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Abstract—The increasing deployment of large language models
(LLMs) in the cybersecurity domain underscores the need
for effective model selection and evaluation. However, tradi-
tional evaluation methods often overlook specific cybersecurity
knowledge gaps that contribute to performance limitations. To
address this, we develop CSEBenchmark, a fine-grained cyber-
security evaluation framework based on 345 knowledge points
expected of cybersecurity experts. Drawing from cognitive
science, these points are categorized into factual, conceptual,
and procedural types, enabling the design of 11,050 tailored
multiple-choice questions. We evaluate 12 popular LLMs on
CSEBenchmark and find that even the best-performing model
achieves only 85.42% overall accuracy, with particular knowl-
edge gaps in the use of specialized tools and uncommon
commands. Different LLMs have unique knowledge gaps. Even
large models from the same family may perform poorly on
knowledge points where smaller models excel. By identifying
and addressing specific knowledge gaps in each LLM, we
achieve up to an 84% improvement in correcting previously
incorrect predictions across three existing benchmarks for
two cybersecurity tasks. Furthermore, our assessment of each
LLM’s knowledge alignment with specific cybersecurity roles
reveals that different models align better with different roles,
such as GPT-4o for the Google Senior Intelligence Analyst and
Deepseek-V3 for the Amazon Privacy Engineer. These findings
underscore the importance of aligning LLM selection with
the specific knowledge requirements of different cybersecurity
roles for optimal performance.

1. Introduction

The rapid advancement of large language models
(LLMs) has the potential to revolutionize the cybersecurity
field, with the concept of a “digital cybersecurity expert”
gaining traction. As these models become increasingly so-
phisticated, there is growing interest in their ability to assist
or even replace human experts in various cybersecurity
tasks. The cybersecurity industry has already begun explor-
ing this possibility, with Microsoft introducing Copilot for
Security to proactively detect, investigate, and respond to
threats [1], and Google launching Gemini in Security to
support threat intelligence analysis and streamline security
operations [2]. These developments raise a critical question:
How far have we come in achieving a digital cyberse-
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curity expert? Answering this question is crucial for un-
derstanding the current capabilities and limitations of LLMs
in the cybersecurity domain, which in turn has significant
implications for the future of the field. As organizations
increasingly rely on these models to support or even replace
human experts, it is essential to have a clear understanding
of their strengths and weaknesses to ensure the effective and
responsible deployment of LLMs in cybersecurity roles.

Recent studies have attempted to evaluate LLMs’ ca-
pabilities in cybersecurity, which primarily focus on two
main areas: their performance on specific security tasks [3]–
[18] and their understanding of cybersecurity knowledge [3],
[19]–[23]. These studies have identified several limitations
of LLMs in cybersecurity applications, while offering valu-
able insights to the community. However, despite these con-
tributions, these works are insufficient to comprehensively
assess the knowledge of LLMs in cybersecurity due to the
following limitations:
Limitations. L1- Lack of a comprehensive knowledge
framework for cybersecurity experts: Existing evaluation
methods fail to address the fundamental question: what con-
stitutes a cybersecurity expert? These methods often focus
narrowly on specific skills or tasks, without establishing a
comprehensive framework for the knowledge a cybersecu-
rity expert should possess. As a result, the evaluation ques-
tions lack depth and fail to systematically cover necessary
areas. Some knowledge domains are overemphasized, while
equally important ones are arbitrarily neglected, leading to
incomplete and unbalanced assessments.

L2- Inability to identify specific knowledge gaps of
LLMs: Current knowledge-based assessments are coarse-
grained, making it difficult to assess LLMs’ understanding
of specific knowledge points and identify their true knowl-
edge gaps. While some studies [20], [23] have categorized
subdomains within cybersecurity, evaluations within these
subdomains lack sufficient detail, limiting their usefulness
for model improvement. In task-based assessments, although
LLMs’ poor performance on certain tasks is apparent, the
lack of clear definitions of the required knowledge makes it
difficult to identify the causes of failure. This highlights the
need for fine-grained evaluation datasets that can provide
actionable insights for model enhancement.

L3- Mismatch between question design and knowledge
mastery requirements: Different types of knowledge points
require different levels of mastery from cybersecurity ex-
perts. For example, knowledge of HTTP status codes only
requires memorization, while SSL requires an understanding
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of its internal mechanisms, and Wireshark requires hands-on
proficiency. Each type of knowledge point requires a tailored
evaluation approach. However, existing evaluations often use
a one-size-fits-all question design, leading to over-emphasis
of some areas and insufficient assessment of others, making
it difficult to accurately measure LLMs’ mastery across
different knowledge types.

To address these limitations, we design a cognitive
science-based, fine-grained knowledge assessment frame-
work for cybersecurity experts, called CSEBenchmark.
CSEBenchmark uses multiple-choice questions to evaluate
LLMs. To accurately depict the knowledge and skills re-
quired of cybersecurity experts, we collect three well-known
cybersecurity expert roadmaps [24]–[26], which outline the
essential skills and knowledge needed, and consolidate them
into a knowledge framework encompassing seven subdo-
mains, including Fundamental IT Skills (FIS), Operating
Systems (OS), Networking Knowledge (NK), Web Knowl-
edge (WK), Security Skills and Knowledge (SSK), Cloud
Skills and Knowledge (CSK), and Programming Skills and
Knowledge (PSK). The entire framework consists of 345
fine-grained knowledge points, providing a comprehensive
assessment of LLMs’ understanding of these knowledge
domains. Given the varying levels of mastery required for
different knowledge points, we categorize them based on
cognitive science into three types: factual knowledge (to be
memorized), conceptual knowledge (requiring understand-
ing of underlying principles), and procedural knowledge
(requiring hands-on practice). For each category, we gather
targeted materials and design tailored question templates to
ensure a comprehensive and accurate evaluation. We use
GPT-4-Turbo to generate the questions, followed by 672
man-hours of review and 100 man-hours of corrections,
resulting in 11,050 high-quality multiple-choice questions.

We apply CSEBenchmark to 12 popular LLMs, re-
vealing GPT-4o as the overall best-performing model and
Deepseek-V3 as the top open-source model. However, the
overall accuracy of the models is only as high as 85.42%,
indicating room for improvement. We also reveal that LLMs
have notable gaps in procedural knowledge, especially in
the use of specialized tools and uncommon commands.
Additionally, they even struggle with some foundational
factual and conceptual points. Notably, different LLMs ex-
hibit unique knowledge gaps, and even larger models from
the same family may underperform on certain knowledge
points where smaller models excel. By supplementing these
knowledge gaps, we successfully enhance their performance
across three existing benchmarks [3], [8], [18] for two cy-
bersecurity tasks, achieving an improvement of up to 84% in
correcting previously incorrect predictions, which validates
the reliability of our findings. Finally, we evaluate the job-
role knowledge alignment of LLMs based on six real-world
cybersecurity roles, demonstrating that LLMs are not yet
fully capable of meeting real-world job requirements. Each
cybersecurity role reveals unique knowledge gaps within
the LLMs, emphasizing the need for role-specific improve-
ments.
Contributions. Our contributions are summarized as fol-

lows:
•New evaluation framework. We introduce CSEBench-

mark, the first cognitive science-based cybersecurity knowl-
edge assessment framework that encompasses 345 fine-
grained knowledge points across seven key subdomains
critical to cybersecurity experts. This framework offers a
comprehensive evaluation of LLMs’ understanding of cy-
bersecurity. The benchmark includes 11,050 high-quality
multiple-choice questions, with 772 man-hours spent on
review and correction, and $234.5 allocated for question
generation. We release our framework 1 to provide the
community with the tools to assess emerging LLMs and
conveniently track their progress in mastering cybersecurity
expertise.

•New findings. We evaluate 12 popular LLMs using
CSEBenchmark, incurring a total of 1.08 GPU-weeks and
costing $2140.01. The results indicate that current LLMs
still fall short of fulfilling the role of a cybersecurity
expert, particularly in handling specialized tools and un-
common commands. By addressing these knowledge gaps,
we achieve an improvement of up to 84% in correcting
previously incorrect predictions across three existing cy-
bersecurity evaluation datasets, validating the effectiveness
of our findings. Lastly, we assess the job-role knowledge
alignment of LLMs across six real-world cybersecurity job
roles, revealing that LLMs struggle to fully meet these
roles’ requirements. Different LLMs show varying degrees
of suitability, suggesting that model selection should be
tailored to specific task demands.

2. Background and Related Work

2.1. Large Language Model

Large language models (LLMs) have seen rapid de-
velopment, leading to significant advancements in natural
language processing and understanding. These models, such
as OpenAI’s GPT series and Meta’s Llama, are capable of
handling a variety of tasks including translation, summa-
rization, content generation, and question answering. Tech-
niques such as Zero-shot learning enable LLMs to approach
new tasks without specific training examples [27], while
Few-shot learning allows them to adapt quickly with min-
imal examples [28]. Additionally, Chain-of-Thought (CoT)
reasoning enhances complex problem solving by guiding
models to break down multi-step tasks logically, yielding
clearer and more accurate responses [29]. These capabilities
make LLMs highly versatile, finding use in applications
such as customer service chatbots, virtual assistants, content
recommendation systems, and creative writing. Their flexi-
bility and adaptability have made them useful in business,
education, healthcare, and more. Their ability to process and
generate human-like text has made them increasingly popu-
lar across various fields, sparking interest in their potential
to assist or even replace human experts.

1. https://github.com/NASP-THU/CSEBenchmark
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Figure 1. Overview of the construction process of CSEBenchmark.

In cybersecurity, LLMs have started to demonstrate their
value in helping with complex tasks that were tradition-
ally performed by experts. For example, LLMs have been
applied to support threat intelligence analysis by gather-
ing, processing, and summarizing threat data from multiple
sources, helping analysts identify potential risks more effi-
ciently [11], [30]–[34]. In incident response, LLMs help by
providing real-time recommendations, generating response
playbooks, and analyzing incident logs to determine the
root cause of security breaches [35]–[38]. For vulnerability
assessment, they help by scanning codebases for known vul-
nerabilities [39]–[42], suggesting patches [9], [43]–[45], pre-
dicting potential weaknesses based on historical data [46],
[47], and performing reverse engineering to identify hidden
or complex vulnerabilities [48]–[51]. Additionally, LLMs
are used to automate routine security operations such as
reading documentation [52]–[54], understanding code [55]–
[57], and assisting in vulnerability management [58], [59],
which significantly reduces the workload for security teams.
Despite these advancements, the question remains: how far
have we progressed towards developing LLMs that can fully
assume expert roles in cybersecurity?

2.2. Evaluation of LLMs in Cybersecurity

Evaluating LLMs involves assessing their capabilities
to meet specific standards and effectively perform targeted
tasks. These evaluations are generally divided into task-
based and knowledge-based assessments. Task-based assess-
ments, on the one hand, evaluate the model’s ability to
perform cybersecurity-related tasks, such as analyzing threat
intelligence, managing vulnerabilities or generating secure
code. These assessments typically involve end-to-end tasks
framed within real-world security scenarios. For example,
in threat intelligence analysis, LLMs are primarily required
to analyze real-world threat intelligence reports, assessing

their capabilities in named entity recognition, intelligence
classification, summarization, and attribution [3]–[7]. Sim-
ilarly, evaluations in vulnerability management typically
provide carefully selected code snippets, requiring LLMs
to comprehend code, debug, generate unit tests, identify
vulnerabilities, and apply patches to assess their capabilities
in each of these areas [8]–[14], [18]. In secure code gener-
ation, LLMs are tasked with generating diverse code, and
their capability in secure coding is assessed by evaluating
the security of the code they produce [15]–[17]. Although
these task-based evaluations intuitively demonstrate model
performance across various tasks, they have limitations in
identifying the underlying reasons for results due to the
lack of quantification of the knowledge needed for each
task, making it challenging to conduct a targeted analysis
or identify specific weaknesses in the models.

Knowledge-based assessments, on the other hand, gauge
a model’s understanding of specialized cybersecurity do-
mains, often through multiple-choice questions (MCQs)
generated from relevant materials. For example, SecQA [19]
generates approximately 200 questions from the book
“Computer Systems Security: Planning for Success” to as-
sess security principles knowledge. CyberMetric [20] and
SecEval [23] use 10,000 and 2,126 questions, respectively,
drawn from textbooks, documentation, and industry guides
to assess expertise across areas such as penetration testing,
cryptography, and network security. CTIBench [3] gener-
ates 2,500 questions from CTI frameworks, regulations,
and public resources to evaluate knowledge in cyber threat
intelligence. CyberPal.AI [21] builds on CTIBench, SecE-
val, and other publicly available questions, such as CISSP
Assessment Questions and SecMMLU, to evaluate a broader
range of LLM knowledge. Likewise, SECURE [22] tests
knowledge in cybersecurity advisory through 2,036 ques-
tions based on MITRE ATT&CK and CWE. Despite these



efforts, existing studies only assess LLMs based on frag-
mented knowledge and lack a comprehensive model of the
knowledge and skills needed by a cybersecurity expert. Con-
sequently, these assessments do not address the questions
posed in this paper. To bridge these gaps, this paper intro-
duces a comprehensive assessment framework involving 345
knowledge points across 7 subdomains, with 11,050 high-
quality questions specifically designed to evaluate LLMs’
cybersecurity capabilities.

3. CSEBenchmark

This paper introduces a cognitive science-based cyber-
security expert knowledge framework, which forms the
foundation of CESBenchmark, the first evaluation dataset
designed to assess the capabilities of LLMs in progress-
ing toward a digital cybersecurity expert. The construction
process is shown in Figure 1, which is divided into four
steps: developing the knowledge framework (Section 3.1),
classifying the knowledge points (Section 3.2), collecting
targeted materials and generating questions based on the
classified knowledge points (Section 3.3), and validating and
correcting the generated questions (Section 3.4).

3.1. Knowledge Framework

To evaluate whether LLMs can function as digital cy-
bersecurity experts, we need to assess whether they possess
the knowledge that a human cybersecurity expert should
have, which is often documented in roadmaps. A roadmap
is a structured guide that outlines the essential skills and
knowledge required for a particular role. In this study, we
select the well-known community-driven roadmap website,
roadmap.sh, as our source. This project has gained 295k
stars on GitHub and provides a detailed overview of the
skills and knowledge needed for various roles in the IT
industry. We use the Cybersecurity Expert Roadmap [24]
and the Ethical Hacking Roadmap [25] as the basis for
the CSEBenchmark knowledge framework. Additionally,
we supplement our framework with the roadmap titled
“From Power Button to PWN: A Roadmap to Computer
Security,” [26] collected from Hacking & Coding Discord
communities.

Based on these three roadmaps, we develop a cyberse-
curity expert knowledge framework, as illustrated in List-
ing 1. This framework consists of seven subdomains, each
representing a key area of expertise for cybersecurity pro-
fessionals: Fundamental IT Skills (FIS), Operating Systems
(OS), Networking Knowledge (NK), Web Knowledge (WK),
Security Skills and Knowledge (SSK), Cloud Skills and
Knowledge (CSK), and Programming Skills and Knowledge
(PSK). Each subdomain is organized into a hierarchical tree
structure, with knowledge points arranged by level, culmi-
nating in 345 leaf nodes that represent the most specific
knowledge points. This structure enables a fine-grained as-
sessment of cybersecurity experts, offering a comprehensive
depiction of the core knowledge required in the field.

3.2. Knowledge Classification

As discussed previously, different types of knowledge
require varying levels of mastery. Cybersecurity, as an in-
terdisciplinary field, spans both theoretical and practical
domains. It encompasses knowledge points that include
factual content to be memorized, concepts that require deep
understanding, and skills that require hands-on practice. This
framework aligns well with the cognitive science knowledge

{"Cyber Security": {
"Fundamental IT Skills": {

"Common computer formats": {
"label": "factual"

}, ...
},
"Operating Systems": {

"Windows": {
"User management in Windows": {

"label": "conceptual"
}, ...

}, ...
},
"Networking Knowledge": {

"Understand Common Protocols": {
"TCP": {

"label": "conceptual"
}, ...

},...
},
"Web Knowledge": {

"SQL": {
"label": "procedural",

}, ...
},
"Security Skills and Knowledge": {

"Footprinting and Reconnaissance": {
"Google Dorks": {

"label": "procedural"
}, ...

}, ...
},
"Cloud Skills and Knowledge": {

"IaaS": {
"label": "conceptual"

}, ...
},
"Programming Skills and Knowledge": {

"Python": {
"label": "procedural"

}, ...
}

}

Listing 1. Example of the knowledge framework.

classification theory [60], which serves as the basis for cate-
gorizing cybersecurity knowledge in this study into factual,
conceptual, and procedural types. These categories corre-
spond to specific information, theoretical understanding, and
practical skills, respectively. This classification enables a
more nuanced evaluation of knowledge mastery, allowing an
accurate and tailored assessment of each knowledge point.

To classify the 345 knowledge points in the CSEbench-
mark knowledge framework, we invite two cybersecurity
practitioners to label each point based on their understanding
of the required level of mastery. When disagreements arise,
a more experienced cybersecurity expert is consulted for a



final decision. This process results in 121 factual knowledge
points, 136 conceptual knowledge points, and 88 procedural
knowledge points, with examples shown in Listing 1. These
labels reflect practitioners’ views on the necessary level
of understanding for each knowledge point, making the
CSEBenchmark more aligned with real-world practices.

3.3. Question Generation

After completing the knowledge classification, it is es-
sential to generate targeted questions suited to each type of
knowledge. First, we need to collect targeted material: for
factual knowledge, brief descriptions from the roadmap or
relevant wiki entries serve as primary sources for question
generation, as factual knowledge mainly requires recall, and
these sources provide direct, relevant content. For concep-
tual knowledge, we select insights from reputable websites
or content sourced from textbooks, as these materials often
include the author’s understanding of the knowledge points,
which help assess the test subject’s deeper understanding of
the concepts. For procedural knowledge, official documen-
tation or tutorials are referenced, since they outline practical
steps, meeting the needs for evaluating proficiency in hands-
on tasks. Following these criteria, we manually collected the
most relevant English material entry for each knowledge
point to support effective question generation. We use the
pymupdf4llm [61] library to convert PDFs to markdown
format and manually preprocess the material to remove
irrelevant text, such as image references, while restoring the
original chapter structure information for use in subsequent
steps.

After collecting targeted materials, we utilize an LLM
to automatically generate questions from them, producing
one correct answer and three distractors for each question.
Specifically, we use the GPT-4-turbo model for question
generation, given its strong performance in text process-
ing. To help the model accurately grasp the characteristics
of different knowledge types, we first define the question
for each knowledge category in the prompt (see Table 1).
These definitions clarify the focus of the questions across
knowledge types, ensuring that the model accurately reflects
the unique attributes of each type. To further guide the
model, we provide eight human-generated sample questions
for each knowledge type, helping it recognize the distinct
characteristics of each category and avoid misclassification.
When generating questions, we explicitly specify the rele-
vant knowledge type and emphasize the exclusion of unre-
lated categories. The model then selects the correct answer
from the provided material and generates three distractors,
ensuring the questions meet our expectations.

Due to the limited input window of the LLM, it cannot
process all of the materials at once. Additionally, overly
lengthy material may lead the model to overlook important
details, necessitating the division of the material. The con-
ventional approach involves setting a token threshold and
splitting the material into smaller segments [20]. However,
this method may disrupt the structure of the material, re-
sulting in a loss of contextual information. To avoid this

TABLE 1. DEFINITIONS FOR QUESTION GENERATION ACROSS
DIFFERENT KNOWLEDGE TYPES.

Type Definition

Factual Multiple-choice questions focusing on factual know-
ledge emphasize memory and recall.

Conceptual
Multiple-choice questions focusing on conceptual
knowledge emphasize understanding and applying
abstract concepts

Procedural

Multiple-choice questions focusing on procedural
knowledge emphasize the mastery of specific opera-
tional steps and procedural skills, particularly in the
context of solving targeted problems within defined
scenarios.

issue, we divide the material according to its chapter struc-
ture, ensuring that each section retains complete contextual
integrity after segmentation.

We observe that materials of the same length may differ
in information density. For materials with a higher infor-
mation density, a greater number of questions should be
generated, while for those with lower information density,
fewer questions are appropriate. An inappropriate number of
questions could lead to repetition or inadequate coverage of
the material. Therefore, we aim to quantify the information
density of the material and adaptively determine the number
of questions to generate. Specifically, we define information
density as the number of topics, reframing the task of quan-
tifying information density as a topic extraction problem—a
task easily handled by the LLM. In the prompt, we instruct
the LLM to first identify all topics and then generate five
questions per topic, achieving an adaptive match between
the number of questions and the information density of the
material.

We generate a total of 11,743 questions for 345 knowl-
edge points. To eliminate the impact of duplicate questions,
we apply Semantic Textual Similarity for deduplication.
We use SentenceTransformers [62] to convert questions
into vectors and apply a similarity threshold of 0.85, val-
idated experimentally for accuracy, to identify and remove
duplicates. When duplicates are detected, only the earlier
occurrence is retained. Following the question generation
process, we obtain a final set of 11,468 unique questions,
incurring a total cost of $234.5.

3.4. Dataset Validation and Correction

Due to the well-known issue of hallucination [63], ques-
tions generated by the LLM are not always reliable. To
address this, we conduct manual validation and correction of
the 11,468 deduplicated questions. Specifically, we engage
human annotators with cybersecurity expertise to answer
each question without access to the original material, avoid-
ing the potential influence of any inaccuracies in the source
content. When discrepancies arise between the expert re-
sponses and LLM-produced answers, a senior cybersecurity
expert conducts a secondary review to ensure accuracy. The
entire validation process takes a total of 672 man-hours.

During validation, we find that 1,726 questions exhibit
the following issues: (1) 384 questions contain incorrect



answers; (2) 298 questions have multiple correct options;
(3) 261 questions lack context in the question stem, re-
sulting in incomplete or hard-to-understand questions; (4)
7 questions display a mismatch in question type; (5) 397
questions show weak relevance to the knowledge point; (6)
216 questions have low-quality distractors that are overly
simple or obvious; (7) 14 questions are duplicates of other
questions, despite having passed initial similarity checks;
and (8) 149 questions lack a correct option. We attempt to
manually correct these problematic questions. For issue (1),
we replace the incorrect answer directly. For issues (2) and
(6), we use the LLM to generate three similar but incorrect
options based on the correct answer. For issues (3) and (8),
we replace the correct answer or add the missing context
based on annotators’ feedback. For issues (4), (5), and (7),
we remove these questions as they do not contribute to
an accurate assessment. In total, we successfully corrected
1,308 problematic questions, enhancing the CSEBenchmark
dataset.

TABLE 2. DISTRIBUTION OF KNOWLEDGE POINTS AND QUESTIONS
ACROSS SUBDOMAINS IN THE CSEBENCHMARK DATASET.

Subdomain Type #Knowledge #Tokens #Questions

FIS
Factual 21 19.8K 124

Conceptual 2 3.3K 12
Procedural 2 18.7K 25

OS
Factual 5 8.4K 25

Conceptual 18 0.3M 433
Procedural 16 0.4M 650

NK
Factual 30 14.9K 168

Conceptual 31 0.6M 757
Procedural 12 93.2K 140

WK
Factual 0 0 0

Conceptual 0 0 0
Procedural 6 1.8M 2202

SSK
Factual 50 22.2K 268

Conceptual 79 0.9M 1040
Procedural 46 2.0M 2451

CSK
Factual 15 15.7K 75

Conceptual 6 91.3K 144
Procedural 0 0 0

PSK
Factual 0 0 0

Conceptual 0 0 0
Procedural 6 2.0M 2536

Count 345 8.4M 11,050

The finalized CSEBenchmark dataset comprises 11,050
high-quality multiple-choice questions, covering seven sub-
domains. The distribution of question types and quantities
is shown in Table 2. Notably, the distribution of knowledge
points and questions exhibits a skew, primarily driven by two
factors: inherent variations in knowledge point distribution
across subdomains, which stem from the roadmap design,
and the uneven distribution of questions, which correlates
with the token count in each corpus, as larger corpus natu-
rally encompass a greater number of topics.

4. Experimental Investigation

4.1. Experiment Settings

LLM selection and configuration. In this study, we select
12 state-of-the-art LLMs for evaluation, as shown in Ta-
ble 3. These models have demonstrated strong performance
in text processing and are widely applied across various
tasks. The selected models include both popular open-source
models and several commercial closed-source models, with
parameter scales ranging from 3B to 671B, reflecting the
cybersecurity knowledge capabilities of models at different
scales. Specially, we introduce a mixture-of-experts (MoE)
model, Mixtral 8×7B, which consists of 8 experts, each
with 7B parameters, totaling approximately 45B parame-
ters. We also introduce an inference model, Deepseek-R1,
which is trained on Deepseek-V3 and, unlike other mod-
els, autonomously generates its own chain of thought, sys-
tematically deducing intermediate steps to ensure accurate
reasoning and logical coherence. For OpenAI and Deepseek
models, we access them via their respective APIs [64], [65],
while for other open-source models, we use the OpenAI-
Compatible Server from vLLM [66] to ensure code consis-
tency. To assess the knowledge levels of these models more
precisely, we set the temperature parameter to 0.2, which
is commonly used in precision tasks [64], to minimize the
influence of random output on evaluation results.

TABLE 3. SELECTED LLMS IN THIS STUDY.

Model Name #Params Cutoff Date Type
GPT-3.5-Turbo-0125 175B 2021-09 Closed

GPT-4-Turbo-2024-04-09 Unk. 2023-12 Closed
GPT-4o-2024-08-06 Unk. 2023-10 Closed

Llama-3.2-3B-Instruct 3B 2023-12 Open
Llama-3.1-8B-Instruct 8B 2023-12 Open
Llama-3.1-70B-Instruct 70B 2023-12 Open

Mixtral-8x7B-Instruct-v0.1 45B 2023-12 Open
Qwen-2.5-3B-Instruct 3B 2023-02 Open
Qwen-2.5-7B-Instruct 7B 2023-02 Open
Qwen-2.5-72B-Instruct 72B 2023-02 Open
Deepseek-V3-241226 671B Unk. Open
Deepseek-R1-250120 671B Unk. Open

Platform. The experiments are conducted on a platform
with an Intel(R) Xeon(R) Platinum 8468 processor, 2.0 TB
RAM, 172 cores and 8 NVIDIA H100 GPUs with 80 GB
HBM3 each. The entire experiment requires a total of 1.08
GPU-weeks.
Experiment Setup. Recognizing that different prompts can
influence how the models activate their embedded knowl-
edge, we employ three interaction methods—Zero-shot,
Few-shot, and CoT—in our experiments to minimize the
impact of these prompting techniques on the models’ out-
put 2. For each question, we use the highest score from the
three prompting methods as the final result, representing
the actual knowledge ceiling that the model can achieve.
In the Zero-shot method, we provide questions directly

2. For Deepseek-R1, since it inherently incorporates the CoT method,
we only use the CoT approach.



without any examples, asking the model to produce results
independently. For the Few-shot method, we build on the
Zero-shot approach by providing 5 example question-answer
pairs that are not included in the dataset; this 5-shot strategy
is widely used in related research [6], [19]. Finally, in the
CoT method, we use the common prompt, “Let’s think
step by step,” to guide the model’s reasoning process. Full
prompts are provided in the Appendix A.

Measurement Method. To reduce the impact of LLM ran-
domness on the evaluation results, we have the model per-
form five independent inferences for each question, consid-
ering the response correct only if all of the inferences yield
the correct answer. Additionally, to avoid any preference
the model may have for specific options, we systematically
rotate the correct answer across the four choices (A, B, C, D)
and evaluate each arrangement independently. We consider
the model to have truly mastered a knowledge point only if
it answers correctly in all four arrangements, indicating that
its success is due to understanding rather than guessing.

Given that LLM outputs are in the loose format of
natural language text, we need to extract the exact options
selected by the models. A common approach is to evaluate
the probability of the first token in the model output [67],
[68]; however, recent research indicates that this method
lacks robustness [69], [70]. Therefore, we follow their rec-
ommendations to extract the model’s selected answers from
the original responses. Specifically, we use the xFinder-
llama38it model for option extraction, a state-of-the-art
model for identifying multiple-choice answers, which has
demonstrated 95.47% accuracy on generalization sets [71].
We randomly sample 4782 original responses for manual
verification, finding an actual accuracy of 92.47% for this
extraction process, which supports the validity of the results
presented in this study.

Evaluation Metrics. We use the accuracy for all questions
associated with each knowledge point as our evaluation
metric, categorizing accuracy into four ranges: 100% in-
dicates that the LLMs have fully mastered the knowledge
point, meeting the level expected of cybersecurity experts;
[90%, 100%) suggests that LLMs are approaching expert-
level understanding; [80%, 90%) indicates partial mastery
with room for improvement; and below 80% reflects poor
performance, indicating areas that require focused attention.

Research Question. In the following subsections, we eval-
uate the performance of the selected 12 state-of-the-art
LLMs in the CSEBenchmark, with a primary focus on the
following research questions:

RQ1. Do the selected LLMs possess the knowledge ex-
pected of cybersecurity experts?

RQ2. What knowledge gaps remain in the selected LLMs
when positioned as cybersecurity experts?

RQ3. Can the results of CSEBenchmark help improve LLM
performance in cybersecurity tasks?

RQ4. How well do the selected LLMs align with real-world
cybersecurity job roles?

4.2. LLM Cybersecurity Expertise Assessment
(RQ1)

Table 4 presents the accuracy performance of the 12 se-
lected LLMs on CSEBenchmark. Overall, GPT-4o ranks first
with an accuracy of 85.42%, followed closely by Deepseek-
V3 at 84.92% and Qwen-2.5-72B at 84.40%, with less than
a 1.2% difference among the top three models. GPT-4-
Turbo follows in fourth place at 83.86% 3. Deepseek-R1 and
Llama-3.1-70B achieve 80.62% and 80.00%, respectively.
The remaining models show a larger performance gap of
over 5% compared to the top six, with the rankings as
follows: Qwen-2.5-7B (74.90%), Mixtral-8×7B (73.58%),
GPT-3.5-Turbo (68.44%), Llama-3.1-8B (69.30%), Qwen-
2.5-3B (68.07%), and Llama-3.2-3B (52.95%). Notably,
GPT-4o not only performs well in terms of accuracy but also
operates at just 30% of the cost of GPT-4-Turbo, making it a
preferred choice among closed-source LLMs for cybersecu-
rity expert scenarios. Among open-source LLMs, Deepseek-
V3 performs the best, coming close to the top-performing
GPT-4o. Due to its open-source nature, Deepseek-V3 also
offers greater scalability and practicality. Notably, although
Qwen-2.5-72B’s accuracy is slightly lower than Deepseek-
V3 (0.6%), its substantially smaller model size (72B vs.
671B) makes it a more cost-effective and practical choice
for real-world applications. We observe that the Qwen-2.5
series consistently outperforms the Llama-3.1 and Llama-
3.2 series of similar parameter scales. Additionally, the
Mixtral-8×7B MoE model lags behind the single 7B model,
Qwen-2.5-7B. Although the MoE structure is theoretically
designed to enhance performance through specialized expert
modules, it does not show a significant advantage in this
evaluation, suggesting that the multi-expert mechanism has
limited effectiveness for knowledge tasks in this context. We
also observe that, despite Deepseek-R1’s strong reasoning
capabilities, it does not exhibit an advantage in the safety
knowledge evaluation. Its overall accuracy is even lower
than that of its training base, Deepseek-V3. This suggests
that in knowledge tasks, strong reasoning ability may not
necessarily compensate for precise knowledge recall and
retrieval. Over-reliance on reasoning could instead lead to
information distortion or misjudgment.

Finding 1

GPT-4o is the best-performing LLM overall, while
Deepseek-V3 leads among open-source options.
However, even these top LLMs cover only 85.42%
of the knowledge required by cybersecurity experts.

In all subdomains, GPT-4o performs best in three—OS
(82.67%), WK (86.15%), SSK (80.26%), CSK (97.26%),
and PSK (89.04%)—while Deepseek-V3 leads in CSK
(97.72%) and PSK (89.87%), and Qwen-2.5-72B leads in
FIS (96.27%) and NK (92.58%). Although current LLMs

3. Note that since GPT-4-Turbo is also used for generating the questions,
its results may involve cyclical use, as discussed in Section 5.1.



TABLE 4. ACCURACY OF THE TESTED LLMS ACROSS SEVEN SUBDOMAINS AND THREE KNOWLEDGE CATEGORIES (ACRONYMS USED).

Type Label GPT- GPT- GPT- L3.1- L3.1- L3.2- M- Q2.5- Q2.5- Q2.5- DS- DS-
3.5T 4T 4o 8B 70B 3B 8×7B 3B 7B 72B V3 R1

Subdomain

FIS 87.58 92.55 95.65 88.20 91.30 80.75 86.34 87.58 91.30 96.27 93.79 91.93
OS 61.91 80.60 82.67 64.08 74.37 48.83 69.95 65.25 69.58 80.60 81.32 79.87
NK 81.03 91.46 92.39 83.19 88.64 70.61 84.32 79.72 87.23 92.58 91.92 89.86
WK 67.94 84.74 86.15 67.71 80.79 49.41 72.48 64.80 72.93 84.11 84.65 79.16
SSK 62.92 78.21 80.26 65.28 74.57 51.74 68.79 65.79 70.44 79.76 79.70 74.79
CSK 87.67 95.89 97.26 92.24 95.43 83.56 92.24 88.13 93.61 96.35 97.72 96.80
PSK 71.77 88.13 89.04 69.91 84.15 47.79 76.30 67.67 77.68 87.97 89.87 85.29

Category
Fact. 86.82 93.64 94.85 86.06 92.42 80.00 88.33 87.58 90.45 94.24 94.24 91.67
Conc. 86.25 93.88 94.84 88.60 93.34 78.54 89.52 86.34 91.32 94.59 94.26 92.58
Proc. 61.62 80.07 81.83 62.17 75.00 43.09 67.62 61.02 68.72 80.55 81.37 76.14

Overall 68.44 83.86 85.42 69.30 80.00 52.95 73.58 68.07 74.90 84.40 84.92 80.62

do not fully meet the knowledge requirements of security
experts, their highest accuracies exceed 90% in the FIS,
NK, and CSK subdomains, indicating that their knowledge
in these areas is approaching cybersecurity experts. Fig-
ure 2 presents a box plot of LLM accuracy across each
subdomain. In the FIS and CSK subdomains, all LLMs
achieve accuracies above 80%, with a median of 91%,
indicating that the tested LLMs are generally approaching
the knowledge level of cybersecurity experts in these areas.
In the NK subdomain, LLM performance varies widely,
with the lowest accuracy at 71% and a median of 88%.
Although the top-performing LLMs exceed 90% accuracy in
this subdomain, most LLMs still have substantial room for
improvement in knowledge coverage. In the OS, WK, SSK,
and PSK subdomains, accuracy differences among LLMs
increase significantly, with the lowest accuracy falling below
51% and a median slightly above 72%, indicating lower
knowledge levels in these subdomains.

Finding 2

LLMs have not yet fully met the knowledge require-
ments of cybersecurity experts in any subdomain.
However, their knowledge in the FIS, NK, and CSK
subdomains is close to the expert level, while signif-
icant improvement is needed in the OS, WK, SSK,
and PSK subdomains.

Figure 2. Accuracy distribution of LLMs across subdomains.

We also evaluate the accuracy of the tested LLMs across
three knowledge categories, with results presented in Ta-

Figure 3. Accuracy distribution of LLMs across knowledge categories.

ble 4. GPT-4o achieves the highest accuracy across all three
categories, at 94.85%, 94.84%, and 81.83%, respectively,
with the ranking of the other models remaining largely
consistent with their overall performance. The accuracy
distribution across these categories is illustrated in the box
plot in Figure 3. In the Factual and Conceptual categories,
the accuracy of LLMs is relatively concentrated, with almost
all models achieving close to 80% accuracy and a median
close to 92%, indicating that LLMs are adept at mastering
these types of knowledge. This may be because factual and
conceptual knowledge often appears in direct statements
or explanatory forms within the training corpus, allowing
models to extract and retain information from context more
effectively. In contrast, the accuracy drops significantly for
procedural knowledge, with the lowest accuracy at only
43.09% and a median of 71.86%. This discrepancy likely
arises because LLM pretraining is not tailored to reinforce
real-world cybersecurity operations or procedural tasks,
making it challenging for models to develop a deep under-
standing and flexible application of complex operations from
the corpus alone. Given that cybersecurity heavily relies on
practical skills, this limitation presents a significant obstacle
for LLMs to become cybersecurity experts.

Finding 3

LLMs demonstrate a good grasp of factual and con-
ceptual knowledge, but perform poorly in procedural
knowledge.



We conduct a fine-grained evaluation of LLM perfor-
mance across 345 knowledge points, with the results dis-
played as a heatmap in Figure 4. In the heatmap, each
row represents the accuracy of different LLMs on the same
knowledge point, while each column shows the performance
of the same LLM across various knowledge points. Among
the 345 knowledge points, certain LLMs achieve 100%
accuracy on 241 points, indicating that LLMs meet the
knowledge standards of security experts for these points.
Additionally, on 35 knowledge points, certain LLMs reach
an accuracy above 90%, suggesting that LLMs are approach-
ing expert-level knowledge in these areas. Of these 276
knowledge points, 230 are factual or conceptual knowledge,
accounting for 83.33%, further confirming the strong perfor-
mance of LLMs in these knowledge types. The remaining
46 knowledge points are procedural, focusing on essential
operations and troubleshooting for operating systems and
network tools. These include troubleshooting strategies, er-
ror interpretation, software installation on Linux, MacOS,
and Windows, basic commands (e.g., ping, netstat), log
analysis, file manipulation (e.g., cat, grep), and scripting
languages (e.g., Python, JavaScript). Although these proce-
dural knowledge points involve a degree of practical skill,
their high frequency in real-world tasks means their fixed
syntax and relatively simple logic are well-represented in
pretraining data, enabling LLMs to achieve high accuracy
on these points.

Finding 4

LLMs achieve the expected level of cybersecurity
expertise on 241 knowledge points and approach
expert-level performance on an additional 35 points,
covering 80.0% of all points. These are primarily
factual and conceptual knowledge, along with some
high-frequency procedural knowledge.

4.3. LLM Knowledge Gap Assessment (RQ2)

As mentioned above, LLMs meet or approach the knowl-
edge requirements of cybersecurity experts on 276 knowl-
edge points, but notable knowledge gaps remain on the
other 69 points. Benefiting from the fine-grained design of
knowledge points in CSEBenchmark, we are able to analyze
these specific knowledge gaps in each LLM in greater
detail than existing studies that rely solely on overall score
evaluations. Among these 69 knowledge points, 40 have
accuracies between 80% and 90%, indicating that LLMs
have a partial grasp of these points but still have room for
improvement. Of these, 11 are factual knowledge points,
covering topics like basic coding, operating system ver-
sion differences, threat intelligence, authentication methods,
and security models. Another 11 are conceptual knowledge
points, addressing core security concepts and network proto-
cols, such as MacOS permissions management, DNS, VPNs,
and DDoS attacks. The remaining 18 points are procedural
knowledge, primarily involving system operations, common

commands, and tool applications, such as installation and
configuration in Linux and Windows, network scanning
tools (e.g., nmap), log analysis (e.g., event logs, packet
captures), introductory reverse engineering, and scripting
and programming languages (e.g., Bash, PowerShell).

There are 29 knowledge points where the highest accu-
racy achieved by any LLM remains below 80%, indicating
substantial room for improvement in these areas. Of these,
4 are factual knowledge (P2P, Local Auth, VirusTotal, and
Sandboxing) and 1 is conceptual knowledge (Brute Force
vs Password Spray). We observe that, although these points
appear straightforward, LLMs still struggle with them. For
instance, one question on Local Auth is: “What additional
security measure is recommended to enhance the security
of a system using local authentication? A. Use of SSL B.
Centralized user management C. Cloud-based authentica-
tion D. Reduction of password strength.” The correct answer
is A. However, when the position of the correct answer is
shuffled with other options, LLMs often select the wrong
answer, indicating that the model’s understanding of this
knowledge point is not solid. The remaining 24 points are
procedural knowledge, involving the use of cybersecurity
and forensic tools, including common Windows commands,
SQL, Kali Linux, network analysis tools (e.g., netflow,
Wireshark), forensic tools (e.g., FTK Imager, Autopsy, mem-
dump, winhex), exploitation frameworks (e.g., Exploit Pack,
Metasploit), social engineering tools (e.g., Social-Engineer
Toolkit), wireless security tools (e.g., Aircrack-ng), pen-
etration testing tools (e.g., Burp Suite, John the Ripper,
Nikto, OpenVAS), system information gathering tools (e.g.,
enum4linux), and malicious command libraries (e.g., GT-
FOBINS, LOLBAS, WADCOMS). Compared to more com-
monly encountered tools mentioned above(e.g., cat and
grep), these points are more specialized and have unique
application contexts, resulting in lower representation in
pretraining corpora and making it challenging for LLMs to
effectively learn and master them.

Finding 5

Overall, LLMs show notable gaps in nuanced pro-
cedural knowledge involving specialized tools and
uncommon commands, even struggling with certain
straightforward factual and conceptual points.

We further analyze the knowledge gaps in each LLM,
with the accuracy distribution across all knowledge points
shown in Figure 5.
GPT-4o: As the best-performing LLM overall, GPT-4o
achieves 100% accuracy on 200 knowledge points and ex-
ceeds 90% accuracy on an additional 42 points, covering
70.14% of all knowledge points. However, its accuracy falls
below 80% on 47 points, primarily in areas such as foun-
dational concepts (e.g., Peer-to-Peer (P2P), Private vs Pub-
lic Keys), security tool usage (e.g., VirusTotal, Wireshark,
Metasploit), attack and defense techniques (e.g., Brute Force
vs Password Spray), system configuration tasks (e.g., Com-
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Figure 4. Heatmap of accuracy across 345 knowledge points for 12 models. The y-axis labels denote individual knowledge points, with subdomain
names in parentheses for grouped items. Each section contains 12 columns representing models from left to right: GPT-4o, Deepseek-V3, Qwen-2.5-72B,
GPT-4-Turbo, Deepseek-R1, Llama-3.1-70B, Qwen-2.5-7B, Mixtral-8x7B, GPT-3.5-Turbo, Llama-3.1-8B, Qwen-2.5-3B, Llama-3.2-3B.



Figure 5. Proportion of knowledge points across four accuracy ranges for
each LLM.

mon Commands in Windows), and security management
(e.g., SOAR).
Deepseek-V3: Deepseek-V3 is the best-performing open-
source LLM, achieving 100% accuracy on 209 knowledge
points and exceeding 90% accuracy on an additional 31
points, covering 69.57% of all knowledge points. However,
the model struggles with 49 knowledge points, particularly
system and network fundamentals (e.g., P2P, DNS), au-
thentication (e.g., MFA, Jump Server), security tools (e.g.,
VirusTotal, Metasploit), penetration testing (e.g., Burp Suite,
OpenVAS), system configuration (e.g., Windows commands,
MacOS troubleshooting), and data analysis (e.g., SQL, Net-
Flow). It also fails to differentiate system versions and
privilege escalation techniques (e.g., GTFOBins, LOLBAS),
highlighting gaps in practical cybersecurity knowledge.
Qwen-2.5-72B: Qwen-2.5-72B also demonstrates strong
performance, achieving 100% accuracy on 200 knowledge
points and exceeding 90% accuracy on 39 more, covering
69.28% of all knowledge points. However, it struggles with
50 knowledge points, primarily in the following areas: foun-
dational system and network concepts (e.g., Peer-to-Peer
(P2P), iCloud), security compliance and management (e.g.,
Roles of Compliance and Auditors), security tool usage (e.g.,
VirusTotal, Metasploit), attack and defense techniques (e.g.,
Brute Force vs Password Spray), system configuration tasks
(e.g., Common Commands in Linux), and basic program-
ming and data query tools (e.g., SQL, Google Dorks).
GPT-4-Turbo: Ranking third overall, GPT-4-Turbo covers
the most knowledge points with 100% accuracy, achieving
perfect scores on 207 points, and over 90% accuracy on
an additional 28 points, totaling 68.12% of all knowledge
points. However, the model’s accuracy falls below 80%
on 44 points, mainly in the following areas: foundational
system and access management concepts (e.g., Peer-to-Peer
(P2P), Local Auth), roles in security compliance and man-
agement, cryptography and authentication mechanisms (e.g.,
WPA vs WPA2 vs WPA3 vs WEP, Brute Force vs Password
Spray), security tool usage (e.g., VirusTotal, Metasploit),
basic programming and data query tools (e.g., SQL, Google
Dorks), and system configuration tasks (e.g., Common Com-
mands in Windows).
Deepseek-R1: While Deepseek-R1 excels in reasoning, its

performance in security knowledge assessment is less re-
markable. It achieves 100% accuracy on 183 knowledge
points and exceeds 90% on 31 more, covering 62.03%
of the total. However, it falls short on 68 knowledge
points, particularly in authentication and access control (e.g.,
MFA & 2FA, Jump Server), network security (e.g., NIDS,
VLAN, DNS), security tools (e.g., VirusTotal, Metasploit,
Wireshark), penetration testing (e.g., Aircrack-ng, OpenVAS,
Masscan), system administration (e.g., Linux installation,
Windows commands), and forensic analysis (e.g., FTK Im-
ager, WinHex).
Llama-3.1-70B: Llama-3.1-70B shows a noticeable gap
from the top five models, achieving 100% accuracy on
only 186 knowledge points, with an additional 33 points
exceeding 80% accuracy, covering 63.48% of all knowledge
points. The model performs poorly on 63 knowledge points,
primarily in the following areas: operating system versions
and configuration management (e.g., Different Versions and
Differences in Linux, Local Auth), network interfaces and
standards (e.g., Ethernet, VLAN), cloud storage and virtual-
ization tools (e.g., iCloud, VirtualBox), security tool usage
(e.g., VirusTotal, Metasploit), encryption and authentication
mechanisms (e.g., Private vs Public Keys, Brute Force vs
Password Spray), and basic programming operations (e.g.,
SQL, Bash).
Qwen-2.5-7B: As the best-performing small model, Qwen-
2.5-7B achieves 100% accuracy on 177 knowledge points,
with an additional 17 points exceeding 90%, covering
56.23% of all knowledge points. However, the model’s
accuracy falls below 80% on 82 points, particularly in
areas such as network and communication protocols (e.g.,
Bluetooth, Peer-to-Peer (P2P), Ethernet), operating systems
and file management (e.g., Linux version differences, com-
mon Windows commands, MacOS troubleshooting), and au-
thentication and security (e.g., MFA&2FA, user permissions
management, types of password attacks). Additionally, the
model shows weaker recognition and understanding in in-
formation gathering and vulnerability scanning tools (e.g.,
nmap, Masscan, Unicornscan), data forensics and analysis
tools (e.g., Wireshark, FTK Imager, Event Logs), and foun-
dational web and database knowledge (e.g., HTML, SQL,
Web Servers).
Other five LLMs: The remaining 5 LLMs have fewer
knowledge points with 100% accuracy or above 90%, with
coverage below 50%, indicating that these LLMs fall short
of the expected knowledge level for cybersecurity experts
on more than half of the points. Among them, Mixtral-
7×8B has 27.8% of knowledge points with accuracy below
80%, while GPT-3.5-Turbo, Llama-3.1-8B, and Qwen-2.5-
3B each have around 30% of points below this threshold.
Llama-3.2-3B performs the worst, with 51% of knowledge
points below 80% accuracy. These results suggest that these
models are currently insufficient for performing at a cyber-
security expert level.

Interestingly, we observe that different-sized LLMs
within the same series also exhibit variations in their knowl-
edge gaps. This suggests that the knowledge gaps of smaller
LLMs are not merely a subset of those found in larger



models. In fact, larger models may have gaps in areas where
smaller models perform well. For example, Llama-3.1-70B
underperforms when using tcpdump, while Llama-3.1-8B
achieves 100% accuracy on this knowledge point. This
highlights the importance of not relying solely on model size
when selecting an LLM, but instead considering the specific
tasks and knowledge gaps to make a more informed choice.

Finding 6

Different LLMs exhibit distinct knowledge gaps as
cybersecurity experts. Even smaller models in the
same series can sometimes outperform larger ones
in specific knowledge points.

4.4. Enhancing LLMs Through CSEBenchmark
(RQ3)

After identifying the knowledge gaps of each LLM
using CSEBenchmark, we attempt to improve their per-
formance based on these gaps. To this end, we focus
on two fundamental security tasks—vulnerability detection
and threat intelligence analysis—and select three state-
of-the-art open-source, task-based evaluation datasets—
VuldetectBench [18], SecLLMHolmes [8], and CTI-
RCM [3]. VuldetectBench and SecLLMHolmes focus on
vulnerability detection, with the former containing 1,000
real-world vulnerability snippets and the latter featuring 15
pairs of CVE code samples before and after patches, tested
across four prompting strategies for a total of 120 cases.
CTI-RCM includes 1,000 CVE descriptions from 2024,
evaluating LLMs’ threat intelligence analysis capabilities
by assessing their accuracy in mapping vulnerabilities to
their corresponding CWE classifications. To highlight the
effectiveness of the improvements made using CSEBench-
mark, we choose three models from the relatively lower-
performing Llama series—Llama-3.1-8B, Llama-3.1-70B,
and Llama-3.2-3B—as subjects for enhancement. Addition-
ally, to assess whether high-performing LLMs can likewise
benefit from these enhancements, we include GPT-4o in our
experiments.

First, we perform an initial evaluation of the original
LLMs on the three assessment datasets and record instances
where each model makes incorrect predictions. Next, we
extract the knowledge gaps (i.e., knowledge points with
an accuracy below 90%) of each model from CSEBench-
mark and provide this gap information to the LLMs for
a reevaluation of the error instances. The proportion of
previously incorrect predictions corrected in the reevaluation
reflects the performance improvement of the LLMs after
addressing their knowledge gaps. We employ a Retrieval-
Augmented Generation (RAG) approach to inject the models
with knowledge points related to their knowledge gaps.
Specifically, for ease of implementation, we construct a
vector database for each LLM using Milvus [72] and use
corresponding question-answer pairs from CSEBenchmark
to address the model’s knowledge gaps. For embedding, we

utilize the BGE-M3 model [73]. Before issuing the request
to the LLMs, we use each dataset’s task instruction to
query the vector database, retrieve the top-5 most relevant
entries, and incorporate them into the original prompt, with
the instruction, “Please use the following retrieved context
to answer the question,” effectively addressing the models’
knowledge gaps.

TABLE 5. PERFORMANCE IMPROVEMENT OF LLMS AFTER
KNOWLEDGE GAP SUPPLEMENTATION, WITH THE NUMBERS ON EITHER
SIDE OF THE ARROW REPRESENTING THE COUNT OF ERROR INSTANCES

BEFORE AND AFTER ENHANCEMENT. THE PERCENTAGES REPRESENT
THE PROPORTION OF PREVIOUSLY INCORRECT INSTANCES THAT

BECOME CORRECT AFTER ENHANCEMENT.

Model Benchmark
VuldetectBench SecLLMHolmes CTI-RCM

L3.2-3B 495→108 (78%) 65→45 (31%) 758→701 (8%)
L3.1-8B 373→59 (84%) 59→44 (25%) 434→370 (15%)
L3.1-70B 439→311 (29%) 66→50 (24%) 350→315 (10%)
GPT-4o 405→343 (15%) 73→55 (25%) 248→226 (9%)

The results in Table 5 show that after addressing the
knowledge gaps, all LLMs show improvements across the
three datasets, confirming that the knowledge gaps identified
by CSEBenchmark enhance LLM performance, with the
highest improvement reaching 84%. For example, C++ is
a knowledge gap for both Llama-3.2-3B and Llama-3.1-8B.
The question-answer pairs on pointer operations within the
knowledge points, such as “What should you do to a pointer
after deleting the memory it points to, to avoid dangling
pointer issues? Set the pointer to nullptr” and “To ensure a
reference cannot change the bound object, which declaration
is appropriate? const int &cri = i”, help the models better
understand the concept of pointer safety, which in turn
enable them to correctly identify potential vulnerabilities
related to improper pointer operations and memory deal-
location in code. Similarly, in CTI-RCM, RAG improves
XSS vulnerability classification by providing definitions,
enhancing model performance. Furthermore, we find that the
retrieved semantically relevant question-answer pairs from
the model’s entire knowledge gap may not always precisely
match the required knowledge but still contribute to overall
performance improvement. For instance, a Go-related null
pointer dereferencing question-answer pair helps the model
identify a C++ null pointer dereferencing vulnerability in
VulDetectBench. Note that RAG technique used in this
study is straightforward, and optimizing its design in the
future could further enhance LLM performance.

Finding 7

The knowledge gaps identified by CSEBenchmark
can be used to improve model performance.

4.5. LLM Job Role Assessment (RQ4)

Although we assess the selected LLMs on 345 knowl-
edge points, real-world cybersecurity roles typically do not
require proficiency at all of these points (though more



coverage is generally beneficial). To evaluate how well
these LLMs’ knowledge aligns with the specific require-
ments of real-world cybersecurity positions, we gather job
requirements from companies such as Amazon, Google, and
Microsoft. Based on role descriptions, we manually map
these requirements to our knowledge points. For example,
the Amazon Security Engineer role specifies a requirement
for “experience with a focus in areas such as systems,
network, and/or application security.” Drawing on our own
expertise, we map this requirement to relevant CSEBench-
mark knowledge points in system security (e.g., Linux se-
curity concepts), network security (e.g. DoS vs DDoS), and
application security (e.g., Web Based Attacks and OWASP10)
to assess each LLM’s alignment with the core skills needed
for this role. In total, we identify six distinct roles for
the analysis: Google’s Senior Intelligence Analyst and Red
Team Security Consultant, Amazon’s Privacy Engineer, ISC
Security Engineer, and Security Engineer, and Microsoft’s
Red Team Security Engineer. The mapped knowledge points
for each job role is provided in Appendix B.

Figure 6. Heatmap of selected LLMs’ match scores across six real-world
cybersecurity job roles.

We calculate the overall accuracy of mapped knowledge
points as the job-role match score, with the results shown
in Figure 6. The ranking is closely aligned with the per-
formance of each model on the CSEBenchmark. GPT-4o
achieves the highest knowledge match scores for the Google
Senior Intelligence Analyst and the Google Red Team Se-
curity Consultant. For the Amazon Privacy Engineer, ISC
Security Engineer, and Security Engineer, Deepseek-V3 and
GPT-4o share the top position. Similarly, for the Microsoft
Red Team Security Engineer role, Qwen-2.5-72B and GPT-
4o are tied for first place. Notably, knowledge match scores
for even the highest ranked LLMs are below 90%, indicating
that these models still do not fully meet the real-world
cybersecurity job requirements.

Finding 8

LLMs show limited knowledge alignment with cy-
bersecurity job roles in the real world, with the
highest match below 90%. Different LLMs exhibit
unique strengths aligned with specific roles.

In addition, we group the required competencies for each
role into core categories based on job descriptions and create
radar charts to visually highlight current gaps for LLMs in
each position, as shown in Figure 7. For the Google Se-
nior Intelligence Analyst role, gaps appear in Cybersecurity
Analysis and Incident Response and Security Tools, with top
match scores of 77 and 70, respectively. For the Google Red
Team Consultant role, the main gap is in Offensive Security
and Red Teaming, with a maximum score of 79. The roles of
the Amazon Privacy Engineer and Security Engineer show
gaps in Incident Response and Security Specializations and
Security Operations and Incident Response, with top scores
of 76 and 73, respectively. For the Amazon ISC Security
Engineer role, LLMs perform more consistently, with scores
above 80 across all areas. The Microsoft Red Team Security
Engineer role highlights gaps in Cybersecurity Tools and
Technologies and Forensics and Reverse Engineering, with
highest scores of 76 and 75.

Finding 9

Different cybersecurity roles reveal unique compe-
tency gaps for LLMs.

5. Discussion

5.1. Potential Cyclical Use and Model Bias

We observe that GPT-4-Turbo generates and answers its
own questions, which can be seen as cyclical use. However,
this does not impact the results in our paper. For other
models, no cyclical use occurs, ensuring the validity of
their results. Note that GPT-4-Turbo and GPT-4o are distinct
models with different training data and methodologies. For
GPT-4-Turbo, we believe there is no “unfair cyclical use,”
as our carefully designed prompts ensure it solely relies on
its summarization capabilities rather than its internal knowl-
edge. To verify this, human experts manually examine 500
randomly selected questions to identify their corresponding
source passages within the corpus. The process involves first
identifying potential passages by searching for distinctive
keywords in each question, followed by a thorough anal-
ysis to determine whether the passages contained all key
concepts relevant to the question. A passage is considered
the source if it fully encompasses these key concepts. In
all cases, a corresponding passage is found, confirming that
GPT-4-Turbo generates questions exclusively based on the
provided material. Since the corpus is not available when
answering the questions, no unfair cyclical use occurrs,
ensuring the credibility of the results.

Additionally, considering the possibility that GPT-4-
Turbo might introduce its own preferences when generating
questions, potentially leading to bias, we conduct an evalu-
ation to assess topic selection fairness. We randomly select
three distinct knowledge points (Kerberos, Packet Sniffer,
and Nikto) and asked GPT-4-Turbo, GPT-4o, Llama-3.1-
70B, and Qwen-2.5-72B to extract topics from the corpus.



Figure 7. Radar chart showing the alignment of the selected LLMs with the requirements of six real-world cybersecurity job roles.

These topics directly influence the question distribution, as
five questions will be generated for each topic. Therefore,
any skew in the topic distribution can reflect potential model
bias. The topic distribution in semantic space (via BGE-M3)
shows consistent results across the four models, with no bias
observed (see Appendix C).

5.2. Limitation and Future Work

Despite undergoing 772 hours of manual review and
correction, the CSEBenchmark still presents certain limita-
tions. First, our knowledge framework, based on three public
cybersecurity roadmaps, covers 345 knowledge points of cy-
bersecurity experts. However, some specialized areas, such
as hardware security, may be underrepresented. To improve
the framework, we plan to expand the knowledge points
through interviews with cybersecurity professionals, ensur-
ing that it addresses emerging needs. Second, each knowl-
edge point question in the CSEBenchmark is generated
based on a single, most relevant, and official source (e.g.,
textbooks, reputable websites, or blogs), providing a degree
of reliability. However, a single source may sometimes fail
to comprehensively cover the full scope of a knowledge
point. We plan to address this by supplementing each
knowledge point with additional relevant materials. Third,
in our evaluation, we employ three commonly used prompt-
ing methods—Zero-shot, Few-shot, and CoT—to probe the
upper knowledge limits of LLMs, using the highest score as
the final result to reveal critical knowledge gaps. However, in
practical applications, more advanced prompting techniques

may further improve LLM performance, and we aim to
incorporate such advanced techniques for a more thorough
assessment of LLM capabilities. Lastly, CSEBenchmark
relies on xFinder as the back-end technology to extract
answers from free text. Compared to regex-based methods,
xFinder provides substantial accuracy improvements; how-
ever, sampling indicates that an error rate of 8% persists. To
ensure fair and objective evaluation outcomes, it is necessary
to further enhance xFinder’s accuracy in future work.
Impact of Time on Evaluation Results. Due to varying
knowledge cutoff dates, some newer source materials may
only appear in the training data of models with later cutoffs.
However, our objective is to highlight existing knowledge
gaps in LLMs—gaps that may stem from limited training
or incomplete data. These gaps are objectively present,
regardless of the cause, making discussions on knowledge
cut-off dates secondary. Our focus remains on objectively
identifying and analyzing these gaps to accurately assess the
practical limits of LLM capabilities in cybersecurity. Fur-
thermore, with the rapid evolution of LLMs, the conclusions
in this study may become outdated over time. Continued
evaluation is essential to answer the question, “how far have
we come in achieving a digital cybersecurity expert?” and
to ensure that our findings reflect the latest advances and
changes in LLM capabilities.

6. Conclusion

To assess the knowledge gaps in LLMs in fulfilling
the role of a digital security expert, this study develops



a cybersecurity knowledge model based on cognitive sci-
ence, encompassing 345 fine-grained knowledge points, and
constructs a benchmark dataset, CSEBenchmark, contain-
ing 11,050 questions. Evaluation across 12 popular LLMs
reveals that their overall accuracy is currently limited to
85.42%, with notable gaps in specialized procedural knowl-
edge, such as the use of professional tools and uncom-
mon commands. Additionally, different LLMs have unique
knowledge gaps, and even larger models within the same
family may underperform on certain knowledge points
where smaller models perform better. By addressing these
knowledge gaps, we achieve up to an 84% improvement
in correcting previously incorrect predictions across three
benchmarks for two cybersecurity tasks, thereby validating
the effectiveness of our findings.
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Appendix A.
Prompts for Answer Generation

Figure 8 presents the prompt used for generating an-
swers.

Appendix B.
Knowledge Points for Each Job Role

Due to space limitations, the mapped knowledge points
for each job role are provided in our repository: https://
github.com/NASP-THU/CSEBenchmark

Appendix C.
Topic Distribution in Semantic Space

Figure 9 presents the topic distribution in semantic space
across LLMs.

## Instruction
There is only one answer to the question, please return the result directly (A/B/C/D) 
without adding any other content.

## Example input 1
Question: The term gigabyte refers to
A. 1024 bytes
B. 1024 megabytes
C. 1024 kilobytes
D. 1024 gigabyte
## Example output 1
B
## Example input 2
Question: Machine language is
A. Machine dependent
B. Difficult to program
C. Error prone
D. All of above
## Example output 2
D
## Example input 3
Question: A byte consists of
A. One bit
B. Four bits
C. Eight bits
D. Sixteen bits
## Example output 3
C
## Example input 4
Question: What is the date when Babbage conceived Analytical engine?
A. 1642
B. 1837
C. 1880
D. 1850
## Example output 4
C
## Example input 5
Question: Which of the following is a machine-independent program?
A. High level language
B. Low level language
C. Assembly language
D. Machine language
## Example output 5
A

## Input
Question: [Your Question] 
## Output

Let’s think step by step.

For 5-Shot

For Non-CoT

For CoT

Prompt for Answer Generation

Figure 8. Prompt for answer genenration.

GPT-4-Turbo GPT-4o Llama-3.1-70B Qwen-2.5-72B

Figure 9. Topic distribution in semantic space across GPT-4-Turbo, GPT-
4o, Llama-3.1-70B, and Qwen-2.5-72B.
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Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper proposes a new benchmark, CSEBenchmark,
to evaluate the cybersecurity knowledge of Large Language
Models. CSEBenchmark contains 11,050 questions, cover-
ing three types of knowledge: factual knowledge (to be
memorized), conceptual knowledge (requiring understand-
ing of underlying principles), and procedural knowledge
(requiring hands-on practice). To construct the benchmark,
it took 672 man-hours of reviewing the LLM-generated
questions and 100 man-hours of corrections.

D.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Provides a New Data Set For Public Use
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) This paper has independently confirmed important re-
sults with limited prior research. The paper demon-
strates that having cybersecurity knowledge can signif-
icantly boost the performance of vulnerability detection
and threat intelligence analysis tasks, via retrieval-
augmented generation (RAG)

2) This paper provides a new data set for public use.
CSEBenchmark enables a fine-grained and detailed
evaluation of LLMs on cybersecurity knowledge.

3) This paper provides a valuable step forward in an
established field. The paper provides comprehensive
evaluation of cybersecurity expertise in popular LLM
models and identifying their knowledge gaps in this
area.

D.4. Noteworthy Concerns

1) The dataset could be biased since only GPT-4-Turbo
is used to generate the dataset. It might be more rea-
sonable to use different LLMs to generate questions,
combined with manual verification.

2) It is unclear whether the proposed evaluation frame-
work approximates expert level knowledge of human
security analysts.

Appendix E.
Response to the Meta-Review

Response to concern 1. Thank you for pointing out this
issue. We discuss the impact of cyclical use in Section 5.1.
In future work, we will explore using other advanced LLMs
such as DeepSeek and Claude in GPT-4-Turbo’s current
role in question generation, enabling a more comprehensive
evaluation through cross-model question generation and an-
swering.
Response to concern 2. We acknowledge the importance
of validating whether the proposed evaluation framework
approximates expert-level knowledge of human security an-
alysts. However, given the time and cost constraints of tra-
ditional expert surveys, we are currently unable to conduct
such an experiment. Nonetheless, we believe our study pro-
vides a valuable benchmark for assessing LLM performance
in cybersecurity tasks, and future work could incorporate
expert evaluations to further refine the framework.
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