether any of these bugs may allow

the program counter, and therefore execution of arbitrary code, within the exploited process.

ut the user panic exceptions right away, because these are most likely not

. For example, a user panic 23 is thrown when the process attempts to write data

into a string descriptor of insufficient size (the Symbian equivalent of a buffer overfl

is detected by the descriptor implementation before it happens, and no memory corruption

detected data abort exceptions. To find out if a particular bug is

the first thing we will be looking at is the code that triggers the exception

#19dc61c1 found by our fuzzer. It is an abort

symbol database tells us that this address belongs to eu

at this address shows the following code:

13: Code inside euser.dll triggering the data abort exception (ARM ASM)

R3 seems to point to some structure in memory that contains a function

function pointer is loaded into R3, and is called

The exception happens when the function pointer is loaded into R3 at [REMOVED

An inspection of the fuzzer logfile tells us the contents of the registers at this point (listing 14).

Listing 14: Register values at the time of the crash

is pointing to an invalid memory location, which is why the data abort exception occurs.

It may actually happen that a user panic is caused by some kind of precedent, undetected memory

corruption. But this is rather unlikely, and we will ignore the possibility in our further analysis.

SEC Consult Unternehmensberatung GmbH

with firmware version 11.018.

a Nokia E61i and a Nokia E71 with varying results, with

some of the files hanging or crashing the RealPlayer process or rebooting the phones, which

other Nokia smartphone

models than the N96. This is to be expected, since the multimedia software installed on other

Nokia phones is similar to that of the N96. However this has not been tested systematically.

OF SPECIFIC BUGS

ether any of these bugs may allow for manipulation of

exploited process.

, because these are most likely not

. For example, a user panic 23 is thrown when the process attempts to write data

into a string descriptor of insufficient size (the Symbian equivalent of a buffer overflow). But this

no memory corruption

To find out if a particular bug is

that triggers the exception. Let us

abort that happens at

tells us that this address belongs to euser.dll.

(ARM ASM)

memory that contains a function

is called a few instructions

REMOVED].

of the registers at this point (listing 14).

is pointing to an invalid memory location, which is why the data abort exception occurs.

precedent, undetected memory

corruption. But this is rather unlikely, and we will ignore the possibility in our further analysis.

 Whitepaper: From 0 to 0day on Symbian

Page 34 of 40

At this point, we could start a detailed

static analysis, which would be the most thorough way

however the most costly and

quicker way to do this is to search for a way to directly or indirectly manipulate the

need to change. The approach we used to do this

1. Use the fuzzing engine to isolate, by

field(s) within the

2. Use the output of step 1

changing the value of the target register

3. In case a fuzzing attempt successfully changes the register, i

responsible position(s)

In this specific case, it turned out to be possible to

(R3) by further manipulating the input file.

pointed to ASCII ‘AAAA’ (41414141):

Listing 15: Register values with R3 manipulated to value 0x41414141

This should be sufficient to denot

register to a value placed on the stack or heap (e.g. inside the input file itself) and have

loaded into the program counter register.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

At this point, we could start a detailed manual analysis of the root cause of the crash

, which would be the most thorough way to determine its exploitability.

and strenuous approach which I only like to use

quicker way to do this is to search for a way to directly or indirectly manipulate the

The approach we used to do this is the following:

Use the fuzzing engine to isolate, by means of binary search

) within the input file that are responsible for the error condition

of step 1 as a template for further random fuzzing with the goal of

changing the value of the target register

In case a fuzzing attempt successfully changes the register, i

responsible position(s) inside the input file

it turned out to be possible to change the value inside the target register

by further manipulating the input file. The following shows the crash dump with R3 being

d to ASCII ‘AAAA’ (41414141):

15: Register values with R3 manipulated to value 0x41414141

is should be sufficient to denote this condition as exploitable, since an attacker could point the

register to a value placed on the stack or heap (e.g. inside the input file itself) and have

rogram counter register.

SEC Consult Unternehmensberatung GmbH

e root cause of the crash by means of

its exploitability. This is

use as a last resort. A

quicker way to do this is to search for a way to directly or indirectly manipulate the register we

means of binary search, the position(s) or

onsible for the error condition

random fuzzing with the goal of

In case a fuzzing attempt successfully changes the register, isolate the

value inside the target register

The following shows the crash dump with R3 being

15: Register values with R3 manipulated to value 0x41414141

e this condition as exploitable, since an attacker could point the

register to a value placed on the stack or heap (e.g. inside the input file itself) and have this value

 Whitepaper: From 0 to 0day on Symbian

Page 35 of 40

In this paper, we have shown how to identify low level vulnerabilities in programs running from

the ROM of Symbian devices. F

smartphone platforms, but once the proper toolchain

fuzzing can be applied and vulnerabilities

Mobile phone manufacturers should be aware that

in this paper could be used in targeted attacks to remote

means of propagation for different kind of worms. In a worst case scenario, such a worm may

replicate over the mobile network, which would, besides probably bringing down the network,

cause massive financial damage.

Bugs like those discussed in this paper can be prevented by

assurance. Phone manufacturers should make sure that

applications shipped on their devices

and should apply thorough security

firmware images.

One essential security feature

from the ones running S60, is

manual firmware upgrade, users are not encouraged to do so, and

for the average end user to bother.

firmware over its entire lifetime.

phones out there will remain unpatched

Symbian OS smartphones should implement an

users to quickly apply security patche

To summarize, an improved software quality

updates to rapidly fix known flaws

mitigate security risks that may arise for customers

vulnerability research on Symbian OS

published regularly. Properly implemented

currently used platform security

placing restrictions on software and

From an end user perspective,

required on desktop PCs. The following list contains some of the most important guidelines:

• Perform regular software

• Do not install unnecessary

• Use Anti Virus software

• Take care when browsing the web

• Do not open SMS, MMS or emails from unknown sources

25 This would not be sufficient if there were an SMS or MMS worm sending itself to contacts taken from an

infected phone’s addressbook. In this case the only rule that would help would be not to open anything at

all.

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

CONCLUSION

In this paper, we have shown how to identify low level vulnerabilities in programs running from

Finding and debugging bugs may be more difficult than

smartphone platforms, but once the proper toolchain is in place, standard methods like input

vulnerabilities can be identified with relative ease.

Mobile phone manufacturers should be aware that remote vulnerabilities of the kind discussed

in this paper could be used in targeted attacks to remotely compromise a smartphone, or as a

for different kind of worms. In a worst case scenario, such a worm may

replicate over the mobile network, which would, besides probably bringing down the network,

cause massive financial damage.

RECOMMENDATIONS

this paper can be prevented by introducing rigid

hone manufacturers should make sure that the mobile operating systems and

shipped on their devices are developed with secure development practices

security testing to all applications before integrating them into

 that is missing from Symbian OS based smartphones,

is automatic firmware updates. While it is possible to perform a

users are not encouraged to do so, and the process

or the average end user to bother. As a result, a Symbian OS smartphone often

firmware over its entire lifetime. This means that even if security bugs are

out there will remain unpatched! To improve on this situation, manufacturers of

OS smartphones should implement an automatic update mechanism

apply security patches as they become available.

To summarize, an improved software quality management process, combined with

updates to rapidly fix known flaws and a push of end user awareness, would do a lot

mitigate security risks that may arise for customers. These risks may increase

on Symbian OS finally take off, and should vulnerabilities be

roperly implemented, these measures would be more effective tha

platform security approach, which in fact creates ‘security by obscurity’ by

software and end user devices.

, security best practices should be applied that are

. The following list contains some of the most important guidelines:

regular software updates

unnecessary applications and services

Use Anti Virus software

Take care when browsing the web

MMS or emails from unknown sources25

This would not be sufficient if there were an SMS or MMS worm sending itself to contacts taken from an

infected phone’s addressbook. In this case the only rule that would help would be not to open anything at

SEC Consult Unternehmensberatung GmbH

In this paper, we have shown how to identify low level vulnerabilities in programs running from

more difficult than on other

dard methods like input

with relative ease.

remote vulnerabilities of the kind discussed

ly compromise a smartphone, or as a

for different kind of worms. In a worst case scenario, such a worm may

replicate over the mobile network, which would, besides probably bringing down the network,

rigid software quality

mobile operating systems and

secure development practices in mind,

to all applications before integrating them into the

m Symbian OS based smartphones, or at least

. While it is possible to perform a

the process is too complicated

smartphone often runs its original

security bugs are fixed, most of the

To improve on this situation, manufacturers of

date mechanism and encourage

process, combined with automatic

, would do a lot to help

. These risks may increase should

should vulnerabilities be found and

more effective than the

security by obscurity’ by

security best practices should be applied that are similar to those

. The following list contains some of the most important guidelines:

This would not be sufficient if there were an SMS or MMS worm sending itself to contacts taken from an

infected phone’s addressbook. In this case the only rule that would help would be not to open anything at

 Whitepaper: From 0 to 0day on Symbian

Page 36 of 40

SYMBIAN/ARM SPECIFIC EXPLOIT

We are currently lacking the elegant exploitation techniques available for other architectures.

How do we efficiently exploit overflow

pointers to overwrite? Which memory regions could be used for trampolines or jump addresses?

What about the NX protections on ARMv6

subsequent research project.

The essentials of shellcoding on Symbian/ARM have been discussed in

of room for improvement. One drawback with the shellcode proposed in

to elevate the privileges of the exploited

the Symbian Signed website via the web

target device. While this could probably

shellcode, and would only obtain a subset of the available capabilities.

Let’s remember our discussion of platform security. What would stop us from building a

platform security exploit into our shellcode? T

payload with arbitrary capabilities.

A shellcode using the mapdrives exploit could for example do the following

1. Call RFs::MkDirAll(‘E:\\

2. Write second stage to file E:

3. Map to drive with RFs::SetSubst()

4. Call RProcess::Create(‘x.exe’)

This would allow the second stage executable to do practically anything on the device.

The obvious drawback of this idea is that for the shellcode to work, the exploited process needs

to have the DiskAdmin capability.

the firmware. Luckily, when planning our exploit, we know in advance which capabilities are

available to our target process.

The following Perl script can be used to extr

ROM image:

#!/usr/bin/perl

my @caps = ("TCB",
 "CommDD",
 "PowerMgmt",
 "MultimediaDD",
 "ReadDeviceData",
 "WriteDeviceData",
 "DRM",
 "TrustedUI",
 "ProtServ",
 "DiskAdmin",
 "NetworkControl",
 "AllFiles",
 "SwEvent",

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

NEXT STEPS

ARM SPECIFIC EXPLOITATION TECHNIQUES

lacking the elegant exploitation techniques available for other architectures.

overflows on the stack and heap? Where do we find global function

Which memory regions could be used for trampolines or jump addresses?

protections on ARMv6 architectures? These questions will be

SYMBIAN SHELLCODE

The essentials of shellcoding on Symbian/ARM have been discussed in (1), but there’s stil

One drawback with the shellcode proposed in (1)

to elevate the privileges of the exploited process, which is done by having the shellcode

the Symbian Signed website via the web browser and sign a SIS package specifically for the

While this could probably work, it would require a very large and complex

shellcode, and would only obtain a subset of the available capabilities.

Let’s remember our discussion of platform security. What would stop us from building a

platform security exploit into our shellcode? This way, our shellcode could launch a second stage

payload with arbitrary capabilities.

A shellcode using the mapdrives exploit could for example do the following

\x\\sys\\bin\\’)

Write second stage to file E:\\x\\sys\\bin\\x.exe

Map to drive with RFs::SetSubst()

Call RProcess::Create(‘x.exe’)

This would allow the second stage executable to do practically anything on the device.

The obvious drawback of this idea is that for the shellcode to work, the exploited process needs

the DiskAdmin capability. However this is not too uncommon for executables found in

Luckily, when planning our exploit, we know in advance which capabilities are

available to our target process.

following Perl script can be used to extract the capabilities set from the header of a given

SEC Consult Unternehmensberatung GmbH

ATION TECHNIQUES

lacking the elegant exploitation techniques available for other architectures.

Where do we find global function

Which memory regions could be used for trampolines or jump addresses?

will be answered in a

, but there’s still a lot

(1) is the method used

process, which is done by having the shellcode access

SIS package specifically for the

would require a very large and complex

Let’s remember our discussion of platform security. What would stop us from building a

his way, our shellcode could launch a second stage

This would allow the second stage executable to do practically anything on the device.

The obvious drawback of this idea is that for the shellcode to work, the exploited process needs

However this is not too uncommon for executables found in

Luckily, when planning our exploit, we know in advance which capabilities are

act the capabilities set from the header of a given

 Whitepaper: From 0 to 0day on Symbian

Page 37 of 40

 "NetworkServices",
 "LocalServices",
 "ReadUserData",
 "WriteUserData",
 "Location",
 "SurroundingsDD",
 "UserEnvironment");

$fn = shift @ARGV;

open(F, $fn) || die "could not open input file! $!
seek(F, 0x4C, SEEK_SET);
read(F, $buf, 4);
close(F);

my ($caps) = unpack("L", $buf);

$nbit = 0x1;

for ($i = 0; $i < 20; $i ++) {
 if ($caps & $nbit) {
 print @caps[$i]."+";
 }

 $nbit <<= 1;
}

Listing 16: Displaying capabilities of a ROM image file

Now we can check the capabilities available to the

from the last chapter). The output is shown in listing 17.

$ perl getcap.pl ZBIN/MediaPlayer.exe
MultimediaDD
ReadDeviceData
WriteDeviceData
DRM
DiskAdmin
SwEvent
NetworkServices
LocalServices
ReadUserData
WriteUserData
Location
UserEnvironment

Listing 1

As it turns out, MediaPlayer.exe does, for some reason, actually have the DiskAdmin capability! If

we were to exploit MediaPlayer.exe, the proposed shellcode would work.

There are however many other executables that do not own the required capabilities. For these,

a different platform security exploit

interesting topic for research and

Once the exploitation and shellcode techniques are in place, we need something to do with the

compromised smartphones. If we really can obtain TCB capabilities with our

possibilities are practically endless!

purposes. Some interesting features for a rootkit would include:

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

open(F, $fn) || die "could not open input file! $! \n";

my ($caps) = unpack("L", $buf);

for ($i = 0; $i < 20; $i ++) {

print @caps[$i]."+";

Displaying capabilities of a ROM image file (Perl)

Now we can check the capabilities available to the MediaPlayer executable (our fuzzing target

. The output is shown in listing 17.

$ perl getcap.pl ZBIN/MediaPlayer.exe

Listing 17: Capabilities available to MediaPlayer.exe

As it turns out, MediaPlayer.exe does, for some reason, actually have the DiskAdmin capability! If

exploit MediaPlayer.exe, the proposed shellcode would work.

There are however many other executables that do not own the required capabilities. For these,

security exploit is needed. This, and Symbian shellcode in general, is an

sting topic for research and one we hope to discuss in a future paper.

SYMBIAN ROOTKITS

Once the exploitation and shellcode techniques are in place, we need something to do with the

compromised smartphones. If we really can obtain TCB capabilities with our

ly endless! We can abuse all of the smartphone’s features for our

purposes. Some interesting features for a rootkit would include:

SEC Consult Unternehmensberatung GmbH

(Perl)

MediaPlayer executable (our fuzzing target

As it turns out, MediaPlayer.exe does, for some reason, actually have the DiskAdmin capability! If

There are however many other executables that do not own the required capabilities. For these,

This, and Symbian shellcode in general, is an

Once the exploitation and shellcode techniques are in place, we need something to do with the

compromised smartphones. If we really can obtain TCB capabilities with our shellcode, the

of the smartphone’s features for our

 Whitepaper: From 0 to 0day on Symbian

Page 38 of 40

• Stealing SMS, contacts, emails, and other data from the

• Recording and hijacking phone conversations

• Recording a video stream from the smartphone’s camera

• Tracking the location of the smartphone

• Placing calls to pay numbers

• Creating a botnet of smartphones

Another interesting area of research are file

keep a rootkit hidden from the user.

As a proof of concept, we have written an IRC

preset IRC server. The “infected” phone

chat. Figure 12 shows the bot

IRC server.

Figure 12: Dumping contacts of a compromised smartphone

The bot is based on the OpenC IRC

Nokia website26. It is intended only for demonstration purposes and

SYMBIAN

In 2008, Nokia acquired Symbian

partners. The Symbian Foundation has announced plans to

26 http://www.forum.nokia.com/Tools_Docs_a

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

Stealing SMS, contacts, emails, and other data from the phone

ing phone conversations

stream from the smartphone’s camera

of the smartphone’s owner

umbers

Creating a botnet of smartphones

Another interesting area of research are file- and process hiding techniques, which

keep a rootkit hidden from the user.

NOKIASTALKER IRC BOT

have written an IRC bot trojan that connects the smartphone to a

The “infected” phone can then be controlled with commands sent via private

the bot being used to dump the contact list of a phone connected to the

: Dumping contacts of a compromised smartphone

The bot is based on the OpenC IRC example implementation, which is available on the Forum

It is intended only for demonstration purposes and will be kept private

SYMBIAN OS IS GOING OPEN SOURCE!

, Nokia acquired Symbian Ltd. and formed the Symbian Foundation

The Symbian Foundation has announced plans to unify Symbian OS, S60, UIQ and

http://www.forum.nokia.com/Tools_Docs_and_Code/Code_Examples/Open_C_and_C++.xhtml

SEC Consult Unternehmensberatung GmbH

chniques, which are needed to

that connects the smartphone to a

can then be controlled with commands sent via private

of a phone connected to the

: Dumping contacts of a compromised smartphone

implementation, which is available on the Forum

will be kept private for now.

formed the Symbian Foundation together with other

Symbian OS, S60, UIQ and

nd_Code/Code_Examples/Open_C_and_C++.xhtml

 Whitepaper: From 0 to 0day on Symbian

Page 39 of 40

MOAP(S) to create a single open source platform. The Symbian OS source code is expected

released under the Eclipse license. According to the r

first devices based on the new open source platform could be released at the end of

will be interesting to see how this will affect the possibilities available

interested in Symbian OS.

For one, it will be possible to

Symbian Signed / capabilities system probably won’t

continue to sell locked down phones

available, it should be much easier to build

one described in this paper. We will wait and see

The author would like to thank

providing patches for the IDA Pro Symbian debugger plugin in real time, and permi

reuse of code contained in the IDA SDK for this project (and of course for writing IDA Pro in the

first place).

Many thanks also go to the guys at

Zorn, bugb, and many others)

well as many useful tools and forum threads.

Last but not least I would like to thank David Matscheko of SEC Consult for ideas and help with

the media file fuzzer, and David Niedermaier, David White and Jo

and technical reviews.

1. Mulliner, Collin. Exploiting Symbian: Symbian Exploitation and Shellcode Development.

Blackhat Japan 2008. http://www.blackhat.com/presentations/bh

Mulliner/BlackHat-Japan-08-Mulliner

2. (ARTeam), Shub Nigurrath.

http://arteam.biz.hr/downloads/Primer_on_Reverse_Engineering_Symbian_3rd_Applications_v

10_by_argv.rar.

3. Sales, Jane. Symbian OS Internals: Real

2005. ISBN-13 978-0-470-02524

4. Freescale Semiconductor. CodeWarrior MetroTRK Reference.

Semiconductor Inc., 2004.

http://www.freescale.com/files/soft

5. Thiel, David. Exposing Vulnerabilities in Media Software. [Online] 08 02, 2007.

http://www.isecpartners.com/files/Blackhat_2007_Thiel_Exposing_Vulnerabilities_Media_Soft

ware.pdf.

27 http://blog.symbian.org/2009/03/12/introducing

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

a single open source platform. The Symbian OS source code is expected

license. According to the release plan on the Foundation’s

first devices based on the new open source platform could be released at the end of

see how this will affect the possibilities available to security researchers

 review the code of the core OS when it becomes available.

system probably won’t be changed, and phone manufacturers will

continue to sell locked down phones. But with the kernel and system server

much easier to build testing toolchains that are more effective than the

We will wait and see how things turn out.

ACKNOWLEDGEMENTS

The author would like to thank Ilfak Guilfanov from Hex Rays, for offering great support,

providing patches for the IDA Pro Symbian debugger plugin in real time, and permi

reuse of code contained in the IDA SDK for this project (and of course for writing IDA Pro in the

also go to the guys at the www.symbian-freak.com modding forum (FCA00000,

 – the source of the platform security hack used in this paper, as

well as many useful tools and forum threads.

like to thank David Matscheko of SEC Consult for ideas and help with

fuzzer, and David Niedermaier, David White and Johannes Greil for proof

REFERENCES

Exploiting Symbian: Symbian Exploitation and Shellcode Development.

2008. http://www.blackhat.com/presentations/bh-jp-08/bh-

Mulliner-Hacking-Symbian-OS.pdf.

(ARTeam), Shub Nigurrath. Primer on Reversing Symbian. [Online]

http://arteam.biz.hr/downloads/Primer_on_Reverse_Engineering_Symbian_3rd_Applications_v

Symbian OS Internals: Real-time Kernel Programming. s.l. : John Wiley & Sons, Ltd,

02524-6.

CodeWarrior MetroTRK Reference. [Online] Freescale

http://www.freescale.com/files/soft_dev_tools/doc/ref_manual/METROTRKRM.pdf.

Exposing Vulnerabilities in Media Software. [Online] 08 02, 2007.

http://www.isecpartners.com/files/Blackhat_2007_Thiel_Exposing_Vulnerabilities_Media_Soft

http://blog.symbian.org/2009/03/12/introducing-the-release-plan/

SEC Consult Unternehmensberatung GmbH

a single open source platform. The Symbian OS source code is expected to be

elease plan on the Foundation’s blog, the

first devices based on the new open source platform could be released at the end of 200927. It

to security researchers

comes available. The

and phone manufacturers will

and system server source code

that are more effective than the

from Hex Rays, for offering great support,

providing patches for the IDA Pro Symbian debugger plugin in real time, and permitting the

reuse of code contained in the IDA SDK for this project (and of course for writing IDA Pro in the

freak.com modding forum (FCA00000,

platform security hack used in this paper, as

like to thank David Matscheko of SEC Consult for ideas and help with

Greil for proof-reading

Exploiting Symbian: Symbian Exploitation and Shellcode Development.

-jp-08-

http://arteam.biz.hr/downloads/Primer_on_Reverse_Engineering_Symbian_3rd_Applications_v

: John Wiley & Sons, Ltd,

[Online] Freescale

_dev_tools/doc/ref_manual/METROTRKRM.pdf.

Exposing Vulnerabilities in Media Software. [Online] 08 02, 2007.

http://www.isecpartners.com/files/Blackhat_2007_Thiel_Exposing_Vulnerabilities_Media_Soft

 Whitepaper: From 0 to 0day on Symbian

Page 40 of 40

6. Stichbury, Jo. Symbian OS Exp

Wiley & Sons Ltd., 2005. ISBN 0

Bernhard Müller is a senior security analyst

has been doing research on various information security topics for several years,

and reported vulnerabilities in products of companies such as

Microsoft. It said that he figured out the 2008 DNS flaw within le

skimming over the RFC. He has also posted a security

once, which is repeatedly pointed out to him by some colleagues.

ABOUT THE

Members of the SEC Consult Vulnerability Lab perform security research in various topics of

technical information security. Projects include vulnerability research and the development of

cutting edge security tools and methodologies, and are supported by partners like the Technical

University of Vienna. The lab has published security vulnerabilities in many high

software products, and selected work has been presented at top security conferences like

Blackhat and DeepSec.

For more information, see http://www.sec

For feedback or questions, please contact

From 0 to 0day on Symbian

 © 2009 SEC Consult Unternehmensberatung GmbH

Symbian OS Explained: Effective C++ Programming for Smartphones.

Wiley & Sons Ltd., 2005. ISBN 0-470-02130-6.

ABOUT THE AUTHOR

is a senior security analyst at SEC Consult Unternehmensberatung

has been doing research on various information security topics for several years,

vulnerabilities in products of companies such as Nortel,

It said that he figured out the 2008 DNS flaw within less than an hour

He has also posted a security advisory about a cross site scripting flaw

is repeatedly pointed out to him by some colleagues.

ABOUT THE SEC CONSULT VULNERABILITY LAB

Vulnerability Lab perform security research in various topics of

technical information security. Projects include vulnerability research and the development of

cutting edge security tools and methodologies, and are supported by partners like the Technical

University of Vienna. The lab has published security vulnerabilities in many high

software products, and selected work has been presented at top security conferences like

http://www.sec-consult.com/

or feedback or questions, please contact:

research [at] sec-consult [dot] com

SEC Consult Unternehmensberatung GmbH

lained: Effective C++ Programming for Smartphones. s.l. : John

Unternehmensberatung GmbH. He

has been doing research on various information security topics for several years, and has found

Nortel, Macromedia and

an hour, by quickly

advisory about a cross site scripting flaw

VULNERABILITY LAB

Vulnerability Lab perform security research in various topics of

technical information security. Projects include vulnerability research and the development of

cutting edge security tools and methodologies, and are supported by partners like the Technical

University of Vienna. The lab has published security vulnerabilities in many high-profile

software products, and selected work has been presented at top security conferences like

