
ar
X

iv
:1

20
1.

20
74

v1
 [

cs
.C

R
]

10
 J

an
 2

01
2

Reflection Scan: an Off-Path Attack on TCP

Jan Wróbel
wrr@mixedbit.org

Abstract

The paper demonstrates how traffic load of a shared
packet queue can be exploited as a side channel through
which protected information leaks to an off-path attacker.
The attacker sends to a victim a sequence of identical
spoofed segments. The victim responds to each segment
in the sequence (the sequence is reflected by the victim)
if the segments satisfy a certain condition tested by the
attacker. The responses do not reach the attacker directly,
but induce extra load on a routing queue shared between
the victim and the attacker. Increased processing time of
packets traversing the queue reveal that the tested con-
dition was true. The paper concentrates on the TCP, but
the approach is generic and can be effective against other
protocols that allow to construct requests which are con-
ditionally answered by the victim. A proof of concept
was created to asses applicability of the method in real-
life scenarios.

1 Introduction

The TCP protocol without an additional encryption and
authentication layer is inherently vulnerable to man-in-
the-middle attacks. An attacker that has a way to inter-
cept network traffic between TCP end points, can easily
read and alter the communication. Off-path attacks, in
which the attacker can not intercept network traffic, are
much harder to execute. Along the years several weak-
nesses in the protocol or particular implementations that
made off-path attacks easier were disclosed. Protocol
specification was improved and many vendors fixed im-
plementations to close discovered holes. A TCP con-
nection between hosts that implement the newest recom-
mendations ([3], [4], [5]) is believed to be reasonably
well protected against off-path attacks.

A TCP session is protected by three secret numbers:
a 16-bit ephemeral port and two 32-bit sequence num-
bers, one for each side of the connection. Other fields,

such as IP addresses of end points and a server port, are
easy to determine in many scenarios. Each TCP seg-
ment exchanged within an established connection carries
all three secret values. For a segment to be accepted,
it must contain a correct ephemeral port number, its se-
quence number must be within receiver’s window and
a sequence number the segment is acknowledging (ac-
knowledge number) must be acceptable. According to
the recent recommendations, an ephemeral port should
be randomly picked from a 1025-65535 range and an ac-
knowledge number should be accepted only if it is equal
to the next octet to be sent or lower by at most ’largest
sender window seen’. If an end point follows these rec-
ommendations, the attacker needs

(216
−1025)×232

×232

window size A×window size B

attempts to generate an acceptable segment. Assuming
both windows have 65kB, about 248 attempts are needed.
If the end point follows strict RST validation rules, which
require RST segment to have a sequence number equal to
the next expected sequence number, the attacker needs
(216

−1025)×232 attempts to blindly reset the connec-
tion, which is also about 248. The number is large enough
to make blind attacks impractical in most scenarios. The
attacker would need to push segments for 500 hours at
100Gb/s rate to have one segment accepted. Even if a
segment is accepted, the probability that it lines up with
a start of a window is only 1

window size. Thus, a success-
ful blind attack can corrupt or reset the session, but it
has low chances of inserting a meaningful payload in a
correct place.

While the risk of accepting spoofed TCP segments as
valid is recognized and well studied, the recommenda-
tions and implementations overlook the risk of respond-
ing to rejected segments. A TCP layer can either silently
drop a rejected segment or respond to it (with an ACK or
a RST). The action to perform differs between different
implementations of the protocol. It was originally spec-

1

http://arxiv.org/abs/1201.2074v1

ified in the ’Event Processing’ section of RFC 793 [1],
but new systems, especially firewalls, do not fully fol-
low the RFC, but implement stricter filtering rules, as for
example described in [2]. These new rules are carefully
specified to preserve interoperability between different
implementations.

If for a particular TCP implementation conditional re-
sponse to a rejected segment depends on one of secret
values set in the segment, and if an attacker can discover
that a system responded to a spoofed segment, the TCP
session can be compromised. The attacker can determine
if a tested secret value satisfied certain condition (an
ephemeral port was correct, a sequence number was in
window, an acknowledge number was acceptable). The
secrets can be revealed in separate steps, each of the steps
requires relatively small resources.

Congestion of a queue shared between the off-path
attacker and the targeted TCP stream is a side channel
through which the attacker can determine if the TCP
layer responded to spoofed segments. Detecting negli-
gible load caused by a single response would be hard
in practice, but the attacker can send a sequence of seg-
ments of any desired length. If each segment from the se-
quence is answered, the answers can cause a substantial
traffic spike or even queue overflow. Figure 1 illustrates
the technique.

2 Related work

A high correlation between traffic patterns of users shar-
ing a routing resource was demonstrated in [6]. The au-
thors monitored ping round trip time to a router that con-
nected a user to the Internet and compared the measure-
ments with traffic patterns generated by the user’s online
activities. In this technique the eavesdropper was passive
and did not send any packets to trigger traffic spikes and
gain additional information.

The attack described in this paper shares a lot of simi-
larities with well known off-path techniques that exploit
weak implementations of IP ID generation mechanism.
Some legacy systems increase the ID field of subsequent
IP packets that leave a machine by one. This provides a
side channel to determine if a host sent a packet in re-
sponse to incoming traffic. The channel can be used to
perform stealth port scans [7] or to execute off-path at-
tacks against established TCP connections [8]. Contrary
to the technique described in this paper, the exploitation
of IP ID channel requires an attacker to establish a legit-
imate, bidirectional communication channel to a vulner-
able host. Today firewalls commonly disallow creation
of such channels to client machines. This document con-
centrates on compromising TCP session, but the tech-
nique can also be used to perform a stealth port scan
analogous to the one described in [7].

Figure 1: High level attack scheme. The attacker sends
a query to the victim in a form of a sequence of spoofed
segments. If the answer to the query is positive, the vic-
tim responds with a sequence of segments addressed to
its peer. At the same time, the attacker sends ping probes
that share an outbound queue with segments from the
victim. Increased round trip time reveals the positive an-
swer to the query.

The authors of [9] showed that TCP congestion con-
trol mechanism can be exploited by a malicious receiver
to improve performance of his/her connection at the cost
of others. Applicability of such technique for a Denial of
Service attack was studied in [10]. In simulated environ-
ment the authors were able to significantly decrease the
bandwidth of participating TCP connections. Security
Assessment of the TCP [5] explains that such attacks can
be executed blindly by an off-path attacker. Congestion
control mechanism is driven by ACK segments and TCP
layer can be easily tricked to generate ACKs by spoofed
segments with incorrect sequence numbers.

3 Requirements and applicability

As in case of most off-path attacks, the attacker must be
able to send spoofed IP packets to one end of the tar-
geted connection. It is also assumed that IP addresses

2

of both ends and a port number of a server are known
to the attacker. Throughout the paper, the end point to
which spoofed segments are addressed is called ’the vic-
tim’, the second end point is called ’the victim’s peer’.

In addition to these usual requirements, the attacker
must be able to send legitimate traffic probes through (or
to) one of the machines (a router or an end point) on the
path of the targeted TCP traffic. Ideally, the machine
should be a bottleneck for the TCP connection. As de-
scribed in [6], a good candidate is an edge router con-
necting the victim to the Internet. The probes can be
ICMP pings, but also segments exchanged within a le-
gitimate TCP connection, anything that would allow to
detect changes in traffic load of the bottleneck.

There are various factors that influence applicability
of the attack:

• Available bandwidth and time. The bigger the band-
width between the attacker and the victim the better.
The smaller the bandwidth between the victim and
its peer the better.

• Bottleneck’s natural traffic patterns. The attack is
harder if the traffic traversing the bottleneck is large
or has variable characteristic.

• Network topology. The attack is easier if spoofed
segments from the attacker to the victim do not tra-
verse the bottleneck, and thus do not disturb traffic
probes send by the attacker.

• Bottleneck’s queuing policy. Good isolation of traf-
fic coming from different users can impede the at-
tack.

• Traffic measuring and analyzing technique. Ad-
vanced techniques can increase the attack feasibility
in adverse scenarios.

It is beyond the scope of this paper to determine the
practical limits of the technique. The results of per-
formed experiments can provide a reference point for
analyzing applicability of the attack in different scenar-
ios. The proof of concept can be used a starting point
for further experiments. The attack requires much fewer
resources than truly blind off-path attack, but the require-
ments are still significant enough to make it impractical
in many real-life scenarios.

4 Experimental setup

The experiments were performed in favorable for the at-
tacker, but not improbable conditions. The attacker was
sharing an edge router with the victim. The router had
2500kb/s downlink and 320kb/s uplink connection to the
Internet. The attacker was connected to the victim with

100Mb/s link, but did not have direct access to the vic-
tim’s traffic. Three different scenarios were considered:

• Idle TCP connection with negligible natural traffic
traversing the bottleneck. This scenario was the eas-
iest one, induced responses constituted substantial
part of bottleneck’s traffic.

• The victim downloading data at full speed (satu-
rated downlink).

• The victim uploading data at full speed (saturated
uplink).

The attacker sent ping requests to a router one hop be-
yond the edge router. This ensured ping packets and seg-
ments sent by the victim in response to spoofed traffic
shared an outgoing queue of the edge router. When the
link to the outside world was idle, the ping Round Trip
Time was about 20ms, when the link was saturated, the
RTT increased to about 700ms.

Two systems were analyzed. Windows XP SP3 with
firewall enabled and Linux 3.0.0. Linux had Netfilter
firewall enabled with following commands:

iptables -A INPUT -m state \

--state ESTABLISHED -j ACCEPT;

iptables -A INPUT -j DROP;

This is a common configuration for a client machine. All
incoming traffic that it not directed to connections initi-
ated by the protected machine is dropped.

The two tested systems implement different rules for
processing TCP segments. To determine how a host pro-
tected by a firewall responds to an incoming segment two
steps need to be analyzed: is firewall going to drop the
segment and if not, how TCP layer is going to handle the
segment? The differences between the two tested sys-
tems come from the first step - Netfilter imposes stricter
filtering rules ([2]) than Windows XP firewall. The sec-
ond step for both systems is the same (in respect to pro-
cessing rules exploited by the attack) and closely follows
RFC 793. Processing rules that are important from the
attack perspective are briefly explained in following sec-
tions.

The proof of concept that was used to obtain experi-
mental results can be found at [16]. The paper does not
discuss low level details of the implementation, an in-
terested reader is encouraged to study a documentation
accompanying the code.

It is important to note that no bugs in TCP implemen-
tations of targeted systems were exploited.

5 Attack details

Assuming a shared router implements FIFO queuing pol-
icy, delay introduced by a series ofN packets of equal

3

size is:
N ∗packet size

bandwith

The victim is tricked to generate ACK segments, which
have about 80 bytes (assuming about 40B for layer two
header, 20B for IP and about 20B for TCP headers). Ap-
plying the formula to the experimental setup, a theoret-
ical delay introduced by 30 ACK segments should be
30∗80∗8
320000s= 0.06s. It is three times more than the ping

RTT for the idle link (20ms), and should be easily de-
tectable in the easiest experimental scenario. 1000 ACKs
should introduce a delay of1000∗80∗8

320000 s= 2.0s. This is
about three times more than the ping RTT for the satu-
rated link (700ms), and should be easily detectable in the
download and upload experiments.

5.1 Ephemeral port number

’Event Processing’ section of RFC 793 requires an ACK
segment to be sent in response to any segment that be-
longs to an established connection (has correct IP ad-
dresses and ports) but is outside of a window (has an in-
correct sequence number). If a host adheres to this spec-
ification, and is protected by a firewall that silently drops
segments not belonging to any connection (a common
case), the attacker can use segments with an incorrect se-
quence number to determine a client port number.

Windows and Linux TCP stacks follow the RFC and
respond with ACK to any segment with an incorrect se-
quence number. Linux Netfilter firewall uses stricter val-
idation rules to drop segments that are not part of a con-
nection:

• Segments without ACK flag are dropped.

• Acknowledge number is validated. It is
accepted only if it is equal to the next
octet to be sent or lower by at most
max(66000, largest sender window seen).

Acknowledge number validation makes it much harder
to use segments with an incorrect sequence number to
search for a client port. But there is a hole:

• Segments that have both SYN and ACK flag set are
always accepted and passed to the TCP layer.

TCP layer responds with ACK to such segments if
their sequence number is outside of a window. This al-
lows to discover an ephemeral port of a Netfilter pro-
tected host. The only drawback is that if a sequence num-
ber of SYN-ACK segment accidentally happens to be in-
window, Linux responds with RST and the connection is
closed. The probability of this is low:window size

232 .
Figure 2 shows how ping RTT increases when a se-

quence of spoofed segments is directed at the correct

ephemeral port. A spike in RTT occurs reliably, but usu-
ally it is not the only detected spike. Proof of concept
code repeated all queries for which a spike was detected
until a single query was left. This allowed to reveal an
ephemeral port with a high success rate.

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 11230

 11231

 11232

 11233

 11234

 11235

 11236

 11237

 11238

 11239

 11240

 0

 1

 2

 3

 4

 5

R
T

T
 a

v
e

ra
g

e
 [

m
s
]

L
o

s
t

p
in

g
s

scanned port

RTT Avarge Lost pings

(a) Connection idle, 5 pings/port, 30 spoofed segments/port

 400

 500

 600

 700

 800

 900

 1000

 1100

 11230

 11231

 11232

 11233

 11234

 11235

 11236

 11237

 11238

 11239

 11240

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10
R

T
T

 a
v
e

ra
g

e
 [

m
s
]

L
o

s
t

p
in

g
s

scanned port

(b) Connection downloading data, 10 pings/port, 1000 spoofed seg-
ments/port

Figure 2: The change in pings’ loss rate reveal an
ephemeral port in use (11235). Ping is considered lost
if the response did not arrive within two RTTs of previ-
ous pings related to the same port.

The lower bound on a query time is a single ping
RTT, because at least one ping needs to be sent to de-
termine the query result. Even for a relatively short RTT
of 20ms, if a full range of 64k ephemeral ports needs
to be scanned, the sequential scan would require at least
21 minutes. When bandwidth from the attacker to the
victim is large, continuous range of ports can be probed
in each sequence of spoofed segments. Such sequence
can be interpreted as a query ’Is the connection using a
port between X and Y?’. If a part of the sequence is re-
flected, the answer is yes, and a sequential search can be
used to find the exact port number. In the experimental

4

setup such range queries worked well and considerably
reduced time of the scan (see figure 3). Table 1 summa-
rizes experimental results. The results were similar for
both tested systems. The attacker can further improve
performance if the targeted connection uses ephemeral
port from a smaller range.

 20

 22

 24

 26

 28

 30

 32

 34

 36

 10200

 10400

 10600

 10800

 11000

 11200

 11400

 11600

 11800

 12000

 0

 1

 2

 3

 4

 5

R
T

T
 a

v
e

ra
g

e
 [

m
s
]

L
o

s
t

p
in

g
s

scanned port range start

RTT Avarge Lost pings

Figure 3: The range scan of an idle connection. Spoofed
segments are covering 200 port ranges. 5 pings and 6000
spoofed segments (30 to each port) are sent for each
range. RTT and loss rate spikes reveal the ephemeral
port is somewhere between 11200 and 11400.

A side note on Netfilter

It is interesting why Netfilter does not drop SYN-ACK
segments arriving in a context of an already established
connection. There are at least two signals that indicate a
SYN-ACK segment is incorrect: 1. ACK number does
not acknowledge any SYN segment, 2. Data was already
exchanged in both directions, three way handshake must
have had finished successfully. A comment in the Net-
filter source code says’Our connection entry may be out
of sync, so ignore packets which may signal the real con-
nection between the client and the server’ (ignore here
means do not drop). The problem is that Netfilter is a
completely separate layer from the Linux TCP stack. It
does not have access to the real state of a TCP connec-
tion, but recreates it based on segments it has seen. It
does not assume the protected end point is on the same
machine and that segments it has accepted reached the
destination. For these reasons, tracking state of a TCP
connection and determining if a segment can be safely
dropped is very complex. As demonstrated in [2], there
are many corner cases to consider that can lead to hanged
connections when handled incorrectly.

5.2 Sequence numbers

To inject data at the start of a window of a one end of
the connection (the victim or its peer), the attacker needs
to know the sequence number of the next octet to be
sent (SND.NXT) by the other end. The exact value of
the SND.NXT of the end point to which data is inserted
does not need to be know, it is enough that the segment
that injects data has an acceptable acknowledge number
set. Injecting data is relatively easy if the end point is
not actively receiving data from its peer. If it is not the
case, the window and SND.NXT constantly change, in-
troducing an additional obstacle that the attacker needs
to overcome. The paper does not try to address these
difficulties.

Steps needed to determine SND.NXTs significantly
differ for the two tested systems. In both cases ACK
segments with an ephemeral port determined in the pre-
vious step are used. Windows firewall never drops ACK
segments that are exchanged withing an established con-
nection (have correct IP addresses and ports), so only
rules defined in RFC 793 need to be taken into account
when analyzing Windows responses. Netfilter imple-
ments stricter filtering rules. The following subsections
demonstrate that stricter filtering can significantly reduce
resources needed by the attack.

Host strictly following RFC 793

The sequence number of the victim’s peer needs to be
determined first. If a sequence number of an incoming
ACK segment is in window, and an acknowledge number
is acceptable, the segment does not trigger any response.
Otherwise, ACK segment is sent in response. Accord-
ing to RFC 793, acknowledge number is acceptable if it
is equal to the next octet to be sent or lower by at most
231. In other words, an acceptable acknowledge number
lies in range: [SND.NXT− 231, SND.NXT] (using the
’sequence space arithmetic’). Because of this, out of two
acknowledge numbers that differ by 231 one is guaran-
teed to be acceptable. The attacker needs to send

N =
2×232

window size

queries to find in-window sequence number. The risk
of accidentally corrupting the session is negligible. The
session would be corrupted only if the attacker happens
to acknowledge data that was lost in transit. In such case
the data won’t be retransmitted.

The attacker does not need to know the size of the vic-
tim’s window, although it can be often easily determined
(see [11]). The attacker can first assume the maximum
allowed window (1GB) and try sequence numbers that
differ by 230. If none of such sequence numbers is in-
window, the attacker can try sequence numbers in the

5

Table 1: Ephemeral port search. The full space of 65k ephemeral ports was searched.

connection scan queries pings max ports spoofed reflected
type time[s] per query segments segments

idle 35 592 2960 200 2202780 330
5/query 30/port/query 25kB
0.25MB total 171MB total
22ms avg RTT

download 852 849 8490 100 73614000 12000
10/query 1000/port/query 0.9MB
0.7MB total 5741MB total
749ms avg RTT

upload 690 852 8520 100 74013000 10000
10/query 1000/port/query 0.8MB
0.7MB total 5773MB total
656ms avg RTT

middle of ranges probed in the previous step. If the vic-
tim uses 0.5GB window, one of such sequence numbers
should be in-window. The steps can be repeated, each
time the assumed window size is divided by two until
in-window sequence number is found. Such search is
described with more details in [8].

Out of N queries, a single one that does not generate
a positive response needs to be found. The situation is
opposite to the port scanning, where a single query that
does generate a response was searched for. In practice,
searching for a negative answer is more difficult:

• Bottleneck is constantly overloaded. Scanning
needs to be done in sequence, with long enough
intervals between subsequent queries for a bottle-
neck’s queue to empty. Scanning several values at
once is not possible - it is relatively easy to distin-
guish between a traffic spike and a lack of traffic
spike, it is much harder to distinguish between a
traffic spike and a slightly smaller traffic spike.

• Natural traffic may mask the lack of response. In
contrast, when query to which the system responds
is searched for, natural traffic can only magnify the
traffic spike.

Figure 4 illustrates how RTT decreases when a probed
sequence number is within window. Table 2 shows that
even in case of an idle connection, the time needed for
a scan to finish is significant. In the experimental setup,
the PoC code would need roughly about 36 hours to com-
plete a sequential scan of a connection uploading data.

Knowing in-window sequence number, the attacker
can find the victim’s peer SND.NXT by looking for the
lowest sequence number that does not generate a re-
sponse. Such value is at most window size before the

in-window sequence number and can be found with bi-
nary search inlog(window size) queries.

Also, if the value of the victim’s SND.NXT is needed,
it can be now easily determined. 31 queries are required
to binary search for the highest acknowledge number
that does not generate any response (is acceptable). This
number is equal to the SND.NXT of the victim.

Host protected by Netfilter

The sequence number of the victim is determined first.
The technique exploits acknowledge number valida-
tion rules described in section 5.1. An ACK seg-
ment is accepted only if its acknowledge number is
equal to the next octet to be sent or lower by at
most max(66000, largest sender window seen). In other
words, an acceptable acknowledge number lies in range:
[SND.NXT − max(66000, largest sender window seen),
SND.NXT] (using the ’sequence space arithmetic’). A
segment with not acceptable acknowledge number is
silently dropped by the firewall. Netfilter does not val-
idate sequence numbers of ACKs. Linux TCP layer to
which not dropped segments are passed, validates a se-
quence number and responds with ACK if it is out of a
window.

This allows to find an acceptable acknowledge number
in 232/max(66000, largest sender window seen) tries. If
the victim responds to a segment that had an incor-
rect sequence number, it means the acknowledge num-
ber was accepted by Netfilter. Searching for an accept-
able acknowledge number is analogous to searching for
an ephemeral port. At most 232/66000= 65075 values
need to be probed and only one of these values generates
a positive response, which allows to probe several val-
ues in a single query. See table 1 again for estimates of

6

Table 2: In-window sequence number search for the host strictly following RFC 793 processing rules. The host used
a window of 65kB.

connection scan queries pings spoofed reflected
type time[s] segments segments

idle 16860 131338 394014 3940140 3939930
∼5h 3/query 30/query

32MB total 307MB total
85ms avg RTT

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

-393210

-327675

-262140

-196605

-131070

-65535

 0 65535

 131070

 196605

 262140

 327675

 0

 1

 2

 3

 4

 5

R
T

T
 a

v
e

ra
g

e
 [

m
s
]

L
o

s
t

p
in

g
s

scanned sequence number (normalized: 0 within window)

RTT Avarge Lost pings

(a) Connection idle, 5 pings/seq number, 30 spoofed segments/seq num-
ber

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

-393210

-327675

-262140

-196605

-131070

-65535

 0 65535

 131070

 196605

 262140

 327675

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

R
T

T
 a

v
e

ra
g

e
 [

m
s
]

L
o

s
t

p
in

g
s

scanned sequence number (normalized: 0 within window)

(b) Connection uploading data, 10 pings/seq number, 1000 spoofed seg-
ments/seq number

Figure 4: When a sequence number of a spoofed seg-
ment is in-window, the smallest average RTT and loss
rate are measured. The RTT and loss rate of other probes
are large, increasing duration of the scan. Natural traffic
spike could mask a minimum. Ping is considered lost if
the response did not arrive within two RTTs of previous
pings related to the same sequence number.

resources needed.
There is a trick that allows to further improve the

search efficiency. Netfilter can be easily fooled to set
the value of the ’largest sender window seen’ to the max-
imum value allowed by a window scaling factor that was
set during the connection establishment. To do it, 65075
ACKs need to be sent, covering the whole 232 acknowl-
edge number space with values that differ by 66000.
All these ACKs need to have window size set to the
maximum allowed value: 0xFFFF. One of the ACKs
should be accepted by Netfilter and sets maximum win-
dow seen so far to 0xFFFF × 2window scaling factor(note
that this does not affect the real window size, the TCP
end point rejects the ACK because it carries an incorrect
sequence number). In the experimental setup, the sender
set the window size to 114 with the scaling factor of 7,
which resulted in a small window of 114×27 = 14592B.
The sequence of spoofed ACKs fooled Netfilter that the
window increased to 0xFFFF × 27 = 8388480B. Such
a window allowed to cover the whole 232 acknowledge
number space with only 512 values. As it was the case
when the host following RFC 793 was targeted, the at-
tacker does not need to know the size of the victim’s
window and the scaling factor. Maximum allowed win-
dow of 1GB can be assumed, and divided by two until an
acceptable acknowledge number is found.

See table 3 for summary of resources needed by the
search.

Knowing an acceptable acknowledge number, binary
search can be used to find the sequence number of
the next octet to be sent by the victim. This requires
log(max(66000, largest sender window seen)) queries.

If the victim’s peer SND.NXT needs to be known, the
attacker has several ways to reveal it:

• Segments with a single byte of data can be used.
Netfilter validates sequence numbers of segments
that carry data. If the number is in-window, the seg-
ment is passed to the TCP layer which generates
ACK in response because data is out of order. If
the sequence number is out of the window, Netfilter
drops the segment. This technique carries the risk

7

Table 3: Acceptable acknowledge number search. The attacker fooled Netfilter that the sender window increased to
8.3MB, this allowed to cover the whole acknowledge number space with a small number of queries.

connection scan queries pings max ack values spoofed reflected
type time[s] per query segments segments

idle 3.4 60 300 25 20520 240
5/query 30/ack value/query 18kB
24kB total 1.6MB total
21ms avg RTT

download 61 51 510 25 627000 4000
10/query 1000/ack value/query 0.3MB
42kB total 49MB total
866ms avg RTT

upload 59 56 560 25 728000 6000
10/query 1000/ack value/query 0.5MB
45kB total 57MB total
602ms avg RTT

of corrupting the session with the accepted byte.

• If the attacker is able to send spoofed traffic to both
ends, and to reliably monitor traffic spikes of both
ends, the other end of the connection can be tar-
geted. If the other end follows the RFC 793, only
32 queries are needed to find the second SND.NXT.
If it is protected by Netfilter, the steps described in
this section can be used again.

• Resource intensive search for a sequence number
that does not generate any response can be per-
formed in a similar way it was done for a sys-
tem following RFC 793 in the previous subsection.
The only difference is that acceptable acknowledge
number is already known, only in-window sequence
number needs to be found.

5.3 Other variants

Different TCP stacks may implement different segment
processing rules, possibly closing some leaks described
in this paper, or opening new ones. For example, to pre-
vent a blind RST injection attack described in [12], a new
recommendation for RST processing was created [3].
According to RFC 793 any in-window RST should be
accepted and should reset the connection. The stricter
and safer rules require RST to have sequence number ex-
actly equal to the next expected sequence number, oth-
erwise, in-window RST segment should generate ACK
in response without resetting the connection. The docu-
ment advises to optionally throttle such ACKs. If such
ACKs are not throttled, the attacker can query for a win-
dow using RST segments with little risk of accidentally
resetting the connection.

6 Advanced scanning technique

TCP Fast Retransmit [13] can be exploited to trigger
substantial traffic spikes with relatively small number
of spoofed segments. Fast Retransmit is activated by
3 duplicated ACKs. TCP layer interprets such dupli-
cates as a message that a segment was lost but 3 sub-
sequent segments successfully arrived at the destination.
Each following duplicated ACK is interpreted as an ac-
knowledgement that another segment was successfully
received, but the lost segment still didn’t reach the des-
tination. Because segments are successfully leaving the
network, sender sends a new segment in response to each
such duplicated ACK. A burst of ACKs can trick the
sender to send a full window of data in a very short time
as described in [9]. The amplification factor for a net-
work with MTU 1500 is 37. This allows the attacker to
trigger observable traffic spikes with much fewer spoofed
segments.

The technique can also be used to detect ephemeral
port number of a host that does not filter segments ad-
dressed to not existing connection but responds with RST
to each such segment. A sequence of spoofed segments
directed to an incorrect port, results in a sequence of
RSTs that are silently dropped by the other end point
with no side effect. A sequence of spoofed segments di-
rected to the correct port, results in a sequence of ACKs
that trigger the other side to abruptly send a full win-
dow of data. If the attacker can detect the spike in traffic
caused by this window of data, the port can be deter-
mined.

The technique was not tested in practice.

8

7 Protection

To be fully protected against side channel information
leakage described in this paper, the protocol would need
to ensure that not authenticated segments are never an-
swered. If it was the case, the only information that
would leak to an off-path attacker, would be that the
segment was not authenticated. Providing authentication
mechanism is strong enough to make probability of gen-
erating acceptable request negligible, the attacker learns
nothing through the side channel that couldn’t be figured
out without mounting the attack. The TCP Authentica-
tion Option [14] provides exactly such mechanism, but
the option is not widely used.

In case of sequence numbers based authentication, it
can be difficult to ensure in a backward compatible way
that the protocol never responds to rejected segments.
Sequence numbers have double purpose. They were in-
tended primary for detecting duplicates, lost and out of
order segments. The use of sequence numbers as a pro-
tection mechanism against an adversary was emergent,
not even mentioned in the original specification. If Net-
filter filtered SYN-ACK segments addressed to an estab-
lished connection and dropped ACK segments with in-
valid sequence numbers, the attack against a system pro-
tected by Netfilter would be probably impossible. But
such stricter filtering rules require very careful analysis
to prevent hanged connections in corner cases.

Throttling responses to rejected segments should
be sufficient to make the information leakage non-
exploitable in practice. Throttling mechanism for ACKs
generated in response to in-window RSTs and in-window
SYN-ACKs was proposed in [3]. To be effective, the
mechanism would need to throttle also ACKs generated
in response to other rejected segments.

The attack is the easiest if the attacker shares an edge
router with the victim. The first few hops are also the
best place to reliably filter spoofed IP packets. Network
that is configured to drop such traffic is protected at least
against a local attacker.

Queueing policy that better isolates traffic coming
from different users could make the attack more difficult
to execute. A privacy protecting scheduling policy was
studied in [15]. The authors were able to significantly
reduce the correlation between traffic patterns of users
sharing a routing queue without introducing prohibitive
performance degradation. The designed policy reduced
the leakage of information regarding the traffic pattern
of a user, but the traffic load of a user was still leaking
through the increased packet processing time. To execute
the attack described in this paper, it is enough to detect
increased traffic load, knowing the exact traffic pattern
is not necessary. Further research is needed to asses the
effect of different queuing policies on the attack applica-

bility.

8 Summary

The paper demonstrated how changes in processing time
of packets that traverse a shared queue can reveal if a host
responded to spoofed traffic. It was shown that in case of
the TCP protocol, being able to determine if a system re-
sponded to spoofed segments is sufficient to compromise
the session, direct interception of the TCP traffic is not
required. Two different TCP implementations with dif-
ferent processing rules were examined. Both implemen-
tations responded to partially incorrect TCP segments,
allowing the attacker to determine values of secret fields
in separate steps. Substantial part of the work was dedi-
cated to experiments to determine if the attack is practical
in real-life scenario and to provide estimates of resources
needed. The paper concluded with the discussion of pos-
sible attack prevention mechanisms.

The work did not try to determine the practical limits
of the technique. There is a lot of room for further exper-
iments in scenarios more adverse for the attacker (lower
bandwidth between the attacker and the victim, busy bot-
tleneck shared between many users, different queuing
policies). Provided proof of concept can be used as a
starting point for such experiments. The paper also did
not attempt to provide a detailed survey of applicability
of the technique against popular TCP implementations.
Finally, the paper concentrated on compromising TCP
session, but the presented technique can be applicable in
other scenarios.

9 Acknowledgments

The author would like to pass a non-spoofed ACK to
Wojtek Matyjewicz for reviewing first drafts of the pa-
per, valuable comments and discussions.

References

[1] J. Postel, Transmission control protocol, RFC
793, Internet Engineering Task Force, 1981,http:

//tools.ietf.org/html/rfc793

[2] G. Van Rooij, Real Stateful TCP Packet Filtering in
IP Filter, 2001,www.usenix.org/events/sec01/
invitedtalks/rooij.pdf

[3] A. Ramaiah, R. Stewart, M. Dalal, Improving TCP’s
Robustness to Blind In-Window Attacks, RFC 5961,
2011,http://tools.ietf.org/html/rfc5961

[4] M. Larsen, F. Gont, Transport Protocol Port Ran-
domization Recommendations, RFC 6056, 2011,
http://tools.ietf.org/html/rfc6056

9

[5] F. Gont, Security Assessment of the Transmission
Control Protocol, 2011http://tools.ietf.org/
html/draft-ietf-tcpm-tcp-security-0

[6] S. Kadloor, Xun Gong, N. Kiyavash, T. Tezcan, N.
Borisov. 2010, Low-Cost Side Channel Remote
Traffic Analysis Attack in Packets Networks, IC-
CIEEE, 2010

[7] Antirez, New tcp scan method, 1998,http://
seclists.org/bugtraq/1998/Dec/79

[8] klm, Blind TCP/IP hijacking is still alive,
2007, http://www.phrack.org/issues.php?

issue=64&id=15

[9] S. Savage, N. Cardwell, D. Wetherall, T. Ander-
son, TCP Congestion Control with a Misbehaving
Receiver, ACM Computer Communication Review,
29(5), October 1999

[10] A. Kumar, D. Sisalem, TCP based denial-
of-service attacks to edge network: Analysis
and detection, 2004,iptel.org/~dor/papers/
Kumar1204_TCP.pdf

[11] Fyodor, Remote OS Detection, Nmap Network
Scanning. http://nmap.org/book/osdetect.

html

[12] P. Watson, Slipping in the Window: TCP Reset
Attacks, CanSecWest 2004 Conference

[13] M. Allman, V. Paxson, W. Stevens, TCP Conges-
tion Control, RFC 2581, 1999,http://tools.
ietf.org/html/rfc2581

[14] J. Touch, A. Mankin, R. Bonica, The TCP Authen-
tication Option, RFC 5925, 2010,http://tools.
ietf.org/html/rfc5925

[15] S. Kadloor, Xun Gong, N. Kiyavash, P. Venkita-
subramaniam, Designing Privacy Preserving Router
Scheduling Policies, Information Sciences and Sys-
tems (CISS), 2011

[16] Reflection Scan Proof of Concept https://
github.com/wrr/reflection_scan (to be pub-
lished)

10

