
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

FLSSM: A Federated Learning Storage Security
Model with Homomorphic Encryption
Yang Li, Chunhe Xia, Chang Li, Xiaojian Li and Tianbo Wang, Member, IEEE,

Abstract—Federated learning based on homomorphic encryp-
tion has received widespread attention due to its high security
and enhanced protection of user data privacy. However, the
characteristics of encrypted computation lead to three chal-
lenging problems: “computation-efficiency”, “attack-tracing” and
“contribution-assessment”. The first refers to the efficiency of
encrypted computation during model aggregation, the second
refers to tracing malicious attacks in an encrypted state, and
the third refers to the fairness of contribution assessment for
local models after encryption. This paper proposes a federated
learning storage security model with homomorphic encryption
(FLSSM) to protect federated learning model privacy and address
the three issues mentioned above. First, we utilize different
nodes to aggregate local models in parallel, thereby improving
encrypted models’ aggregation efficiency. Second, we introduce
trusted supervise nodes to examine local models when the global
model is attacked, enabling the tracing of malicious attacks under
homomorphic encryption. Finally, we fairly reward local training
nodes with encrypted local models based on trusted training
time. Experiments on multiple real-world datasets show that our
model significantly outperforms baseline models in terms of both
efficiency and security metrics.

Index Terms—Federated Learning, Blockchain, Homomorphic
Encryption, Secret Sharing

I. INTRODUCTION

Federated Learning (FL) [1], [2] has emerged as a novel
machine learning paradigm designed to protect the privacy
and security of user data [3]. In traditional centralized machine
learning, user data must be uploaded to a central server for
model training, which not only increases the risk of data
breaches but may also raise user concerns about data privacy
[4]. In federated learning, users only need to share model
parameters while keeping their data local, effectively avoiding
direct data transmission and leakage, thus attracting increasing
attention [5].

Yang Li is with the School of Computer Science and Engineering, Beihang
University, Beijing 100191, China (e-mail: johnli@buaa.edu.cn).

Chunhe Xia is with the Key Laboratory of Beijing Network Technology,
Beihang University, Beijing 100191, China, and also with the Guangxi
Collaborative Innovation Center of Multi-Source Information Integration and
Intelligent Processing, Guangxi Normal University, Guilin 541004, China. (e-
mail: xch@buaa.edu.cn).

Chang Li is with the School of Computer Science and Technology,
Zhengzhou University of Light Industry, Zhengzhou 450000, China (e-mail:
3031169424@qq.com).

Xiaojian Li is with the College of Computer Science and Information
Technology, Guangxi Normal University, Guilin 541004, China.

Tianbo Wang is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China, and also with the Shanghai Key Laboratory
of Computer Software Evaluating and Testing, Shanghai 201112, China

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.

Manuscript received April 19, 2021; revised August 16, 2021.

However, federated learning is a double-edged sword. On
the positive side, keeping data on local devices significantly
reduces the risk of exposure during transmission, alleviating
concerns about data privacy security and increasing people’s
willingness to participate in model training [6]. On the neg-
ative side, malicious attackers may still steal model parame-
ters through man-in-the-middle attacks, inference attacks, and
other methods to deduce users’ data distribution or determine
whether specific data exists, causing privacy leakage and in-
creasing fears about data security [7]. Therefore, methods that
use encryption technologies to protect local model parameter
privacy have become increasingly important.

Widely used encryption technologies in federated learning
can be divided into homomorphic encryption, secure multi-
party computation, and others [8]. Both provide high security
but come with high computational complexity, requiring sub-
stantial computational resources. Secure multi-party compu-
tation requires cooperation between multiple parties and has
high communication overhead [9]. Homomorphic encryption
allows a single participant to compute on encrypted data
locally without interacting with other parties, reducing depen-
dency on other participants [10]. However, federated learning
based on homomorphic encryption faces three unavoidable is-
sues: encrypted model aggregation efficiency, encrypted model
access control, and encrypted model contribution assessment
[11].

Since homomorphic encryption encrypts local models, the
aggregation server needs to perform homomorphic computa-
tions on these models, placing high demands on the server’s
computational capabilities [12]. When numerous local models
exist, the requirements for the aggregation server’s computa-
tional power and resources increase significantly. Since local
models are encrypted before being sent to the aggregation
server, which performs homomorphic computations during ag-
gregation, the server cannot verify the encrypted local models.
If malicious attackers implement model poisoning or back-
door attacks, model performance may significantly decrease,
posing security threats to the global model. Assessing user
contributions in federated learning is crucial for sustainable
development, as fair incentive mechanisms can encourage ac-
tive user participation in model training. However, in federated
learning with homomorphic encryption, users share encrypted
local models, making existing methods based on gradients,
performance, or data quality inadequate [13]. Therefore, how
to fairly evaluate user contributions without compromising
data privacy becomes one of the challenges.

To address these issues, we propose A Federated
Learning Storage Security Model with Homomorphic En-

ar
X

iv
:2

50
4.

11
08

8v
1

 [
cs

.C
R

]
 1

5
A

pr
 2

02
5

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

cryption (FLSSM), consisting of three main components:
a Homomorphic-encryption-based Aggregation Mechanism
(HAM), a Model Access Control Mechanism based on
Shamir’s Secret Sharing (MACM), and an Incentive Mech-
anism based on Trusted Time Intervals (IMTTI). In HAM,
different edge nodes parallelly aggregate different slices of
local models, improving aggregation efficiency under homo-
morphic encryption. MACM allows regulatory nodes to review
local models under certain conditions, preventing malicious
attacks on local models in encrypted states. IMTTI rewards
users based on trusted local model training duration, proposing
a new trusted model contribution assessment method without
leaking model privacy. Our contributions can be summarized
as follows.

1) We propose the FLSSM model to address the issues
of aggregation efficiency, malicious attacks, and reward
allocation in federated learning based on homomorphic
encryption. Afterward, we design an aggregation algo-
rithm, an access control mechanism, and an incentive
mechanism to solve these problems respectively.

2) We present a novel aggregation algorithm that improves
the aggregation efficiency of federated learning under
homomorphic encryption through parallel aggregation,
while establishing trusted nodes to review local models
and trace malicious attacks.

3) We introduce a new incentive mechanism that con-
ducts reliable assessment of model contributions through
model training time, achieving fair user incentivization
without compromising model privacy.

4) Experiments on two real-world datasets demonstrate that
our model’s effectiveness.

The rest of this article is organized as follows. We first
give a comprehensive review of related works in Section II.
Next, we give the preliminaries for this article in Section III,
then formalize the problems and present technical details of
FLSSM in Section IV. After that, we conduct a series of
experiments on four public datasets to evaluate FLSSM in
Section V. Finally, Section VI concludes this work.

II. RELATED WORKS

A. Encrypted Model Aggregation Efficiency

Protecting federated learning model privacy with encryption
technologies can enhance security but also requires extensive
computation, which reduces the aggregation efficiency of fed-
erated learning. To improve the efficiency of federated learning
after encryption, Chengliang Zhang et al. [14] encoded a batch
of quantized gradients into a single long integer for one-
time encryption, and developed new quantization and encoding
schemes as well as a new gradient clipping technique. Ren-
Yi Huang [15] introduced selective encryption of key model
parameters to reduce computational/communication overhead,
addressing the efficiency issues in HE-based federated learn-
ing. Sean Choi et al. [16] improved efficiency by offloading
computationally intensive homomorphic encryption tasks to
SmartNICs, reducing CPU utilization and improving resource
allocation. Kai Cheng et al. [17] utilized Intel QAT hardware

accelerators, error-feedback gradient compression, and Huff-
man coding to simplify encryption and aggregation processes.
Valentino Peluso et al. [18] introduced a Private Tensor
Freezing (PTF) gating scheme that reduces the complexity of
encryption/decryption, communication, and server aggregation
over time. However, existing methods struggle to balance
privacy and aggregation efficiency during model training, often
sacrificing some privacy to improve efficiency.

B. Encrypted Model Access Control

Encrypted model parameters cannot be accessed, which
creates security vulnerabilities during federated learning model
aggregation, as malicious attackers may poison local models
before sending them to the aggregation server. Existing model
access control mechanisms can be categorized into multi-
key homomorphic encryption and authentication/authorization
approaches. Yuxuan Cai et al. [19] introduced ”EMK-BFV,”
combining multi-key homomorphic encryption with Trusted
Execution Environments (TEEs) to enhance privacy, access
control, and efficiency in federated learning. Jiachen Shen
[20] expanded the scope of addressed privacy risks by en-
crypting with an aggregated public key and requiring joint
decryption among participants. Xueyin Yang [21] designed a
multi-private-key secure aggregation algorithm implementing
homomorphic addition operations, allowing servers and clients
to freely choose public-private key pairs, making it more
suitable for deep models. Additionally, they compressed multi-
dimensional data into one dimension, significantly reduc-
ing encryption/decryption time and ciphertext transmission
communication. Caimei Wang [22] proposed a fingerprint-
based subkey verification algorithm (FKM) to generate unique
fingerprints for each subkey, while designing a gradient pro-
tection scheme to achieve higher security levels and reduce en-
cryption overhead. Chun-I Fan et al. [23] proposed an identity-
based multi-receiver homomorphic proxy re-encryption (IMH-
PRE) scheme that utilizes homomorphic addition and re-
encryption to provide improved encrypted data processing and
access control. When adopting this scheme, participants can
encrypt directly using public identities. Jing Wang et al. [24]
proposed a hierarchical cloud-edge orchestration federated
learning architecture for IoT, designing an IoT knowledge
sharing method based on multi-level access control encryp-
tion to ensure knowledge confidentiality. Hui Lin et al. [25]
proposed an attribute-based secure access control mechanism,
discovering the relationship between users’ social attributes
and their trustworthiness, where users’ trustworthiness de-
pends on their social influence, which is then transformed
into trust levels. They used federated deep learning to obtain
optimal thresholds for trust levels and related access control
parameters to improve access control accuracy and enhance
privacy protection.

While existing federated learning model access control
mechanisms improve privacy protection and security to some
extent, they often involve complex key management. A key
challenge is how to enhance the flexibility of control mech-
anisms to accommodate the dynamic nature of nodes in
federated learning.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

C. Encrypted Model Contribution Assessment

As local models are sent to the aggregation server in an
encrypted state, it is difficult to assess the contributions of
local models based on existing methods such as Shapley
values or accuracy. Liangjiang Chen et al. [26] addressed
encryption efficiency and contribution assessment issues by
asynchronously allocating gradient weights securely based on
user data quality. Ruizhe Yang et al. [27] proposed a fed-
erated learning method combining blockchain, homomorphic
encryption, and reputation. Edge nodes with local data can
train encrypted models using homomorphic encryption, and
their contributions to aggregation are assessed through a rep-
utation mechanism. Both models and reputations are recorded
and verified on the blockchain through a consensus process,
with rewards determined according to incentive mechanisms.
Longyi Liu et al. [28] integrated federated learning into
blockchain consensus protocols, proposing an FRConsensus
algorithm based on model evaluation and stake election to
overcome problems of passive participation and resource waste
during model training. Additionally, they introduced model
watermarking and ECC public key encryption mechanisms
to protect parameter transmission. Biwen Chen et al. [29]
first constructed an efficient non-interactive designated de-
cryptor functional encryption scheme that protects training
data privacy while maintaining high communication perfor-
mance. Then, by combining this framework with a carefully
designed blockchain, they proposed a blockchain-based fed-
erated learning framework providing fair compensation for
medical image detection. Guilin Guan et al. [30] encrypted
weights using multi-key homomorphic encryption to resist
data recovery attacks launched by malicious edge servers and
devices. Meanwhile, based on marginal loss techniques, they
detected malicious clients or those uploading low-quality con-
tributions, and assessed edge devices’ contribution levels based
on Shapley techniques to distribute rewards to participants.
Ke Geng et al. [31] utilized arithmetic sharing to achieve
submodel reconstruction and utility evaluation required in
gradient Shapley under privacy protection, using shuffling
and asymmetric encryption to ensure the privacy of test data
collected from participating clients. Yingxin Li et al. [32]
proposed a personalized residual federated secure learning
scheme (PRFSL) based on homomorphic encryption and edge
computing to guarantee security, timeliness, integrity of task
data, and privacy needs of group workers, thereby improving
encryption efficiency. Finally, they proposed a personalized
privacy incentive mechanism based on evolutionary game
theory to improve overall service utility.

Existing research has made some progress in incentive
mechanisms for encrypted models, but in practical applica-
tions, due to encryption and privacy protection constraints,
it remains challenging to balance privacy protection and the
verifiability of contribution assessment.

III. PRELIMINARIES

A. Homomorphic Encryption

Homomorphic encryption refers to encryption algorithms
where the ciphertexts satisfy homomorphic operational proper-

ties, meaning that encrypting data after performing addition or
multiplication operations is equivalent to performing addition
or multiplication operations on already encrypted data [33].
For any encryption function ϑ, if for any data A and data B,
it satisfies Decϑ(Encϑ(A) ⊙ Encϑ(B)) = A ⊕ B, then ϑ is
considered to have homomorphism. Based on this, homomor-
phic encryption can be classified according to the supported
operations into additive homomorphism and multiplicative
homomorphism. Additive homomorphism indicates that en-
crypted ciphertexts support addition operations, while multi-
plicative homomorphism indicates that encrypted ciphertexts
support multiplication operations. Encryption functions that
only support addition, only support multiplication, or support
a limited number of addition or multiplication operations
are known as semi-homomorphic or partially homomorphic
encryption; while encryption functions that satisfy unlimited
addition or multiplication operations are fully homomorphic
encryption.

Existing mainstream homomorphic encryption algorithms
include CKKS, BFV, and Paillier algorithms. The CKKS
algorithm is based on the Ring Learning With Errors problem
(RLWE) and supports approximate homomorphic encryption.
It has the advantage of supporting efficient floating-point
operations, but also suffers from accumulated errors and
reduced computational efficiency due to ciphertext expansion.
The BFV algorithm is also based on the Ring Learning With
Errors problem (RLWE) and supports fully homomorphic
encryption. It has the advantage of supporting precise integer
operations, but also has higher computational complexity and
significant ciphertext expansion, leading to increased storage
and transmission costs. The Paillier algorithm is based on
the large number factorization problem and supports partially
homomorphic encryption. It has the advantages of simple
implementation and support for additive homomorphism, but
only supports additive homomorphism and not multiplicative
homomorphism, limiting its application scenarios.

B. Shamir’s Secret Sharing

Shamir’s Secret Sharing is a threshold scheme based on
polynomial interpolation, allowing a secret S to be divided
into n shares, where at least t shares are required to recover
the secret [34]. The main steps are as follows:

1) Initialization. Suppose the data to be encrypted is s,
which will be divided into n shares, with at least t shares
required for decryption. Therefore, n is the number of
participants, and t is the threshold in Shamir’s secret
sharing. Randomly select a large prime number p such
that (p > s).

2) Encryption. Arbitrarily select t-1 random numbers
(x1, · · · , xn), construct a polynomial f(x) of degree
t− 1, where f(0) = s:

f(x) = s+a1x+a2x
2+· · ·+at−1x

t−1 (mod p) (1)

Hence, (a1, a2, . . . , at−1) are random coefficients (0 ≤
ai < p). Arbitrarily select n different numbers
(x1, · · · , xn) ∈ 𭟋+, and calculate the corresponding
yi = f(xi) = s+a1xi+a2x

2
i+· · ·+at−1x

t−1
i (mod p).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Local Model

Encrypted Updated
Local Model

Local Training Node

Server

Upload Local Model to Server

Distribute Global Model to Local
Training Node

+ +
Problem 1:

Computation-
Efficiency

=

Encrypted Global Model

Problem 2:
Attack-Tracing

Global Model Performance Trends

Problem 3:
Contribution-Assessment

Model Poison Attack

Performance
evaluation

Attacker

Local Model Update and Encrypt

Fig. 1: Motivation for this work. Local training nodes update their local models, encrypt them using homomorphic encryption,
and send them to the server. The server performs homomorphic computation, which draws three critical problems in global
model aggregation: computation-efficiency, attack-tracing, and contribution-assessment. Computation-efficiency implies that
homomorphic computation requires substantial computational resources. Attack-tracing refers to the covert nature and difficulty
in tracing attacks initiated by local models in an encrypted state. Contribution-assessment refers to the challenge of calculating
the contributions made by encrypted local models and providing fair rewards.

Each xi and its corresponding yi form a secret share, and
(xi, yi) is distributed to the corresponding n participants.

3) Decryption. Collect at least t secret shares (xi, yi), and
use Lagrange interpolation to calculate s = f(x = 0).
The Lagrange basis polynomials Li(x) and the calcula-
tion of s are shown as follows:

Li(x) =
∏

1≤j≤t
j ̸=i

x− xj

xi − xj
(2)

s =

t∑
i=1

yiLi(0) (mod p) (3)

C. Trusted Timestamps

Trusted timestamps are defined in RFC 3161 [35], essen-
tially binding the hash value of a user’s electronic data with an
authoritative time source. Based on this, the timestamp server
generates a signature, producing an unforgeable timestamp file
that proves a specific file or data existed before a certain
time. Through hash values and digital signatures, trusted
timestamps ensure that files have not been tampered with
after the timestamp generation. Trusted timestamps rely on
trusted Timestamp Authorities (TSAs), which are typically
recognized by governments or industries and have high cred-
ibility. Anyone can verify the validity of a timestamp using
the TSA’s public key, ensuring the transparency and fairness
of the process. The main steps are as follows:

1) Generate Digest. Calculate a hash of the data for which
a timestamp is to be generated, producing a data digest
h:

h = H(D) (4)

where H is the hash operation, D is the data.
2) Initiate Timestamp Request. The user sends a request

to the Time Stamping Authority (TSA), including the
hash value h of the data, to generate a timestamp σ:

σ = SignTSA(T) (5)

Hence, T = (h, time) where h is the hash value of the
data, and time is the current time, SignTSA is TSA
signature the time and data digest to generate σ.

3) Return Timestamp. The TSA returns (T, σ) to the user.
4) Verify Timestamp. After receiving the timestamp (T, σ)

returned by the TSA, the user can verify whether the
signature σ is authentic using the TSA’s public key.

VerifyTSA(T, σ) = True (6)

IV. METHODOLOGY

In this section, we will provide a detailed introduction
of our proposed model. First we would like to present a
statement regarding the practical FL privacy security problem.
Then, we will provide an overview of the proposed FL frame-
work. Our method consists of three main parts: Hierarchical
Aggregation Mechanism Based on Homomorphic Encryption
(HAM),Model Access Control Mechanism Based on Shamir’s
Secret Sharing (MACM) and Incentive Mechanism Based on
Trusted Time Intervals (IMTTI). Each module used in the
framework will be described in separate subsections below.

A. Problem Statement

Our goal is to address a federated learning privacy security
problem in a common scenario. This scenario involves two
different organizations: regulatory authorities and participating

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

clients. Both organizations seek to collaboratively complete
model training, but regulatory authorities need to oversee
local models of participating clients to prevent malicious
behavior. Therefore, how to balance the security, privacy, and
efficiency of participating clients’ local models becomes a key
issue. Figure 1 depicts the federated learning training process
under homomorphic encryption. To further elaborate, we can
summarize this scenario into 3 key problems:

1) Encryption technology efficiency problem. The most
effective existing method for protecting local model
privacy and security is through encryption technologies,
such as homomorphic encryption and secure multi-party
computation, where local models are encrypted before
transmission and aggregation. However, encryption tech-
nologies require substantial computational resources,
placing high demands on the aggregation server’s com-
putational capabilities.

2) Historical model access control problem. Encryption
technologies like homomorphic encryption can effec-
tively protect the privacy of local models, but they
also provide opportunities for model attacks launched
by malicious nodes. Once encrypted, models cannot
be accessed or supervised. Existing secure aggregation
techniques struggle to filter out malicious models after
local model encryption, allowing attackers to potentially
launch poisoning attacks or backdoor attacks that disrupt
the federated learning training process.

3) Incentive mechanism fairness and privacy problem. Fed-
erated learning requires multiple clients to jointly train
models in an untrusted environment, necessitating in-
centive mechanisms to maintain the sustainability of
federated learning model training. Fair incentive mech-
anisms can better motivate clients to train models on an
individual basis. Existing research on incentive mecha-
nism contribution fairness in federated learning can be
categorized into approaches based on Shapley values,
marginal contributions, gradient contributions, etc. How-
ever, the assessment process may require exposing some
data or model information of the participants, potentially
causing model privacy leakage issues.

TABLE I: List of Notations

Notations Descriptions

FL Federated Learning
hg Hash value of the global model
Lκ Loss function of Lnκ
lmκ

λ Local model parameters of Lnκ at the start of round λ
lmκ

u;λ Updated local model parameters of Lnκ after round λ

lmκ;Λ
u;λ Parameters of the Λ-th shard of lmκ

u;λ

Enλ,Λ
ι Enι responsible for aggregating the Λ-th shard of all local

model parameters in round λ

B. Model Overview

As shown in Figure 2, the proposed model is a federated
learning framework designed to address the aforementioned
three issues.

This framework primarily comprises three modules, which
will be elaborated upon in detail below. In our proposed
distributed aggregation mechanism based on homomorphic
encryption, the parameters of different slices of the local
models are distributed to different edge aggregation nodes
for aggregation, thereby achieving parallel aggregation of
local models under homomorphic encryption and improving
the efficiency of global model aggregation. This mechanism
is described in Section IV-D. The historical model access
control mechanism authorizes multiple trusted nodes to jointly
hold the homomorphic encryption keys of local models. This
approach ensures the security of local model storage while
enabling model monitoring and malicious behavior traceabil-
ity. This content is described in Section IV-E. Furthermore,
the fairness of incentive mechanisms in federated learning is
crucial for its sustainable and healthy development. However,
existing privacy-preserving methods based on encryption tech-
nology in federated learning is hard to accurately evaluate
model contributions. We have designed a trustworthy node
participation activeness evaluation method to reward nodes,
thereby providing fair incentives to participating entities while
protecting the privacy of local models. This content is de-
scribed in Section IV-F.

C. Initialization

In FLSSM, we denote all nodes’ set is N =
n1, n2, . . . , nθ, θ ∈ N+ is the number of all nodes. N contains
global aggregation nodes set, edge aggregation nodes set, local
training nodes set. There has three type of nodes in FLSSM:

1) Global aggregation node(Gn): The set of
global aggregation nodes is denoted as
GN = {Gn1, Gn2, . . . , Gnϑ}, where ϑ ∈ N+.
These nodes aggregate the various slices of local
models, which have already been aggregated by the
edge aggregation nodes, into the final global model.

2) Edge aggregation node(En): The set of edge aggregation
nodes is denoted as EN = {En1, En2, . . . , Enι},
where ι ∈ N+. These nodes receive the encrypted
parameters of a specific layer from the local models,
perform an initial aggregation of the local model pa-
rameters of the same layer, and then send them to Gn
for final aggregation.

3) Local training node(Ln):The set of local training nodes
is denoted as LN = {Ln1, Ln2, . . . , Lnκ}, where κ ∈
N+. The local training nodes are responsible for training
the local models, encrypting different slices of the local
models, and sending the encrypted slices to different En
for initial aggregation.

4) Supervise nodes(Sn): The set of supervise nodes is
denoted as SN = {Sn1, Sn2, . . . , Snη},where η ∈ N+.
When the model may be under attack and local models
need to be verified and reviewed, Gn will initiate a
inspection request to Sn. Upon receiving the inspection
request, Sn obtains the encryption keys of the local
models to review them.

There are three types of models in FLSSM:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

1
Local Model Update and
Homomorphic Encryption

Hierarchical Aggregation
Mechanism Based on

Homomorphic Encryption

Model Access Control
Mechanism Based on

Shamir's Secret Sharing

Incentive Mechanism Based
on Trusted Time Intervals

Local Training Node

Local Model

Encrypted Updated
Local Model

Splited Encrypted
Updated Local Model

Global Aggregation Node

Edge Aggregation Node

Partial Model

Global Model

Supervise Node

Key Generation Center
for Attribute-Based
Encryption

Homomorphic
Encryption Key

Homomorphic
Encryption

Attribute-Based Encryption

Shamir
Secret
Sharing Distribute

Ask for Shared Secrets

Return Secrets

Reconstruct

Local Model Inspection

Ask for Local

Model Inspection

Assign Supervise
Attributes

Trusted Timestamp
Server

Fri Apr 11
2025

11:12:29

Fri Apr 11
2025

11:12:29

Fri Apr 11
2025

11:12:29

Fri Apr 11
2025

11:12:29

Cauculate Local
Training Time Spend

Local Training Time
Spend

Reward Local Training Nodes

2 3 4

Request Trusted
Timestamp

Fig. 2: Overview of FLSSM. Federated learning can be broadly divided into two parts: model training and model aggregation.
Our research focuses on the second part, where we introduce edge aggregation nodes, supervise nodes, and trusted timestamp
servers to improve model aggregation efficiency, enhance security, and provide reliable evidence for incentive mechanisms.

• Local model (lm): The local model set is denoted as
LM = {lm1

λ, lm
2
λ, . . . , lm

κ
λ}, where λ ∈ N+ represents

the global training round, and κ represents the node id.
lmκ

λ represents the local model updated by Lnκ in round
λ.

• Partial model (pm): The partial model set is denoted
as PM = {pm1

λ, pm
2
λ, . . . , pm

Λ
λ}, where Λ ∈ N+

represents the Λ-th shard after the local model is evenly
divided. After En receives the homomorphically en-
crypted parameters of a certain layer of the local models,
it aggregates the received parameters of that layer through
homomorphic computation to obtain pm. pm is sent to
Gn for aggregation to obtain the global model of the λ-th
round in ciphertext.

• Global model (gm):The global model set is denoted as
GM = {gm1, gm2, . . . , gmµ}, where µ ∈ N+ represents
the global round number. The global model is aggregated
by Gn from the collected pm.

The overall model workflow is as follows:

1) The aggregation node initializes the global model and
distributes it to the local training nodes. Simultaneously,
it calculates the hash value of the global model and sends
a start timestamp request to the trusted timestamp server.

2) The local training nodes update the model using their
local data, obtaining the updated local models.

3) The local training nodes homomorphically encrypt the
local model according to different slices and send them
to the corresponding edge aggregation nodes. Concur-
rently, they calculate the hash value of the local model
and send an end timestamp request to the trusted times-
tamp server.

4) The local training nodes utilize Shamir’s secret sharing
scheme to perform attribute-based encryption on the
homomorphic encryption keys, dividing them into mul-
tiple parts and distributing them to the supervise nodes
(trusted nodes, such as representative nodes), stipulating
that only entities with the ’supervise node’ attribute can
decrypt the keys.

5) The edge aggregation nodes aggregate the received local
model slices to obtain pm.

6) The edge aggregation nodes send pm to Gn, and Gn
aggregates the received pm to obtain gm.

7) The incentive mechanism calculates the time spent by
each local training node on training based on the start
and end times received by the trusted timestamp server
and rewards the local training nodes accordingly based
on their training time.

8) Gn distributes gm to Ln, and the above steps are
repeated until the global model converges.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

D. Hierarchical Aggregation Mechanism Based on Homomor-
phic Encryption (HAM)

In FLSSM, we propose a Hierarchical Aggregation Mecha-
nism Based on Homomorphic Encryption (HAM) to protect
the privacy and security of local models using encryption
technology. Existing methods for protecting the privacy of
federated learning models using encryption technology include
homomorphic encryption, secure multi-party computation, and
differential privacy. Among these, methods using homomor-
phic encryption technology offer the highest level of security
but require significant computational resources, severely im-
pacting the training efficiency of federated learning. In this
work, we propose a distributed aggregation mechanism.

In HAM, we choose CKKS to encrypt the model param-
eters because CKKS supports efficient floating-point arith-
metic, making it suitable for scenarios requiring high-precision
calculations such as machine learning and deep learning.
Although there is a certain issue of error accumulation, it
can be controlled through reasonable parameter settings in
many practical applications. The core idea of the Cheon-Kim-
Kim-Song (CKKS) algorithm [36] is to perform homomorphic
encryption over complex numbers, allowing direct execution of
addition and multiplication operations on ciphertexts without
decryption. This characteristic makes the CKKS algorithm
particularly suitable for processing numerical data, such as
floating-point and complex numbers, and thus it has a wide
range of applications in machine learning, data analysis, and
privacy protection.

We flatten the local models and then evenly distribute the
flattened parameters according to the number of different edge
aggregation nodes. Each part is homomorphically encrypted
separately, and the encrypted model slices are sent to different
edge aggregation nodes. These slices are aggregated in parallel
as pm at the edge aggregation nodes. This approach improves
the efficiency of homomorphic encryption while ensuring
model privacy. This method enhances the model aggrega-
tion efficiency under homomorphic encryption and reduces
the time required for homomorphic encryption computations
during model aggregation. The algorithm details are shown in
Algorithm 1.

The main steps are as follows:
1) Ln performs local training to obtain the updated local

model. Assuming the current Ln id is ρ, and the global
model training round is λ, the updated local model of
Ln can be denoted as lmρ

u;λ;

lmρ
u;λ = lmρ

λ −∇Lρ(lm
ρ
λ) (7)

Here, ∇ is the learning rate, and Lρ is the loss function
of Lnρ:

Lρ =
1

|Dρ|
∑

(x,y)∈Dρ

ℓ(lmρ
λ;x, y), (8)

Here, Dρ is the dataset of Lnρ, (x, y) are the data points
in Dρ, and ℓ(lmρ

λ;x, y) is the loss value of lmρ
λ on the

data x, y.
2) Lnρ flattens the local model and divides it equally

into several shards, then homomorphically encrypts the

different model shards. We adopt the CKKS algorithm
as the homomorphic encryption algorithm in FLSSM.
Assuming the encryption parameters of Lnρ include the
polynomial modulus qρ, polynomial degree Nρ, scaling
factor ∆ρ, and public-private key pair (pkρ, skρ), the
process of homomorphically encrypting the Λ-th shard
(lmρ;Λ

u;λ) of lmρ
u;λ can be represented as:

[lmρ;Λ
u;λ] = CKKS.Encrypt(pkρ,∆ρ · lmρ;Λ

u;λ) (9)

3) Ln sends the encrypted model parameters of different
slices to the corresponding En. Assuming [lmρ;Λ

u;λ] cor-
responds to Enλ,Λ

ι , meaning that in the λ-th round, Enι

is responsible for aggregating the model parameters of
the Λ-th shard of all local models, we have:

Ln→ Enλ,Λ
ι : [lmρ;Λ

u;λ], (10)

4) En performs homomorphic computation on the received
model parameters of the same shard from different Ln
to obtain [pm];

[pm]Λλ = CKKS.Add

(
1

κ
,

κ∑
ρ=1

[lmρ;Λ
u;λ]

)
(11)

5) En sends pm to Gn, and Gn concatenates the received
[pm] to obtain the ciphertext of the global model [gm].

[gm]λ = CKKS.Concat
(
{[pm]Λλ}

ϱ
Λ=1

)
(12)

Here, ϱ is the total number of model slices, which also
the En number.

6) Gn distributes [gm] to Ln, which decrypts it for the
next round of model training.

Gn
[gm]−−−→ Li : Train(CKKS.Decrypt(ski, [gm])),

∀i ∈ {1, 2, . . . , κ}
(13)

In HAM, we homomorphically encrypt the local model ac-
cording to different model slices and send them to designated
edge aggregation nodes. The edge aggregation nodes aggregate
these and send the result to the global aggregation node.
Compared to the traditional aggregation mechanism where a
single server performs homomorphic encryption and aggrega-
tion computation, this reduces the required time and alleviates
the computational burden on the server during the aggregation
process, thereby improving computational efficiency while
ensuring the security of model parameters.

E. Model Access Control Mechanism Based on Shamir’s Se-
cret Sharing (MACM)

In FLSSM, we propose a model access control mechanism
based on Shamir’s secret sharing algorithm. Protecting the
privacy and security of local models through encryption ef-
fectively prevents data leakage but also creates opportunities
for malicious nodes to exploit. Since the server cannot access
local models and can only aggregate encrypted local models,
we introduce a supervisory node to inspect and validate local
models. For malicious local models, the supervisory node
can exclude them from the current round of global model
aggregation and penalize the corresponding training node.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Algorithm 1 Hierarchical Aggregation Mechanism Based on
Homomorphic Encryption (HAM)

Require:
1: Lnρ: Local nodes with id ρ
2: Enι: Edge aggregation nodes
3: Gn: Global aggregation node
4: λ: Current training round
5: κ: Number of local nodes
6: ϱ: Total number of model slices

Ensure: Global model for next round training
7: function LOCALTRAINING(Lnρ, λ)
8: Update local model: lmρ

u;λ ← lmρ
λ −∇Lρ(lm

ρ
λ)

9: Flatten and split lmρ
u;λ into ϱ shards

10: for each shard Λ ∈ {1, . . . , ϱ} do
11: [lmρ;Λ

u;λ]← CKKS.Encrypt(pkρ,∆ρ · lmρ;Λ
u;λ)

12: Send [lmρ;Λ
u;λ] to corresponding Enλ,Λ

ι

13: function EDGEAGGREGATION(Enι, λ, Λ)
14: Collect encrypted shards from all local nodes
15: [pm]Λλ ← CKKS.Add(1κ ,

∑κ
ρ=1[lm

ρ;Λ
u;λ])

16: Send [pm]Λλ to Gn

17: function GLOBALAGGREGATION(Gn, λ)
18: Collect all [pm]Λλ from edge nodes
19: [gm]λ ← CKKS.Concat({[pm]Λλ}

ϱ
Λ=1)

20: for each Lni, i ∈ {1, . . . , κ} do
21: Send [gm]λ to Lni

22: function LOCALDECRYPTION(Lni, [gm]λ)
23: gmλ ← CKKS.Decrypt(ski, [gm]λ)
24: Begin next round training with gmλ

When the global model is under attack, the supervisory node
can access historical local models to trace the originator of the
malicious behavior.

To protect the privacy of local models, we apply homomor-
phic encryption. To prevent the supervisory node from arbi-
trarily accessing local models and causing privacy breaches,
we split the homomorphic encryption key of Ln into multiple
shares using Shamir’s secret sharing technique. These shares
are distributed among local training nodes, edge aggregation
nodes, global aggregation nodes, and the supervisory node.
When the model is subject to a malicious attack, the su-
pervisory node sends queries to nodes holding key shares
to request the homomorphic encryption key. Shamir’s secret
sharing enables a (t,n) access control mechanism, allowing the
supervisory node to decrypt the key using shares from other
nodes if some devices are offline.

However, storing the homomorphic encryption key across
multiple nodes introduces the risk of malicious nodes col-
luding to reconstruct the key. To mitigate this, after splitting
the homomorphic encryption key at local nodes, we further
encrypt the shares using attribute-based encryption, ensuring
that only the supervisory node can decrypt them. Even if
malicious nodes obtain key shares, they cannot reconstruct the
homomorphic encryption key, thereby safeguarding the privacy
and security of local models.

MACM consists of two main modules: key distribution and

key reconstruction. In the key distribution module, Ln splits
and encrypts the homomorphic encryption key of the local
model and distributes the shares to trusted nodes. In the key
reconstruction module, when the model is potentially under a
malicious attack, Sn initiates key reconstruction requests to
multiple trusted nodes, collects the key shares, decrypts, and
reconstructs them to obtain the homomorphic encryption key
for reviewing the local model.

The main steps of key distribution are as follows:

1) Lnρ splits the homomorphic encryption key skρ into
multiple shares using Shamir’s secret sharing mecha-
nism. According to Section III-B, assuming the total
number of shares is n, the threshold is t, and the
random number is p, a polynomial f(x) is constructed
as follows:

f(skρ) = skρ+a1x+a2x
2+ · · ·+at−1x

t−1 (mod p)
(14)

Select n distinct numbers xi, i = {1, . . . , n}, to obtain
the secret shares (xi, yi).

2) Initialize the attribute-based encryption system to gener-
ate a master key Amk and a public key Apk. Generate
a specific private key Ask for each node based on its
attributes. Lnρ encrypts the key shares using attribute-
based encryption, configured such that only the supervi-
sory node can decrypt them. Assuming the supervisory
node’s attribute set is S, the encryption is:

CTi = E(Apk, (xi, yi), S), i ∈ {1, . . . , n} (15)

Thus, CTi is the ciphertext of (xi, yi) after attribute-
based encryption.

3) Ln distributes the encrypted key shares CTi to the
representative nodes, aggregation server, and supervisory
node.

When the global model is suspected of being compromised
by poisoning or backdoor attacks, leading to performance
degradation, Gn requests the supervisory node to validate the
local models. The supervisory node can request homomorphic
encryption key shares from nodes holding them to review the
local models stored in En. The homomorphic encryption key
shares are protected by attribute-based encryption, ensuring
that only the supervisory node can decrypt them. Additionally,
the key is split into multiple shares, and the supervisory
node can only reconstruct the homomorphic encryption key
if a sufficient proportion of nodes consent. This prevents the
supervisory node from arbitrarily accessing local models and
causing privacy breaches. The process of the supervisory node
reconstructing the homomorphic encryption key to review
local models is as follows:

1) Sn sends key reconstruction requests to the represen-
tative nodes, aggregation server, and supervisory node
holding the homomorphic encryption key shares to ob-
tain the encrypted shares CTi.

2) Sn collects key shares meeting the (t,n) threshold and
decrypts them using attribute-based encryption:

(xi, yi) = D(CTi, SKM) (16)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Algorithm 2 Model Access Control Mechanism Based on
Shamir’s Secret Sharing (MACM)

Require:
1: Lnρ: Local node with id ρ
2: Sn: Supervisory node
3: n: Total number of key shares
4: t: Threshold value
5: p: Large prime number
6: S: Attribute set of supervisory node

Ensure: Secure model access control
7: function KEYSHARING(skρ, n, t, p)
8: Generate random coefficients a1, . . . , at−1

9: Construct polynomial f(x) = skρ +
∑t−1

i=1 aix
i

(mod p)
10: for i← 1 to n do
11: Select unique xi

12: Compute yi = f(xi)
13: Store share pair (xi, yi)

return {(xi, yi)}ni=1

14: function ATTRIBUTEBASEDENCRYPTION(shares, S)
15: Generate (Amk,Apk) ▷ Master key and public key
16: for each share pair (xi, yi) in shares do
17: CTi ← E(Apk, (xi, yi), S)

18: Distribute CTi to trusted nodes return {CTi}ni=1

19: function KEYRECONSTRUCTION(Sn)
20: shares← ∅
21: for i← 1 to t do
22: Request CTi from trusted nodes
23: (xi, yi)← D(CTi, SKM) ▷ Decrypt using ABE
24: shares← shares ∪ {(xi, yi)}
25: skρ ←

∑t
i=1 yi

∏
j ̸=i

−xj

xi−xj
(mod p) return skρ

26: function MODELINSPECTION(skρ)
27: Request encrypted local model [m] from edge nodes
28: m← D([m]) ▷ Decrypt using reconstructed key
29: if IsModelMalicious(m) then
30: DeductStake(Lnρ)
31: RemoveFromGlobalModel(m)
32: if IsRepeatOffender(Lnρ) then
33: AddToBlacklist(Lnρ)

3) Sn reconstructs the homomorphic encryption key from
the key shares using Shamir’s secret sharing technique:

skρ =

t∑
i=1

yi
∏
j ̸=i

−xj

xi − xj
mod p (17)

4) Sn sends an access request to the edge aggregation node
to obtain the local model shares and decrypts them using
the homomorphic encryption key:

m = D([m]) =
L([m]ϖ (mod σ2)

L(gϖ (mod σ2))
(mod σ) (18)

Upon detecting a malicious node, the supervisory node
deducts its stake and removes its local model from the global
model aggregation, redistributing the updated global model.

Nodes that repeatedly engage in malicious behavior are added
to a blacklist and barred from participating in local training.

F. Incentive Mechanism Based on Trusted Time Intervals
(IMTTI)

Incentive mechanisms are a critical component of federated
learning, fostering its sustainable development. Existing stud-
ies on federated learning incentives can be categorized into
contribution-based, reputation-based, cryptocurrency-based, or
blockchain-based approaches. However, these mechanisms pri-
marily target traditional federated learning, evaluating local
models in plaintext. In FLSSM, we propose a novel incentive
mechanism to reliably assess the participation enthusiasm of
local training nodes operating under encrypted conditions,
thereby promoting the sustainability of federated learning.
Specifically, we leverage a trusted timestamp server to measure
the time taken by local training nodes to complete model
training. Nodes that complete training faster are considered
to have invested more computational resources and are thus
rewarded more generously. To prevent nodes from falsely
reporting training completion times to gain higher rewards,
we mandate that the global aggregation node, responsible for
distributing the global model, sends a training start timestamp
request to the trusted timestamp server. Local training nodes
send an end timestamp request upon completing training. Each
timestamp request must include the model’s hash value, which
is verified against the hash of the aggregated local model
during reward allocation to ensure the trustworthiness of the
training time.

The main steps of IMTTI are as follows:
1) The global aggregation node distributes the global model

to Ln, computes the hash value hg of the global model,
and sends hg to the trusted timestamp server to mark
the training start time:

hg = H(gm) (19)

T = (hg, time) (20)

σg = SignTSA(T) (21)

Hence, SignTSA denotes the trusted timestamp server,
σg represents the start time of local model training, and
time is the current time.

2) Upon receiving gm, the local model Lnρ conducts
training. After training is complete, it follows step 2
in Section IV-D to shard and encrypt the local model.
It then computes the hash values of the encrypted
local model and sends these hash values to the trusted
timestamp server to initiate an end timestamp request:

hρ
l = H(lmρ

λ) (22)

3) Upon receiving the hash values of the local model from
Lnρ, the trusted timestamp server generates a trusted
timestamp hρ

l and calculates the time difference between
the end and start times, producing a trusted time interval
σρ
d :

σρ
l = SignTSA(h

ρ
l) (23)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Algorithm 3 Incentive Mechanism Based on Trusted Time
Intervals (IMTTI)

Require:
1: Gn: Global aggregation node
2: Lnρ: Local node with id ρ
3: TSA: Trusted timestamp server
4: gm: Global model
5: Rt: Total reward per round
6: κ: Number of local nodes

Ensure: Reward distribution based on training time
7: function INITIATETRAINING(Gn, gm)
8: hg ← H(gm) ▷ Compute hash of global model
9: time← CurrentTime()

10: T ← (hg, time)
11: σg ← SignTSA(T) ▷ Get start timestamp
12: for each Lnρ do
13: Send (gm, σg) to Lnρ

return σg

14: function LOCALTRAINING(Lnρ, gm)
15: Train local model lmρ

λ using gm
16: Shard and encrypt local model
17: hρ

l ← H(lmρ
λ) ▷ Compute hash of local model

18: Send hρ
l to TSA

19: σρ
l ← SignTSA(h

ρ
l) ▷ Get end timestamp return

(lmρ
λ, h

ρ
l , σ

ρ
l)

20: function CALCULATETIMEINTERVAL(TSA, σg , σρ
l)

21: σρ
d ← σρ

l − σg ▷ Calculate time interval return σρ
d

22: function CALCULATEREWARDS({σρ
d}κρ=1, Rt)

23: for each Lnρ do
24: Cρ ← e−0.1σρ

d ▷ Calculate contribution
25: total contribution←

∑κ
ρ=1 Cρ

26: for each Lnρ do
27: Rρ ← Cρ

total contributionRt ▷ Calculate reward
return {Rρ}κρ=1

28: function VERIFYANDDISTRIBUTEREWARDS(Gn)
29: for each Lnρ do
30: Verify hρ

l matches received encrypted model
31: if verification successful then
32: Distribute reward Rρ to Lnρ

33: else
34: Skip reward for Lnρ

σρ
d = σρ

l − σg (24)

4) The incentive mechanism rewards local models based
on their trusted time intervals. For Lnρ, the total reward
per round Rt is fixed, and the contribution of Lnρ is
calculated as:

Cρ = e−0.1σρ
d (25)

The reward received by Lnρ is then expressed as:

Rρ =
Cρ∑κ
ρ=1 Cρ

Rt (26)

V. PERFORMANCE EVALUATION

In this section, we conduct experiments and ablation studies
on two public datasets to validate our model. We first introduce
the experimental environment and datasets in Sections V-A and
V-B. Next, we report the experimental results for the three
modules in Sections V-C and V-D.

A. Environment

Our experiments were conducted on a CentOS server, using
PyTorch version 2.3.0, CUDA version 12.4, with a system
equipped with 396GB of RAM and a 1.8TB hard disk, the
GPUs in the server are Quadro RTX 5000 (with a VRAM of
16GB). We use dirichlet distribution to split dataset, the alpha
is set to 0.5.

TABLE II: Simulation Prameters

Parameters Value

Learning rate 0.001
Batchsize 64
Alpha of data Non-IID distribution 0.5
Number of Communication Round 100
Number of Supervise Node 1
Epoch in each round 5
Total reward in one round (Rt) 10
Threshold of Shamir Secret Shares 3
Number of Shamir Secret Shares 5
Malicious attack Sign Flipping Attack

B. Datasets

• CIFAR-10 [37]: The CIFAR-10 dataset contains 3-
channel RGB color images across 10 categories, with
each image sized at 32 × 32 pixels. Each category
includes 6,000 images, resulting in a total of 50,000
training images and 10,000 test images.

• Fashion-MNIST [38]: The Fashion-MNIST dataset con-
sists of 70,000 frontal images of various fashion products,
categorized into 10 classes. All images are grayscale with
dimensions of 28 × 28 pixels. The training set contains
60,000 images, while the test set contains 10,000 images.

C. Comparative Experiment

1) Computation-efficiency Experiment: Figure 3 evaluates
the relationship between aggregation time and model accuracy
under two public datasets, CIFAR10 and Fashion-MNIST,
comparing our proposed HAM scheme with a baseline that
aggregates directly without edge aggregation nodes. Here,
“CKKS” refers to the CKKS homomorphic encryption al-
gorithm, where aggregation is performed directly by the
global aggregation node (Gn) without edge aggregation nodes.
“HAM” denotes the HAM aggregation algorithm, with “HAM-
3” indicating 3 edge aggregation nodes, “HAM-5” indicating
5 edge aggregation nodes, and “HAM-10” indicating 10 edge
aggregation nodes. Lower model aggregation time indicates
higher computational efficiency. When the number of training
nodes is the same, a greater number of edge aggregation nodes
results in shorter aggregation times and higher aggregation
efficiency. Furthermore, the results demonstrate that for both

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

datasets, our proposed scheme effectively enhances the homo-
morphic computation efficiency of encrypted models by uti-
lizing edge aggregation nodes. This improvement is attributed
to the fact that encrypted local model parameters are evenly
distributed across different edge aggregation nodes; thus, more
edge aggregation nodes mean fewer parameters for each node
to aggregate. When the number of training nodes varies, the
aggregation time distribution remains similar. For the same
number of training nodes, model accuracy is comparable.
However, when the number of training nodes increases, model
accuracy slightly decreases. This indicates that our proposed
scheme improves the computational efficiency of encrypted
models without significantly impacting model performance.
Additionally, edge aggregation nodes enable model parameters
to be stored separately rather than on a single central server,
enhancing the storage security of model parameters.

D. Ablation Experiment

1) Attack-tracing Experiment: Figure 4 illustrates the
relationship between the supervisory node’s review of local
models under our proposed MACM mechanism and model
performance when varying proportions of malicious nodes are
present among local training nodes (Ln), with the number of
Ln set to 10. Figure 4a shows the impact of the supervisory
node’s review on model performance in the CIFAR10 dataset
when the proportions of malicious nodes are {0.1, 0.2}. When
the supervisory node does not review local models (S=0),
model performance rapidly drops to between 0.1 and 0.2,
with higher proportions of malicious nodes leading to lower
performance. When the supervisory node reviews local models
(S=1), model performance shows significant improvement
compared to the case without reviews. Figure 4b demonstrates
the supervisory node’s impact on model performance in the
Fashion-MNIST dataset. Consistent with Figure 4, the su-
pervisory node’s review of local models effectively enhances
model performance. However, in both Figures 4 and 4a, the
proportion of malicious nodes still affects model performance.
This may be due to training data being allocated to malicious
nodes during dataset distribution. When the supervisory node
identifies and excludes malicious nodes from further partic-
ipation in federated training, the amount of data available
for training decreases. Consequently, a higher proportion of
malicious nodes results in lower model performance.

2) Contribution-assessment Experiment: Figure 5 illus-
trates the attack and defense mechanisms involving trusted
timestamps in the incentive mechanism. Figure 5a displays
the trusted timestamp received by a malicious node and its
corresponding time. If a malicious node attempts to tamper
with the trusted timestamp to reduce its reported training time
and thereby gain higher rewards, it may choose to advance
its training completion time. We simulated the process of a
malicious node tampering with the trusted timestamp. After
modifying the timestamp, the node sends it to the trusted
timestamp server, which verifies whether the timestamp has
been altered. In Figure 5b, the malicious node tampers with
the received trusted timestamp, changing the time to 3 seconds
earlier. When this is sent to the trusted timestamp server for

verification, the tampering is detected, and the server returns a
verification failure result. Moreover, tampering with the time
causes changes in the timestamp, which we have highlighted
with a red box.

Figure 6 illustrates the reward mechanism of our proposed
IMTTI incentive mechanism, with the number of Ln set to
10. Figures 6a, 6d, 6g, and 6j depict the stake changes of
local training nodes in the CIFAR10 and Fashion-MNIST
datasets when the proportions of malicious nodes are {0.1,
0.2}, respectively. Figures 6b, 6e, 6h, and 6k show the reward
changes for each local training node across training rounds.
Meanwhile, Figures 6c, 6f, 6i, and 6l illustrate the training
time of each local training node per round. The pairs 6b-6c,
6d-6f, 6g-6i, and 6j-6l represent different experimental metrics
within the same training setup.

For malicious nodes, their stake rapidly drops to 0 as
they are identified by the supervisory node and barred from
participating in local training. Examples include device0 in 6a
and 6g, and both device0 and device1 in 6d and 6j. Since the
total reward per round is fixed, according to Equation 26, the
reward each training node receives is inversely proportional to
its training time. Figure 6 effectively validates this relationship.

VI. CONCLUSION

This article proposes FLSSM, a framework for encrypted
federated learning models, to tackle the challenges of
“computation-efficiency,” “attack-tracing,” and “contribution-
assessment.” First, we employ edge aggregation nodes to en-
hance the aggregation efficiency of encrypted models, address-
ing the “computation-efficiency” issue. Second, we introduce a
model access control mechanism, where a trusted third-party
node reviews encrypted models to detect malicious attacks,
resolving the “attack-tracing” problem. Finally, we propose an
incentive mechanism that leverages a trusted timestamp server
to ensure the reliability of local model training times, enabling
fair contribution assessment of local training nodes under
homomorphic encryption, thus addressing the “contribution-
assessment” challenge. Experiments on two real-world public
datasets validate the feasibility of our approach. The results
demonstrate that our model not only improves aggregation
efficiency and enables tracing of malicious nodes but also
effectively evaluates node contributions.

VII. ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant No. 62272024.

REFERENCES

[1] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. B. Charles, G. Cormode, R. Cummings,
R. G. L. D’Oliveira, S. Y. E. Rouayheb, D. Evans, J. Gardner,
Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser,
Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi,
T. Javidi, G. Joshi, M. Khodak, J. Konecný, A. Korolova, F. Koushanfar,
O. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür,
R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. X. Song,
W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma,
J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CKKS
HAM_3
HAM_5
HAM_10

(a) Global Model Accuracy,
CIFAR10, Ln=10

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CKKS
HAM_3
HAM_5
HAM_10

(b) Global Model Accuracy,
CIFAR10, Ln=20

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CKKS
HAM_3
HAM_5
HAM_10

(c) Global Model Accuracy,
CIFAR10, Ln=50

0 20 40 60 80 100
Communication Rounds

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ag
gr

eg
at

io
n

Ti
m

e
(s

)

CKKS
HAM_3
HAM_5
HAM_10

(d) Aggregation Time,
CIFAR10, Ln=10

0 20 40 60 80 100
Communication Rounds

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ag
gr

eg
at

io
n

Ti
m

e
(s

)

CKKS
HAM_3
HAM_5
HAM_10

(e) Aggregation Time,
CIFAR10, Ln=20

0 20 40 60 80 100
Communication Rounds

0.05

0.10

0.15

0.20

0.25

Ag
gr

eg
at

io
n

Ti
m

e
(s

)

CKKS
HAM_3
HAM_5
HAM_10

(f) Aggregation Time,
CIFAR10, Ln=50

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CKKS
HAM_3
HAM_5
HAM_10

(g) Global Model Accuracy,
Fashion-MNIST, Ln=10

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CKKS
HAM_3
HAM_5
HAM_10

(h) Global Model Accuracy,
Fashion-MNIST, Ln=20

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CKKS
HAM_3
HAM_5
HAM_10

(i) Global Model Accuracy,
Fashion-MNIST, Ln=50

0 20 40 60 80 100
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
gr

eg
at

io
n

Ti
m

e
(s

)

CKKS
HAM_3
HAM_5
HAM_10

(j) Aggregation Time,
Fashion-MNIST, Ln=10

0 20 40 60 80 100
Communication Rounds

0.2

0.4

0.6

0.8

1.0

Ag
gr

eg
at

io
n

Ti
m

e
(s

)

CKKS
HAM_3
HAM_5
HAM_10

(k) Aggregation Time,
Fashion-MNIST, Ln=20

0 20 40 60 80 100
Communication Rounds

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ag
gr

eg
at

io
n

Ti
m

e
(s

)

CKKS
HAM_3
HAM_5
HAM_10

(l) Aggregation Time,
Fashion-MNIST, Ln=50

Fig. 3: Accuracy of HAM and CKKS algorithms for CIFAR10 and Fashion-MNIST classification tasks. Figures 3a-3c present
the global model accuracy on CIFAR10 dataset for local training node (Ln) counts in {10, 20, 50} and Edge Aggregation
Nodes (En) counts in {3, 5, 10}. Figures 3d-3f show the global model aggregation time on CIFAR10 dataset with the same
parameter settings. Similarly, Figures 3g-3i illustrate global model accuracy on the Fashion-MNIST dataset, and Figures 3j-3l
present the global model aggregation time on Fashion-MNIST dataset under the same parameter configurations.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

M=0.1_S=0
M=0.2_S=0
M=0.1_S=1
M=0.2_S=1

(a) CIFAR10, Ln=10

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

M=0.1_S=0
M=0.2_S=0
M=0.1_S=1
M=0.2_S=1

(b) Fashion-MNIST, Ln=10

Fig. 4: Global Model Accuracy of HAM algorithm under Malicious Attack for CIFAR10 and Fashion-MNIST classification
tasks. “M” in the legend represents the malicious nodes ratio in local training nodes, and “S” represents whether the Supervise
Node setting to inspection or not. “S=1”: inspection; “S=0”: not inspection.

(a) Origin Timestamp (b) Modified Timestamp

Fig. 5: Modified Timestamp Verification. (a): Original trusted timestamp. (b): Modified trusted timestamp, altered to 3 seconds
earlier than the actual time. To gain higher rewards, a malicious node attempts to tamper with the local training completion
time to reduce the training time interval, thereby increasing its reward. In (b), the differences from (a) caused by the tampering
of the trusted timestamp are highlighted in red.

S. Zhao, “Advances and open problems in federated learning,” Found.
Trends Mach. Learn., vol. 14, pp. 1–210, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:209202606

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: Challenges, methods, and future directions,” IEEE Signal
Processing Magazine, vol. 37, pp. 50–60, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:201126242

[3] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. ping Huang,
A. Dehghantanha, and G. Srivastava, “A survey on security
and privacy of federated learning,” Future Gener. Comput.
Syst., vol. 115, pp. 619–640, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:225140677

[4] R. M. Neal, “Pattern recognition and machine learning,” in J. Electronic
Imaging, 2006. [Online]. Available: https://api.semanticscholar.org/
CorpusID:31993898

[5] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, p. 106775,
2021.

[6] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.

Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
trends® in machine learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[7] J. Wen, Z. Zhang, Y. Lan, Z. Cui, J. Cai, and W. Zhang, “A survey on
federated learning: challenges and applications,” International Journal
of Machine Learning and Cybernetics, vol. 14, no. 2, pp. 513–535, 2023.

[8] H. Fang and Q. Qian, “Privacy preserving machine learning with ho-
momorphic encryption and federated learning,” Future Internet, vol. 13,
no. 4, p. 94, 2021.

[9] V. Mugunthan, A. Polychroniadou, D. Byrd, and T. H. Balch, “Smpai:
Secure multi-party computation for federated learning,” in Proceedings
of the NeurIPS 2019 Workshop on Robust AI in Financial Services,
vol. 21. MIT Press Cambridge, MA, USA, 2019.

[10] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “{BatchCrypt}:
Efficient homomorphic encryption for {Cross-Silo} federated learning,”
in 2020 USENIX annual technical conference (USENIX ATC 20), 2020,
pp. 493–506.

[11] Z. Liu, J. Guo, W. Yang, J. Fan, K.-Y. Lam, and J. Zhao, “Privacy-
preserving aggregation in federated learning: A survey,” IEEE Transac-

https://api.semanticscholar.org/CorpusID:209202606
https://api.semanticscholar.org/CorpusID:201126242
https://api.semanticscholar.org/CorpusID:225140677
https://api.semanticscholar.org/CorpusID:31993898
https://api.semanticscholar.org/CorpusID:31993898

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

0 20 40 60 80 100
Communication Rounds

0

24

48

72

96

120

St
ak

e device_0_M
device_1_B
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(a) Stake, CIFAR10,
Ln=10, M = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
rre

nt
 R

ou
nd

 R
ew

ar
d

device_0_M
device_1_B
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(b) Reward in One Round, CIFAR10,
Ln=10, M = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ca

l T
ra

in
in

g
Ti

m
e

(s
)

device_0_M
device_1_B
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(c) Local Training Time, CIFAR10,
Ln=10, M = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

26.8

53.6

80.5

107.3

134.1

St
ak

e device_0_M
device_1_M
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(d) Stake, CIFAR10,
Ln=10, M = 0.2

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cu
rre

nt
 R

ou
nd

 R
ew

ar
d

device_0_M
device_1_M
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(e) Reward in One Round, CIFAR10,
Ln=10, M = 0.2

0 20 40 60 80 100
Communication Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ca

l T
ra

in
in

g
Ti

m
e

(s
)

device_0_M
device_1_M
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(f) Local Training Time, CIFAR10,
Ln=10, M = 0.2

0 20 40 60 80 100
Communication Rounds

0.0

24.2

48.4

72.7

96.9

121.1

St
ak

e device_0_M
device_1_B
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(g) Stake, Fashion-MNIST,
Ln=10, M = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
rre

nt
 R

ou
nd

 R
ew

ar
d

device_0_M
device_1_B
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(h) Reward in One Round,
Fashion-MNIST, Ln=10, M = 0.1

0 20 40 60 80 100
Communication Rounds

0

1

2

3

4

5

6
Lo

ca
l T

ra
in

in
g

Ti
m

e
(s

)

device_0_M
device_1_B
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(i) Local Training Time, Fashion-MNIST,
Ln=10, M = 0.1

0 20 40 60 80 100
Communication Rounds

0

27

54

81

108

135

St
ak

e device_0_M
device_1_M
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(j) Stake, Fashion-MNIST,
Ln=10, M = 0.2

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cu
rre

nt
 R

ou
nd

 R
ew

ar
d

device_0_M
device_1_M
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(k) Reward in One Round,
Fashion-MNIST, Ln=10, M = 0.2

0 20 40 60 80 100
Communication Rounds

0

1

2

3

4

5

6

Lo
ca

l T
ra

in
in

g
Ti

m
e

(s
)

device_0_M
device_1_M
device_2_B
device_3_B
device_4_B
device_5_B
device_6_B
device_7_B
device_8_B
device_9_B

(l) Local Training Time, Fashion-MNIST,
Ln=10, M = 0.2

Fig. 6: Different devices’ stake, reward and local training time of HAM algorithm under Malicious Attack for CIFAR10 and
Fashion-MNIST classification tasks. “M” in the legend follows the Ln idx means this node is malicious node, and “B” in the
legend means this node is benign node. “m” in the caption represents the malicious nodes ratio in local training nodes.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

tions on Big Data, 2022.
[12] Q. Xie, S. Jiang, L. Jiang, Y. Huang, Z. Zhao, S. Khan, W. Dai, Z. Liu,

and K. Wu, “Efficiency optimization techniques in privacy-preserving
federated learning with homomorphic encryption: A brief survey,” IEEE
Internet of Things Journal, vol. 11, no. 14, pp. 24 569–24 580, 2024.

[13] S. A. Rieyan, M. R. K. News, A. M. Rahman, S. A. Khan, S. T. J.
Zaarif, M. G. R. Alam, M. M. Hassan, M. Ianni, and G. Fortino, “An
advanced data fabric architecture leveraging homomorphic encryption
and federated learning,” Information Fusion, vol. 102, p. 102004, 2024.

[14] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” pp.
493–506, 2020.

[15] R.-Y. Huang, D. Samaraweera, and J. M. Chang, “Toward effi-
cient homomorphic encryption-based federated learning: A magnitude-
sensitivity approach,” pp. 7810–7821, 2024.

[16] S. Choi, D. Patel, D. Z. Tootaghaj, L. Cao, F. Ahmed, and P. Sharma,
“Fednic: enhancing privacy-preserving federated learning via homomor-
phic encryption offload on smartnic,” 2024.

[17] K. Cheng, Z. Zou, Z. Wang, J. Yang, and S. Chen, “Qfl: Federated
learning acceleration based on qat hardware accelerator,” 2024.

[18] V. Peluso, E. Malan, A. Calimera, and E. Macii, “Private tensor freezing
for an efficient federated learning with homomorphic encryption,” pp.
308–315, 2024.

[19] Y. Cai, W. Ding, Y. Xiao, Z. Yan, X. Liu, and Z. Wan, “Secfed:
A secure and efficient federated learning based on multi-key
homomorphic encryption,” IEEE Transactions on Dependable and
Secure Computing, vol. 21, pp. 3817–3833, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:266065945

[20] J. Shen, Y. Zhao, S. Huang, and Y. Ren, “Secure and flexible privacy-
preserving federated learning based on multi-key fully homomorphic
encryption,” 2024.

[21] X. Yang, Z. Liu, X. Tang, R. Lu, and B. Liu, “An efficient and multi-
private key secure aggregation scheme for federated learning,” pp. 1998–
2011, 2024.

[22] C. Wang, Z. Sun, and J. Lu, “A secure and efficient federated learning
scheme based on homomorphic encryption and secret sharing,” pp.
1170–1175, 2024.

[23] C.-I. Fan, Y.-W. Hsu, C.-H. Shie, and Y.-F. Tseng, “Id-based
multireceiver homomorphic proxy re-encryption in federated learning,”
ACM Trans. Sen. Netw., vol. 18, no. 4, Nov. 2022. [Online]. Available:
https://doi.org/10.1145/3540199

[24] J. Wang, X. Lin, J. Wu, Q. Mao, B. Pei, J. Li, S. Guo, and B. Zhang,
“Multi-level ace-based iot knowledge sharing for personalized privacy-
preserving federated learning,” in 2023 19th International Conference
on Mobility, Sensing and Networking (MSN), 2023, pp. 843–848.

[25] H. Lin, K. Kaur, X. Wang, G. Kaddoum, J. Hu, and M. M. Hassan,
“Privacy-aware access control in iot-enabled healthcare: A federated
deep learning approach,” IEEE Internet of Things Journal, vol. 10, no. 4,
pp. 2893–2902, 2023.

[26] L. Chen, J. Wang, L. Xiong, S. Zeng, and J. Geng, “A privacy-preserving
federated learning framework based on homomorphic encryption,” pp.
512–517, 2023.

[27] R. Yang, T. Zhao, F. R. Yu, M. Li, D. Zhang, and X. Zhao, “Blockchain-
based federated learning with enhanced privacy and security using
homomorphic encryption and reputation,” IEEE Internet of Things
Journal, vol. 11, no. 12, pp. 21 674–21 688, 2024.

[28] L. Liu, Y. Hu, Y. Zhao, X. Zhang, Y. Ma, and G. Chang, “A novel
federated learning system with privacy protection and blockchain con-
sensus incentive mechanisms in cloud-edge collaboration scenarios,” in
2024 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2024, pp. 3111–3118.

[29] B. Chen, H. Zeng, T. Xiang, S. Guo, T. Zhang, and Y. Liu, “Esb-
fl: Efficient and secure blockchain-based federated learning with fair
payment,” IEEE Transactions on Big Data, vol. 10, no. 6, pp. 761–774,
2024.

[30] G. Guan, T. Zhi, H. Cai, Y. Cao, and H. Xie, “Hierarchical federated
learning privacy protection framework with enhanced privacy and resis-
tance to byzantine attacks,” in 2024 IEEE 7th International Conference
on Computer and Communication Engineering Technology (CCET),
2024, pp. 250–256.

[31] K. Geng, L. Wang, Z. Zhang, Z. Lu, and M. Huang, “Ppce: Privacy-
preserving contribution evaluation for fairness-aware federated learning,”
in 2023 IEEE 29th International Conference on Parallel and Distributed
Systems (ICPADS), 2023, pp. 474–480.

[32] Y. Li, W. Wang, Y. Wang, T. Xiangrong, P. Duan, and Z. Cai, “Personal-
ized privacy protection incentive mechanism for mobile crowdsourcing

based on homomorphic encryption and edge computing,” in 2024 IEEE
International Conference on Web Services (ICWS), 2024, pp. 1371–1376.

[33] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys (Csur), vol. 51, no. 4, pp. 1–35, 2018.

[34] A. Beimel, “Secret-sharing schemes: A survey,” in International confer-
ence on coding and cryptology. Springer, 2011, pp. 11–46.

[35] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato, “Rfc3161: Internet x.
509 public key infrastructure time-stamp protocol (tsp),” 2001.

[36] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in cryptology–
ASIACRYPT 2017: 23rd international conference on the theory and
applications of cryptology and information security, Hong kong, China,
December 3-7, 2017, proceedings, part i 23. Springer, 2017, pp. 409–
437.

[37] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[38] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

https://api.semanticscholar.org/CorpusID:266065945
https://doi.org/10.1145/3540199

	 Introduction
	 Related Works
	Encrypted Model Aggregation Efficiency
	Encrypted Model Access Control
	Encrypted Model Contribution Assessment

	 Preliminaries
	Homomorphic Encryption
	Shamir's Secret Sharing
	Trusted Timestamps

	 Methodology
	Problem Statement
	 Model Overview
	Initialization
	Hierarchical Aggregation Mechanism Based on Homomorphic Encryption (HAM)
	Model Access Control Mechanism Based on Shamir's Secret Sharing (MACM)
	Incentive Mechanism Based on Trusted Time Intervals (IMTTI)

	 Performance Evaluation
	 Environment
	 Datasets
	 Comparative Experiment
	Computation-efficiency Experiment

	Ablation Experiment
	 Attack-tracing Experiment
	Contribution-assessment Experiment

	 Conclusion
	 ACKNOWLEDGMENTS
	References

