
EXPLOITATION OF HASH FUNCTIONS 

                (Playing with hash functions) 

 

       Work Hard but with Smartness 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

By Deepanshu Khanna: 

(Linux Security Researcher) 

 

 



Introduction to Cryptography: The term cryptography is being defined as the 

method or protocol for developing the security of the information over an insecure 

channel on which the two parties are being communicated. For an instance let‟s 

assume the two parties which are very famous in the field of cryptography that is 

ALICE and BOB. Let‟s assume Alice wants to communicate or share some 

information with Bob. The main problem arises here is how to share the data over 

such an insecure channel. So, Cryptography comes to the rescue. Hence, 

cryptography provides us the way to securely (neq 100%) communicates even on 

the insecure channel.   

 

 

 

 

Fig(i) 

 

 

 

 

 

 

 

 

Fig(ii) 

 

 

So, here is the main question arises is that what exactly this cryptographic magic 

function includes, which sends the information securely over such an insecure 

channel. So, let‟s look inside of this function. But before looking into it, let‟s try to 

build some building blocks for the need of these functions. 

 

Building up of the Cryptographic Functions: Before digging much into the 

depths of cryptography, let‟s first focus on the building blocks of the cryptographic 

functions. These cryptographic functions include such properties which will help 

both the sender and the receiver to share the data on the basis of the trust. So, let‟s 

start building the function on the basis of “Problem of Trust”. 

  

 

 

 

ALICE 
Communication Channel  

                      (Insecure) 
BOB 

ALICE 

Communication Channel  
(Cryptographic Function) 

                      (Secure) 
               (Insecure Medium) 

BOB 



 Problem of Trust: Let‟s assume Alice and Bob wants to communicate over 

a telephone or fax or by e-mails. But the problem with this communication is that 

Bob doesn‟t trust Alice. So, whatever the data that is being sent or whatever the 

communication is being made by Alice will not be trusted by Bob. So, the solution 

to this problem of trust is they have to agree on some common “protocol”. This 

protocol will be known to both Alice and Bob. Based on this protocol they will 

share their data over an insecure channel. Now in order to build such a protocol, 

they require a function. This particular function is known as the magic function 

which is required to build up that protocol and is also known as the cryptographic 

function. In whole cryptography we are always trying to build this function. This 

function is being represented by F(x)., where x is a message.  

 

 

 

 

   X            

    

  

    

 

 

      Fig(iii)      

     

 

 

Properties of the magic faction: This magic function F(x) holds some 

important properties, based on 

 Only such properties the protocols are build up: 

1. Whatever the domain and range chosen up for the function, should be 

integer values. 

2. The function should be one-way function, which means a function F(x) 

should be easy to compute but hard to invert. Let‟s take an example, given 

for some value of x= 2, and a function F(x) is given by, 

 

F(x)= x pow (2) + x;      [given x=2] 

F(x)= 2 pow (2) + 2; 

F(x)= 4+2; 

F(x)=6 

 

ALICE 

Communication Channel  
(Cryptographic Function) 

                      (Secure) 
               (Insecure Medium) 

BOB 

Message Protocol  
Checked and Then 

 Accepted 
             (x) 



Now as you look in the above problem, that it‟s easy to compute F(x) from 

the given value of x, but it‟s hard to compute x from a given F(x). Say, for a 

given value of F(x)=6, its hard to find that could be the function. Hence, this 

property should the magic function holds.  

 

3. Another big property that a magic function must hold is the property of the 

“Collision Resistant”. Collision Resistant states that it is very hard or 

almost impossible to find a pair of distinct values (integers), for which 

f(x)=f(y). Means, for the given values of x and y say 2 and 3 resp., it is hard 

to build such two functions f(x) and f(y) such that they both holds the same 

values and vice-versa. This every function must hold. 

 

 Hence, in order to build such protocols, these properties hold a very important 

place. These properties are also known as the building blocks of the functions.  

 

Mathematical formulations of building and computing F(x):Let‟s try to analyze 

the mathematical formulations of calculating the function. For that, let‟s assume 

that Alice and Bob are communicating over the telephone and deciding to have 

lunch together. Alice wants to go for Italian food and Bob wants to go for the 

Chinese. Now the situation is both the parties are sitting very far or apart from each 

other. And as obvious Bob doesn‟t trust Alice. So, they decided to build a protocol 

in which both of them will get satisfied. In order to do that they decided to flip a 

coin and if “head” comes Alice will win, or if “tail” Bob will win. Now Alice if 

flipping the coin, let‟s build the mathematical formulations for making the function 

F easy: 

1. Assume the function F(x) = the coin Tossed or Flipped. 

2. If Head comes, x = even and Alice wins 

3. If Tail comes, x= odd and Bob wins. 

4. Now Alice will toss the coin and send the value to Bob. This value is the 

function F(x) value and not the actual x value. 

5. Now Bob will receive the information (the calculated F(x) value). 

6. Now Bob will calculate his own value F(y), and tell Alice that this value is 

whether odd or even. 

7. Depending upon that Alice will send x to Bob and Bob will check whether 

the value matches with his value or not by computing F(x).  

 

 

 

Security Analysis of the above Statement: 

1. Can Alice cheat? 



 For that Alice has to calculate the values which are collision resistant and 

the also holds the one-wayness property. Means Alice has to chose two 

randomly large numbers i.e. x and y, such that x is not equal to y and their 

calculated function F(x) = F(y), which is very hard to develop. So, the 

probability of Alice will cheat is very much less, almost NIL. 

2. Also, Can Bob guess better than Alice’s random guess number?? 

Now Bob listens to F(x), and because of one-wayness property it doesn‟t 

reveal anything about x. So, his probability of choosing a random guess = ½. 

 

Hence, Probability[x is even] = Probability [x is odd] = ½. 

And therefore, in whole cryptography we actually are trying to focus on creating 

this function and holding the above three very important properties. 

 

Practical Efficiency: A mathematical problem is practical efficient, if the problem 

is being solved in the given time and space, which is being measured by the small 

degree of the polynomial in the size of the problem. The polynomial that actually 

describes the cost of the resources to the user should be very small. 

 

Goals of Cryptography: There are four main Goals of cryptography or it can also 

be said that cryptography is actually being balanced on the four pillars that are very 

necessary in order to build any cryptographic formulations and are being described 

as: 

1. Authentication  

2. Integrity 

3. Availability 

4. Confidentiality 

 

 

    

 

 

 

 

         Fig(iv) 

 

 

 

 

 

Goals or pillars of 
           Cryptography 

Authentication Integrity Availability Confidentiality 



1. Confidentiality: The term confidentiality can be defined in context to 

security that whatever the data that is being sent over an insecure channel 

should be hidden from the unauthorized access. Means the data is not easily 

visible to the attackers, sitting in between to attack on the data.  

2. Integrity: The term integrity can be defined as the term that whatever the 

data that is being shared should not be tempered in between. Means 

whatever the data that is being send by the sender should receive the same 

on the other side of the channel to the receiver.  

3.  Authentication: Whatever the data that is being sent over the insecure 

channel should be sent by an authenticated user. Means the person should 

not be a malicious person. The authenticity of the person should be 100%, 

else the data will be discarded by the receiver. 

4. Availability:  the term availability could be defined as the term that 

whatever the resources are there should be easily available to users. Means it 

should not be like this that whatever the cryptographic algorithm is there, it 

should be only meant for the private users and not for the public domain. 

The algorithm must be in public domain and is 24*7 hours available to 

users. 

  

 

Types of Cryptographic Algorithms: 

1. Symmetric key cryptography: The algorithm which uses the same key for 

encryption and decryption. For example, Alice wants to send some data to 

Bob, but she wants data to be secured enough, that it should not get 

compromised. Now whatever the algorithm is being created is in the public 

domain, but the main responsibility is of the key (which is kept secret) to 

make the data secure. In this particular cryptographic algorithm, both the 

sender (Alice) and receiver (Bob) agreed upon a key, and using that key 

Alice will first encrypt the data whatever the data she wants to send. After 

encryption the data is being converted into the cipher text and that particular 

cipher text is being sent over an insecure channel. After receiving the cipher 

text by Bob, he will apply the decryption algorithm using the same key and 

get hold of the plain-text. 

 

 

 

 

 

 

 



                                                           

 

 

 

 

 

 

 

 

 

 

 

 

     

  

       Fig (v)   

 

 

 

2. Public Key Cryptography:  In this particular cryptographic algorithm, 

except for using one keys, there will two keys that will be used for 

encryption and decryption. The two keys that will be used are, one is private 

key which is kept secret to sender or the receiver and other is the public key 

which is available in the public domain. Now the encryption process will go 

like this, the sender will take the receiver‟s public key from the public key 

directory as it is available to all or open in a public domain and will use that 

key to encrypt the data and produces the cipher-text. This particular cipher 

text will be shared on the insecure channel and will be received by the 

receiver on the other side. The receiver will use his private key which is kept 

secret to decrypt the cipher-text to obtain back the plain-text.  Hence, in this 

cipher technique, there is a key pair which is used to encrypt the data and 

decrypt the cipher text. Therefore, these type of cipher techniques are much 

more useful and hard to break down. But there are still some mechanisms 

which are available to break down of such ciphers.                   

 

 

 

 

 

 

           Plain-Text  
(Message to send by Alice) 

Encryption Algorithm 
    (Single key used) 

Cipher-text   

Cipher-text  
(Received by Bob)  

Decryption Algorithm 
     (Same key used ) 

Plain-Text 

Medium 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(vi) 

 

 

 

 

3. Hash Functions: A cryptographic hash function or simply the hash function 

is a kind of function that actually takes an random block of data, and returns 

back the fixed size bit string. It is often represented by H(x), where is a 

random size block message.   

 

 

 

 

Fig(vii) 

 

Note: It is important to note here that any change in x means the data accidently 

or intentionally will also lead to change the whole hash value with a very high 

probability.  

The data after encoded is called the message and the hash value that is being 

produced of fixed size is called the message digest or simply the digest. 

 

There are four main properties of the cryptographic hash functions: 

1. It is easy to compute a hash value for a given message. 

Message  
(Random block) 

Hash Function  
        (H(x)) 

Fixed Size Block 
(Message Diges) 
 

Encryption Algorithm 
    (Public key used) 

Cipher-text   

Cipher-text  
(Received by Bob)                                                                                              

Decryption Algorithm 
     (Private key used ) 

           Plain-Text  
(Message to send by Alice) 

Plain-Text 



2. It is almost impossible or infeasible to generate a message for a given hash 

value. 

3. It is impossible or infeasible to modify a message without changing the hash 

value. 

4. It is impossible to find the two different messages with same hash value. 

 

But these properties are good for or at one point of understanding because all these 

properties are being exploited and how to exploit these properties we will look in 

this paper, which is also the motive of the paper. 

 

WHY WE NEED A HASH FUNCTION??  

The answer to this question is that, the cryptographic encryptions except for one 

time pad are being exploited from time to time. Like DES or AES are vulnerable to 

linear and differential cryptanalysis attacks, which also exposes the vulnerability to 

the Boomerang attack. So, in order to provide the data integrity the cryptographic 

hash functions are being used. Means whatever the hash which is being produced 

actually creates a fingerprint on the data, which then is referred to as the message 

digest. 

 

Applications of the hash functions: 

1. Provides the data integrity.  

2. Used in digital signatures. 

3. Used for MACs (Message Authentication Codes) 

 

1. Digital Signatures:  These are the mechanisms by which a user is being 

authenticated. Means whatever the data that is being arrived over the 

channel is actually coming from the legitimate user or the attacker who was 

sitting in between and tempered the actual data with his own data. This is 

actually done by using the hashing. 

2. Message Authentication codes: MACs or the Message Authentication 

Codes are the keyed hash functions which are used to verify the integrity of 

the data and the authenticity of the sender. For example, Alice wants to send 

some message, but the integrity of the message is very much important. So, 

she will append the message with the calculated hash value as [M||Hk(M)], 

where Hk is the hash function using some key value. Now Bob will collect 

the message pair, and verifies it. If the hash value is same he will accept the 

pair, if not he will simply discard the pair. So, this will actually prevent the 

adversary from tempering the message (i.e. integrity) and forcing Bob to 

believe that it actually came from right source i.e. from Alice 

(authentication).  



 

Construction of Hash functions: All the hash which is there in the public 

domain or known to everyone is based upon the iterative hash function which are 

actually vulnerable to collision resistant attacks. So, this vulnerability is actually 

removed by Markel Damgard and he named this construction of hash functions as 

the MARKEL DAMGARD CONSTRUCTION. So, in order to discuss the hash 

functions, it‟s better to look at their constructions first.  

 

 

Markel Damgard Construction: Markel Damgard construction is actually 

based on the iterative hash function methodology just leaving the fact that it uses 

the compression function which produces a hash which is collision resistant.  

 

Points to Ponder about Markel Damgard Construction: 

1. Uses an iterative hash function methodology 

 

2. Compression function used as: 

Compress (C) : {0,1} pow (m+t)  {0,1} pow (m), where compress (C) is 

a compression function, m is the actual required bits, t is the padded bits, 

{0,1} are the bit representation of the actual message x. 

 

3. This is actually used to construct the hash functions which are also free from 

the collision resistant attacks.  

H: {0,1} pow (*) --> {0,1} pow (m), * represents the iterations. 

 

This construction yields the proof of the above results because it gives the very 

wonderful results for whatever the query being asked. 

 

Steps for construction in developing the SHA-1 or any other series of SHA 

family of hashes using this Markel Damgard Construction: 

1. Let‟s consider the message “x” which is quite large, and using that it‟s hash 

value has to be constructed.  

 

 

 

 

 

 

 

 



Outlook of SHA-1: 

   

     X (variable length) 

 

 

 

         == ?? 

 

 

  

     Y (160-bits) 

            Fig(viii)  

 

What‟s happening is that, a user is imputing the text of the variable length means it 

could of any length. It‟s going inside the SHA-1 algorithm some operations 

happened and it‟s giving the output of 160-bits as Y. 

 

But how this is happening this? What‟s inside this? How we are getting this output 

of very short range? What could be possibly inside this algorithm?  

All answers are inside this SHA-1 algorithm. As important, if we carefully look 

and think that whatever the data is going inside this SHA-1 function is getting 

compressed, so there will surely a compression function working inside SHA-1.  

 

Inside SHA-1 function Using Marel Damgard Construction: So, this happens 

like this the user will simply enter the text and the text is simply being divided into 

the equal blocks of length 512 bits (naming x1, x2 ,x3……..xn), and at the end if 

block length < 512 bits then it will pad with some bogus bits (padding will be 

shown later). Then this data will go inside the compression function, and then 

some compression techniques will go on in between, then it will give the very first 

hash value for x1with an IV vector, and the hash is represented by z1, then  this z1 

value go back into the compression function, which becomes the IV vector for x2 

and gets concatenated with the next value for x, and produce the next hash value as 

shown below in the figure. This process will continue for zi values, where i=n, and 

when whole the data is processed for „i‟ iterations, then zi=H(x), where H(x) is the 

hash of “x”. The whole process is shown below. 

 

 

 

 

 

SHA-1 



    X (variable length < 512 bits) 

 

 

 
 
 
        (512 bits) 
 
 
 
                                  Zi-1 
  
 
 
 
 
 
                                                                 Zi(160) 
                                                                      
 
 
 
 
 
  
 

                                              H(x)=zi (160 bits) 

 

                                           Fig (ix) 

              (Markel Damgard Construction for SHA-1 function) 

 

So, till now we have seen that the data is being going inside the compression 

function, and some magic is going on and we got the result. So, what‟s this magic 

function? 

 

Magic inside the Compression function: Compression function is a kind of a 

pool which takes on a variable length data or the fixed length data depending upon 

the algorithm and performs certain operations and gives back the compressed fixed 

length of data. This compression function is called the heart of the algorithm 

because the whole algorithm is based on this particular magic function. So, let‟s 

see what the magic that was happening inside this function is.  

 

 

padding 

Compression 
Function  

Iterations 
till zi times 



 

 

 

 

 

 

X=(x1, x2…..xn) 

 
512bits 

 

 

  

      Hi-1 

32 bit 

(each) 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(x) 

Compression 
Function  

Round 0 

Round 1 

Round 2 

Round 3 

Round 79 

Message 
Schedule 

W0 

W1 

W2 

W3 

W79 

     H(x)  
(160 bits) 



So, we are exactly in the middle of the heart of the algorithm. So, let‟s try to 

elaborate it‟s working but before the main part, it‟s important to discuss certain 

other factors like padding. 

 

Padding (P): Padding is defined as the term of adding bogus bits to the actual 

message bits in order to make its length equal to the required length. So, how the 

process of padding goes on is as shown in the below figure. 

 

 

                                       

  

 

 

 

                                                                        

 

 

 
           512 bits 

 

 

 

 

 

 

 

                 Fig (xi) 

 

The process of padding as shown in figure, is like this we are given with the 

message x, and this message x is broken down into equal blocks of 512 bits, and 

for x1, x2,x3……..,xn values. But in the end if xn = 512 bits, then there is no need 

of padding, else if xn<512 bits, then there is a requirement of padding. Rather than 

defining with the values, it‟s easy to define the values by taking an example.  

For example: given, xn=336, xn<512 padding is required. 

 

No. of bogus bits required= 512 – 336 = 176 bits 

 

Now if you will look above the figure, in the end there is written Length (L), which 

is nothing but the 64 bit representation of the original message.  

 

 

x1 

 

x2 

 

x3 

 

………………………………….. xn 

                                            X  
(any length) 

     
P 

    1       0 pow(n)         Length (64 bit)    



This means, 

 

64 is fixed and hence, 

No. of bogus bits required (in actual) = 176 – 64 = 112 bits. 

 

Hence, the total number of bits to pad required is 112 bits. 

 

In order to do that,  

The value “1” is fixed and there will be 0 pow (111) be there. Means there will be 

111 0‟s in padded bits. 

 

This is how, the padding works on.  

 

 

Now, as we have seen how the padding process goes let‟s get back to our original 

discussion that what or how this is working. In the compression function there are 

exactly 80 rounds that are working on from Round 0 to Round 79. These rounds, 

will take on the previous calculated hash value and gets concatenated with the 

message schedule, which divides the words into 32 bit value for each round and 

when the whole iterations gets completed, it will return back to the final calculated 

hash value which will be equal to 160 bits. And this is represented by H(x). 

 

Left off Things: As I said, that we are exactly in the inside of the heart of the 

algorithm. But I don‟t like to finish it here, because there is no meaning of not 

going into depth. Hackers are not those who work hard, but work hard with 

smartness requires the in depth knowledge of each and every concept. So, getting 

ahead of something and let‟s look deeper inside it. We are left off with only two 

things and those are the following listed below: 

1. What‟s inside the Rounds? 

2. What the hell is this Message Schedule? 

 

I) Looking into ROUNDS: 

 

The rounds that are shown above are not that much simpler as they look like. There 

is much more inside it. So, these rounds are a pack of total 4 stages and each stage 

contains a total of 20 rounds. And stages are being represented as ti, where i=1 – 4 

t1 = Round 0 – Round 19,  

t2 = Round 20- Round 39                                 

t3 = Round 40- Round 59                              

t4 = Round 60 – Round 79 

Total 80 
Rounds 



  NOTE: I am going to discuss only 1 round here, and rest of the rounds working is 

same.  

 

Working of Round 0: In Round 0 (considering all rounds), there are 5 (A,B,C,D,E) 

words of total length 160 bits. Means a single word is of 32 bits (simple 

mathematics). 

5*32 = 160 bits. 

 And with this there is a word input from above, means on round 0 the word enters 

will be W0. The whole working of a single round is shown below: 

 

          A            B           C           D            E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

          A            B           C           D            E 

          F1 
 

Rot (5)  

 

W0 

 

K1 

Rot (30) 

                      FOR NEXT ROUND 



Fig (xii)  

Round Working of SHA-1 

 

Here, E is known to be an Encryption word, because whatever the values we are 

adding onto the addition function are first gets concatenated with the E value.  

 

Some Points to Ponder: 

 

1. There are total of 4 stages t1,t2,t3,t4 

2. And with that there will be 4 functions (f1,f2,f3,f4) and each function will be 

used for its own stage time.  

3. With that there will be 4 round constants (k1,k2,k3,k4) and each for each 

stage. 

What this means is take for function f: 

f= function (f1,f2,f3,f4)  

f1= function (f1) = first 20 rounds = first stage i.e. t1 

f2= function (f2) = next 20 rounds = second stage i.e. t2 

f3= function (f3) = next 20 rounds = third stage i.e. t3 

f4= function (f4) = last 20 rounds = last stage i.e. t4 

 

Similarly for Round Constant k: 

k1= Constant (k1) = first 20 rounds = first stage i.e. t1 

k2= Constant (k2) = next 20 rounds = second stage i.e. t2 

k3= Constant (k3) = next 20 rounds = third stage i.e. t3 

k4= Constant (k4) = last 20 rounds = last stage i.e. t4 

 

There are actually some operations that are ongoing on these functions: 

Operations performed in functions: 
f1= function (f1) = function (B,C,D) = {(B) AND (C)} OR {(not B) AND (D)} 

f2= function (f2) = function (B,C,D) = (B) XOR (C) XOR (D) 

f3= function (f3) = function (B,C,D) = {(B) AND (C)} OR {(B) AND (D)}OR {(C) 

AND (D)} 

f4 = function (f4) = function (B,C,D) = (B) XOR (C) XOR (D) 

 

Here AND, OR nd XOR are the bit-wise operations 

Round Constants Value: 

k1= 5A827999 

k2 = 6ED9EBA1 

k3 = 8F1BBCDC 

k4 = CA62C1D6     

32-bit hexa-decimal value 



Rotation Functions (ROT()):  

1. There are two rotation functions Rot (A) and Rot (B). 

2. These are nothing but left-cyclic rotations. 

3. A is rotated 5 times and gets concatenated with addition function. 

4. B is rotated and becomes the C. 

 

So, we are done with the working with the rounds. I don‟t know but it‟s been scary 

getting deeper and deeper inside someone‟s heart. But becoming a Hacker is not an 

easy task. So, we have to look deeper inside. And hence we are only left with the 

message scheduling algorithm.  

 

Message Scheduling Algorithm: 

 

Given X is of 512 bits each, means there will be equal of 16 blocks and each of 

size 32 bits. 

16*32 = 512 bits 

 

 X =  

 

 

 

 

  

 

 

So the process goes like this, whatever the data is given divide that into 32 bits of 

equal block and the total number of blocks will be created is 16 (16*32=512 bits). 

Now simply copies the values of x1, x2………..,x15 below to 80 blocks of data 

and name them as W0, W1, W2…………..,W79. If we look carefully that till W15 

all values will be copied as it is. But what about W16, W17………..W79. So, 

researchers have also found a method of doing that by giving a below written 

formula: 

In general form: 

W(j) =  (W(j)-16) XOR (W(j)-14) XOR (W(j)-7) XOR (W(j)-2) 

 

So, for example if we have to calculate the value for W(16), 

 

W(16)= W0 XOR W2 XOR W9 XOR W14  

 

 

 

x0 

 

x1 

 

…………………….. 

 

x15 

W0 W1  W15 W16………………  W79 



So, that‟s all we are done getting into the dangerous part of hashing. Means the 

construction of hash functions. I find it quite difficult while reading so I tried to 

make the things simpler and simpler so that even a newbie in this field can 

understand the things better off.  

 

Now the mail interesting part yes means the exploitation of the hash functions. So, 

let‟s get started for what we are trying to understand the things for so long.  

 

Exploitation of Hash Functions: The term exploitation means to take the unfair 

advantage of someone for their own benefits. So, here are we also going take the 

advantage of the vulnerability of above hash functions. There is a full fledge 

family of hashes like SHA family, MD-0 family (famous one MD5). So let‟s try to 

exploit. 

 

#Exploit 1:  
Multi-Collisions Attack : The very first attack that I am going to discuss is the 

Multi-Collision Attack. This attack works on the methodology that first researchers 

said after the creation of hash values that this is almost impossible to create such 

messages which results in the same hash value. But this was actually broken by the 

Chinese students Wang and Yu who worked so hard to break down the MD5 and 

proved that this can also work in practice. Later on Peter Selinger was the man 

who actually showed how the attack works. So, I am continuing here by the whole 

explanation of the attack that how it works and what was back-ground of this 

particular attack. And again we get into deep and deep to understand the working 

of the exploit.  

 

Explanation: Just remember that MD5 taken on an arbitrary length of data and 

gives back the 128-bit hash value. Rest of the working is same as the SHA-1 as 

explained above. It is based on the Markel Damgard Construction and also based 

on the iterative manner to produce hash. For padding it divides the file to 64 bytes 

of equal length of blocks and it appends the value to 448 modulo 512 and takes on 

4 words (A,B,C,D) to process the round functions.  

 

Working of Exploit: The exploits works as follows: 

Two files are being generated with different messages but their md5sum is same. 

This cannot be possible as theoreticians said. But below in the Snapshot you can 

check POC, that this can also be possible. Now below I am just showing you a 

very toy example that how these can be exploited but there can much more 

dangerous things that can happen with large firms like Banks, Security Agencies, 



Companies etc who uses MD5 hashes and similar to its level which is shown 

below: 

 
                                                   Snapshot-1 

 

Scenario: 

In the above snapshot there are two files with names good and evil and there is 

written different-different texts. So, a scenario could be like this a person sitting 

inside a firm and wants to communicate with another person. Now the message 

needs to be sent with full integrity, means tempering should not be there. So, what 

sender does is he simply creates the md5sum of it and sends it to the receiver oven 

an insecure channel and tells the receiver about the md5sum. Now there was an eve 

sitting in between. He simply jumps into the network and gets hold of the data. 

Now as we know that with the hash value, message is also sent. So, eve develops 

his own message file what he wants in there and produced the same hash value and 

sent it to the receiver. Receiver will simply open up the file and checks for the md5 

value. And it‟s coming to be same and he simply accepts the message. So, this is 

the biggest exploitation and the breakdown of the md5sum. But still people are 

using the md5sum as in their websites to store up the database values.  

 

 

 

 

 



Working of the Exploit 

So, how this magic happened? Ok I will tell you the whole magic. There is no 

magic in there, only a brain with evil things and hard work is there. So, the whole 

idea is to grab the files and create the programs of it and change the extensions of it 

to whatever they are sending. Like I have created here is .txt files from the 

compiled .c programs. So, this was the whole trick. But still this won‟t give you 

what you really expecting is. There has to be a way to do this also.  

Grab the text and the hash value from the sender. Create your .c programs with the 

values you want to display on their screens. So, what you do is, 

 

Program 1: if (data1 == data1) then print (good) else print (evil) 

Program 2: if (data1 == data1) then print (good) else print (evil) 

 

So, whatever the conditions that will follow here it is always going to be a true 

value. Here note that good and evil are the files with the messages. So, how these 

two programs have to be compiled properly. This theory was actually given by 

Peter Serlings. The file with the original mesasge is first broken down into equal 

blocks of length 64 bytes i.e if file with X message is given, and then there will be 

blocks of say x1, x2, x3 …………,xn is being created. And MD5 is being 

computed using a sequence of states i.e. z1,z2,z3………..,zn.  

       According to the rule, 

z(i) = f(z(i-1), x(i-1)); where f is a given certain fixed valued function. 

 

z1 = the initialization vector used for very first round step 

z(i) = is the final hash output = H(x) 

 

Now let‟s say that another message that the attacker want to compute is the x‟ over 

the same initialization vector z1, then we have to find such two pair of block 

messages which results in the same value given as: 

f(f(z,x(i-1)),x(i)) = f (f(z,x‟(i-1)),x‟(i) ); 

 

Elaborating the above value to make it more simple and easy to understand. Diving 

the message into blocks of 64 bytes assuming the whole message is padded. 

 

 

 

 

 

 

 



X = x1, x2, x3…………x(i-1), x(i)……………… xn 

 

 

 

 

 

 

 

 

X‟= x‟1,x‟2,x‟3……….x’(i-1),x’(i)……………...x‟n 
 

 

So, I am not actually interested in whole above arbitrary values and afterwards 

arbitrary byte values. What I am interested is in these above two highlighted 

values. Because these two 128 bytes of identical block will give me the same hash 

value. So, what I have done is the same thing I found the two identical blocks and 

apply the hash algorithms only on these two identical 128 bytes of value. Hence 

therefore, I created two programs as shown above. 

So, this was the whole explanation for the exploitation of the MD5 hash values. 

 

#Exploitation 2:  

Forging of Hash Based MACs:  
 Another possible attack on the hash functions is forging. Forging means to copy or 

produce the identical values for a given message or signature.  As discussed above 

that MACs are the keyed hash functions, it means there is a key that has been 

inserted in the algorithm along with the hash function to produce a fixed length 

digest. Let‟s explain this particular attack by taking a suitable example: 

Given, 

            Key Length (K) = 80 bits 

            Message (X)     = 256 bits 

            Hash Algorithm = SHA-1or any other family 

             

Now output that has to be produced is of = 160 bits 

So, very first step is to check for padding 

Mathematical Formulations: 

256 + 80 = 336 bits 

Required bits = 512 bits 

Remaining bits = 512 – 336 =   176 bits 

Original 64 bit length = 176 – 64 = 112 bits 

Final Padded bits required is = 112 bits 

64    +    64 = 128 
Identical                 
blocks of size = 
  128 bytes 



Add bogus bits = 1 (fixed) 0 pow (111) 

 

Now the original message that will be hashed is of 160 bits and the representation 

will go like this: 

 

H(x) = SHA1(K||X) = C(K||M||10000…….0|| 101010100000………..1010) 

 

The hash value will be simply gets concatenated with the message and will be sent 

over the channel. As the assumption has always been made that the medium of 

sharing is always unsecured channel. So, adversary will simply have a control over 

the message and the hash value. Now how to forge this particular message?? 

 

What adversary has in his hands?? 

(H(x) || X) 

 

Now let‟s say adversary has to forge the message with X‟ value. So, now the work 

of adversary is that he knows the X value or he will request the MACs from the 

source, and he will generate another valid pair of (x‟,y) such that the value of x‟ 

should not match with any of the corresponding values of the given 

x1,x2,x3…….xn values. Then the attacker will be having a valid pair for forgery of 

MACs. 

So, the idea is like this: 

Adversary will simply look for the given X values and break down into the 

following values of x1,x2,x3………..xn 

 

X= x1 || x2 || x3 || ……………….||xn 

 

Now attacker will simply try to create the hash values these broken values of X and 

start matching its hash values that whether the values match with the user‟s value 

or not. And then he will create his own X‟ value that matches the same number of 

bits with the given X value. And will break down it in the same way: 

 

X‟ = x‟1 || x‟2 || x‟3 || …………………………….|| x‟n  

 

Now he will start creating the hash values for these particular broken down 

message values for X‟. And start storing it in a buffer. Now looking in both the 

buffers, if the attacker has successfully calculated the hash value for (X‟,Y) = 

((x‟1,Y),(x‟2,Y),(x‟3,Y)………..,(x‟n,Y) ) which matches for any of the above 

calculated hash values for (X,Y) = (x1,Y),(x2,Y)……….(xn,Y), then the attack has 



successfully completed and GAME OVER will be there. So, this is how the 

forgery attack has been donw.  

Now this attack comes under the category of the known plain-text attack. And the 

forging will be possible here, because the attacker is actually gets a hold of 

particular transfer of data over the channels and can successfully create the valid 

pair of (x‟,Y) = (X,Y). 

 

Conclusion: So, these are how the attacks that are being done practically over the 

hashing algorithms. Till now SHA-2 and SHA-3 are safe but I am trying hard to 

find a way in order to get these down too. So, in my view use SHA-3 algorithms 

and also whatever the transactions that is being made should be done with IPSec, 

having an encryption scheme and the secret keys that are to be used should be a 

One-Time Pad values. And always digitally sign the messages with a proper 

calculated hash that has to be sent along with the message. Only then the data will 

be sent properly and safely over the channels. 

  

 

 

 

 

 

 

 
 

 

 


