
KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

1

Document # CSRC-12-03-011 Title Java Applet Vulnerability Analysis (CVE-2012-5076)

Type

□ Attack Trend

□ Technical Analysis

■ Specialty Analysis

Data November 15, 2012

Author

KAIST Graduate School of

Information Security

Youngwook Lee, Minkyu Lee,

Hyosik Lim, Changhoon YoonModified November 19, 2012

 * Keyword : CVE-2012-5076, Oracle Java Applet ManagedObjectManagerFactory.getMethod method Remote
Code Execution

1. Executive Summary

On November 15th(Korea Standard Time), Bitscan Co.’s PCDS(Pre-Crime Detection System) has detected

the malicious code exploiting the new Java Applet vulnerability. At the time of detection, many web pages

in the internet were already manipulated by the attackers intending massive infection, and KAIST Graduate

School of Information Security(GSIS) have analyzed the code. KAIST GSIS have determined that the

machines with Oracle JRE 7 update 7 and earlier were vulnerable to this malicious code. When the

vulnerable client visits the web page containing this exploit code, it downloads the program called Gh0st

RAT(Remote Admin Tool)[1] from the hard-coded URL and executes it.

We were aware of the code snippet exploiting CVE-2012-5076 vulnerability published on Exploit-db[2]

(November 13th). Accordingly, it was relatively easier to analyze the exploit code than analyzing from the

scratch.

This specialty analysis report includes detailed analysis of CVE-2012-5076 as well as the actual case of

the mass distribution of the code. In addition, this report was initially written on November 15th, modified

and completed on November 19th by including some related or referenced works.

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

2

<java.lang.object>

public static SecurityManager getSecurityManager()

 Returns the object of Security Manager currently installed. (returns null, if Security Manager

 does not exist)

 Returned object calls methods implemented in SecurityManager to test security policy.

public static void setSecurityManager(SecurityManager sm)

2. Description

As the former Java Applet vulnerabilities, attacker can gain access to the local file system by

exploiting CVE-2012-5076 vulnerability bypassing Security Manager[3].

This vulnerability is quite similar to CVE-2012-4681. For this reason, this specialty analysis report

includes lots of background information that is given in the previous report, such as CVE-2012-4681

analysis report[4], published by KAIST GSIS.

This chapter begins with providing some background information for the better understanding.

Background information includes Java Security Manager, Java Reflection, and Java access control.

Security Manager is a security mechanism of Java, Reflection feature examines and manipulates a

Java class, and Java access control decides the execution of code by examining whether the code is

trusted or not. Finally, we explain how Security Manager can be bypassed by analyzing the actual

exploit code.

1. Background

1.1 Java Security Manager

Security Manager is a security mechanism that allows or disallows the operation according to

application-specific security policy. Security Manager is disabled by default on the local system;

however, if Java Applet application is executed on a web browser or Java Web Start, it automatically

becomes enabled. Upon web browser requests the web page containing Java Applet application, it

downloads and executes the application. In such process of Java Applet execution, Security Manager

restricts the operation of the application according to the security policy known as ‘Applet sandbox’.

This security policy disallows the execution of untrusted code in Java Applet application by looking at

its code signature. In other words, Security Manager does not allow any access to local file system or

any network connection, if the code is decided to be unsafe. Security Manager throws

SecurityException for any unauthorized operation.

[Figure 1] introduces some of Security Manager related methods in java.lang.System[5], java.lang.Security

Manager class.

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

3

 Configures Security Manager with the given object. If Security Manager exists, this method

 calls checkPermission(java.security.Permission) method to check if the given object is

 authorized to call setSecurityManager() method. If the given parameter is null or

 SecurityManager does not exist, it simply returns.

<java.lang.SecurityManager>

public void checkPermission(Permission perm)

 If the current security policy does not allow the given parameter’s access, it throws

 SecurityException. checkPermission() method calls AccessController.checkPermission method

 with the derived authority.

[Figure 1] Security Manager Related Methods

As explained in [Figure 1], Java Virtual Machine(JVM) calls setSecurityManager() method before a web

browser actually executes Java Applet code, and it sets ‘Applet Sandbox’ security policy to Security

Manager. Hence, Java Applet code gets executed with only limited security policy, for example, it does not

have authority to access file system or connect to the network.

1.2 Reflection

Reflection is frequently used to acquire Java class information or to modify its operation on runtime.

Reflection not only provides names and properties of Java class members, but also allows creation of the

instance of the class and use it after the compilation. Also, Reflection can be used to access certain

private class member.

As described above, Reflection feature has brought flexibility to Java application development; however,

it has also brought a security defect. Java, as an object-oriented language, supports encapsulation. It

supports encapsulated class members, such as private methods and variables. However, those hidden class

members can be accessed by using Reflection API. Violating fundamental principle of object-oriented

programming, it may cause serious errors or critical security problems[6].

Since Security Manager does not allow Reflection by default on Java Applet execution, it is impossible

to directly call any Reflection API. If any access using Reflection API is attempted in this case, Java Virtual

Machine will throw AccessControlException.

CVE-2012-5076 uses getMethod() method of com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory

class to call Reflection API indirectly. getMethod()[Figure 2 ①] method can configure the method of

specific class to be accessible by calling Reflection APIs, such as getDeclaredField() method[Figure 2 ②]. A

more detailed explanation of the exploit code flow in CVE-2012-5076 is given in Chapter 3.

1.3 Permission Check and Access Control

Java language implements stack-based access control mechanism[7]. All of the APIs in Java always

checks its permission before the actual execution. java.security.AccessController.check-Permission method

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

4

public static Method ①getMethod(final Class<?> cls, final String name,

final Class<?>... types) {

try {

return ③AccessController.doPrivileged(

new PrivilegedExceptionAction<Method>() {

public Method run() throws Exception {

return ②cls.getDeclaredMethod(name, types);

}

});

} catch (PrivilegedActionException ex) {

throw new GmbalException("Unexpected exception", ex) ;

} catch (SecurityException exc) {

throw new GmbalException("Unexpected exception", exc) ;

}

}

[Figure 2] ManagedObjectManagerFactory Class – getMethod Method

checks all of the frames in the call stack figure out its permission. If any one of the caller frames has

insufficient permission to execute the API, AccessControlException will be thrown.

Java Applet application executed on a web browser has limited authority. The permission check fails

even if Java Applet application calls the trusted code exist in /JRE/lib, because the Java Application itself

has relatively low authority. In order to bypass this security mechanism, AccessController.doPrivilege

method can temporarily elevate the API’s authority when Security manager tries to check the permission.

As CVE-2012-5076 example shown in [Figure 2], Reflection API is called internally in doPrivileged()

method[Figure 2 ③], and therefore Security Manager allows its execution in getMethod() method of

com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory class using its derived authority.

2. Exploit Type Analysis

As shown in [Figure 3], the structure of the malicious link exploiting CVE-2012-5076 can be

classified into two classification, Kaixin and Gondad. These exploit kits contain various exploit codes

exploiting various vulnerabilities including CVE-2012-5076. Exploit kits containing various exploit

codes are preferred because they can attack victims with diverse system environment, ultimately

increasing overall success rate.

The source code of the root is obfuscated as shown in [Figure 4]. The de-obfuscated version is

shown in [Figure 5], and one can notice the branches leading to the exploit code. The variable

‘gondad’ contains the sub-variable called ‘archive’, and ‘gTJePXG4.jpg’ is assigned to this ‘archive’

variable. ‘gTJePXG4.jpg’ looks like an image file, however actually it is a Java Archive File(jar). This

file can be decompressed, and .class files that involve in the actual exploitation can be found as

shown in [Figure 6].

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

5

This chapter briefly described the attack strategy using malicious link, and the next chapter gives

detailed analysis of CVE-2012-5076 exploitation.

[Figure 3] Type of malicious links

[Figure 4] Obfuscated malicious link code

[Figure 5] Deobfuscated code

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

6

[Figure 6] Set of attack codes changed to jar

3. Exploit Code Analysis

This vulnerability uses getMethod() method implemented in com.sun.org.glassfish.gmbal.

ManagedObjectManagerFactory class. By using getMethod() along with create() method in

com.sun.org.glassfish.gmbal.util.GenericConstructor class, it is possible to neutralize Security Manager

by escalating privilege.

The code flow of this exploit code is similar to the exploit code for the former java

vulnerabilities. The exploit code is consisted of three .class files; Upriv.class disables Security

Manager, Gondcc.class downloads the actual malicious program and executes it, and Gondqq.class

assists seamless execution of Upriv.class and executes Gondcc.class. The process of the exploit code

execution is described in [Figure 7].

Upon the visit of the malicious page, the web browser downloads .jar file and executes it in JVM.

If it was just a normal Applet, Security Manager would block its execution; however, the exploit

code disables Security Manager, and therefore the code can be executed even on the local system.

This exploit code can be classified into three levels; Privilege Escalation, Disabling Security

Manager, Downloading and Executing the malicious code.

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

7

[Figure 7] Process of CVE-2012-5076 exploitation

 3.1 Privilege Escalation

In the beginning of the exploitation, Gondqq.class is executed. Gondqq.class imports

ManagedObjectManagerFactory and GenericConstructor[Figure 8]. Once those classes are imported,

init() method is called to allocate Upriv.class to byte array called ‘arrayOfByte’ as shown in [Figure 9].

[Figure 8] vulnerable import com.sun.org.glassfish.gmbal.

[Figure 9] Inserting Upriv.class into byte array

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

8

The following code [Figure 10] tries to escalate the program’s privilege.

[Figure 10] Privilege escalation by getMethod

In line 48 and line 50 in [Figure 10], sun.invoke.anon.AnonymousClassLoader object is gained by

GenericConstructor. In line 51, ManagedObjectManagerFactory.getMethod() method is called to get

loadClass() method of AnonymousClassLoader. As mentioned in Chapter 1,

ManagedObjectManagerFactory.getMethod() method calls AccessController.doPrivilleged() method with

cls.getDeclaredMethod() as a parameter to acquire loadClass() method with escalated privilege.

 3.2 Disabling SecurityManager

After the privilege escalation above, ‘arrayOfByte’ variable is passed to loadClass() in line 56 as

shown in [Figure 11]. This method returns Upriv.class with escalated privilege. Line 59 executes

Upriv.class.

[Figure 11] Execution of loadClass with escalated privilege

Security Manager is disabled after executing Upriv.class on line 30 as shown in [Figure 12].

[Figure 12] Disabling Security Manager

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

9

 3.3 Downloading and Executing the malicious code

After disabling Security Manager, the code comes back to Gondqq.class and executes the code

shown in [Figure 13]. xrun() method in Gondcc.class simply downloads and executes the malicious

code.

[Figure 13] Execution of xrun method

The source code of Gondcc.class is shown as [Figure 14].

[Figure 14] The source code of Gondcc.class

The corresponding code in [Figure 14] downloads the malicious code uploaded on the web

server. The code saves the downloaded file as ‘update.exe’, and deletes the file after the execution.

Most of the general JRE exploit code uses the similar mechanism of downloading and executing.

Detailed description of the corresponding class can found in KAIST GSIS Specialty Analysis

Report(GSIS-12-03-008).

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

10

4. Conclusion

Referring to the weekly statistics of vulnerability used, the portion that JRE related vulnerability

take is extremely large. This result implies JRE related vulnerability provides the optimal condition.

In order to compare the frequency of JRE-related vulnerability and the other web application

vulnerabilities, data gathered by Bitscan Co.’s PCDS was analyzed. As a result, JRE-related vulnerability

was detected much more frequently than the others, as shown in [Figure 15]. By looking at the date of

the first discovery of each JRE-related vulnerability, the average period of the new JRE-vulnerability

appearance was about 92 days(about 3 months)[Figure 16].

[Figure 15] Comparison of frequency of using web application vulnerabilities

[Figure 16] The timeline of new JRE related vulnerability discovery

KAIST Graduate School of Information Security SAR(Security Analysis Report) GSIS-12-03-011

11

From results above, we could measure the ripple effect of the attack. To prevent any possible

damage from JRE related zero-day vulnerability that may appear in the future, we provide the guide

to disable Java Applet for Internet Explorer, Firefox, and Chrome.

∎ MS Internet Explorer

 [Tools] - [Internet Options] - [Security Tab] - [Custom Level] - [Scripting] - [Java Applet Scripting]

– Select disable

∎ Mozilla Firefox

 [Tools] - [Add-ons] - [Plugins] - [Java(TM) Platform SE]

 – Select disable

∎ Google Chrome

 [Tools] - [Settings] - [Show Advanced Settings] - [Content settings] - [Plug-ins]

 – Disable individual plug-ins – Disable Java

3. References

[1] http://en.wikipedia.org/wiki/Ghost_Rat

[2] http://www.exploit-db.com/exploits/22657/

[3] http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/SecurityManager.html

[4] http://www.exploit-db.com/wp-content/themes/exploit/docs/21321.pdf

 KAIST GSIS specialty analysis report(GSIS-12-03-009)

[5] http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/System.html

[6] http://docs.oracle.com/javase/tutorial/reflect/index.html

[7] http://www.oracle.com/technetwork/java/seccodeguide-139067.html

[8] http://blogs.technet.com/b/mmpc/archive/2012/11/15/a-technical-analysis-on-new-java-

 vulnerability-cve-2012-5076.aspx

[9] http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/com/sun/org/

 glassfish/gmbal/ManagedObjectManagerFactory.java

[10] http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/com/sun/

 org/glassfish/gmbal/util/GenericConstructor.java

[11] http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/lang/

 reflect/Method.java

