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MULTI-LF: A Unified Continuous Learning Framework
for Real-Time DDoS Detection in Multi-Environment

Networks
Furqan Rustam, Islam Obaidat, Anca Delia Jurcut, Member, IEEE

Abstract—Detecting Distributed Denial of Service (DDoS) attacks
in Multi-Environment (M-En) networks presents significant challenges
due to diverse malicious traffic patterns and the evolving nature
of cyber threats. Existing AI-based detection systems struggle to
adapt to new attack strategies and lack real-time attack detection
capabilities with high accuracy and efficiency. This study proposes
an online, continuous learning methodology for DDoS detection in
M-En networks, enabling continuous model updates and real-time
adaptation to emerging threats, including zero-day attacks. First, we
develop a unique M-En network dataset by setting up a realistic, real-
time simulation using the NS-3 tool, incorporating both victim and
bot devices. DDoS attacks with varying packet sizes are simulated
using the DDoSim application across IoT and traditional IP-based
environments under M-En network criteria. Our approach employs
a multi-level framework (MULTI-LF) featuring two machine learning
models: a lightweight Model 1 (M1) trained on a selective, critical
packet dataset for fast and efficient initial detection, and a more
complex, highly accurate Model 2 (M2) trained on extensive data.
When M1 exhibits low confidence in its predictions, the decision is
escalated to M2 for verification and potential fine-tuning of M1 using
insights from M2. If both models demonstrate low confidence, the
system flags the incident for human intervention, facilitating model
updates with human-verified categories to enhance adaptability to
unseen attack patterns. We validate the MULTI-LF through real-world
simulations, demonstrating superior classification accuracy of 0.999
and low prediction latency of 0.866 seconds compared to established
baselines. Furthermore, we evaluate performance in terms of memory
usage (3.632 MB) and CPU utilization (10.05%) in real-time scenarios.

Index Terms—DDoS Attacks, Network Emulation, Dataset Collec-
tion, Continuous Learning, M-En Networks, Zero-Day Attacks

I. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks pose a critical
challenge to network security by overwhelming target servers or
networks with excessive traffic, thereby depleting their bandwidth,
memory, and processing resources [1]. Attackers employ a variety
of techniques to orchestrate these attacks. One prevalent method
involves the deployment of botnets—networks of compromised
devices such as Internet of Things (IoT) devices infected with
malware—which are remotely controlled to generate vast amounts
of traffic directed at the target [2]. In addition, adversaries exploit
inherent properties of certain network protocols by involving inter-
mediary servers (such as Domain Name System (DNS) resolver,
Network Time Protocol server, and Simple Service Discovery
Protocol services) to magnify attack traffic without the need to
compromise a large number of devices directly [3], [4].

To combat these diverse and evolving DDoS attack methods, a
plethora of machine learning (ML) models have been developed to
detect and mitigate DDoS attacks for specific network types (for IoT
network traffic [5], software-defined networking traffic [6], [7], and
tradition network traffic, c.f., [8]). Although these approaches show
good results in detecting DDoS attacks on specific network types,
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they struggle in handling complex, heterogeneous environments like
multi-environment (M-En) networks [9], [10].

M-En networks, which integrate multiple network types under a
single environment, present unique challenges for DDoS detection
due to multiple challenges. First, there is a lack of benchmark
datasets to train models effectively. Second, the traffic patterns
vary widely across IoT and traditional networks, each with unique
packet characteristics; as a result, a model trained on one network
type, like IoT, may not effectively identify patterns in traditional
traffic. Another key challenge is the bias toward specific network
traffic; if one traffic dominates, the model may overfit this traffic
type, reducing performance across other networks. These challenges
make it difficult to create a unified model that accurately generalizes
across all network environments [11].

Several studies explore M-En network security and address these
challenges through various approaches. For instance, Rustam et
al. [10] propose a fully automated malicious traffic detection system
(MTDS) that addresses the lack of M-En datasets by generating M-
En traffic through a combined IoT and traditional network dataset
(IoTID-20 [12] and UNWNB-15 [13]). They tackle traffic diversity
by deploying a Moth Flame Optimizer to find optimal weights
of an ML algorithm for both network traffic types. Similarly,
another study by Rustam et al. [14] employs an optimization
approach to create M-En traffic, including IoT and traditional
network traffic. They propose a self-diverse ensemble model by
combining three variations of random forests optimized with a
particle swarm optimizer. Most current studies create M-En traffic
by merging existing datasets, which may not capture real-time
M-En network patterns, and combining features can result in the
loss of meaningful traffic patterns. Furthermore, no study currently
addresses continuous learning, which could lead to performance
degradation of these models over time.

This study addresses the challenges in securing M-En networks
against DDoS attacks in two main contributions. In the first
contribution, we introduce a comprehensive approach to M-En
dataset collection that leverages the DDOSHIELD-IOT testbed [5],
which integrates NS-3 (a discrete-event network simulator) with
Docker containers. This testbed allows us to generate real-world
M-En traffic by running actual binaries in a simulated network,
producing both benign traditional traffic (FTP, HTTP, and RTMP-
based video) and malicious IoT traffic derived from Mirai malware
binaries. To achieve a complete range of traffic types—namely
benign IoT and malicious traditional traffic—we incorporate ex-
ternal PCAP datasets from the literature, ensuring our final dataset
accurately reflects diverse, real-world network conditions.

Following dataset construction, we uniformly process all col-
lected packets through a consistent feature extraction pipeline,
capturing both packet-level and time-based statistical features. This
uniformity ensures that traffic from all sources—DDOSHIELD-
IOT and external PCAP datasets—can be directly compared and
integrated. As a result, the dataset provides a robust foundation for
training ML models capable of detecting DDoS attacks in M-En
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networks, with improved reliability and generalizability compared
to prior approaches that relied solely on merged feature sets without
preserving raw packet-level information.

In the second contribution, we develop and implement a continu-
ous learning technique that combines ML and human (expert) inter-
vention. Then, we deploy a real-time, continuous learning approach
using a multi-level framework involving two models: M1 and M2.
M1 is a lightweight model optimized for continuous learning with
low computational costs and is initially trained on a smaller selected
samples dataset to allow faster adaptability to new patterns. M2, in
contrast, is a more robust and complex model with higher accuracy,
trained on a larger, more comprehensive dataset. When a new
packets arrives, M1 attempts a prediction. If it is unable to make a
confident prediction, the data is passed to M2 for further analysis.
Should M2 also fail to reach a definitive prediction, the data is
then flagged to human experts for manual verification. Based on
the expert’s feedback, M1 undergoes retraining to integrate the new
insights, allowing it to enhance its predictive accuracy over time
by incorporating this human-reviewed data into its model.

In summary, the key contributions of this work are as follows:

• It proposes a real-time Multi-level Framework (MULTI-LF)
for DDoS attack detection in M-En networks.

• It introduces an M-En traffic dataset constructed by lever-
aging the DDOSHIELD-IOT testbed and integrating exter-
nal PCAP datasets. This dataset encompasses both IoT and
traditional (non-IoT) traffic, including benign and malicious
categories, thereby achieving a comprehensive and realistic
representation of M-En network conditions.

• A feature engineering approach is proposed to extract both
general and statistical features by collecting packets within a
specific time frame. Combining statistical features (e.g., Packet
Counts, Destination Port Entropy) with general features creates
a more linearly separable feature space, leading to substantial
performance gains.

• MULTI-LF is tested and validated in real-time scenarios
by deploying it in NS-3 simulations. This approach has
demonstrated greater accuracy compared to state-of-the-art
algorithms.

• The performance of all models is evaluated based on accuracy,
precision, recall, F1 score, model size, memory usage, CPU
utilization, and prediction time.

The rest of this paper is organized as follows: Section II presents
the related work in the problem domain. Section III describes
the proposed methodology. Section IV discusses the results, and
Section VI provides the conclusion and future work.

II. RELATED WORK

This section discusses the related works on malicious traf-
fic detection for traditional networks, IoT networks, and multi-
environment (M-En) networks. Furthermore, we explore the liter-
ature on continuous learning and identify gaps addressed by our
study.

A. Malicious Traffic Detection using Machine Learning

Malicious traffic, particularly Distributed Denial-of-Service
(DDoS) attacks, poses significant threats to network security. Many
researchers have worked on efficiently tackling DDoS. For example,
Anley et al. [15] propose an innovative approach that utilizes
Convolutional Neural Networks (CNNs), adaptive architectures,
and transfer learning techniques to detect malicious traffic. Their
method demonstrates robust detection capabilities across various
attack categories and is validated on publicly available datasets

such as CIC-DDoS2019 [16], CSE-CIC-IDS2018 [17], UNSW-
NB15 [13], and KDDCup’99 [18]. Their approach achieved ac-
curacies of 93.62%, 99.92%, 99.84%, and 98.99% on each dataset,
respectively. In a comparative study, Al-Eryani et al. [19] eval-
uate machine learning (ML) algorithms using the CIC-DoS2019
dataset [16], finding that Gradient Boosting (GB) and XGBoost
achieve high accuracy (GB: 99.99%, XGBoost: 99.98%) with
minimal false alarms.

Persistent challenges in DDoS defense stem from evolving attack
vectors and the increasing complexity of network environments. In
response, Zhao et al. [1] have developed DFNet, an approach that
integrates advanced ML models with packet scheduling algorithms
in the network data plane. This approach effectively forwards
99.93% of victim-desired traffic during new DDoS attacks while
incurring minimal overhead. Similarly, Singh et al. [20] contribute
to the detection and mitigation of DDoS attacks in software-
defined networking (SDN) environments. Their work also presents
a new DDoS dataset with over 1.7 million entries and employs
two detection methods: Snort [21] (an Intrusion Detection System)
and eight different ML algorithms, including Ensemble Classifiers
and a Hybrid Support vector machine-Random Forest (SVM-RF)
classifier. The detection methods achieved 99.1% accuracy. In
addition, the authors suggested two strategies to mitigate DDoS
traffic: dropping illegitimate traffic and redirecting it.

B. Malicious Traffic Detection in Traditional IP-based Network

Traditional IP-based networks—networks that primarily handle
non-IoT traffic using the Internet Protocol, distinguishing them
from networks that may employ protocols like MQTT for IoT
devices—have been extensively explored, resulting in numerous
benchmark datasets and efficient security approaches. In recent
literature, several researchers have proposed methods to protect
these networks from malicious actors. Talukder et al. [22] present
an ML-based network intrusion detection model that integrates
Random Oversampling (RO) to counter data imbalance, Stacking
Feature Embedding derived from clustering results, and Principal
Component Analysis (PCA) for dimension reduction. Their model
achieves exceptional accuracy rates: 99.59% and 99.95% with RF
and Extra Trees (ET) models on the UNSW-NB15 dataset [13],
99.99% on the CIC-IDS-2017 dataset [23], and 99.94% on the CIC-
IDS-2018 dataset [17] with DT and RF models, respectively.

Expanding the focus on network security, Casanova et al. [24]
concentrate on transforming the CIRACIC-DoHBrw-2020 time-
series dataset [24] for training deep learning models in network
intrusion detection. Their approach includes a two-layer network
classification strategy, distinguishing DNS over HTTPS (DoH)
from non-DoH traffic and further classifying DoH traffic into
benign and malicious categories using a subset of 26 features
and various types of Recurrent Neural Networks (RNNs), such
as Long Short-Term Memory (LSTM), Bidirectional LSTM, Gated
Recurrent Unit (GRU), and Deep RNN. Bi-LSTM outperforms
all other methods with 99% accuracy, while GRU is the second-
best performer. Hema et al. [25] propose a novel feature selection
metric, CorrAUC, and develop a new feature selection algorithm
using a wrapper technique. Their approach enhances traffic flow
classification accuracy, evaluated using the NSL-KDD dataset [18]
with three different ML algorithms such as RF, LR, and KNN,
achieving 99%, 82%, and 98%, respectively. Babayigit et al. [26]
propose the Queried Adaptive Random Forests (QARF) method—
an online active learning-based approach that combines adaptive RF
with an adaptive margin sampling strategy. This method queries
a small number of instances from unlabeled traffic streams to
obtain training data. Experimental evaluations using the NSL-KDD
dataset [18] demonstrate that QARF achieves 98.20% accuracy.
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C. Malicious Traffic Detection in IoT Networks

IoT networks have attracted significant research interest due
to their lower security mechanisms compared to traditional net-
works [27]. For instance, Babayigit et al. [28] propose a novel
approach to IoT malicious traffic detection using multiple-domain
learning. They used Edge-IIoTSet [29], WUSTL-IIoT-2021 [30],
and X-IIoTID [31] datasets in the proposed approach. Furthermore,
they employ an autoencoder for feature-space fusion to convert all
datasets into common feature space. Their hybrid deep learning
model, combining CNN and GRU, achieves up to 97.68% accuracy
and improvements in transfer learning scenarios. Zhu et al. [32]
present the Lightweight Knowledge Distillation Space-Time Neural
Network (LKD-STNN) model to address IoT security constraints by
creating a compact model using knowledge distillation and adaptive
temperature function dynamics. Their model achieves over 98%
accuracy on ToN-IoT [33] and IoT-23 [34] datasets.

Huo et al. [35] introduce LightGuard, a lightweight malicious
traffic detection model for IoT. LightGuard utilizes lightweight
residual block (LRB) modules (inspired by ShuffleNetV2 [36]) and
a novel ghost module for efficient feature map generation, achieving
over 99.6% accuracy across diverse datasets (Edge-IIoTset [29],
USTCTFC2016 [37], ToN-IoT [33] and CIC-IoT [38] datasets)
while maintaining low computational complexity. Babayigit et
al. [28] propose a multiple-domain learning framework to im-
prove the reliability and generalization of DL models for Indus-
trial IoT (IIoT) traffic classification. Their work integrates Edge-
IIoTSet [29], WUSTL-IIoT-2021 [30], and X-IIoTID [31] datasets
using an autoencoder for dimensionality harmonization and a
modified locally linear embedding for statistical alignment. They
use a hybrid DL model that combines CNNs and GRUs along
with Bayesian optimization for hyperparameter tuning. Their work
achieves 97.68% accuracy, 97.70% recall, 97.67% precision, and
97.68% F1-score for binary classification and improves to 97.80%
accuracy and 97.79% F1-score with transfer learning.

D. Continuous Learning for Malicious Traffic Detection

Continuous learning is an approach in which a model learns
continuously by incorporating new data without retraining from
scratch [39]. This is especially useful for adapting to evolving data
in dynamic environments. Continuous learning is also important in
cybersecurity due to the evolving nature of attacks. Xu et al. [40]
propose an approach that uses self-paced class incremental learning
(SPCIL). SPCIL leverages network traffic data to improve class
incremental learning (CIL), a deep learning technique that inte-
grates new malware classes while preserving recognition of prior
categories. SPCIL uses a loss function that combines sparse pair-
wise loss with sparse loss. Their experimental results demonstrate
that SPCIL effectively identifies both existing and new malware
classes. Compared to other incremental learning methods, SPCIL
excels in performance and efficiency, with a minimal parameter
count of 8.35 million, achieving accuracy rates of 89.61%, 94.74%,
and 97.21% in different test scenarios. Similarly, Ajjaj et al. [41]
present an approach to detect black hole attacks, an attack on the Ad
hoc On-Demand Distance Vector (AODV) routing protocol. They
simulate realistic VANET scenarios using the Simulation of Urban
Mobility (SUMO) [42] and the Network Simulator (NS-3) [43].
They evaluate the performance of two online incremental classifiers,
Adaptive Random Forest (ARF) and KNN, using metrics such as
accuracy, recall, precision, and F1-score, as well as training and
testing time. Results demonstrate that ARF successfully classifies
and detects black hole nodes in VANETs, outperforming KNN in
all performance measures.

Wang et al. [44] propose an incremental learning method for
small-sample data to detect malicious traffic. Their method employs

a pruning strategy to identify and remove redundant network
structures, dynamically reallocating these resources based on the
proposed measurement method according to the difficulty of the
new class. Their approach ensures that the network can learn incre-
mentally without overconsuming storage and computing resources.
Additionally, the proposed method utilizes knowledge transfer to
mitigate forgetting old classes, alleviating the burden of training
large parameters with limited data. Their experimental results on
multiple datasets outperform established baselines in classification
accuracy while using 50% less memory. In addition, Zhao et al. [45]
propose Trident, a framework for detecting fine-grained unknown
encrypted traffic. Trident transforms the identification of known and
new classes into multiple independent one-class learning tasks. It
comprises three modules: tSieve for traffic profiling, tScissors for
outlier threshold determination, and tMagnifier for clustering. Their
evaluations on four popular datasets show that Trident outperforms
16 other related works.

E. Multi-Environment Malicious Traffic Detection

Malicious traffic detection in M-En networks remains challenging
due to the heterogeneous and complex nature of traffic patterns. M-
En networks, where IoT and traditional IP-based traffic coexist,
create challenges for the security system. Especially, different
network types exhibit distinct traffic patterns, making it challenging
to develop models that can effectively capture this diversity. To
address this security concern, several studies propose different
approaches to securing M-En. For example, Rustam et al. [14]
introduce a system that leverages the Synthetic Data Augmentation
Technique (S-DATE) and a Particle Swarm Optimizer (PSO)-based
Diverse-Self Ensemble Model (D-SEM) to enhance the detection of
malicious activities across diverse network environments. Their ap-
proach is validated on a composite dataset integrating InSDN [46],
UNSW-NB15 [13], and IoTID-20 [12], achieving an accuracy score
of 98.9%.

Building on this foundation, Rustam et al. [47] present a de-
tection approach that combines a newly developed M-En traffic
dataset with S-DATE to mitigate data imbalance and improve
model training efficiency. This approach enhances the detection of
malicious traffic, achieving a detection rate of 99.1%. In advancing
cybersecurity in M-En environments, Rustam et al. [11] develop
ML models trained on AI-based traffic for the M-En dataset
derived from benchmark datasets UNSW-NB15 [13] and IoTID-
20 [12]. Their models counter both traditional and AI-based threats,
achieving accuracy rates of 98.3% for binary classification and
96.8% for multi-class problems. Similarly, Indrasiri et al. [48]
propose an approach to detect malicious traffic in M-En networks
through ensemble learning. By merging UNSW-NB15 and IoTID-
20 datasets and reducing the feature set using Principal Component
Analysis (PCA), they develop a stacked ensemble model termed
Extra Boosting Forest (EBF). EBF enhances detection perfor-
mance, achieving accuracy scores of 98.5% and 98.4% for binary
and multi-class classifications, respectively. In addition, Zukaib et
al. [49] validate a framework designed for detecting cyberattacks
in dynamic Internet of Medical Things (IoMT) networks within
M-En environments. Their approach integrates Federated Learning
and Meta-learning within a multi-phase architecture, achieving an
accuracy of 99.82%.

F. The Gap in the Literature

Despite significant advancements in malicious traffic detection
using ML across various network environments, challenges remain.
Most studies focus on specific network architectures, such as IoT
[35] or traditional networks [22]. There is a lack of research
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TABLE I: Summary of Related Work

Ref Year ML DL Dataset Method Results Purpose Limitation
[15] 2024 - CNN,

Transfer
Learning

CIC-DDoS2019,
CSE-CIC-IDS2018,
UNSW-NB15 and
KDDCup’99

Adaptive architectures,
CNNs

93.62%, 99.92%,
99.84%, and 98.99%

DDoS Detection Works with bench-
mark datasets, not
real-time testing.

[19] 2023 Gradient
Boosting,
XGBoost

- CICDoS2019 Comparative study GB: 99.99%, XGBoost:
99.98%, minimal false
alarms

DDoS Detection Limited to
CICDoS2019 dataset

[1] 2023 - DFNet Self-Collected Preference-driven, in-
network enforced traffic
shaping

99.93% forwarding of
victim-desired traffic
with minimal overhead

DDoS Defense False classifications
and lacks real
network trace
evaluations

[20] 2024 LR, SVM,
NB, KNN,
RF, EC,
SVM-RF

ANN Self-Collected SVM-RF Ensemble 99.1% DDoS Attack Detec-
tion

Lack of DL models
evaluation.

[22] 2024 RF, ET, DT - UNSW-NB15, CIC-
IDS-2017, CIC-IDS-
2018

RO, Stacking Feature
Embedding, PCA

Accuracy: 99.59%-
99.99% depending on
model and dataset

Network Intrusion
Detection

Focuses on specific
datasets, and no real-
time testing.

[50] 2023 - LSTM,
BiLSTM,
GRU, Deep
RNN

CIRACIC-DoHBrw-
2020-time series

Two-layer network clas-
sification

99% accuracy with GRU Network Intrusion
Detection

Focuses on DoH traf-
fic and did not focus
on real-time diverse
traffic.

[25] 2023 RF, LR,
KNN

- NSL-KDD CorrAUC, feature selec-
tion algorithm

99% with RF Feature Selection for
Traffic Classification

Works with an old
dataset and no real-
time testing.

[26] 2023 Adaptive
Random
Forests

- NSL-KDD Online active learning,
adaptive margin sam-
pling

98.20% accuracy, out-
performs other state-of-
the-art methods

Complex Traffic De-
tection

Focuses on NSL-
KDD dataset

[28] 2024 - CNN, GRU Edge-IIoTSet,
WUSTL-IIoT-2021,
X-IIoTID

Multiple-domain learn-
ing, autoencoder, mod-
ified locally linear em-
bedding

Up to 97.68%
accuracy, significant
improvements in transfer
learning scenarios

IoT Malicious Traffic
Detection

Limited to specific
IoT datasets

[32] 2023 - LKD-STNN ToN-IoT, IoT-23 Knowledge distillation,
adaptive temperature
function dynamics

Over 98% accuracy IoT Security Focuses on ToN-IoT
and IoT-23 datasets

[35] 2023 - - Edge-IIoTset,
USTCTFC2016,
ToN-IoT and CIC
IoT Dataset 2023

Lightweight residual
block (LRB) modules,
ghost module

Over 99.6% accuracy
for CIC IoT Dataset
2023, 99.94% USTC-
TFC2016, 99.93% ToN-
IoT and 99.9% Edge-
IIoTset

IoT Malicious Traffic
Detection

Limited to specific
IoT datasets and no
real-time testing.

[40] 2023 - SPCIL USTC-TFC2016 Self-paced class incre-
mental learning (SPCIL)

Accuracy rates: 89.61%,
94.74%, and 97.21% in
increments of 2, 4, and
5

Incremental Learning
for Malicious Traffic

Focuses on small-
sample datasets

[41] 2023 ARF, KNN - Simulated VANET
scenarios

Incremental learning,
Adaptive Random
Forests, K-Nearest
Neighbors

ARF outperforms KNN
in all performance mea-
sures

Incremental Learning
for VANET Security

Higher training and
testing time for ARF

[44] 2023 - - - Incremental learning,
pruning strategy,
knowledge transfer

Superior performance,
50% less memory usage

Small-sample
Malicious Traffic
Classification

Focuses on small-
sample datasets

[45] 2024 - - Four popular datasets tSieve, tScissors, tMag-
nifier

Significantly
outperforms 16 state-of-
the-art methods

Fine-grained
Unknown Encrypted
Traffic Detection

Customizable frame-
work for specific sce-
narios

[14] 2024 - - InSDN, UNSW-
NB15, IoTID-20

Synthetic Data
Augmentation
Technique (S-DATE),
Particle Swarm
Optimizer (PSO)

Accuracy score: 0.989 M-En Malicious
Traffic Detection

Focuses on synthetic
data augmentation
technique

[47] 2023 - - M-En traffic dataset S-DATE, new M-En
traffic dataset

Detection rate: 0.991 Mitigating Data Im-
balance in M-En Net-
works

Focuses on specific
M-En traffic dataset

[11] 2024 Extra Trees - UNSW-NB15,
IoTID-20

AI-based traffic detec-
tion

Accuracy: 0.983 for bi-
nary, 0.968 for multi-
class

M-En Network Secu-
rity

Focuses on bench-
mark datasets

[48] 2022 Extra Tree,
Gradient
Boosting,
Random
Forest

- UNSW-NB15,
IoTID-20

Ensemble learning, PCA Accuracy: 0.985 for bi-
nary, 0.984 for multi-
class

Malicious Traffic De-
tection in M-En Net-
works

Focuses on specific
datasets

[49] 2024 - - IoMT networks Federated Learning,
Meta-learning

Accuracy: 99.82% Cyberattack
Detection in IoMT
Networks

Focuses on IoMT
networks

in the M-En domain, with few studies [47], [49] relying on
synthetic combinations of existing benchmark datasets, as no real
M-En datasets exist. This reliance on synthetic datasets may limit
generalizability to real-world M-En networks. Moreover, adapting
to continuously evolving threats, particularly advanced persistent
threats utilizing sophisticated attack strategies, presents ongoing
challenges. Some studies adopt continuous learning [44], but they

are domain-specific, focusing either on IoT or other networks.
Therefore, an approach is needed to handle M-En networks in real-
time and update their knowledge with continuous learning.

III. PROPOSED METHODOLOGY

We propose a real-time approach for malicious traffic detection
in M-En networks using ML. In this real-time approach, we utilize
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Fig. 1: Overview of the proposed framework for malicious traffic detection for M-En networks

a continuous learning technique that enables the ML models to
continuously learn and adapt to new traffic patterns, ensuring the
system remains up-to-date over time. We evaluate and validate our
proposed approach in realistic scenarios by generating real-world
traffic and using our models to classify this traffic in real-time.

Figure 1 shows our proposed approach and its four main phases:
Dataset Collection, Feature Extraction, ML Approach, and Contin-
uous Learning.

In the first phase (Dataset Collection), we collect a PCAP dataset
(a dataset that consists of recorded data packets that have traversed
in a network). We collect this dataset by leveraging DDOSHIELD-
IOT [5] (a testbed that uses NS-3 and Docker containers to repli-
cate realistic IoT environments and traffic for studying intrusion
detection systems) to generate real-world malicious IoT traffic and
benign traditional traffic that are supported by DDOSHIELD-IOT.
Since DDOSHIELD-IOT does not support the generation of benign
IoT traffic and malicious traditional traffic, we leverage existing
PCAP datasets (published in the literature) that contain both of the
traffic types that DDOSHIELD-IOT cannot generate. In this manner,
we are able to construct a dataset that contains real IoT benign
and malicious traffic as well as real traditional (non-IoT) benign
and malicious traffic. We discuss our Dataset Collections phase in
detail in §III-A.

In the second phase (Feature Extraction), we extract general
features directly from the packets in the PCAP dataset (e.g.,
destination ports). We also calculate statistical features for these
packets (e.g., the average number of packets received in a time
window). Then, we merge these general and statistical features to
form a significant feature set. These statistical and general features
generate a more correlated and linearly separable feature set for
malicious and benign targets to train the model accurately and
efficiently. We discuss the details of the feature extraction phase
in §III-B.

In the third phase (ML Approach), we start by preprocessing
the merged feature set. After the preprocessing step, we split the
processed feature set into training and testing sets. Then, we use the
training set to train multiple ML models and subsequently test these
trained models on the testing set to check their performance. We

estimate the performance of the ML models in terms of accuracy,
precision, recall, F1 score, ROC curve, and computational time. We
discuss the details of the ML Approach phase in III-C.

In the last phase (Continuous Learning), we deploy our trained
ML models using DDOSHIELD-IOT and validate their performance
in real-time. In addition, we utilize a continuous learning technique
to retrain the model on new (unseen) data over time. We use
continuous learning in two scenarios: with and without human
(expert) involvement. We discuss the details of the Continuous
Learning phase in §III-D.

A. Phase 1: Data Collection

We construct a comprehensive dataset that includes both IoT and
traditional (non-IoT) traffic, encompassing benign and malicious
categories. To achieve this, we employ a two-pronged approach.
First, we leverage the DDOSHIELD-IOT testbed [5], which in-
tegrates NS-3 (a discrete-event network simulator) with Docker
containers. This combination provides a highly realistic environ-
ment where actual binaries run in containers and communicate
over a simulated network, enabling the generation and capture of
real-world network traffic. We use DDOSHIELD-IOT to generate
the two types of traffic it natively supports—benign traditional
traffic and malicious IoT traffic. Second, to incorporate the other
two required traffic categories (benign IoT traffic and malicious
traditional traffic), we integrate external datasets published in the
literature. Below, we discuss these two steps in detail, and then we
discuss how we merge these different traffic sources in a unified
manner.

1) Traffic Generation Using DDOSHIELD-IOT:
DDOSHIELD-IOT natively supports the generation of
certain traffic types. Specifically, it facilitates the creation
of benign traditional traffic and malicious IoT traffic. For
the benign traditional traffic, it generates three types of
traffic, which include FTP, HTTP, and RTMP-based video
streams from legitimate services within Docker containers.
For malicious IoT traffic, we leverage the Mirai malware
binaries hosted in the Docker environment, in which we
produce IoT-based DDoS attack traffic. In particular, we



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, 2025 6

consider three classic Mirai-based attack types: ACK flood,
SYN flood, and UDP flood, which reflect key threats faced
by IoT devices in modern network environments.

2) Integrating External PCAP Datasets: While DDOSHIELD-
IOT allows us to generate both benign traditional traffic and
malicious IoT traffic, it does not natively support benign IoT
traffic or malicious traditional traffic. To address these gaps,
we incorporate external PCAP datasets that have been widely
used and validated in other research works. This approach
ensures our final dataset is both comprehensive and realistic.
For the benign IoT traffic, we use the MQTT-IoT-IDS2020
dataset1. The MQTT-IoT-IDS2020 dataset contains benign
IoT network traces, focusing on IoT devices and services
employing the MQTT protocol. It includes normal operations
of IoT devices in a controlled environment, providing a
clear baseline of legitimate IoT behavior. By integrating
this dataset, we incorporate authentic IoT benign traffic that
closely represents everyday device activities.
For the malicious traditional traffic, we use the CIC DDoS
2019 dataset2. The CIC DDoS 2019 dataset includes a variety
of DDoS attacks captured in a realistic testbed environment.
These attacks are carried out on traditional (non-IoT) services
and include multiple DDoS vectors that target typical enter-
prise or data center hosts. Incorporating this dataset enhances
the representativeness of our overall traffic corpus, ensuring
that our MTDS can detect malicious patterns in both IoT and
traditional network segments.

To combine these different traffic sources, we employ a Python
script that is running in a Docker container node, which is running
in promiscuous mode within the DDOSHIELD-IOT simulation.
Our Python script receives both the live traffic generated by the
DDOSHIELD-IOT environment and batches of packets randomly
selected from the external PCAP datasets. The Python script pro-
cesses incoming packets without distinction between their origins.

All traffic is labeled according to established ground truths. Traf-
fic generated within DDOSHIELD-IOT is inherently known to be
malicious or benign based on controlled initiation of attacks or nor-
mal service activity. External PCAP datasets come with predefined
annotations, indicating which portions are malicious or benign.
Thus, after merging, each packet (whether IoT or traditional) is
labeled accordingly, ensuring clear distinctions among benign IoT,
malicious IoT, benign traditional, and malicious traditional traffic.

To ensure that traffic originating from different sources—
DDOSHIELD-IOT and external PCAP files—can be meaningfully
compared, we apply a uniform feature extraction and aggregation
methodology. First, all packets are processed through the same
feature extraction pipeline (detailed in III-B), which derives both
basic packet-level features (e.g., IP addresses, port numbers, pro-
tocol types, and payload sizes) and advanced statistical features
computed over fixed time intervals (e.g., the average packet size,
the packet rate, and the distribution of protocols observed within a
given time window).

This uniformity means that regardless of whether a packet is
captured from the simulated environment or sourced from an
external dataset, the same set of features is extracted using identical
definitions, thresholds, and time windows. By treating all traffic in
this consistent manner, we eliminate biases that could arise from
applying different techniques or settings to different portions of the
data. As a result, the final combined dataset presents a coherent
feature space, making it possible to directly compare, combine, and
evaluate data from multiple origins using a single, unified analytic
framework.

1https://paperswithcode.com/dataset/mqtt-iot-ids2020
2https://www.unb.ca/cic/datasets/ddos-2019.html

B. Phase 2: Feature Extraction

After capturing traffic into PCAP files, we extracted features for
training ML models. These features consist of two types: general
features and statistical features. General features are directly related
to traffic characteristics, while statistical features are derived from
analyzing general features over time to detect patterns indicative of
DDoS attacks.

The extracted general features from the network traffic data are
essential for comprehensive analysis and detection of malicious
activities. The timestamp records the precise time of packet capture,
allowing for chronological analysis. Source and destination IP
addresses (ip src, ip dst) identify the communication endpoints,
crucial for tracing attack origins and targets. The protocol field
specifies the transport protocol (e.g., TCP, UDP), aiding in protocol-
specific analysis. Source and destination ports (src port, dst port)
indicate the application-level endpoints, useful for identifying tar-
geted services. The presence of TCP and UDP flags (tcp flag,
udp flag) denotes the protocol used, while Time to Live (TTL)
reveals the packet’s hop count, indicating network topology and
potential anomalies. Flags such as ACK, SYN, FIN, PSH, URG,
and RST in TCP packets provide insights into the connection
states and potential malicious behaviors like SYN flooding or
connection resets. Sequence and acknowledgment numbers are vital
for reconstructing TCP sessions and detecting session hijacking or
manipulation. Finally, packet size and payload size metrics help in
identifying unusual packet structures and potential payload-based
attacks. Together, these features provide a detailed view of network
traffic, enabling effective identification and mitigation of diverse
cyber threats.

’Timestamp’, ’Source’, ’Destination’,
’Protocol’, ’SrcPort’, ’DstPort’,
’TCP’, ’UDP’, ’TTL’, ’ACK’,
’SYN’, ’FIN’, ’PSH’, ’URG’,
’RST’, ’SequenceNumber’, ’PacketSize’,
’AcknowledgmentNumber’, ’PayloadSize’

These general features provide a detailed description of each
packet and are essential for identifying the characteristics of net-
work traffic. However, these features alone are not sufficient to
detect DDoS attacks effectively, as DDoS attacks rely on continuous
high-frequency packet transmission [51]. Therefore, we also extract
statistical features calculated over fixed time windows to capture
traffic patterns and anomalies. These 24 statistical features are
crucial for detecting DDoS attacks and are described below:

• Packet Count: The total number of packets observed in each
time window, represented as PacketCountt =

∑n
i=1 Packeti.

• Destination Port Entropy: Measures the entropy of destination
ports to detect scanning activities, defined as Entropy =
−
∑n

i=1 pi log(pi).
• Most Frequent Source Port: Identifies the most common

source port in a window, SourcePortmax.
• Most Frequent Destination Port: Identifies the most common

destination port in a window, DestinationPortmax.
• Short-lived Connections: Counts the number of short-lived

connections, ShortLivedConnections =
∑n

i=1 δi, where δi
indicates a short-lived connection.

• Repeated Connection Attempts: Measures repeated connection
attempts, RepeatedAttempts =

∑n
i=1 αi, where αi indicates a

repeated attempt.
• Network Scanning Activity: Counts instances of SYN flags

without ACK flags, Scanning =
∑n

i=1(SYN− ACK).
• Flow Rate: Calculated as packets per second, FlowRate =

TotalPackets
TimeInterval .
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• Source Entropy: Entropy of source addresses,
SourceEntropy = −

∑n
i=1 qi log(qi), where qi is the

probability distribution of source addresses.
• Connection Errors (RST flag): Counts instances of RST flags,

RSTCount =
∑n

i=1 RSTi.
• Most Frequent Packet Size Frequency: Identifies the most

common packet size, PacketSizemax.
• Abnormal Size Frequency: Counts packets exceeding

a size threshold, AbnormalSizeFrequency =∑n
i=1 Packeti if sizei > Threshold.

• Sequence Number Variance: Variance in sequence numbers,
Var(SequenceNumber).

• Average Packet Number: Average packets per interval,
AvgPackets = TotalPackets

TimeIntervals .
• SYN Frequency: Frequency of SYN flags, SYNFrequency =

TotalSYN
TimeInterval .

• ACK Frequency: Frequency of ACK flags, ACKFrequency =
TotalACK

TimeInterval .
• TCP Frequency: Proportion of TCP packets,

TCPFrequency = TotalTCP
TotalPackets .

• UDP Frequency: Proportion of UDP packets,
UDPFrequency = TotalUDP

TotalPackets .
• Most Frequent Protocol: Most used protocol, Protocolmax.
• Packet Size Variability: Variance in packet sizes,

Var(PacketSize).
• Most Frequent Payload Size: Most common payload size,

PayloadSizemax.
• Average Payload Size: Mean payload size, AvgPayloadSize =

TotalPayload
TotalPackets .

• Packet Size Standard Deviation: Standard deviation of packet
sizes, StdDev(PacketSize).

• Average Packet Size: Mean size of packets within a window,
AvgPacketSize = TotalPacketSize

TotalPackets .
In our approach, we used specific thresholds and parameters

to calculate these statistical features. The processing interval was
set to 1 second, which is the time interval used to aggregate
packets. An abnormal size threshold was defined as 1500 bytes
to identify abnormal packet sizes. The port frequency threshold
was set to 5 to determine frequently used ports. Additionally, a
short-lived connection threshold was defined as less than 5 packets
to identify short-lived connections. These features are designed to
capture various aspects of network traffic and detect deviations from
normal patterns that are characteristic of DDoS attacks. By com-
bining general features and statistical features, we can effectively
distinguish between normal traffic and DDoS traffic, enhancing the
detection capabilities of our system. The comprehensive feature set
is illustrated in Figure 2.

General Features

G1 G2 --- G14

Statistical Features

S1 S2 --- S24

Combined Features

F1 F2 --- F38 Target

Fig. 2: Combining statistical and general features approach

Figure 3 shows the feature space for both general and statistical
features, highlighting the importance of periodic statistical feature
calculation. In this visualization approach, we use PCA to reduce

the dataset’s dimensionality to three principal components and
then visualize these components in a 3D scatter plot. The target
labels are used to differentiate between classes, with each class
represented by a unique color. It is evident that with only general
features, the samples overlap, making it difficult for the model to
learn distinguishable patterns. However, with statistical features, the
samples are separable, aiding the model in learning distinct patterns.

(a) (b)

(c)

Fig. 3: Feature Space (a) Combined Features, (b) General Features,
and (c) Statistical Features

C. Phase 3: ML Approach

In the ML approach, we deployed several state-of-the-art meth-
ods for malicious traffic detection. We trained two models, M1 and
M2. M1 is a lightweight model trained on selected samples after
preprocessing while M2 is a complex model trained on a huge
dataset as shown in Figure 4. This M1 model directly deals with
live traffic, and if it fails, the decision is passed to M2, which then
helps to learn new data where M1 failed.

Fig. 4: ML models training approaches

M1: In the M1 training approach, we first selected a small sample
of data by choosing 100,000 samples from each class, totaling
400,000 samples. This small dataset helps us obtain a lightweight
model. Initially, we randomly selected 100,000 samples and trained
different models. Then, we selected the best 100,000 samples
from each class using the K-Means clustering approach [52]. K-
Means clustering was applied to the standardized features, with
an appropriate number of clusters chosen based on the dataset’s
characteristics. For each sample, the distance to the nearest cluster
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center was calculated, reflecting how well each sample represented
its cluster. By selecting the samples with the smallest distances to
their respective cluster centers, this method ensured that the most
representative samples for each class were chosen. This process
was repeated for each class in the dataset, and the selected top
samples from each class were compiled into a new data frame.
This approach effectively reduced the dataset size while maintaining
the diversity and representativeness of the original data, making it
suitable for training ML models or further analysis. After selecting
the important samples, we applied data scaling using the MinMax
method. After that, we split the dataset with a 75% and 25%
ratio, where 75% was used to train the model and 25% to test
the model. We trained four models, which are described below
such as stochastic gradient descent classifier (SGDC), perceptron
classifier, multinomial naive Bayes (MNB), and Bernoulli naive
Bayes (BNB). We used the partial fit function to train the model
in the M1 approach as we used the M1 method to retrain during
continuous learning. In the end, we evaluated the performance in
terms of accuracy, precision, recall, and F1 score. We also used a
10-fold cross-validation approach to evaluate the performance.

We deploy the four models in the M1 approach using their
best hyperparameter settings, which were identified through a
combination of literature review [11], [14], [53] and tuning within
specific ranges and values using a trial-and-error approach. Ta-
ble II illustrates the hyperparameter ranges and values used. Some
models, such as BNB and MNB, were deployed with their default
hyperparameter settings because these models are known to perform
well with defaults due to their simplicity and lack of sensitivity to
extensive hyperparameter tuning [54].

Below, we present a detailed discussion of each model, empha-
sizing their key characteristics and providing a rationale for their
selection in the M-En malicious traffic detection task

TABLE II: Hyperparameter settings for the M1 models

Model Hyperparameter Value Tuning Range
SGDC loss log loss -

max iter 1000 [200 to 1500]
tol 1e-3 -
random state 42 [0, 42]

Perceptron max iter 1000 [200 to 1500]
tol 1e-3 -
random state 42 [0, 42]

MNB Default Default -
BNB Default Default -

1) SGDC: It is a linear classifier that optimizes a linear model
using stochastic gradient descent. We use it for malicious traffic
detection in M-EN because it is efficient for large-scale and sparse
datasets. It also supports continuous learning, which makes it
suitable for our study [55]. It supports various loss functions;
however, we use log loss, which helps us work with prediction
probabilities to measure model confidence. The SGDC models the
decision function as a linear combination of the input features as:

z = w · x+ b = w1x1 + w2x2 + . . .+ wnxn + b (1)

where, w = [w1, w2, . . . , wn] is the weight vector, b is the bias
term, x is the input vector. Depending on the chosen loss function
(log in our case), the SDGC optimizes the model using the gradient
of the loss function, which can be described as:

L(w, b) = − log

(
1

1 + exp(−y(w · x+ b))

)
(2)

Then SGDC updates weights iteratively, which can be described
as:

w← w − η∇L(w, b,xi, yi) (3)

b← b− η
∂L(w, b,xi, yi)

∂b
(4)

where, η is the learning rate, ∇L is the gradient of the loss
function.

2) Perceptron: It is a linear classifier that makes predictions
based on a simple threshold function [56]. It is used for binary
classification tasks and can be extended to multiclass classification
using the one-vs-rest (OvR) scheme, as in our M-En malicious
traffic detection. It is also effective when data is linearly separable,
which is very suitable for our case, as our dataset is highly linearly
separable, as shown in Figure 3. Perceptron in sci-kit-learn also
provides a continuous learning function, so we use it as M1. The
Perceptron classifier aims to find a hyperplane that separates the
classes. Given an input vector x = [x1, x2, . . . , xn], the Perceptron
computes the output y using:

z = w · x+ b = w1x1 + w2x2 + . . .+ wnxn + b (5)

where, w = [w1, w2, . . . , wn] is the weight vector, b is the bias
term, x is the input vector. The output y is then determined by
applying the activation function:

y =

{
1 if z ≥ 0

−1 if z < 0
(6)

3) MNB: It is suitable for large datasets where fast computation
is needed, as in our case [57]. It also provides the ‘partial fit‘
function for continuous learning, which we use in our approach
as the M1 model in comparison with others [58]. It estimates the
probability of a class given the feature values by combining the
prior probability of the class and the likelihood of the observed
features given the class using Bayes’ theorem:

P (Ck|x) =
P (Ck) · P (x|Ck)

P (x)
(7)

where, P (Ck|x) is the posterior probability of class Ck, P (Ck)
is the prior probability of class Ck, P (x|Ck) is the likelihood of x
given Ck, P (x) is the marginal likelihood of x. The likelihood is
estimated based on the frequency of features:

P (x|Ck) =

n∏
i=1

P (xi|Ck)
xi (8)

where, P (xi|Ck) is the probability of feature xi in Ck, xi is
the count of feature i in x. Parameters are estimated using Laplace
smoothing:

P (xi|Ck) =
NCk,xi

+ α

NCk
+ αn

(9)

where, NCk,xi
is the count of xi in Ck, NCk

is the total count
of features in Ck, α is the smoothing parameter. Class prediction is
made by selecting the class with the highest posterior probability:

Ĉ = argmax
Ck

P (Ck)

n∏
i=1

P (xi|Ck)
xi (10)

4) GNB: We use it because network traffic features such as
packet sizes, inter-arrival times, and other statistical metrics are
continuous. GNB is well-suited for continuous data as it assumes
that the features follow a Gaussian (normal) distribution [59]. It
also uses Bayes’ theorem like MNB:

P (Ck|x) =
P (Ck) · P (x|Ck)

P (x)
(11)
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where, P (Ck|x) is the posterior probability of class Ck, P (Ck)
is the prior probability of class Ck, P (x|Ck) is the likelihood of x
given Ck, P (x) is the marginal likelihood of x. In the GNB model,
the likelihood is assumed to be normally distributed:

P (xi|Ck) =
1√

2πσ2
Ck,i

exp

(
− (xi − µCk,i)

2

2σ2
Ck,i

)
(12)

where, µCk,i is the mean of xi in Ck, σ2
Ck,i

is the variance
of xi in Ck. Parameters are estimated using maximum likelihood
estimation (MLE):

µCk,i =
1

NCk

NCk∑
j=1

xj,i (13)

σ2
Ck,i

=
1

NCk

NCk∑
j=1

(xj,i − µCk,i)
2 (14)

where, NCk
is the number of samples in Ck, xj,i is the value of

xi for the j-th sample in Ck. Class prediction is made by selecting
the class with the highest posterior probability:

Ĉ = argmax
Ck

P (Ck)

n∏
i=1

P (xi|Ck) (15)

M2: In the M2 training approach, we trained models on the
full dataset, which consists of 40 million samples. We applied data
scaling and then split the dataset with a 75% and 25% ratio, where
75% was used to train the model and 25% to test the model.
We trained several models such as MLP [60], LR [61], SGDC
[62], BNB [63], GNB [64], random forest (RF) [65], AdaBoost
(ADA) [66], support vector classifier (SVC) [67], and k-nearest
neighbors (KNN) [68]. We evaluated the performance of these
models in terms of accuracy, precision, recall, and F1 score. After
training both M1 and M2 models, we saved the models using the
pickle library and stored them with a .pkl extension to use them
during real-time testing. Similar to the M1 approach, we also deploy
the M2 approach models using their best hyperparameter settings,
identified through a combination of literature review and tuning
within specific ranges and values using an iterative experimentation
approach [10], [53], [69]. Table III illustrates the hyperparameter
ranges and values used. Other models, such as BNB, GNB, and
MNB, were deployed with their default hyperparameter settings.

TABLE III: Hyperparameter settings for the M2 models

Model Hyperparameter Value Tuning Range
LR max iter 1000 [200 to 1500 ]

random state 42 [0, 42]
SGDC loss log -

max iter 1000 [200 to 1500 ]
tol 1e-3 -
random state 42 [0, 42]

Perceptron max iter 1000 [200 to 1500 ]
tol 1e-3 -
random state 42 [0, 42]

RF n estimators 100 [10 to 300]
random state 42 [0, 42]
max depth 80 [2 to 100]

ADA n estimators 100 [10 to 300]
random state 42 [0, 42]
max depth 80 [2 to 100]

SVC probability True -
random state 42 [0, 42]

KNN n neighbors 5 [3 to 30]
MLP hidden layer sizes (100,) [50 to 500]

max iter 1000 [200 to 1500]
random state 42 [0, 42]

MNB Default Default -
BNB Default Default -
GNB Default Default -

D. Phase 4: MULTI-LF with Continuous Learning

In MULTI-LF, we use two models: M1 (a lightweight model
trained on a small sample of the dataset) and M2 (a complex model
trained on the full dataset). Initially, data is fed into the M1 model,
which predicts the traffic label. If M1’s prediction confidence is
100%, the model proceeds to the next sample for prediction or
ends the process. If M1’s confidence is below 100%, the control
shifts to M2 and the real-time traffic is passed to M2.

M2 then makes its prediction. If M2’s confidence is above 90%,
M1 is retrained under a continuous learning mechanism using the
predicted label from M2. If M2’s confidence is also below 90%,
the control is handed over to a human expert for interaction. The
expert monitors the specific traffic and predicts the label. Then,
M1 is retrained using the new traffic data and the label provided
by the human expert. Similarly, human interaction is maintained
with M2 to update it periodically. This process ensures continuous
monitoring and improvement of both models’ performance as
shown in Figure 5.

Algorithm 1 describes the continuous learning process. Here, D
represents the dataset, and CT denotes the confidence threshold set
at 0.9. PL refers to the predicted label’s output by the models, while
T indicates the incoming real-time traffic. The algorithm employs
two models: M1, a lightweight model trained on a small sample
(SS) of the dataset for quick initial predictions, and M2, a complex
model trained on the full dataset of 40.58 million instances for
secondary predictions. During prediction, S represents the current
traffic packet. p1 and c1 are the prediction and confidence from
M1, respectively. If c1 > CT , the prediction (p1) is accepted as the
output (O). If not, the sample is passed to M2 for prediction. p2 and
c2 are the prediction and confidence from M2. If c2 > CT , M1 is
retrained incrementally with S and p2. If c2 ≤ CT , a human expert
provides a prediction (ph), and both models are retrained with S
and ph. This process ensures continuous model improvement and
adaptation.

Algorithm 1 Continuous Learning with M1 and M2 Models

1: Input: D, CT = 0.9
2: Output: PL for incoming T
3: Initialize: Train M1 on SS of 400K instances using K-Means

clustering; Train M2 on the full dataset of 40.58M instances
4: while T exists do
5: S = next sample(T )
6: p1, c1 = M1.predict(S)
7: if c1 > CT then
8: O = p1
9: else

10: p2, c2 = M2.predict(S)
11: if c2 > CT then
12: O = p2
13: M1.retrain(S, p2)
14: else
15: ph = get human label(S)
16: O = ph
17: M1.retrain(S, ph)
18: M2.retrain(S, ph) ▷ Periodic human updates
19: end if
20: end if
21: Store or utilize O
22: end while
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Fig. 5: MULTI-LF Flow Diagram

IV. RESULTS & DISCUSSION

In our experimentation, the evaluation and training of models
were conducted on a Core i7 11th generation machine with a
Windows operating system. The system has 64GB of RAM and
a 1 TB SSD. We use a VMWare workstation to run Ubuntu 24.04,
where we run all experiments. We used the scikit-learn library for
the implementation of models and NS3 version 3.36.1.

We evaluated all models in terms of accuracy, precision, recall,
F1 score, computational time, and memory usage. Accuracy is
defined as the proportion of correctly predicted samples to the total
number of samples, calculated as follows:

Acc. =
TP + TN

TP + TN + FP + FN
(16)

In the context of malicious attack detection, precision is the
ratio of correctly predicted malicious traffic (true positives) to the
total traffic instances predicted as malicious (true positives plus
false positives). It measures how many of the detected malicious
activities are actually malicious. It is calculated as follows:

Precision =
TP

TP + FP
(17)

Recall, or sensitivity, in malicious attack detection, is the ratio
of correctly predicted malicious traffic (true positives) to all actual
malicious traffic instances (true positives plus false negatives). It
measures how many of the actual malicious activities are detected
by the model. It is calculated as follows:

Recall =
TP

TP + FN
(18)

The F1 Score is the harmonic mean of precision and recall,
providing a balance between the two metrics, especially useful
in scenarios with imbalanced datasets. Malicious attack detection
gives a single score that represents the balance between precision
and recall. It is calculated as follows:

F1Score = 2 · Precision ·Recall

Precision+Recall
(19)

A. Lightweight-M1 Models Results Used for Continuous Learning

Table IV presents the results for the ML models, referred to as
M1, which were trained on a small sample consisting of 400,000
instances. We used the partial fit method to train four models, with
and without min-max scaling. Without scaling, the performance
of the models was poor, except for BNB, which achieved an
accuracy score of 1.000, and MNB, which reached 0.972. In
contrast, SGDC and Perceptron completely failed. This is because

SGDC and Perceptron are linear models that are sensitive to the
scale of features. When features have different scales, the gradient
descent optimization process becomes inefficient, leading to poor
convergence. The models struggle to learn effectively from unscaled
data, resulting in poor performance across most classes.

On the other hand, the performance of all models with scaling
was excellent across all evaluation metrics, with all models achiev-
ing scores of 1.000. Scaling ensures that all features contribute
proportionately to the model, enhancing the training efficiency and
effectiveness of SGDC and Perceptron classifiers. It normalizes the
feature space, resulting in more balanced weight updates and better
model performance. For instance, if packet sizes range from 0 to
10,000 and another feature like traffic rate ranges from 0 to 1, the
larger feature disproportionately influences the model’s parameters,
leading to suboptimal performance. Scaling mitigates this problem
by normalizing the features. Similarly, MNB and BNB models
assume feature independence and use probabilities based on feature
occurrences. Without scaling, the probability estimates can become
skewed, affecting the model’s ability to correctly classify instances.
After scaling, these models show improved performance due to the
normalized feature space.

Table V presents the performance of various ML models, referred
to as M1, trained on a 400,000-sample dataset using 10-fold
cross-validation. Each model was evaluated with and without min-
max scaling. Without scaling, the SGDC and Perceptron models
performed poorly, achieving an accuracy of only 0.25 with a
standard deviation (Std) of 0.0. This suboptimal performance
is due to the models’ sensitivity to feature scale; the gradient
descent optimization process becomes inefficient when features
have different scales, leading to poor convergence and low precision
(0.0625 ± 0.0), recall (0.25 ± 0.0), and F1 scores (0.1 ± 0.0).
Without scaling, even though the Std is low, the accuracy and other
evaluation metrics are also low.

In contrast, with min-max scaling, both SGDC and Perceptron
achieved perfect accuracy scores of 1.0 with a Std of 0.0 across all
metrics. Scaling ensures that all features contribute proportionately,
normalizing the feature space and resulting in balanced weight
updates and better model performance. For instance, features like
packet size and traffic rate need normalization to prevent one from
disproportionately influencing the model parameters. Similarly, the
MNB and BNB models also showed significant improvements with
scaling. Without scaling, MNB achieved a mean accuracy of 0.9719
with a Std of 0.0328, while BNB reached a mean accuracy of
0.9992 with a Std of 0.0023. After scaling, both models achieved
perfect scores (1.0 ± 0.0). The results show the significance of
BNB in both cases, with and without scaling, so we use it as the
M1 model in our proposed approach.
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TABLE IV: Results for M1 Models using M-En Data

With Scaling
Model Accuracy Class Precision Recall F1-score

SGDC 1.000

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00
Macro Avg. 1.00 1.00 1.00

Perceptron 1.000

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

MNB 1.000

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

BNB 1.000

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

Without Scaling
Accuracy Class Precision Recall F1-score

0.250

IoT.B 0.25 1.00 0.40
IoT.M 0.00 0.00 0.00
Tr.B 0.00 0.00 0.00
Tr.M 0.00 0.00 0.00
macro avg 0.06 0.25 0.10

0.250

IoT.B 0.00 0.00 0.00
IoT.M 0.00 0.00 0.00
Tr.B 0.25 1.00 0.40
Tr.M 0.00 0.00 0.00
macro avg 0.06 0.25 0.10

0.972

IoT.B 0.99 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 0.90 0.95
Tr.M 0.91 0.99 0.95
macro avg 0.97 0.97 0.97

1.000

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00
macro avg 1.00 1.00 1.00

TABLE V: K-Fold Cross Validation Results for M1 Models using M-En Data

Model Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean ± Std

SGDC + Scaling

Accuracy 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

SGDC

Accuracy 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ± 0.0
Precision 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 ± 0.0

Recall 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ± 0.0
F1-score 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ± 0.0

Perceptron + Scaling

Accuracy 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

Perceptron

Accuracy 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ± 0.0
Precision 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 ± 0.0

Recall 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ± 0.0
F1-score 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ± 0.0

MNB + Scaling

Accuracy 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

MNB

Accuracy 0.9922 0.9311 0.9736 0.9018 0.9991 0.9995 0.9990 0.9440 0.9978 0.9815 0.9719 ± 0.0328
Precision 0.9924 0.9453 0.9759 0.9289 0.9991 0.9995 0.9990 0.9539 0.9978 0.9825 0.9774 ± 0.0246

Recall 0.9922 0.9311 0.9736 0.9018 0.9991 0.9995 0.9990 0.9440 0.9978 0.9815 0.9719 ± 0.0328
F1-score 0.9922 0.9299 0.9735 0.8979 0.9991 0.9994 0.9990 0.9433 0.9977 0.9814 0.9714 ± 0.0339

BNB + Scaling

Accuracy 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.0

BNB

Accuracy 0.9923 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9992 ± 0.0023
Precision 0.9925 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9993 ± 0.0022

Recall 0.9923 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9992 ± 0.0023
F1-score 0.9923 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9992 ± 0.0023

B. Complex-M2 Models Results

The performance of M2 models is shown in Table VI. These
results are based on a full dataset consisting of approximately
40 million samples, and we experimented only after data scaling
because, in the M1 case, we obtained the best results with data
scaling. The performance of all models is significant, with RF
achieving a perfect 1.000 accuracy score and outperforming all
other evaluation metrics. RF manages many features and determines
their importance, which is particularly beneficial in network traffic
data that often contains diverse and numerous features. By focusing
on the most relevant features, RF enhances predictive accuracy for
identifying malicious traffic in our M-En network. Furthermore,
RF scales well with large datasets, as in our case, and handles

extensive data efficiently, a common requirement in network traffic
analysis. While BNB performed poorly with an accuracy score of
0.8316, all models took considerable time to train but achieved
significant results. Our proposed approach used RF as M2 because
of its significant performance.

The performance metrics for the M2 models in terms of correct
prediction (CP), wrong prediction (WP), and error rate are pre-
sented in Table VII. RF model demonstrated the most significant
performance with the highest CP of 10,146,052 and the lowest error
rate of 0.0000, which justifies its selection as M2 in our proposed
approach. LR and Perceptron models both performed admirably,
with error rates of 0.0005, indicating their reliability in malicious
traffic detection. The GNB and ADA models also showed strong
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TABLE VI: Results for M2 Models using M-En Data

Model Accuracy Class Precision Recall F1-score

LR 0.9995

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00

Macro Avg 1.00 1.00 1.00

SGDC 0.9982

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 0.99 0.99
Tr.M 1.00 1.00 1.00

Macro Avg 1.00 1.00 1.00

Perceptron 0.9995

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00

Macro Avg 1.00 1.00 1.00

MNB 0.9943

IoT.B 1.00 1.00 1.00
IoT.M 0.99 0.99 0.99
Tr.B 0.99 0.99 0.99
Tr.M 0.99 1.00 0.99

Macro Avg 0.99 0.99 0.99

BNB 0.8316

IoT.B 0.82 1.00 0.90
IoT.M 0.99 0.74 0.85
Tr.B 0.80 1.00 0.89
Tr.M 0.94 0.21 0.34

Macro Avg 0.89 0.73 0.74

GNB 0.9984

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 0.99 1.00
Tr.M 1.00 1.00 1.00

Macro Avg 1.00 1.00 1.00

RF 1.0000

IoT.B 1.00 1.00 1.00
IoT.M 1.00 1.00 1.00
Tr.B 1.00 1.00 1.00
Tr.M 1.00 1.00 1.00

Macro Avg 1.00 1.00 1.00

ADA 0.9987

IoT.B 1.00 1.00 1.00
IoT.M 1.00 0.99 0.99
Tr.B 0.99 0.99 0.99
Tr.M 1.00 1.00 1.00

Macro Avg 1.00 1.00 1.00

performance with error rates of 0.0016 and 0.0013, respectively. On
the other hand, the BNB model had a significantly higher error rate
of 0.1684, indicating its limited effectiveness in this context. The
MNB model also showed a relatively higher error rate of 0.0057
compared to other models. These results highlight the robustness
of the RF model and the varying degrees of effectiveness among
different ML models in detecting malicious traffic.

TABLE VII: M2 Performance Metrics

Model CP WP Error Rate
LR 10140676 5395 0.0005
SGDC 10128182 17889 0.0018
Perceptron 10140625 5446 0.0005
MNB 10088644 57427 0.0057
BNB 8437084 1708987 0.1684
GNB 10130116 15955 0.0016
RF 10146052 19 0.0000
ADA 10132709 13362 0.0013

Table VIII shows the computational time required for the training
and testing of models used at the M1 and M2 levels, measured
in seconds. The M2 models were trained on a larger dataset and
thus exhibited higher computational times compared to the M1
models. In the M2 category, LR and ADA took significantly longer,
with times of 13,815.6875 seconds and 14,106.234375 seconds,
respectively. RF also required considerable time, 12,841.046875
seconds, reflecting its complex ensemble nature. Comparatively,
models like SGDC, Perceptron, MNB, and BNB showed much
lower computational times, highlighting their relative efficiency for
the same tasks. However, RF is significant in terms of accuracy and
also average computational cost, so we chose it for the proposed

approach from M2 and BNB from M1.

TABLE VIII: M1 & M2 Computational Time

Model M1 M2
LR - 138.68
SGDC 1.17 325.17
Perceptron 0.93 253.45
MNB 1.12 113.29
BNB 1.17 124.85
GNB - 71.0
RF - 12841.04
ADA - 14106.23

C. Results in Real-Time Environment

In this section, we present the results of MULTI-LF in real-
time scenarios. For real-time testing, we used NS-3 simulation to
generate sample data. The data was collected centrally and then
passed to our traffic analyzer, the MTDS framework. We conducted
experiments under different scenarios to evaluate the framework’s
performance. We collected packets over specific time windows and
then passed the batch of packets to the framework to determine the
accuracy. This process was repeated over several iterations, and the
average scores were reported.

We select the best models from online testing, evaluate their
performance, and compare them across different scenarios. Sce-
nario 1: M1 is used for attack detection without continuous learning
capabilities and evaluated with DDoS and benign traffic. Scenario
2: M1 is used for attack detection with continuous learning capabil-
ities. Scenario 3: M2 is used independently for testing. Scenario 4:
M1 and M2 are deployed together with MULTI-LF without human
involvement. Scenario 5: M1 and M2 are deployed with MULTI-
LF and human involvement. The implementation of Scenarios 4
and 5 in MULTI-LF is illustrated in Figure 6.

Fig. 6: Scenario 4 & 5 visualization for easy understanding

Table IX provides an evaluation of Scenario 1, where the M1
model is used without continuous learning for attack detection.
KNN demonstrates the highest accuracy (0.688) but at the cost
of substantial resource usage, including a large MS (90,236 KB),
high memory consumption (187.741 MB), and significant CPU
utilization (58.34%). In contrast, models like LR show a much
smaller size (2 KB), lower MU (122.3 MB), and minimal CPU
impact (45.61%) with a faster prediction time (0.0007 seconds),
though with reduced accuracy (0.536). This highlights the trade-off
between model complexity and computational efficiency, making
KNN suitable for accuracy-critical scenarios, while lighter models
like LR are better for resource-constrained environments.

Scenario 2 evaluates the M1 model with continuous learn-
ing capabilities, showcasing improvements in both efficiency and
performance as shown in Table X. Among the models tested,
Perceptron achieves the highest accuracy (0.704) while maintaining
a minimal MS (3 KB) and low prediction time (0.0007 seconds).
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TABLE IX: Scenario 1: M1 Without Continuous Learning

Model ADA GNB KNN LR RF
MS (KB) 57 4 90236 2 103
Accuracy 0.32 0.422 0.688 0.536 0.661
PT (S) 0.071 0.002 0.723 0.0007 0.032
CPU (%) 52.91 49.12 58.34 45.61 51.29
MU (MB) 122.467 121.571 187.741 122.3 112.81

This demonstrates the model’s ability to quickly adapt to new data
without a significant increase in computational costs. Other models
like MNB and SGDC also display competitive accuracies (0.594
and 0.581, respectively) and maintain a low memory footprint
(around 117-120 MB). These results highlight the effectiveness of
continuous learning in maintaining high accuracy while optimizing
resource usage for real-time scenarios as it achieved 0.704 high
accuracy as compared to Scenario 1 which has 0.688 accuracy.

TABLE X: Scenario 2: M1 With Continuous Learning

Model BNB MNB Perceptron SGDC
MS (KB) 4 4 3 3
Accuracy 0.575 0.594 0.704 0.581
PT (S) 0.001 0.001 0.0007 0.001
CPU (%) 49.69 50.01 55.52 51.74
MU (MB) 110.248 117.812 124.405 120.932

In Scenario 3, the performance of M2 is evaluated without con-
tinuous learning across multiple ML models, as shown in Table XI.
The results indicate a significant variation in accuracy, prediction
time, CPU utilization, and MU among the models. MLP achieves
the highest accuracy (0.885), demonstrating strong prediction capa-
bilities, but at the cost of increased CPU utilization (57.14%) and
MU (140.119 MB). On the other hand, LR provides a balanced
performance with good accuracy (0.818) and low computational
costs, making it also a suitable choice for applications with limited
resources. RF model, while offering moderate accuracy (0.738), has
the largest MS (33,009 KB) and the highest memory consumption
(267.679 MB), indicating a trade-off between performance and
resource efficiency. Models like BNB and GNB, with accuracies
of 0.725 and 0.721, respectively, exhibit low prediction time and
MU, but their high CPU utilization makes them less practical for
real-time applications. Compared to Scenario 2, where continuous
learning was employed, Scenario 3 shows that M2 without con-
tinuous learning achieves higher accuracy in some models, such
as MLP, but with increased computational overhead, indicating the
benefits of continuous learning for resource optimization and real-
time applicability. Considering these factors, we utilize M1 with
continuous learning at the first level and then deploy the best-
performing model from M2 at the second level in MULTI-LF.

TABLE XI: Scenario 3: M2 Without Continuous Learning
Model MS (KB) Accuracy PT (S) CPU (%) MU (MB)
ADA 57 0.723 0.085 39.91 96.179
BNB 4 0.725 0.001 60.47 129.028
GNB 4 0.721 0.005 56.28 137.565
LR 2 0.818 0.001 48.16 123.635
MLP 106 0.885 0.016 57.14 140.119
MNB 4 0.792 0.0009 53.57 133.187
Perceptron 3 0.737 0.0009 61.79 151.869
RF 33009 0.738 0.0313 55.18 267.679
SGDC 3 0.830 0.002 46.00 137.654

Table XII shows the performance comparison of four models,
BNB, MNB, Perceptron, and SGDC, under Scenario 4, where both
M1 and M2 models are deployed in MULTI-LF without human
involvement. The first set of results evaluates the models with MLP
as the secondary model (M2). The Perceptron model achieves the
highest accuracy at 0.999, but at the cost of significantly higher
CPU utilization (23.22%) and MU (2.623 MB), indicating its com-

putational intensity. In contrast, BNB maintains high accuracy at
0.975 with a much lower CPU usage (2.582%) and MU (1.513 MB),
suggesting a good trade-off between performance and resource
efficiency.

The second set of results involves the same models but with
RF as the M2. The accuracy of all models drops compared to
the MLP scenario, with the highest accuracy achieved by the
Perceptron model (0.983). However, the computational overhead
is significantly reduced, as evidenced by lower CPU utilization
(3.221%) and MU (0.956 MB). This suggests that using RF as the
secondary model is less resource-intensive, but it comes at the cost
of reduced prediction performance. The results highlight the trade-
offs between model performance and resource efficiency when
using different secondary models (MLP and RF) within MULTI-
LF. The Perceptron model consistently achieves high accuracy but
at a higher computational cost, while BNB and other models offer
a balanced approach between accuracy and resource usage.
TABLE XII: Scenario 4: M1 and M2 Under MULTI-LF Without
Human Involvement

MLP as M2 & Without Human Check
Matrix BNB MNB Preceptron SGDC

Accuracy 0.975 0.331 0.999 0.371
PT (S) 0.332 0.270 1.259 0.144

CPU (%) 2.582 0.027 23.22 0.034
MU (MB) 1.513 0.041 2.623 0.030

RF as M2 & Without Human Check
Accuracy 0.941 0.330 0.983 0.186

PT (S) 0.216 0.270 0.278 0.164
CPU (%) 1.240 0.023 3.221 0.042
MU (MB) 1.338 0.017 0.956 0.001

In Scenario 5, M1 and M2 models were evaluated under the
MULTI-LF with human involvement. The models used were BNB,
MNB, Perceptron, and SGDC, with MLP and RF as the secondary
models (M2), same as Scenario 4. This scenario demonstrated the
impact of incorporating human oversight on model performance.
When MLP was used as the secondary model, the Perceptron
achieved the highest accuracy of 0.999, but it required significant
CPU utilization (17.84%) and MU (35.48 MB). The prediction
time of 0.866 seconds indicates that while human involvement
boosts the model’s accuracy, it also increases computational costs.
In contrast, the BNB model showed good performance with an
accuracy of 0.979, but its MU (56.53 MB) remained notably high
compared to other models. When RF was used as the secondary
model, Perceptron again demonstrated high accuracy (0.983) but
with a reduced CPU utilization of 10.05% and lower MU (3.632
MB). Prediction time was also reduced to 0.434 seconds, indicating
that RF as the secondary model results in a more resource-efficient
configuration while maintaining high accuracy. BNB’s performance
with RF was similar to its performance with MLP in terms of
accuracy, but it achieved lower CPU utilization (2.564%) and higher
MU (72.69 MB).

Comparing Scenario 5 to Scenario 4 MULTI-LF, we observe
that human intervention slightly increases computational resource
usage but improves model accuracy, demonstrating the value of
human oversight. Furthermore, Scenario 5 outperformed Scenario
1 and Scenario 2 (M1 configurations) in accuracy across most
models, validating the robustness of the proposed human-involved
framework. Finally, compared to Scenario 3 (M2 without contin-
uous learning), Scenario 5 exhibited a more balanced trade-off
between accuracy and computational efficiency, especially when
using RF as the secondary model, highlighting the advantage of
human intervention in refining the model’s performance.

Figure 7 shows the different iteration scores for Scenarios 4
and 5. It is evident that model accuracy improves with continuous
learning as more data is provided. However, the prediction time
remains consistent over the iterations.
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(a) Performance of M1 (BNB) and M2 (RF) Models without
Human Intervention

(b) Performance of M1 (BNB) and M2 (MLP) Models
without Human Intervention

(c) Performance of M1 (BNB) and M2 (RF) Models with
Human Intervention

(d) Performance of M1 (BNB) and M2 (MLP) Models with
Human Intervention

(e) Performance of M1 (Perceptron) and M2 (RF) Models
without Human Intervention

(f) Performance of M1 (Perceptron) and M2 (MLP) Models
without Human Intervention

(g) Performance of M1 (Perceptron) and M2 (RF) Models
with Human Intervention

(h) Performance of M1 (Perceptron) and M2 (MLP) Models
with Human Intervention

Fig. 7: Scenario 4 and Scenario 5: Best performing models’ results per batch

TABLE XIII: Scenario 5: M1 and M2 Under MULTI-LF With
Human Involvement

MLP as M2 & Human Check
Matrix BNB MNB Preceptron SGDC

Accuracy 0.979 0.331 0.999 0.371
PT (S) 0.374 0.270 0.866 0.174

CPU (%) 3.158 0.022 17.84 0.035
MU (MB) 56.53 0.009 35.48 0.018

RF as M2 & Human Check
Accuracy 0.975 0.331 0.983 0.384

PT (S) 0.331 0.270 0.434 0.178
CPU (%) 2.564 0.019 10.05 0.102
MU (MB) 72.69 0.020 3.632 0.020

D. Comparison With Benchmark Studies

Many studies validate their MTDS approaches in offline set-
tings, often achieving significant results. However, these systems

frequently experience performance degradation when deployed in
real-time environments due to the dynamic nature of network traffic
and the emergence of new attack patterns. The datasets used to train
these models are typically static, which limits their effectiveness in
real-world applications.

There are no existing studies that evaluate their work on real-
time online M-En traffic. Therefore, for a fair comparison, we
implemented existing M-En studies on our newly collected real-
time M-En dataset, deploying them according to the methodologies
outlined in their respective published work. Since most existing
studies conducted only offline testing, we replicated their models
in the same offline setting to maintain consistency in evaluation. For
instance, Rustam et al. [47] deployed their approach on an M-En
dataset using the synthetic data augmentation technique (S-DATE).
While the performance appeared strong after applying the S-DATE
data balancing method, the results indicated potential data leakage
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issues, which could explain the observed high accuracy. Similarly,
other studies [10], [14] proposed optimization-based approaches
to handle diverse traffic patterns in M-En networks, employing
Particle Swarm Optimization (PSO) and Moth Flame Optimization
(MFO), respectively. These studies introduced PSO-diverse self-
ensemble model (PSO-D-SEM) and a Fully Automated Malicious
Traffic Detection System (FAMTDS). Another study [70] utilized a
dual-data trained LightGBM (DDT-LightGBM) model, achieving
significant results in the M-En network within an offline testing
framework. Zukaib et al. [49] integrated Federated Learning and
Meta-learning to propose the Meta-Fed IDS, which was tested
on the M-En dataset. However, their evaluation was limited to
offline settings and did not incorporate real-time data collection or
adaptation. In contrast, our study conducted both online and offline
testing and was built on a real-time M-En dataset.

In Table XIV, we compare our approach, MULTI-LF, to relevant
M-En benchmark studies. Most existing approaches [10], [14], [47],
[49], [70] use static datasets and evaluate performance only in
offline scenarios, reporting accuracy values between 0.94 and 0.991.
While these systems can be effective in controlled settings, they
often lack the mechanisms to continuously learn from new traffic
patterns or adapt to real-time fluctuations in M-En networks.

In contrast, MULTI-LF is the only method evaluated in both
offline and online modes, achieving near-optimal accuracy scores
of 1.00 (offline) and 0.999 (online). These results highlight MULTI-
LF’s resilience to dynamic traffic behavior. By continuously re-
training on fresh data and utilizing multi-level validation checks,
MULTI-LF maintains high accuracy even under unpredictable net-
work conditions, offering a robust solution for real-time MTDS in
M-En environments.

TABLE XIV: Comparison With Existing Studies

Ref. Year Approach Testing Results
offline online

[47] 2023 ETC, S-DATE ✓ × 0.986
[14] 2024 PSO-D-SEM ✓ × 0.978
[10] 2024 FAMTDS ✓ × 0.991
[70] 2024 DDT-LightGBM ✓ × 0.98
[49] 2024 Meta-Fed IDS ✓ × 0.94

- 2025 MULTI-LF ✓ ✓ 1.00, 0.999

V. DISCUSSION

This study collected a dataset in the M-En environment and
proposed the MULTI-LF framework for attack detection, testing it
in both offline and real-time scenarios. We deployed MULTI-LF to
reduce computational costs and enhance accuracy over time. The
computational cost is reduced because the initial traffic is evaluated
by the lightweight M1 model, which has a faster prediction time,
as shown in Table VIII. Most of the traffic is filtered by M1, and
only a small portion is forwarded to M2 and, if necessary, to a
human expert. Additionally, the approach’s performance improved
by incorporating an extra layer of security using M2 and human
involvement. This is reflected in the improvement in accuracy from
0.70 to 0.99, as shown in Figure 8.

The improvement in model performance was achieved through
continuous training with new data, allowing the model to ef-
ficiently adapt to new traffic patterns as well as through our
feature engineering approach. The use of statistical features in our
methodology significantly contributed to the model’s success, as
shown in Figure 9. Statistical features such as ConnectionErrors,
DstPortEntropy, MostFreqPayloadSize, SourceEntropy, MostFreq-
PacketSizeFreq, FlowRate, PacketCount, PacketSizeVar, and Avg-
PayloadSize played a major role in detecting DDoS attacks. For
example, a sudden increase in packet count from a specific IP within

Fig. 8: Accuracy comparison with difference scenarios

a time window can indicate an attack. These statistical features,
combined with general features, generated highly correlated inputs,
as shown in Figure 3, thus improving the performance of the
framework.

Fig. 9: Feature importance score

Table XV illustrates the performance of different scenarios,
highlighting variations in network traffic and the significance of
a unified approach using the M-En dataset. In our experiments,
we first trained the model with IoT data tested it with traditional
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(trad.) data, and then trained it on trad. data and tested it with
IoT data. The models performed poorly in both cases due to the
distinct traffic patterns, demonstrating that existing SOTA datasets
are inadequate for creating a unified framework for M-En networks.
Subsequently, we conducted experiments using the M-En dataset,
training models on it, and testing with both IoT and trad. traffic. The
models showed significant improvements in handling both types
of traffic, underscoring the effectiveness of our M-En dataset for
training models in diverse scenarios.

TABLE XV: Results using Different Training and Testing Datasets

Training Testing Accuracy Class Precision Recall F1-Score

IoT Trad. 0.0066 0 0.01 0.03 0.01
1 0.00 0.00 0.00

Trad. IoT 0.0142 0 0.13 0.02 0.03
1 0.00 0.00 0.00

M-En IoT and Trad. 0.9993 0 1.00 1.00 1.00
1 1.00 1.00 1.00

Furthermore, Figure 10 demonstrates the performance of our
testing in a real-time scenario. Figure 10a, illustrates the connection
between the server and the gateway of M-En networks, which
facilitates the real-time ingestion of network packets for processing.
Once the connection is established, the models begin analyzing the
traffic. Initially, the performance is suboptimal, showing accuracy
levels around 50-60%. However, as the system continues to operate,
the performance progressively improves due to the continuous
learning approach implemented in our framework. The continuous
learning mechanism enables the models to adapt to the evolving
traffic patterns by retraining on newly collected data in real-time
as shown in Figure 10b. Over time, the accuracy significantly
increases, stabilizing at 99-100%, as seen in the later stages of
the testing process. This improvement highlights the robustness
and adaptability of our framework, as well as the importance of
incorporating real-time data and continual learning for addressing
the dynamic nature of M-En network environments. These results
further validate the effectiveness of our unified framework and its
ability to handle diverse and evolving traffic scenarios in real-time
applications.

(a) Server connection establishment

(b) Live performance of models and continuous improvement

Fig. 10: Real-time testing snapshots

Significance: This study has several significance in network
security for DDoS attack detection and shows strong contribution
in the given domain:

• This study introduces a comprehensive benchmark dataset
specifically tailored for M-En networks, providing a founda-
tional resource for researchers to advance security solutions in
complex, M-En network settings.

• The availability of our research resources in an open repository
not only ensures transparency and reproducibility but also
encourages further development, validation, and deployment of
novel methodologies in the domain of M-En network security.

• By incorporating continuous learning and human intervention,
the framework demonstrates an ability to adapt dynamically to
new and unseen traffic patterns. This adaptability is essential
for dealing with zero-day attacks and evolving threats, provid-
ing a sustainable approach to long-term network security.

• MULTI-LF ability to leverage a lightweight model (M1) for
initial detection significantly reduces computational overhead,
which is crucial for real-time applications. This ensures that
the framework is not only accurate but also efficient, making it
suitable for deployment in resource-constrained environments.

Limitations: Despite the significance of this study, there are
several limitations to consider:

• This study focuses primarily on a few DDoS attacks and does
not explore other types of attacks, such as Man-in-the-Middle
(MiM) and other sophisticated network attacks, which restricts
the comprehensiveness of the dataset.

• This study focuses solely on IoT and traditional networks
within the M-En framework, which is limited. Numerous
other networks, including SDN and industrial IoT, can be
incorporated into M-En networks, which could be helpful in
bigger networks.

• MULTI-LF requries human intervention, which can slow down
the decision-making process. On average, a human expert
takes approximately 1 to 2 minutes to make a decision. To
address this, a faster and more efficient processing system is
needed for timely decision-making.

VI. CONCLUSION

This study effectively addresses DDoS attack detection in M-En
networks using a continuous learning approach. A pivotal contri-
bution of this research is the creation of a novel benchmark dataset
specifically designed for M-En networks, integrating both IoT and
traditional IP-based traffic patterns. Utilizing this comprehensive
dataset, we developed a highly reliable methodology optimized
for real-time operational scenarios. Our extensive analysis demon-
strates that the M-En network dataset exhibits distinct character-
istics compared to existing domain-specific benchmark datasets,
such as greater variability in packet size and frequency. In contrast,
domain-specific datasets tend to have consistent traffic patterns.
Consequently, ML models trained on domain-specific datasets un-
derperform when applied to diverse traffic domains, highlighting the
inherent challenges in developing a unified detection framework.
However, the inherent diversity within the M-En dataset enables
the development of a unified system that can reduce computational
costs, resource usage, and management overhead. Furthermore, the
study concludes that models trained without a continuous learning
paradigm suffer significant performance degradation over time due
to evolving traffic patterns and dynamic network topologies, such
as the addition or removal of devices. In contrast, our proposed
MULTI-LF, incorporating continuous learning mechanisms, effec-
tively mitigates these issues by enabling the model to adapt to
zero-day attacks and scale efficiently within M-En networks. This
results in enhanced reliability and sustained accuracy over time.
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Additionally, MULTI-LF achieves high classification accuracy and
low prediction latency in real-time testing environments, although
offline testing exhibits marginally superior performance metrics.
Importantly, MULTI-LF continuously improves its real-time perfor-
mance by fine-tuning with newly acquired data, thereby maintaining
robustness against previously unseen attack vectors. This study
also concludes that human involvement during the continuous
learning process is highly effective in avoiding bias and improving
transparency and trust in the framework.

However, despite the significant contributions of this study, we
acknowledge certain limitations and outline directions for future
work. We intend to explore additional unique attack types to
further enhance the system’s efficiency. Additionally, we consider
integrating Large Language Models (LLMs) to replace human
intervention, enabling faster and more reliable decision-making
with increased trust.

ACKNOWLEDGMENT

This work is funded by the School of Computer Science and
CHIST-ERA ERA-NET - SPiDDS Topic and Irish Research Coun-
cil (IRC) for funding support

AUTHOR CONTRIBUTIONS

Furqan Rustam: Writing – original draft, Visualization, Soft-
ware, Validation, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization, Writing – review & editing. Islam
Obaidat: Visualization, Validation, Investigation, Formal analysis,
Data Curation, Writing – review & editing. Anca Delia Jurcut:
Writing – review & editing, Validation, Supervision, Software,
Project administration, Formal analysis, Conceptualization.

REFERENCES

[1] Z. Zhao, Z. Liu, H. Chen, F. Zhang, Z. Song, and Z. Li, “Effective ddos
mitigation via ml-driven in-network traffic shaping,” IEEE Transactions on
Dependable and Secure Computing, pp. 1–18, 2024.

[2] A. Nazir, J. He, N. Zhu, A. Wajahat, X. Ma, F. Ullah, S. Qureshi, and M. S.
Pathan, “Advancing iot security: A systematic review of machine learning
approaches for the detection of iot botnets,” Journal of King Saud University
- Computer and Information Sciences, vol. 35, no. 10, p. 101820, 2023.

[3] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “A data-driven study of ddos
attacks and their dynamics,” IEEE Transactions on Dependable and Secure
Computing, vol. 17, no. 3, pp. 648–661, 2020.

[4] S. Ismail, H. R. Hassen, M. Just, and H. Zantout, “A review of amplification-
based distributed denial of service attacks and their mitigation,” Computers &
Security, vol. 109, p. 102380, 2021.

[5] S. De Vivo, I. Obaidat, D. Dai, and P. Liguori, “DDoShield-IoT: A testbed
for simulating and lightweight detection of IoT botnet DDoS attacks,” in
Proceedings of the 54th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pp. 1–8, 2024.

[6] Y. Cao, H. Jiang, Y. Deng, J. Wu, P. Zhou, and W. Luo, “Detecting and
mitigating ddos attacks in sdn using spatial-temporal graph convolutional
network,” IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 6, pp. 3855–3872, 2022.

[7] J. Bhayo, S. A. Shah, S. Hameed, A. Ahmed, J. Nasir, and D. Draheim,
“Towards a machine learning-based framework for ddos attack detection in
software-defined iot (sd-iot) networks,” Engineering Applications of Artificial
Intelligence, vol. 123, p. 106432, 2023.

[8] M. Najafimehr, S. Zarifzadeh, and S. Mostafavi, “Ddos attacks and machine-
learning-based detection methods: A survey and taxonomy,” Engineering
Reports, vol. 5, no. 12, p. e12697, 2023.

[9] R. C. Paffenroth and C. Zhou, “Modern machine learning for cyber-defense and
distributed denial-of-service attacks,” IEEE Engineering Management Review,
vol. 47, no. 4, pp. 80–85, 2019.

[10] F. Rustam, W. Aljedaani, M. S. Elsayed, and A. D. Jurcut, “Famtds: A
novel mfo-based fully automated malicious traffic detection system for multi-
environment networks,” Computer Networks, vol. 251, p. 110603, 2024.

[11] F. Rustam, P. S. Ranaweera, and A. D. Jurcut, “Ai on the defensive and offen-
sive: Securing multi-environment networks from ai agents,” in Proceedings of
the IEEE International Conference on Communications (ICC), (USA), p. To
be assigned, March 2024.

[12] I. Ullah and Q. H. Mahmoud, “A scheme for generating a dataset for anomalous
activity detection in iot networks,” in Advances in Artificial Intelligence
(C. Goutte and X. Zhu, eds.), (Cham), pp. 508–520, Springer International
Publishing, 2020.

[13] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set),” in 2015 Military
Communications and Information Systems Conference (MilCIS), pp. 1–6, 2015.

[14] F. Rustam and A. D. Jurcut, “Malicious traffic detection in multi-environment
networks using novel s-date and pso-d-sem approaches,” Computers & Secu-
rity, vol. 136, p. 103564, 2024.

[15] M. B. Anley, A. Genovese, D. Agostinello, and V. Piuri, “Robust ddos attack
detection with adaptive transfer learning,” Computers & Security, p. 103962,
2024.

[16] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing
realistic distributed denial of service (ddos) attack dataset and taxonomy,” in
2019 International Carnahan Conference on Security Technology (ICCST),
pp. 1–8, 2019.

[17] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,” in
International Conference on Information Systems Security and Privacy, 2018.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis
of the kdd cup 99 data set,” in 2009 IEEE symposium on computational
intelligence for security and defense applications, pp. 1–6, Ieee, 2009.

[19] A. M. Al-Eryani, E. Hossny, and F. A. Omara, “Efficient machine learning
algorithms for ddos attack detection,” in 2024 6th International Conference
on Computing and Informatics (ICCI), pp. 174–181, 2024.

[20] A. Singh, H. Kaur, and N. Kaur, “A novel ddos detection and mitigation
technique using hybrid machine learning model and redirect illegitimate traffic
in sdn network,” Cluster Computing, vol. 27, no. 3, pp. 3537–3557, 2024.

[21] A. Waleed, A. F. Jamali, and A. Masood, “Which open-source ids? snort,
suricata or zeek,” Computer Networks, vol. 213, p. 109116, 2022.

[22] M. A. Talukder, M. M. Islam, M. A. Uddin, K. F. Hasan, S. Sharmin, S. A.
Alyami, and M. A. Moni, “Machine learning-based network intrusion detection
for big and imbalanced data using oversampling, stacking feature embedding
and feature extraction,” Journal of Big Data, vol. 11, no. 1, p. 33, 2024.

[23] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “A detailed analysis
of the cicids2017 data set,” in Information Systems Security and Privacy: 4th
International Conference, ICISSP 2018, Funchal-Madeira, Portugal, January
22-24, 2018, Revised Selected Papers 4, pp. 172–188, Springer, 2019.

[24] M. H. M. Yusof, A. A. Almohammedi, V. Shepelev, and O. Ahmed, “Visual-
izing realistic benchmarked ids dataset: Cira-cic-dohbrw-2020,” IEEE Access,
vol. 10, pp. 94624–94642, 2022.

[25] V. S. V. Hema, S. Devadharshini, and P. Gowsalya, “Malicious traffic flow
detection in iot using ml based algorithms,” International Research Journal
on Advanced Science, vol. 3, no. 5, pp. 68–76, 2023.

[26] Z. Niu, J. Xue, Y. Wang, T. Lei, W. Han, and X. Gao, “Qarf: A novel
malicious traffic detection approach via online active learning for evolving
traffic streams,” Chinese Journal of Electronics, vol. 33, no. 3, pp. 645–656,
2024.

[27] A. E. Omolara, A. Alabdulatif, O. I. Abiodun, M. Alawida, A. Alabdulatif,
H. Arshad, et al., “The internet of things security: A survey encompassing un-
explored areas and new insights,” Computers & Security, vol. 112, p. 102494,
2022.

[28] B. Babayigit and M. Abubaker, “Towards a generalized hybrid deep learning
model with optimized hyperparameters for malicious traffic detection in the in-
dustrial internet of things,” Engineering Applications of Artificial Intelligence,
vol. 128, p. 107515, 2024.

[29] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-
iiotset: A new comprehensive realistic cyber security dataset of iot and iiot
applications for centralized and federated learning,” IEEE Access, vol. 10,
pp. 40281–40306, 2022.

[30] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain, “WUSTL-
IIOT-2021 Dataset for IIoT Cybersecurity Research,” October 2021.

[31] M. Al-Hawawreh, E. Sitnikova, and N. Aboutorab, “X-iiotid: A connectivity-
agnostic and device-agnostic intrusion data set for industrial internet of things,”
IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3962–3977, 2022.

[32] S. Zhu, X. Xu, J. Zhao, and F. Xiao, “Lkd-stnn: A lightweight malicious traffic
detection method for internet of things based on knowledge distillation,” IEEE
Internet of Things Journal, vol. 11, no. 4, pp. 6438–6453, 2024.

[33] N. Moustafa, “A new distributed architecture for evaluating ai-based security
systems at the edge: Network ton iot datasets,” Sustainable Cities and Society,
vol. 72, p. 102994, 2021.

[34] S. Garcia, A. Parmisano, and M. J. Erquiaga, “Iot-23: A labeled dataset with
malicious and benign iot network traffic,” Stratosphere Lab., Praha, Czech
Republic, Tech. Rep, 2020.

[35] Y. Huo, W. Liang, J. Chen, S. Zhuang, and J. Sun, “Lightguard: A lightweight
malicious traffic detection method for internet of things,” IEEE Internet of
Things Journal, pp. 1–1, 2024.

[36] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines
for efficient cnn architecture design,” in Computer Vision – ECCV 2018
(V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, eds.), (Cham), pp. 122–
138, Springer International Publishing, 2018.

[37] W. Wei and L. David, “USTC-TFC2016: A Dataset for Traffic Classification,”
2016. Accessed: 2023-10-25.

[38] U. o. N. B. Canadian Institute for Cybersecurity, “CIC IoT Dataset Collection,”
2023. Accessed: 2023-10-25.

[39] X. Fan, C. Li, and X. Dong, “A real-time network security visualization system
based on incremental learning (chinavis 2018),” Journal of Visualization,
vol. 22, pp. 215–229, 2019.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, 2025 18

[40] X. Xu, X. Zhang, Q. Zhang, Y. Wang, B. Adebisi, T. Ohtsuki, H. Sari,
and G. Gui, “Advancing malware detection in network traffic with self-paced
class incremental learning,” IEEE Internet of Things Journal, vol. 11, no. 12,
pp. 21816–21826, 2024.

[41] S. Ajjaj, S. El Houssaini, M. Hain, and M.-A. El Houssaini, “Incremental
online machine learning for detecting malicious nodes in vehicular communi-
cations using real-time monitoring,” in Telecom, vol. 4, pp. 629–648, MDPI,
2023.

[42] D. Krajzewicz, “Traffic simulation with sumo–simulation of urban mobility,”
Fundamentals of traffic simulation, pp. 269–293, 2010.

[43] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling
and tools for network simulation, pp. 15–34, Springer, 2010.

[44] R. Wang, J. Fei, R. Zhang, M. Guo, Z. Qi, and X. Li, “Drnet: Dynamic
retraining for malicious traffic small-sample incremental learning,” Electronics,
vol. 12, no. 12, p. 2668, 2023.

[45] Z. Zhao, Z. Li, Z. Song, W. Li, and F. Zhang, “Trident: A universal
framework for fine-grained and class-incremental unknown traffic detection,”
in Proceedings of the ACM on Web Conference 2024, pp. 1608–1619, 2024.

[46] M. S. Elsayed, N.-A. Le-Khac, and A. D. Jurcut, “Insdn: A novel sdn intrusion
dataset,” IEEE Access, vol. 8, pp. 165263–165284, 2020.

[47] F. Rustam, A. D. Jurcut, W. Aljedaani, and I. Ashraf, “Securing multi-
environment networks using versatile synthetic data augmentation technique
and machine learning algorithms,” in 2023 20th Annual International Confer-
ence on Privacy, Security and Trust (PST), pp. 1–10, IEEE, 2023.

[48] P. L. Indrasiri, E. Lee, V. Rupapara, F. Rustam, and I. Ashraf, “Malicious
traffic detection in iot and local networks using stacked ensemble classifier,”
Computers, Materials and Continua, vol. 71, no. 1, pp. 489–515, 2022.

[49] U. Zukaib, X. Cui, C. Zheng, D. Liang, and S. U. Din, “Meta-fed ids: Meta-
learning and federated learning based fog-cloud approach to detect known and
zero-day cyber attacks in iomt networks,” Journal of Parallel and Distributed
Computing, p. 104934, 2024.

[50] L. F. G. Casanova, P.-C. Lin, et al., “Malicious network traffic detection for
dns over https using machine learning algorithms,” APSIPA Transactions on
Signal and Information Processing, vol. 12, no. 2, 2023.

[51] R. F. Fouladi, T. Seifpoor, and E. Anarim, “Frequency characteristics of
dos and ddos attacks,” in 2013 21st Signal Processing and Communications
Applications Conference (SIU), pp. 1–4, IEEE, 2013.
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