
Automating Function-Level TARA for Automotive
Full-Lifecycle Security

Yuqiao Yang#
UESTC

yyq 0xdq@163.com

Yongzhao Zhang#
UESTC

zhangyongzhao@uestc.edu.cn

Wenhao Liu
GoGoByte Technology

lwh.scu@gmail.com

Jun Li
GoGoByte Technology

lijun research@gogobyte.com

Pengtao Shi
GoGoByte Technology

shipengtao@gogobyte.com

DingYu Zhong
UESTC

18166789795@163.com

Jie Yang*
UESTC

jie.yang@uestc.edu.cn

Ting Chen*
UESTC

chenting19870201@163.com

Sheng Cao
UESTC

caosheng@uestc.edu.cn

Yuntao Ren
Chengdu Anheng Information

Technology Co., LTD
atao uestc@163.com

Yongyue Wu
Anheng Vision(Chengdu) Information

Technology Co., LTD
wuyongyue@isecvision.com

Xiaosong Zhang
UESTC

johnsonzxs@uestc.edu.cn

Abstract—As modern vehicles evolve into intelligent and con-
nected systems, their growing complexity introduces signifi-
cant cybersecurity risks. Threat Analysis and Risk Assessment
(TARA) has therefore become essential for managing these risks
under mandatory regulations. However, existing TARA automa-
tion methods rely on static threat libraries, limiting their utility in
the detailed, function-level analyses demanded by industry. This
paper introduces DefenseWeaver, the first system that automates
function-level TARA using component-specific details and large
language models (LLMs). DefenseWeaver dynamically generates
attack trees and risk evaluations from system configurations
described in an extended OpenXSAM++ format, then employs
a multi-agent framework to coordinate specialized LLM roles
for more robust analysis. To further adapt to evolving threats
and diverse standards, DefenseWeaver incorporates Low-Rank
Adaptation (LoRA) fine-tuning and Retrieval-Augmented Gen-
eration (RAG) with expert-curated TARA reports. We validated
DefenseWeaver through deployment in four automotive security
projects, where it identified 11 critical attack paths, verified
through penetration testing, and subsequently reported and
remediated by the relevant automakers and suppliers. Addi-
tionally, DefenseWeaver demonstrated cross-domain adaptability,
successfully applying to unmanned aerial vehicles (UAVs) and
marine navigation systems. In comparison to human experts,
DefenseWeaver outperformed manual attack tree generation
across six assessment scenarios. Integrated into commercial cy-
bersecurity platforms such as UAES and Xiaomi, DefenseWeaver
has generated over 8,200 attack trees. These results highlight its
ability to significantly reduce processing time, and its scalability
and transformative impact on cybersecurity across industries.

I. INTRODUCTION

The automotive industry is rapidly advancing toward in-
telligent, networked vehicles, integrating technologies like
autonomous driving [22], Over-The-Air updates [17], and
Advanced Driver Assistance Systems [14]. While these in-
novations enhance functionality and user experience, they
also increase the number of Electronic Control Units (ECUs)
and the complexity of topologies and interconnectivity within

the In-Vehicle Network (IVN), significantly expanding the
potential attack surface of modern vehicles. By 2030, an
estimated 95% of new vehicles will be connected, creating a
vast cyber threat landscape [1]. Another growing concern is the
risk of supply chain safety, where vulnerabilities in third-party
components can compromise overall security. As component
interconnectivity increases, so too does the number of potential
attack vectors, highlighting the need to assess both the entire
vehicle and its individual components.

In response to the growing attack surface, TARA has
become a cornerstone of automotive cybersecurity, systemat-
ically identifying, analyzing, and prioritizing security risks.
At its core, TARA involves generating attack trees and
assessing risk levels, which together provide a structured
approach for understanding and mitigating potential threats
throughout the vehicle lifecycle. TARA is also a mandatory
regulatory requirement for automotive OEMs and suppliers,
in compliance with standards such as WP29 R155e [20] and
ISO/SAE 21434 [56]. Despite its critical importance, TARA
is still largely conducted manually, making it labor-intensive,
time-consuming, and difficult to scale. Security analysts must
repeatedly perform TARA for multiple threat scenarios, an
approach that becomes increasingly impractical as vehicle
systems grow in complexity and interconnectivity. This ineffi-
ciency, combined with the rise of supply chain vulnerabilities,
highlights the urgent need for scalable, automated solutions.

Existing datalog-based approaches [27], [51] to automate
TARA for improved efficiency primarily focus on vehicle-
level assessments, leaving a critical gap in addressing function-
level TARA, as required by WP29 R155e and ISO/SAE
21434. Vehicle-level TARA identifies overarching threats that
affect the entire vehicle but often overlooks the specific
implementation details of individual components. In contrast,
function-level TARA examines detailed functions or com-

ar
X

iv
:2

50
4.

18
08

3v
1

 [
cs

.C
R

]
 2

5
A

pr
 2

02
5

Adversaries may attack…

Configurations of

Target Component

Threat scenarios

TARA Report

Risk level distribution
1 2 3 4 5

Attack trees with detailed

attack steps

… …

Function-Level TARA

LLM-enabled TARA

Automation

Fig. 1: DefenseWeaver is capable of automating function-level
TARA by leveraging the power of LLMs for components with
detailed attributes.

ponents, such as battery management systems or individual
ECUs, considering their interactions, hardware configurations,
software versions, communication channels, and interfaces.
This granularity is also crucial in the context of supply chain
risks, where vulnerabilities in third-party components can
compromise vehicle security. Thus, TARA at the function
level offers deeper insight into vulnerabilities and attack paths,
making it essential for comprehensive risk management.

Moreover, existing datalog-based approaches [27], [51] rely
on predefined threat libraries, which pose major limitations
when extending to function-level TARA. These libraries lack
the granularity needed to address component-specific threats
in function-level analyses and are difficult to maintain amid a
rapidly evolving cybersecurity landscape. This raises a critical
question: Can TARA be automated to enable detailed and
adaptive function-level assessments?
Our Approach: We introduce DefenseWeaver, a novel sys-
tem that automates the function-level TARA by leveraging
component-specific details and the LLMs. By incorporating
detailed, component-specific information, DefenseWeaver dy-
namically generates attack trees and evaluates associated risk
levels. As shown in Fig. 1, users only need to define relevant
threat scenarios—DefenseWeaver then conducts the TARA
process with minimal manual input, significantly reducing
the workload on security analysts. Importantly, the system
produces both attack trees and risk assessments, two founda-
tional components of TARA. Attack trees provide structured
visualizations of potential threat paths, while risk assessments
categorize their severity, enabling prioritized and informed
mitigation. When developing DefenseWeaver, we address the
following key issues.

Representing Complex Automotive Configurations.
Function-level automotive configurations, created during
development phases, are diagrammatic models that detail
components (e.g., hardware, software), channels, interfaces,
and their associated attributes within the IVN. A suitable
representation must balance comprehensiveness, machine-
readability, and conciseness to ensure efficient processing by
LLMs. To address this, we propose the following designs: (i)
OpenXSAM++ Format: a structured format to systematically
represent automotive configurations, capturing detailed
attributes while preserving the logical and visual topology of
IVNs. (ii) Logical Path Extraction: abstraction of connectivity

between units for each threat scenario, omitting specific attack
techniques or procedures to reduce unnecessary complexity.
(iii) Atom Segmentation: decomposition of logical paths into
atomic structures, the minimal units that preserve essential
topology, enabling efficient and accurate analysis.

Building Attack Trees and Assessing Risk Levels with
LLMs. Generating comprehensive attack trees for function-
level TARA requires detailed component-level reasoning and
the ability to infer attack methods without relying on static
threat libraries. To achieve this, we designed a multi-agent
framework built on LLMs, with each agent fulfilling a spe-
cialized role: (i) Sub-Tree Constructor: Creates sub-trees from
atomic structures, embedding detailed attack methods for
granular analysis. (ii) Attack-Tree Assembler: Integrates sub-
trees into complete attack trees, ensuring logical consistency
and coherence between consecutive nodes. (iii) Risk Assessor:
Analyzes the feasibility of attack methods and computes the
overall risk level for threat scenarios, providing actionable
insights into potential vulnerabilities. Together, these agents
ensure comprehensive attack trees and rational risk assess-
ments aligned with standard TARA requirements.

Adapting to Evolving Threat Landscapes and Diverse
Standards. For full-lifecycle security, the TARA process must
adapt to evolving threats and various evaluation standards
across regions and stakeholders. To address this, we incorpo-
rate Low-Rank Adaptation (LoRA) fine-tuning and Retrieval-
Augmented Generation (RAG) to dynamically provide relevant
examples and tailored prompts for LLM-based agents. This
ensures DefenseWeaver accommodates diverse requirements
while maintaining compliance and practicality, enhancing its
adaptability and robustness.

We evaluated DefenseWeaver across multiple dimensions to
assess its effectiveness, adaptability, and real-world applicabil-
ity in automating function-level TARA. Deployed across four
real automotive security projects, DefenseWeaver successfully
identified 11 realistic attack paths, which were validated
through penetration testing and subsequently confirmed and
patched by the corresponding automakers and suppliers. This
demonstrated its practical value in identifying and validating
critical attack paths. Beyond automotive applications, De-
fenseWeaver was tested in non-automotive sectors, includ-
ing unmanned aerial vehicles (UAVs) and marine navigation
systems. Its successful deployment in these safety-critical
industries highlights the system’s adaptability and robustness.

In comparison to human experts, DefenseWeaver consis-
tently outperformed manual attack tree generation across six
assessment scenarios, including these four automotive security
projects, UAV, and marine navigation systems. This perfor-
mance was driven by its ability to avoid common human lim-
itations, including 1) struggled to adapt to new system config-
urations and overlooked unconventional attacks; 2) inclusion
of incorrect elements due to subjective assumptions; 3) over-
looking system-specific differences. As a result, the system
excelled in novelty (+105.00%) and configuration alignment
(+43.68%), offering a more comprehensive and high-quality
risk assessment. Though there was a slight increase in redun-

dancy (-0.90%), it reflects the system’s comprehensiveness in
mining attack paths.

Integrated into cybersecurity management systems used by
leading OEMs and suppliers like United Automotive Elec-
tronic Systems (UAES) and Xiaomi, DefenseWeaver has gen-
erated over 8,200 attack trees, showcasing its scalability and
operational efficiency. Notably, the system has enabled enter-
prises to reduce processing time, greatly improving operational
efficiency and supporting compliance with CSMS certification
under WP29 R155 regulations. In summary, this paper makes
the following contributions:

• We present DefenseWeaver, the first system to automate
function-level TARA using component-specific details
and LLMs, significantly enhancing efficiency, accuracy,
and scalability while reducing reliance on expert input.

• We propose OpenXSAM++, a structured, machine-
readable format that enables LLMs to effectively interpret
detailed automotive configurations.

• We design a multi-agent LLM framework that automates
TARA, enhanced with LoRA and RAG for adaptability
and robustness.

• DefenseWeaver has been validated in four automotive
projects and demonstrated its adaptability to UAVs and
marine systems. It is also integrated into industry systems
used by UAES and Xiaomi.

II. BASICS OF AUTOMOTIVE CYBER SECURITY

A. TARA in Automotive Industries

In the automotive industry, TARA should be conducted at
different scopes, including vehicle-level TARA and function-
level TARA, as shown in Figure 2. Function-level TARA
addresses cybersecurity threats specific to individual compo-
nents (e.g., the BCM component) or groups of peripheral
components (e.g., IVI, Gateway, OBD, and TPMS) that per-
form critical functions (Figure 2b), while vehicle-level TARA
operates at a higher level and assumes attackers cannot directly
access internal elements (Figure 2a). This distinction leads to
three main differences: (i) Function-level TARA can account
for attack entries that vehicle-level TARA may overlook. For
example, a JTAG interface connecting to the MCU, as shown
in Figure 2b, requires detailed information about the hardware
and software of internal elements (e.g., the MCU, radio
module, and SPI channel) to evaluate potential vulnerabilities
effectively. (ii) It provides more specific attack scenarios
tailored to different vehicle types, even with similar IVN
topologies. For instance, while logical attack paths like IVI-
GW-BCM may remain consistent across different vehicle mod-
els, the risk levels of these paths can vary significantly due to
differences in OEM implementations (e.g., hardware, software,
and suppliers). (iii) It enables full-lifecycle TARA with dynamic
risk assessment. Automotive systems often undergo updates,
including OTA updates, hardware replacements, and software
patches. Function-level TARA offers the flexibility to analyze
these changes in detail, ensuring threat analyses and risk
databases are updated to reflect the latest system state. This

adaptability is essential for maintaining cybersecurity across
the vehicle’s lifecycle, accounting for evolving vulnerabilities
and system configurations.

However, today’s TARA activities still rely heavily on
human analysts, and this manual approach presents two critical
limitations. First, cognitive biases, subjective assumptions, and
incomplete attention to component-specific details can produce
inconsistent or incomplete results—an issue that becomes
more acute at the function level, where far finer-grained infor-
mation must be considered. Second, because vehicle architec-
tures evolve rapidly, threat analyses and risk databases require
continual updates, which demand scarce specialist expertise
and ongoing training. Together, these challenges underscore
the need for more efficient, automated techniques that can
scale function-level TARA and sustain robust cybersecurity
throughout the vehicle lifecycle.

B. TARA Pipeline.

TARA, as outlined in ISO/SAE 21434, systematically iden-
tifies cybersecurity threats, evaluates associated risks, and
implements countermeasures to enhance vehicle security and
ensure regulatory compliance. It begins with Item Defi-
nition, where the system’s components and interfaces are
modeled, providing a basis for identifying Assets—critical
elements such as ECUs, communication interfaces, or sen-
sitive data—evaluated according to confidentiality, integrity,
and availability. Potential Threat Scenarios describe how
attackers might compromise these assets, followed by Attack
Path Analysis, often visualized with attack trees or graphs
to represent all possible routes. Next, a Feasibility Rating
estimates the effort, expertise, and resources needed for a
successful attack, while an Impact Rating quantifies possible
consequences (e.g., safety, financial, operational, privacy).
These ratings combine to yield a Risk Level, which informs
Risk Treatment Decisions—such as avoidance, mitigation,
sharing, or acceptance. Since threats evolve over time, TARA
must be continuously updated throughout the vehicle lifecycle
to ensure risk assessments remain accurate and comprehensive.

C. Mandatory Regulations

In 2021, the United Nations Economic Commission for
Europe (UNECE) introduced WP29 R155e, the first mandatory
automotive cybersecurity regulation. It established a two-tier
certification system for cybersecurity compliance: the Cyber
Security Management System (CSMS) for OEMs and the
Vehicle Type Approval (VTA) for individual vehicle types.
The CSMS focuses on manufacturers’ organizational processes
for managing cybersecurity risks across the vehicle lifecycle,
mandating that all OEMs in UNECE member countries hold
a certified CSMS. Meanwhile, the VTA ensures each vehicle
type meets specific regulatory standards through technical
tests, verifying that vehicles are developed under a certified
CSMS and can detect and respond to cyberattacks. These
certifications impose rigorous responsibilities on OEMs and
suppliers, requiring comprehensive, lifecycle-spanning cyber-

...

...

IVI

...

...

...

ODB

...

...

BCM

...

GW

TPMS

(a) Vehicle-level TARA (b) Function-level TARA

Fig. 2: Comparison of (a) vehicle-level TARA and (b)
function-level TARA. Function-level TARA needs to con-
sider extra dimensions such as hardware configurations (e.g.,
TC399), software versions (e.g., OpenSSL 1.1.0a), commu-
nication channels (e.g., CAN bus), interfaces (e.g., JTAG),
internal connections (e.g., radio module and MCU) to com-
prehensively evaluate potential vulnerabilities.

security assessments to uphold industry growth and regulatory
standards.

III. RELATED WORK

Automating Tools for TARA: Traditional TARA tools,
such as SAHARA [38], EVITA [50], HEAVENS [26][33],
and TVRA [24][25], provide systematic frameworks for iden-
tifying and assessing threats in automotive systems, relying
on methodologies like attack trees[52] or STRIDE. How-
ever, these tools are not automated, depending heavily on
manual effort and expert knowledge—an increasing challenge
in modern complex systems with numerous components and
potential attack paths. By contrast, datalog-based tools like
MulVal [44][45][46][47] automate parts of TARA by using
the logic programming language to encode vulnerabilities,
threats, and reasoning rules into a library, which then generates
possible attack paths. Building on MulVal, Saulaiman et al.[51]
and CarVal[27] tailored it for the automotive domain, with
CarVal incorporating expert interviews to manually establish
a more comprehensive threat database.

However, these datalog-based solutions remain unsuitable
for function-level TARA, which demands detailed, component-
specific assessments and faces high system variability. Main-
taining granular, dynamic threat libraries is labor-intensive
and difficult to scale. Moreover, TARA applies to a range of
other systems—such as aircraft, ships, extended reality (XR),
and Space Information Networks (SIN)—where constructing
reusable, cross-domain threat databases remains a major ob-
stacle.

Attack Tree Generation: Attack trees are the core artifact
produced during TARA. By iteratively decomposing high-
level threats into concrete attack steps, they provide both a
systematic analysis framework and an intuitive medium for
communicating risk among engineers and regulators [52], [31].
Several studies have sought to automate their construction in
the automotive domain [28], [29], [16], but similarly, they are
rule-based and only work at the vehicle-level.

Success of Large Language Models (LLMs): LLMs have
profoundly advanced natural language processing and machine
learning, sparking transformative changes across diverse fields.
Since the introduction of the transformer architecture [58]
in 2017, models like BERT [18] (2018) and GPT-4 [13]
(2023) have demonstrated remarkable capabilities, owing to
billions or even trillions of parameters and training on massive,
varied datasets. They excel at generalizing across tasks and
adapting to new challenges. In cybersecurity, LLMs have
proven effective for vulnerability detection [66][48][65], code
fuzzing [41][62], phishing detection [34][30][35][37], and
content moderation [32], leveraging fine-tuning or prompting
to tailor solutions. Inspired by these advances, we ask: Can we
replace static threat libraries in traditional TARA tools with
the vast knowledge base of LLMs and thereby automate the
TARA process?

IV. DEFENSEWEAVER: APPROACH

In this section, we present the design of DefenseWeaver, an
LLM-based tool for function-level TARA automation.

A. System Overview

DefenseWeaver automates function-level TARA by leverag-
ing component-specific details and the capabilities of LLMs.
Unlike approaches relying on static threat libraries, De-
fenseWeaver dynamically infers attack methods and evaluates
risk levels using detailed component-specific information. This
scalable and adaptive system overcomes the limitations of
manual processes and static libraries, enhancing efficiency,
accuracy, and responsiveness to evolving cybersecurity chal-
lenges. Its architecture consists of five key components, each
contributing to its overall functionality and adaptability.
Automotive Configurations and Threat Scenarios (Input):
Automotive configurations detail component attributes, in-
cluding hardware setups, software versions, communication
channels, interfaces, and sub-component interactions. Threat
scenarios specify attack objectives, the endpoint, and entry
points, providing essential context for precise function-level
TARA and ensuring comprehensive vehicle configuration anal-
ysis.
Atomic Structure Representation: This component decom-
poses complex configurations into manageable units, thereby
improving TARA efficiency and accuracy. Based on the struc-
tured OpenXSAM++ format, it constructs a directed graph to
identify logical paths within the IVN and segments these paths
into atomic structures. Each atomic structure retains essential
topological and functional information, facilitating subsequent
LLM-based analysis.
LLM Agent-Based Attack Methods Inference: De-
fenseWeaver employs a multi-agent framework to dynamically
infer attack methods, assigning specialized roles to LLMs
such as Sub-Tree Constructor, Attack Tree Assembler, and
Risk Assessor. For example, the Assembler links sub-trees
and may request the Constructor to regenerate methods if
inconsistencies arise.

Atomic Structure Representation

LoRA fine-tuning and RAG for Adaptation

LLM Agent-based Attack Methods Inference TARA Report

Expert-Curated TARA Reports Accumulated TARA Reports

Sub-Tree Generator Risk AssessorAttack Tree AssemblerAtomic Structure

Logical Path Extraction

Risk level distribution
1 2 3 4 5

EndpointEntry 1

Entry 2
···

···

···

Atoms
(OpenXSAM++ format)

OpenXSAM++

Describe automotive
configurations

Automotive
Configurations

Attack tree for
each threat scenario

Find the most
feasible path···

Attack 1

Attack 2 Attack 3

OR Assembling
����������� = 0.1

…

Threat
scenarios

Sub-Tree 1

Sub-Tree 2

Fig. 3: Framework of DefenseWeaver. Given a vehicle configuration and threat scenarios, DefenseWeaver will automatically
convert the visual diagrams into proper representations (atomic structures), generate specific attack methods for each node
(sub-trees) before assembling them into attack trees, and evaluate the risk level (from 1 to 5) according to the most feasible
attack path for each threat scenario.

Gateway C

E

D

1

5

2

A

1

IVI A

F

6

OBD

BCM-
MCU

BCM-
Radio G

3

TPMS

Channel ID

Node ID

87

... B

4

Fig. 4: A simplified IVN topology with one unique attack
endpoint (BCM-MCU) and two entrypoints (IVI and OBD)
according to given threat scenarios (e.g., disrupt the availabil-
ity of BCM-MCU). The nodes are connected with channels.

Fine-tuning and RAG for Adaptation: To adapt to dy-
namic threats and diverse standards, DefenseWeaver integrates
Low-Rank Adaptation (LoRA) fine-tuning and Retrieval-
Augmented Generation (RAG), which learns from expert-
curated TARA reports and relevant contextual information
to refine analysis and tailor it to specific requirements. This
integration ensures adaptability across regions and organiza-
tional standards by leveraging real-time and domain-specific
knowledge.

TARA Report (Output): The output is a function-level TARA
report that consolidates identified attack methods, risk levels,
and analysis results into an actionable document. It provides
detailed insights into vulnerabilities, attack paths, and recom-
mended mitigations, serving as a critical tool for automotive
OEMs and suppliers to ensure regulatory compliance and
maintain robust cybersecurity throughout the lifecycle.

Compared to datalog-based approaches, DefenseWeaver is
able to: (i) automatically identify various attack paths/methods
even with identical logical paths by considering component-
specific details, (ii) discover new attack surfaces, thereby
adapting to evolving threat landscapes and enabling full-
lifecycle assessment, and (iii) easily deploy the pipeline to
other electronic systems (e.g., UAVs and ships, etc.) for cross-
domain applicability and peripheral devices of vehicles (e.g.,
cloud services and smartphones, etc.).

B. Atomic Structure Representation

In this section, we discuss how to efficiently describe vehicle
configurations using atomic representations.

1) Comprehensive Description of Configurations: Vehicle
configurations, as illustrated in Fig.4, are often represented
by visual diagrams that depict various components and the
connections among them. These diagrams capture key design
details but are difficult to interpret automatically, which is a
significant challenge for LLM-based parsing (see Sec.IV-C)
and dataset construction (see Sec. IV-D).

To overcome this issue, we convert these visual diagrams
into a structured format called OpenXSAM++, an extension
of OpenXSAM [3] (Open Xml Secure Analysis Model).
OpenXSAM is an XML-based framework designed for infor-
mation exchange in automotive cybersecurity and risk manage-
ment. It uses standardized, machine-readable documentation
to describe assets, threats, risks, and mitigation measures.
However, its original specifications do not include several
essential elements and attributes needed to cover automotive
configurations thoroughly.

To fulfill this gap, we add a Software attribute that
specifies each component’s operating system, software bill
of materials, or active network services. We also introduce a
Hardware attribute to outline hardware modules, chips and
debugging capabilities. Furthermore, we incorporate additional
elements, such as Channel and Interface, to capture the
breadth of automotive components and their interconnections.
While these enhancements focus on vehicle systems, they are
also applicable to other electronic or electrical systems. There-
fore, DefenseWeaver relies on OpenXSAM++ format for
configuration representation and database construction.

2) Logical Path Extraction and Atom Construction: Ve-
hicle configurations, with their many interconnected compo-
nents, often lead to very long OpenXSAM++ descriptions
that capture comprehensive details. These extensive descrip-
tions may overwhelm LLMs when generating attack trees, as
they introduce substantial irrelevant or distracting informa-
tion [61]. Therefore, and as illustrated in Fig. 5, we refine
the OpenXSAM++ description before fed into LLMs based
on the threat scenarios in two main steps: (i) logical path

D

F

C

A

E

1

5

7 6

3

G 8

(a) Logical path

D

F

C

A

E

1

5

7 6

3

G 8

C
5

6

1 3

��

5

1 3

��

6

1 3

(b) Atom construction (C1 and C1)

Fig. 5: (a) Logical paths without detailed attack methods in
each node, where irrelevant and redundant components (e.g.,
B) are removed. (b) The segmented node (C) and constructed
atomic structures (C1 and C2) are derived based on the exit
channels (e.g, channel 5 and 6) for sub-tree generation.

extraction to remove redundant or irrelevant components, and
(ii) atom construction to split the description into several
minimal units (atoms) while preserving topology.

Logical Path Extraction. Because each threat scenario
defines a unique attack endpoint (e.g., BCM-MCU (F)) as
well as several possible entry points (e.g., IVI (A) and OBD
(D)), our goal is to identify every path from each entrypoint
to the attack endpoint (for example, A → C → F in Fig. 5a).
By doing so, we discard any irrelevant or redundant elements
(e.g., component B and channels 2 and 4) and thus focus on
components and channels that genuinely matter to the threat
scenarios. Note that these logical paths do not include detailed
attack methods per node; such methods are the core of TARA
analysis and are inferred by LLMs in later steps.

To systematically generate these paths, we build a directed
graph from the OpenXSAM++ description and apply a depth-
first search (DFS) to find all acyclic routes connecting each
entrypoint to the attack endpoint. We remove cyclic paths (for
example, D→C→D), as revisiting a previously compromised
component provides no further insights for practical TARA. If
there are multiple possible entry points, we simply find each
path independently and merge any shared segments.

Atom Construction. Directly supplying all nodes and
channels from the extracted logical paths to LLMs may still
degrade analysis quality by overloading the model with too
much information and complex interactions. To mitigate this,
we break each logical path into smaller, more manageable
structures (i.e., atoms), while preserving the relationships
among nodes. Specifically, an atom is defined as a single
node plus all its directly connected edges (i.e., channels).
The channel attributes store references to any other connected
nodes. For instance, in Fig. 5b, node C has two incoming
channels and two outgoing channels. Parsing node C with
these channels allows the LLM to infer the previous and next
nodes from the channel attributes. Since C links to node F
through channel 6 and to node E through channel 5, we split
it into two atoms, C1 and C2. This ensures each atom has
exactly one local attack objective (e.g., propagating the attack
to F via channel 6, or to E via channel 5), thereby simplifying

the subsequent inference.

C. LLM-based Attack Methods Inference

Inferring potential attack methods for each node is central
to TARA analysis, accounting for the majority of the required
time and effort. In this section, we explain how to leverage
LLMs to automate the inference of attack methods.

1) Multi-Agent Roles for Automated TARA: Component-
specific details—such as software versions, hardware configu-
rations, communication channels, and interfaces—significantly
increase the complexity of attack method inference because
the number of potential attacks can grow exponentially. Addi-
tionally, generating attack trees must factor in the interactions
between components and channels while assessing the feasi-
bility of each attack method. Consequently, it is not feasible to
generate complete attack trees using simple Q&A approaches.

Recent advances in multi-agent systems have greatly en-
hanced the capabilities of LLMs in handling complex tasks,
including software development [23][49][19][59], game sim-
ulation [64], scene simulation [60], and multi-robot systems
[39]. The key idea of multi-agent systems is to mimic human
teamwork by dividing a complex task into several simpler
subtasks, each handled by an agent with specialized skills.
Through collaboration, these specialized agents reduce the
likelihood of errors, especially in tasks with high complexity.
Drawing on this approach, we divide TARA analysis into three
subtasks, each handled by a separate LLM-based agent. Their
roles are as follows, while detailed processes are described in
Sec.IV-C2 and Sec.IV-C3:
• Sub-Tree Constructor: Generate sub-trees for each atom.
Each sub-tree focuses on a single local attack objective for a
specific node and includes comprehensive attack methods with
corresponding logical relationships (e.g., AND/OR) among the
summarized attack methods to achieve the objective.
• Attack-Tree Assembler: Merges the sub-trees produced by
the Constructor into a complete attack tree for each threat sce-
nario. The Assembler also collaborates with the Constructor
iteratively to improve the coherence of connected sub-trees
(which are generated independently from different atoms) and
to remove leaf nodes that violate user-defined constraints.
• Risk Assessor: After constructing complete attack trees for
each threat scenario, the Assessor first evaluates the feasibility
of each attack method (i.e., step feasibility). It then assesses the
cumulative feasibility of the entire tree (i.e., focusing on the
most feasible attack path) and the potential impact of the threat
scenario. Based on these assessments, the Assessor determines
the risk level for each scenario according to the ISO/SAE
21434 standard.

In practical functional-level TARA processes, there may
be tens or even hundreds of threat scenarios, necessitating
repeated application of the above steps for each scenario.
Ultimately, the TARA reports provide a comprehensive risk
distribution that summarizes the risk levels of all potential
threat scenarios for the analyzed target.

2) Attack Tree Generation: Attack tree generation aims to
construct comprehensive and coherent attack trees for given

threat scenarios. Note that, we need to generate an attack sub-
tree for each atom before assembling them into a complete
attack tree. Fig. 6 provides an example of an attack tree
that consists of sub-trees for nodes A, C1, and F , under the
threat scenario “Disrupt the availability of BCM-MCU”. The
attack methods for each node are derived based on component-
specific details, which are hardly included in predefined static
libraries.

a) Sub-Tree Construction: To generate sub-trees, the
Constructor needs to summarize specific attack methods for
the input atoms, relating them to the threat scenario and node
attributes. However, some attributes of the node may only have
simple descriptions; for example, the software attribute of the
IVI might be as simple as “Linux 6.1”, which may cause
LLMs to overlook some attributes, resulting in incomplete
analysis. Additionally, understanding the logical connections
among the generated attack methods for each node is crucial
for improving the readability and quality of the entire attack
tree, but it is often challenging for LLMs to consider so many
details simultaneously.

To make the attack methods comprehensive and tightly
connected to the threat scenario, we adopt the concept
of Chain-of-Thought (CoT) to guide the construction
of sub-trees through the following steps: (1) attack sur-
face inference, (2) threat scenario analysis and local attack
objective understanding, and (3) attack sub-tree generation.
First, inferring the potential attack surfaces of the given node
ensures comprehensive identification of the vulnerabilities
of each component. Second, the Constructor combines the
threat scenario (e.g., “Disrupt the availability of BCM-MCU”)
and attack surfaces to infer the local attack objective (e.g.,
“Make gateway send incorrect data...” for the gateway node
and “Make IVI send erroneous lighting commands...” for the
IVI node). After that, the Constructor formulates a series of
specific attack methods closely related to the local objective,
combining key information from the node, the attack surface,
and its extensive cross-domain knowledge. Note that each
attack method contains only one operation to better support
feasibility rating in Sec. IV-C3. In other words, there might
be several attack methods required to launch an attack against
one attack surface.

As a result, the logical relationships among attack methods
are also important to demonstrate the practical attack path. If
several attack methods rely on the “Linux 6.1” attribute and
must be executed in sequence to launch an attack, the process
might involve obtaining the Linux system firmware from the
IVI, reverse-engineering the firmware to identify vulnerabili-
ties, and exploiting a known Linux vulnerability (e.g., CVE-
2023-0179) to gain control of the IVI. These sequential attack
methods should be connected with a logical AND. Conversely,
if completing any one of the attack methods is sufficient to
achieve the attack objective, they can be connected with a
logical OR. Therefore, based on the attack objectives, the
Constructor further analyzes the logical relationships between
the attack methods and connects them together with logical
nodes (e.g., AND and OR) to form the final attack sub-tree. For

Fig. 6: Simplified attack tree assembled from sub-trees for IVI
(A), Gateway (C1), and BCM-MCU (F). The realizations of
attack methods for each node are derived based on component-
specific details, which hardly be included by predefined static
libraries.

example, as shown in Fig. 6, if the attack objective is “Make
the gateway send incorrect data to the BCM-MCU,” and
accomplishing either one is sufficient to achieve the objective
(i.e., Accessing the gateway via JTAG to corrupt the BCM-
MCU firmware or Replaying malicious CAN bus signals on
channel 6 to the BCM-MCU), they can be connected with an
“OR” node.

b) Attack Tree Assembling: The Assembler is responsible
for assembling the attack sub-trees generated by the Con-
structor into a complete attack tree. Therefore, the Assembler
needs to determine how to connect two sub-trees with multiple
attack methods. The key observation is that only attack
methods related to the channels can propagate the attack
outcomes of one component to another, which can be
easily distinguished from the attack surfaces. For example,
an attacker can exploit the IVI to replay malicious CAN bus
signals over Channel 1, conducting a Denial-of-Service (DoS)
attack on the gateway. Consequently, the Assembler connects
the sub-tree generated for the IVI to the corresponding attack
method related to the communication channel in the sub-tree
of the gateway (e.g., “Replay malicious CAN bus signals on
channel 6 to BCM-MCU.”).

In addition to simply connecting sub-trees, another impor-
tant task of the Assembler is to validate the quality of
the Constructor’s generation. For example, since these sub-
trees are generated independently, the attack methods related
to the channels (shared by two nodes) may lack coherence
due to the lack of a global perspective of both nodes. In
such cases, the Assembler can request the Constructor to
improve the coherence of these attack methods by providing
essential information about the two sub-trees (e.g., the local

Serious
Impact
Major Moderate Negligible

At
ta

ck
 F

ea
si

bi
lit

y

High

Medium

Low

Very
Low

level: 5 level: 4 level: 3 level: 1
2 14 2 0

level: 4 level: 3 level: 2 level: 1
4 6 17 0

level: 3 level: 2 level: 2 level: 1
9 6 1 0

level: 2 level: 1 level: 1 level: 1
7 9 24 0

Fig. 7: Risk distribution for more than 100 threat scenarios
of the IVN configuration shown in Fig. 4. For each threat
scenario, the attack tree and risk evaluation will be generated
independently.

attack objective of the previous node and the attack method
of the input channel of the next node). Furthermore, the
Assembler can be easily customized to adapt to users’ different
requirements by providing explicitly defined constraints for
attack methods, such as excluding social engineering attacks
(e.g., stealing key fobs or passwords), physical destruction
of components (e.g., damaging signal transceivers, cutting
hardware, or chip replacement), and physical attacks (e.g.,
side-channel analysis, fault injection, or chip decapping), etc.
Therefore, the attack method “Physically cut channel 6” will
be removed.

The main difference between the Constructor and the As-
sembler is that the Constructor focuses on generation and
inference, while the Assembler focuses on validation. There-
fore, the Assembler can double-check the generated sub-trees
and request the Constructor to regenerate some of them if
necessary.

3) Risk Assessment of Threat Scenarios: In an automotive
system—or even within a single component—there can be
tens or hundreds of threat scenarios. Therefore, it is required
to build attack trees independently for each threat scenario
in a TARA report. The next challenge is how to assess
the risk level of each threat scenario to provide an
overall analysis result to security analysts and prioritize
countermeasures. Since it is usually impossible to address all
threats simultaneously and manual analysis of all attack trees
requires a huge amount of human effort (as currently done in
industry TARA analysis), efficient risk assessment is crucial.

As suggested by the ISO/SAE 21434 standard, the risk level
of threat scenarios can be divided into two parts: overall attack
feasibility and potential impact of the threat. After determining
the scores of these two factors (i.e., high, medium, low, and
very low for attack feasibility, and severe, major, moderate,
and negligible for potential impact), the risk levels (from 1
to 5) can be summarized in a risk distribution table. An
example is shown in Fig. 7. For example, according to the
standard, a threat with High Feasibility and Serious Impact
is assigned the highest risk level 5 and decrement the risk
level as feasibility and impact decrease. Notably, threats with
a risk level greater than risk level 3 (i.e., Moderate Impact and
High Attack Feasibility; Major Impact and Medium Attack
Feasibility; Serious Impact and Low Attack Feasibility) have

practical inspection value and need to be verified in subsequent
penetration testing. The Risk Assessor determines the attack
feasibility and potential impact of each threat.

a) Attack Feasibility Assessing: It is often unreliable to
directly analyze the entire attack tree to determine the feasi-
bility of a threat scenario. Therefore, our high-level strategy is
to analyze the step feasibility of each individual attack method
before evaluating the cumulative feasibility score. Further-
more, for each attack method, we score it across the following
five dimensions according to the ISO/SAE 21434 standard:
elapsed time (ET), specialist expertise (SE), knowledge of the
item or component (KoIC), window of opportunity (WoO),
and equipment (Eq). For each dimension, a lower score means
higher feasibility. To compute the step feasibility for each
node, the Risk Assessor is first required to choose a score from
a given range for each dimension, before providing a brief
explanation to ensure reasonable scores. Note that the scoring
standards may vary across different regions, companies, and
even products, which can be customized by users as discussed
in Sec. IV-D.

The attack feasibility of a specific threat scenario is deter-
mined by the most feasible attack path (i.e., the one with the
lowest overall cumulative score), although there are usually
multiple attack paths in an attack tree from leaf nodes to
the root node. Moreover, the cumulative feasibility of one
attack path is determined by the hardest attack method (i.e.,
the one with the highest score). Therefore, the principles
for computing the cumulative feasibility (divided into five
dimensions) are as follows: (1) For sequential nodes, the
cumulative scores of the current node are the maximum of the
cumulative scores of its child node and its own step-feasibility
scores; (2) For logical AND nodes, the cumulative scores are
the highest scores among their child nodes; (3) For logical OR
nodes, the cumulative scores are assigned the scores of the
child node with the lowest overall score. To summarize, the
cumulative feasibility is computed in a bottom-up approach,
and the cumulative feasibility of each first leaf node equals
its step-feasibility score. Therefore, the cumulative scores at
the root node represent the scores of the most feasible attack
path, and the sum of the cumulative scores is the overall attack
feasibility of the threat scenario.

b) Potential Impact Assessing: Assessing attack feasibil-
ity is more challenging since it involves technical details of
the system (i.e., it is product-specific). In contrast, assessing
potential impact only requires a high-level understanding of
threat scenarios and system usage. In practice, impact assess-
ment is conducted by evaluating potential consequences across
four dimensions, including Safety, Financial, Operational, and
Privacy. Since impact assessment is not product-specific, De-
fenseWeaver scores each of the four dimensions separately,
before calculating the potential impact based on the ISO 21434
standard.

D. Fine-Tuning and RAG for Adaptation

To cope with evolving threat landscapes and diverse
standards, DefenseWeaver adopts a differentiated adapta-

tion strategy: using Retrieval-Augmented Generation (RAG)
for the Risk Assessor agent and Low-Rank Adaptation (LoRA)
fine-tuning for the Sub-Tree Constructor agent. The Assessor
(which generates step-feasibility scores and impact scores)
benefits from real-time retrieval of authoritative references and
up-to-date enterprise guidelines. In contrast, the Constructor
(which builds attack sub-trees) is fine-tuned via LoRA to
internalize expert attack logic. We found that applying RAG
to the Constructor may introduce irrelevant or incompatible
examples (e.g., pulling QNX-specific nodes into a Linux
analysis), thereby degrading generation quality. LoRA fine-
tuning avoids this by embedding the correct patterns in the
model’s parameters instead of relying on potentially noisy
external retrieval.

Specifically, we leverage the OpenXSAM++ format (Sec-
tion IV-B1) with three critical fields added to each analyzed
node: “Sub-Tree” (the expert-annotated attack subtree), “Step-
Feasibility” and “Impact” (the expert-assessed scores). These
fields support our two adaptation processes. For the Construc-
tor, we construct a supervised training set using each node’s
system attributes (e.g., hardware configurations, software ver-
sions) as the input and the corresponding expert “Sub-Tree”
as the output. We then apply LoRA fine-tuning to the base
LLM using this dataset, teaching the model to generate attack
sub-trees in line with expert logic. This fine-tuning updates
only a small portion of model weights (preserving over 95%
of the original parameters), thus retaining the model’s general
language capabilities while infusing domain-specific patterns.
We also apply regularization (dropout 0.3) and early stopping
(halting training if validation F1 stagnates for 3 epochs) to
prevent overfitting. For the Assessor, we implement RAG-
based prompt augmentation by retrieving similar prior attack
methods and their scores (i.e., feasibility and impact) from our
knowledge base. An embedding-based similarity search [15],
[43] finds the most relevant historical cases (from both expert
and enterprise data), and the top matches are inserted into the
Assessor’s input prompt [36]. This gives the LLM concrete
reference points for scoring, ensuring its assessments are
grounded in authoritative examples and can dynamically adapt
to the latest enterprise context via real-time retrieval.

Our adaptation strategy is grounded in two primary
databases with domain knowledge, which feed the LoRA
training and RAG retrieval components: (i) Expert-Curated
TARA Reports: A corpus of 116 vetted automotive threat
scenarios (from an industry reference library) provides over
1,000 standardized attack sub-trees and impact scores, and
about 5,000 step-feasibility entries. The sub-trees serve as
high-quality training targets for LoRA fine-tuning, while the
score ratings populate the Assessor’s RAG reference library.
(ii) Enterprise-Specific TARA Reports: DefenseWeaver also
ingests feedback from enterprise-specific assessments col-
lected via a GUI (Section V-A). When users adjust an attack
tree or scores in practice, the corrected sub-tree is added as
incremental training data to further refine the LoRA-based
Constructor, and the updated scoring data is immediately
incorporated into the RAG retrieval library.

V. EVALUATION

In this section, we apply DefenseWeaver to real-world
scenarios and compare its attack trees with those crafted
by human experts. We demonstrate that DefenseWeaver can
identify practical attack paths (validated via penetration tests)
and produce higher-quality attack trees.

A. Implementation

Setup: We developed an interactive web application for
DefenseWeaver with a user-centered design. Users can draw or
import system models and specify a threat scenario (defining
the attack entry point(s) and endpoint). Based on this input,
DefenseWeaver automatically generates a detailed attack tree
and evaluates the feasibility of each attack path. The interface
allows users to interactively refine results: for example, they
can modify or add attack methods and logic nodes, adjust
feasibility ratings, or reuse portions of attack trees when sys-
tem components are updated. Once an attack tree is finalized,
the tool serializes it in the extended OpenXSAM++ format
(including fields such as “Sub-Tree”, “Step-Feasibilit” and
“Impact”). These results are stored as the training set for LoRA
fine-tuning and update the RAG dataset for future analyses.
The base model in our implementation is ChatGPT-4 [13].

Integration in Industry: DefenseWeaver has been inte-
grated into leading automotive manufacturers including Xi-
aomi Auto and United Automotive Electronic Systems (UAES)
as a core component of their cybersecurity solutions. Accord-
ing to system operation statistics, it has consumed around
300 million tokens in 3 months and generated more than
8,200 attack trees (around 36,500 tokens per attack tree on
average). In daily operation, the system evaluates 90+ produc-
tion threat scenarios, giving engineers continuous, fine-grained
risk visibility. Participants from these enterprise deployments
highlight DefenseWeaver’s real-world impact: The UAES se-
curity manager commented, “We rely on DefenseWeaver for
TARA analysis and attack tree generation, which has been
instrumental in achieving R155 compliance. Its efficiency
makes it indispensable for our operations.” Similarly, Xiaomi
TARA manager noted, “DefenseWeaver’s automated attack
tree generation effectively solves critical issues and greatly
improves our workflow efficiency.” These large-scale deploy-
ments prove that DefenseWeaver’s effectiveness meets the
cybersecurity demands of modern automotive development.

B. Open Science and Ethics Considerations

Since DefenseWeaver has been integrated into commercial
automotive cybersecurity management platforms, we cannot
fully open-source the source code of DefenseWeaver due to
proprietary licensing constraints. However, in accordance with
open science principles, we will release a community version
of our web application and open-source the database built
from expert-curated TARA reports in [4], thereby enabling
scientific research in this field. All vulnerabilities discovered
in real vehicles have been reported to the responsible parties
and have since been resolved. We have a demo video in [5].

C. Experimental Analysis on Real Vehicles

1) Vehicles Under Examination: To evaluate
DefenseWeaver’s effectiveness in function-level TARA,
we deployed it in four real automotive security assessment
projects. These involved four distinct in-vehicle components:
two Body Control Modules (BCM) in different vehicles
(Car A and Car B), one Cockpit Domain Controller (CDC,
Car C), and one Passive Keyless Entry and Start system
(PKES, Car D). The OEMs provided detailed configuration
models for each component (see Fig. 8a-8d), which we
imported into DefenseWeaver. For each case, we defined a
representative threat scenario and generated the corresponding
attack tree with feasibility and risk evaluations. In accordance
with industry practice (WP.29 R155 and ISO 21434), we
treated any path rated with at least “Medium” feasibility as
a candidate for penetration testing, since such paths warrant
deeper security analysis. Guided by DefenseWeaver’s output,
we conducted targeted security tests on Cars A–D and
ultimately confirmed 11 practical attack paths (each with risk
level ≥ 3) via proof-of-concept (POC) exploits. (Appendix A
provides the complete attack trees and detailed attack steps
for these scenarios.)

For the two BCM cases (Car A and Car B), we chose
an identical threat scenario aiming to disable the BCM’s
door control function (i.e., compromise its availability). This
scenario has the same high-level attack entry point (the IVI in-
fotainment unit) and endpoint (the BCM’s microcontroller) in
both vehicles, following a logical path IVI→Gateway→BCM.
For Car C (CDC), the threat scenario targeted the OTA update
mechanism, aiming to install unauthorized firmware on the
CDC. For Car D (PKES), the scenario focused on unlock-
ing the vehicle’s doors without the owner’s authorization by
exploiting the wireless key system. All four components have
complex setups of hardware, software, and network interfaces,
providing a rigorous testbed for DefenseWeaver.

After DefenseWeaver generated the initial attack trees and
risk assessments for each scenario, we examined the output to
identify high-feasibility attack paths for validation. All attack
paths discussed below were rated at least “Medium” feasibility
by the system, and thus merited real-world testing. We next
describe the results for each scenario, including the proof-of-
concept (PoC) attacks we performed and key insights derived
from each case.

2) BCM: Identical Logical Paths but Different Attack Meth-
ods Due to Configuration Variations: Modern vehicle E/E
architectures are increasingly centralized, often placing a BCM
behind a gateway that mediates inbound and outbound com-
munications (e.g., software updates via Unified Diagnostic
Services, UDS). Thus, similar threat scenarios against dif-
ferent BCMs may share the same high-level logical chain
(IVI→Gateway→BCM), yet yield distinct attack paths due to
differences in hardware/software configurations. To illustrate,
we analyzed the BCM of two vehicles (Car A and Car
B, see Fig. 8a and Fig. 8b) under the same scenario of
disabling the door-unlock function. DefenseWeaver produced

similar logical attack trees for both, but with divergent specific
exploits reflecting each vehicle’s nuances. For example, Car
A’s gateway runs OpenSSL 1.1.0a, which is vulnerable to a
known buffer overflow (CVE-2016-6309 [11]), whereas Car
B’s gateway uses a newer OpenSSL 3.3 (not affected by that
CVE) but exposes a UART debug interface absent in Car
A’s gateway. DefenseWeaver accordingly identified different
feasible attack vectors: exploiting the OpenSSL CVE in Car
A for remote code execution, versus leveraging the UART
interface and a Linux kernel vulnerability in Car B.

PoC attack. We validated DefenseWeaver’s suggested at-
tack paths on both vehicles. Car A: We first obtained physical
access to the BCM’s microcontroller via its JTAG debug port
and dumped the firmware. From this, we reverse-engineered
the BCM’s seed2key authentication algorithm for the UDS
SecurityAccess service [57], giving us the ability to bypass
its security handshake. We then compromised the IVI unit
(e.g., via an existing weakness) and sent crafted TCP pack-
ets to the gateway, exploiting the OpenSSL CVE-2016-6309
vulnerability to gain a remote shell on the gateway. Using
this shell access, we injected CAN messages to the BCM,
ultimately reprogramming the BCM’s firmware once the UDS
authentication was bypassed. This multi-step attack was rated
Medium feasibility, with Major potential impact, yielding an
overall risk level 3. Car B: Here, DefenseWeaver also guides
us to reverse-engineer the algorithm for the UDS SecurityAc-
cess service in the BCM’s firmware. Using this knowledge,
we reconstructed the BCM’s unlock authentication and then
connected to the gateway via its UART interface. Through the
UART, we exploited a privilege escalation vulnerability in the
gateway’s Linux OS (CVE-2023-0179 in Linux 6.1) to fully
compromise the gateway. From the gateway, we were able
to send UDS commands to overwrite the BCM’s firmware.
This Car B attack path was assessed as High feasibility, Major
impact, and risk level 4.

Insights. Despite an identical high-level attack chain,
Cars A and B demanded different exploits—highlighting two
broader risk factors. (i) UDS access: Automotive security
analysts often assume that UDS-based attacks require direct
physical access (e.g., via OBD-II ports); however, our results
show that network-facing vulnerabilities can enable remote
exploitation of UDS services. (ii) Outdated software: Legacy
software versions (e.g., running an obsolete OpenSSL library)
can expose a vehicle to N-day vulnerabilities like CVE-2016-
6309, which attackers can remotely leverage. These find-
ings demonstrate DefenseWeaver’s strength in generating
distinct, practical attack paths by accounting for each
vehicle’s specific configuration. In contrast, static, datalog-
based TARA tools [27], [51] that rely on predefined threat
libraries would treat these two BCM scenarios similarly and
likely miss such configuration-dependent attack vectors.

3) CDC: New Attack Vectors from Cloud Services: Modern
intelligent vehicles often include a Central Domain Controller
(CDC) with Over-The-Air (OTA) capabilities, allowing man-
ufacturers to remotely push software updates from the vehicle
cloud. In addition, various external systems—such as cloud

(a) Body Control Moudle (Car A) (b) Body Control Moudle (Car B) (c) Cockpit Domain Controller (Car C)

(d) Passive Keyless Entry and Start (Car D) (e) PX4 (UAV) (f) ECDIS (Ship)

Fig. 8: Configurations of 6 systems. (a) and (b) are BCMs of Car A and Car B with the same logical path, demonstrating
DefenseWeaver’s ability to generate distinct attack paths by considering the component-specific details. (c) CDC of Car
C. DefenseWeaver can comprehensively cover peripheral devices and cloud services in its anaylsis. (d) PKES of Car D.
DefenseWeaver successfully discovers recently emerged attack surfaces. (e) PX4 architecture of UAV and (f) ECDIS of Ship
show that DefenseWeaver can be applied to various electrical and electronic systems.

servers and mobile apps—interact with the CDC without a
direct physical connection to the car, thereby introducing new
attack surfaces in automotive TARA. Attackers can leverage
vulnerabilities in the cloud infrastructure or in the CDC’s
firmware-verification logic to construct malicious update pack-
ages and bypass integrity checks, ultimately tampering with
critical components. We used DefenseWeaver to examine the
OTA update process of the CDC in Car C (Fig. 8c), generating
an attack tree that highlights multiple threat vectors (Fig. 12
in Appendix A). For instance, one path involves exploit-
ing an Apache remote-code-execution vulnerability (such as
Log4j2 [10]) on the server side, or obtaining SSL certificates
and keys to perform a man-in-the-middle (MITM [2]) attack
on the HTTPS channel between the vehicle cloud and the
TBOX. Then we can tamper with the firmware update and
push it via the TBOX and gateway to the CDC-MCU.

PoC Attack. We validated this attack on Car C by dis-
covering hardcoded CA certificates[6] and private keys in the
TBOX, which allowed us to bypass TLS/SSL verification and
execute a MITM attack on the connection between the cloud
and the TBOX. As a result, we could inject malicious code
into the OTA firmware. Furthermore, reverse-engineering the
firmware’s verification process revealed a logical flaw: the
CDC would proceed with an upgrade even if the firmware’s
hash check failed. Exploiting this flaw, we successfully in-
stalled our modified firmware onto the CDC-MCU. This attack
path has an overall feasibility of Medium, a potential impact
classified as Serious, and a final risk level of Level 4.

Insights. This attack path demonstrates how OTA updates
delivered through the vehicle cloud can serve as a conduit for
injecting malicious code into a modern vehicle’s core systems.
Additional external components—such as smartphones (see
Fig. 8d), satellites, or ground stations—also act as potential
off-vehicle entry points for functional-level TARA, expanding
the overall attack surface beyond in-vehicle networks. The
results show that DefenseWeaver can comprehensively
cover peripheral devices and cloud services in its analysis,
providing a more holistic view of potential attack vectors
in modern vehicles. However, it is difficult for the datalog-
based approaches [27], [51] to capture all of these off-vehicle
attack surfaces due to their static library-based design.

4) PKES: Discovering Unforeseen Attack Surfaces: Passive
Keyless Entry and Start (PKES) systems provide convenient
vehicle access by using radio-frequency signals to unlock and
start the car. Nevertheless, they are susceptible to relay attacks,
wherein attackers trick the system into believing the key fob
is nearby, enabling unauthorized entry or ignition. To mitigate
such threats, the latest PKES implementations (Fig. 8d) in-
tegrate Ultra-Wideband (UWB) technology according to the
CCC protocol. UWB offers a “secure ranging” feature that
effectively counters standard relay attacks [21]. Even so,
advanced PKES technology can still present unforeseen attack
surfaces. Using DefenseWeaver, we simply added a software
annotation indicating that “the latest PKES system adds UWB
modules to prevent relay attacks.” We then configured a threat
scenario (attack entry at the user’s phone and attack endpoint

at the door motor) under the objective “illegally open the car
door.” The resulting attack tree (Fig. 13 in Appendix A) reveals
that bypassing PKES involves two core steps: first, intercepting
UWB signals and injecting malicious ones to disrupt the
normal UWB ranging process; second, using a relay attack
against the system’s Bluetooth Low Energy (BLE) channel.
Together, these actions deceive the PKES into maintaining
outdated distance data, enabling an unauthorized door unlock
once the authorized user moves away.

PoC Attack. We validated DefenseWeaver’s results on
Car D. After sniffing both the UWB and BLE signals, we
identified system parameters like connection intervals and
window offsets on BLE. By continually interfering with UWB
ranging while the legitimate user was present, the PKES
retained the user’s proximity data even after the user left.
We then relayed the BLE signals to complete the unlock
procedure. In this scenario, the system relied on outdated
UWB measurements, thus erroneously concluding that the user
was still nearby. This attack path has an overall feasibility of
High, a potential impact classified as Serious, and a final
risk level of Level 5.

Insights. This attack path illustrates how UWB—though
designed to bolster PKES security—can itself become an
attack surface when coupled with relay attacks on other
channels. Moreover, DefenseWeaver demonstrates its ability
to synthesize various methods (BLE, UWB manipulation,
and relay attacks) into coherent, novel attack paths.
Such comprehensive analyses underscore the importance of
integrating both traditional and emerging communication stan-
dards in function-level TARA. In comparison, the datalog-
based approaches [27], [51] can only reason the known attack
surfaces based on predefined threat libraries.

5) Responsible Disclosure and Summary: All penetration
tests were conducted jointly with the vehicle manufacturers
under ethical guidelines. In total, we identified 11 distinct
vulnerabilities/attack paths across Cars A–D, each of which
was promptly reported to the responsible OEM or supplier
and has since been patched. Due to confidentiality agreements,
we omit specific manufacturer names and certain low-level
details. These four cases cover a wide range of automotive
technologies (multiple ECUs, wireless interfaces, OS software,
etc.), and in each case DefenseWeaver discovered component-
specific attack methods beyond the scope of existing threat
libraries. Traditional approaches require analysts to manually
select likely vulnerabilities from a database and write custom
reasoning rules for each scenario, whereas DefenseWeaver
automates the end-to-end process of attack tree generation and
feasibility evaluation. The real-world results above confirm
that DefenseWeaver can drastically reduce the manual effort
while uncovering critical, non-intuitive attack paths in complex
vehicle systems.

D. Case Studies on Other Electronic Systems

Although our primary evaluation is in the automotive do-
main, DefenseWeaver’s methodology is general. We performed

two case studies on non-automotive cyber-physical systems to
demonstrate cross-domain applicability.

1) Systems Under Examination: Leveraging its broad
knowledge base, DefenseWeaver can generate attack trees for
diverse embedded systems (without any code modifications).
We applied it to two distinct platforms: (i) a PX4-based
unmanned aerial vehicle (UAV) system with an inertial mea-
surement unit (IMU) and GPS sensors, and (ii) an Electronic
Chart Display and Information System (ECDIS) used in ship
navigation (responsible for map display, route planning, etc.).
In these case studies, we did not perform live penetration
tests; instead, we built system models from publicly available
documentation [40], [9] and prior research [63], [53], [54].
We then compared DefenseWeaver’s generated attack paths to
known vulnerabilities reported in the literature. The complete
attack trees for the UAV and ECDIS are provided in Appendix
B (Fig. 14 and Fig. 15, respectively). These experiments
demonstrate that DefenseWeaver’s approach to function-
level TARA can be easily extended to complex, safety-
critical environments beyond automotive.

2) Unmanned Aerial Vehicle (UAV): Drones require thor-
ough threat assessments, as mandated by national and interna-
tional safety standards (e.g., GB 42590-2023 [8]). These stan-
dards span the entire drone lifecycle, from data-link protection
to electromagnetic compatibility. A recent work [63] manually
identified 2 novel multi-round attack paths to degrade drone’s
sensor reliability over time. By applying DefenseWeaver to
a PX4-based UAV (Fig. 8e), we identified not only these
two reported 2 multi-round attack paths in [63], but also
1 additional attack path against drone clusters. (i) Electro-
magnetic Interference on the IMU. Broadcasting interference
signals at frequencies matching the MPU6000 hardware chip
can distort gyroscope outputs. The resulting unstable flight
dynamics cause blurred images that lead to target misclassi-
fication. (ii) Forged GPS Signals. Emitting counterfeit GPS
data disrupts accurate positioning, again producing blurred
or misplaced images and undermining flight autonomy. (iii)
Swarm-Level Manipulation for Drone Clusters. Exploiting the
communication channels between drones in a swarm allows
attackers to tamper with the collective positioning signals. This
can delay or misroute multiple drones, potentially compro-
mising time-critical missions like search and rescue. Though
this attack path is not covered and validated in [63], it is
well discussed in [55]. The above 3 diverse paths highlight
how DefenseWeaver takes hardware, software, and operational
context into account—ultimately revealing new drone-specific
vulnerabilities (e.g., swarm communication) not covered in
earlier automotive studies.

3) ECDIS of Ships: Ships also face stringent cybersecurity
requirements. For instance, the UR E27 Rev.1 standard [12]
explicitly mandates risk assessments for on-board systems
and equipment. Existing works [53], [54] show that ECDIS
platforms often contain high-risk vulnerabilities such as (i)
outdated services (e.g., SMB or RDP) lacking authentication
and (ii) third-party software (e.g., web servers) prone to N-
day exploits such as Log4j2 or CVE-2021-41773. By applying

RAT

NRD

NOV

LOD

CA

1
2
3
4

BCM A

RAT

NRD

NOV

LOD

CA

1
2
3
4

BCM B

RAT

NRD

NOV

LOD

CA

1
2
3
4

CDC

RAT

NRD

NOV

LOD

CA

1
2
3
4

PKES

RAT

NRD

NOV

LOD

CA

1
2
3
4

PXA(UAV)

RAT

NRD

NOV

LOD

CA

1
2
3
4

ECDIS(Ship)

RAT: Logical rationality NRD: Non-redundancy NOV: Novelty LOD: Level of detail CA: Configuration alignment
DefenseWeaver Expert A Expert B Expert C Expert D Expert E Expert F Expert G

Fig. 9: Comparison of DefenseWeaver and seven human experts in different dimensions.

DefenseWeaver to a typical ECDIS system (Fig. 8f), we also
identified the 2 known threats and 1 additional risk factor:
(i) Exploiting Remote Desktop Services. Vulnerabilities like
CVE-2019-0708 enable unauthorized remote access, poten-
tially leading to arbitrary code execution. (ii) Leveraging
Third-Party Software Flaws. Known Apache server exploits
allow attackers to exfiltrate data or upload malicious code.
(iii) Malicious ENC Files and USB Interfaces. By injecting
counterfeit electronic navigational chart (ENC) files through
the system’s USB update port, an attacker can alter critical
route data. This tactic not only exploits a physical interface
but also poses immediate risks to maritime navigation safety.
Although this attack path is not covered and validated in [53],
[54], it is involved in the ECDIS cybersecurity guidelines [7].

E. Comparison with Human Experts

While the above experiments show DefenseWeaver guiding
the discovery of real attack paths, we also quantitatively
evaluated the quality of its attack trees against those designed
by human experts. We assembled a seven-member review team
of security professionals (with backgrounds in automotive
TARA, penetration testing, and cybersecurity management;
see Appendix C, Table II) to score attack trees generated
by DefenseWeaver versus those created by human experts.
Each human expert was required to spend enough time to
get familiar with system configurations for the six scenar-
ios we considered (the four automotive components and the
two additional case-study systems) before they independently
created attack trees. The review team assessed all attack
trees on five key dimensions of quality – logical rationality,
non-redundancy, novelty, level of detail, and configuration
alignment – following ISO/SAE 21434 guidelines and industry
best practices. Each dimension was rated on a 1–4 scale
(higher is better). DefenseWeaver’s trees were rated by all
seven reviewers, whereas each expert-designed tree was scored
only by the other six reviewers (preventing authors from rating
their own work). Scores for each dimension were averaged
across reviewers, and we visualized overall performance using
five-dimensional radar charts (Fig. 9). Please refer to Appendix
C for further details on the expert recruitment, scoring criteria,
and evaluation process.

Results and Analysis: We identify three major limitations
in the human-crafted attack trees that DefenseWeaver was
able to overcome: (i) Human experts struggled to adapt to

new system configurations, often failing to consider uncon-
ventional attacks outside their experience. (ii) Some expert-
designed trees introduced superfluous or incorrect elements
(e.g., non-existent components) based on subjective assump-
tions. (3) Experts sometimes overlooked critical yet subtle
system-specific differences (for instance, they treated the two
BCM cases too similarly, missing Car B’s UART vector).
By avoiding these issues, DefenseWeaver’s trees exhibited
significantly higher novelty and system alignment. On aver-
age, as shown in Table I, the DefenseWeaver-generated trees
scored +105.00% higher in novelty (identifying many more
unconventional attack paths) and +43.68% higher in system
alignment (strictly mapping to actual system components and
interfaces) than the human experts. DefenseWeaver’s trees also
contained far more detail in attack steps (+41.46% on the detail
dimension), providing granular step-by-step paths. The logical
rationality of DefenseWeaver’s attack trees was on par with
experts (a slight +5.79% gain in rationality score). Notably,
DefenseWeaver’s comprehensive approach led to only a 0.90%
increase in redundancy, indicating it did not suffer from
excessive duplicate paths despite its thoroughness. Overall,
in all six scenarios, DefenseWeaver’s automatically generated
attack trees achieved equal or higher scores than the human-
crafted trees in every dimension. Notably, the time consuming
of DefenseWeaver for each case is only 0.43min, which is
significantly reduced by 98.8% compared with that of human
experts. These results indicate that DefenseWeaver can
produce attack trees of substantially higher quality than
traditional expert-driven methods, offering more complete
coverage of potential threats without sacrificing coherence
or correctness.

VI. LIMITATIONS AND FUTURE WORK

While DefenseWeaver already automates the generation and
assessment of attack paths, it still relies on user-provided threat

TABLE I: Overall Comparison with Human Experts (Average)

RAT1 NRD2 NOV3 LOD4 CA5 Time

DW6 3.62 3.67 2.73 3.88 3.71 0.43m
Expert 3.43 3.70 1.33 2.74 2.58 36.12m

1 RAT: Logical rationality 2 NRD: Non-redundancy 3 NOV: Novelty
4 LOD: Level of detail 5 CA: Configuration alignment 6 DW: De-
fenseWeaver

scenarios, which are high-level concepts that do not account
for component-specific details. Therefore, we envision inte-
grating Microsoft’s STRIDE model [42]—covering Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege—to automatically derive
more comprehensive sets of threat scenarios. This enhance-
ment would further reduce manual intervention and streamline
end-to-end TARA processes.

VII. CONCLUSION

We introduced DefenseWeaver, a novel system that auto-
mates function-level TARA by leveraging LLMs. Unlike ex-
isting methods bound by static threat libraries, DefenseWeaver
adapts to evolving vulnerabilities due to the adoption of LLMs,
offering flexibility across diverse standards and platforms. In
extensive evaluations on four real automotive security projects,
DefenseWeaver uncovered 11 practical attack paths, each
validated via penetration testing and responsibly disclosed.
We also deploy DefenseWeaver in UAV and ECDIS systems
to demonstrate its cross-domain applicability, revealing new
attack surfaces beyond traditional automotive contexts. Inte-
grated into commercial cybersecurity management platforms,
DefenseWeaver has produced more than 8,200 attack trees
in the industry to date. Compared with human experts, De-
fenseWeaver significantly reduced time consumption of TARA
process by 98.8%. Overall, DefenseWeaver provides a robust,
adaptive approach to TARA, significantly advancing the state
of practice in automotive cybersecurity and beyond.

REFERENCES

[1] ABDELKADER, G., ELGAZZAR, K., AND KHAMIS, A. Connected ve-
hicles: Technology review, state of the art, challenges and opportunities.
Sensors 21, 22 (2021), 7712.

[2] ACCESSED DEC, O. L. Man-in-the-middle attack, https://en.wikipedia.
org/wiki/Man-in-the-middle attack, 2024.

[3] ACCESSED JAN, O. L. OpenXSAM, https://github.com/ASRG/
openXSAM, 2023.

[4] ACCESSED JAN, O. L. DefenseWeave, https://github.com/0xYYQ/
DefenseWeaver, 2025.

[5] ACCESSED JAN, O. L. DefenceWeaver TARA tool demo, https://youtu.
be/aEAuLp2BaIU, 2025.

[6] ACCESSED JAN, O. L. Certificate authority, https://en.wikipedia.org/
wiki/Certificate authority, 2025.

[7] ACCESSED JUN, O. L. IHO ENC & ECDIS Cyber Security Guideline,
https://iho.int/uploads/user/Services%20and%20Standards/ENCWG/
ENCWG7/ENCWG7-4.5 2022 EN ECDIS%20cyber%20security%
20guideline%20draft.pdf, 2017.

[8] ACCESSED MAY, O. L. Gb 42590-2023, 2023.
[9] ACCESSED NOV, O. L. PX4 Architectural Overview, https://docs.px4.

io/main/en/concept/architecture.html, 2024.
[10] ACCESSED OCT, O. L. CApache Log4j Security Vulnerabilities, https:

//logging-log4j.staged.apache.org/log4j/2.x/security.html, 2023.
[11] ACCESSED SEP, O. L. cve-2016-6309, https://nvd.nist.gov/vuln/detail/

cve-2016-6309, 2016.
[12] ACCESSED SEP, O. L. Ur e27 rev.1, 2023.
[13] ACHIAM, J., ADLER, S., AGARWAL, S., AHMAD, L., AKKAYA, I.,

ALEMAN, F. L., ALMEIDA, D., ALTENSCHMIDT, J., ALTMAN, S.,
ANADKAT, S., ET AL. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774 (2023).

[14] ANTONY, M. M., AND WHENISH, R. Advanced driver assistance
systems (adas). In Automotive Embedded Systems: Key Technologies,
Innovations, and Applications. Springer, 2021, pp. 165–181.

[15] CHEN, J., XIAO, S., ZHANG, P., LUO, K., LIAN, D., AND LIU, Z. Bge
m3-embedding: Multi-lingual, multi-functionality, multi-granularity text
embeddings through self-knowledge distillation, 2024.

[16] CHLUP, S., CHRISTL, K., SCHMITTNER, C., SHAABAN, A. M.,
SCHAUER, S., AND LATZENHOFER, M. Threatget: Towards automated
attack tree analysis for automotive cybersecurity. Information 14, 1
(2023).

[17] CHOWDHURY, T., LESIUTA, E., RIKLEY, K., LIN, C.-W., KANG,
E., KIM, B., SHIRAISHI, S., LAWFORD, M., AND WASSYNG, A.
Safe and secure automotive over-the-air updates. In Computer Safety,
Reliability, and Security: 37th International Conference, SAFECOMP
2018, Västerås, Sweden, September 19-21, 2018, Proceedings 37 (2018),
Springer, pp. 172–187.

[18] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. BERT:
Pre-training of deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers) (Minneapolis,
Minnesota, June 2019), J. Burstein, C. Doran, and T. Solorio, Eds.,
Association for Computational Linguistics, pp. 4171–4186.

[19] DONG, Y., JIANG, X., JIN, Z., AND LI, G. Self-collaboration code
generation via chatgpt, 2024.

[20] FOR EUROPE, U. N. E. C. Un regulation no. 155 -
cyber security and cyber security management system.
https://unece.org/transport/documents/2021/03/standards/
un-regulation-no-155-cyber-security-and-cyber-security, Accessed
2021-03-04.

[21] FRANCILLON, A., DANEV, B., AND CAPKUN, S. Relay attacks on
passive keyless entry and start systems in modern cars. In Proceedings
of the Network and Distributed System Security Symposium (NDSS)
(2011), Eidgenössische Technische Hochschule Zürich, Department of
Computer Science.

[22] GAO, C., WANG, G., SHI, W., WANG, Z., AND CHEN, Y. Autonomous
driving security: State of the art and challenges. IEEE Internet of Things
Journal 9, 10 (2022), 7572–7595.

[23] HONG, S., ZHUGE, M., CHEN, J., ZHENG, X., CHENG, Y., ZHANG,
C., WANG, J., WANG, Z., YAU, S. K. S., LIN, Z., ZHOU, L., RAN,
C., XIAO, L., WU, C., AND SCHMIDHUBER, J. Metagpt: Meta
programming for a multi-agent collaborative framework, 2024.

[24] INSTITUTE, E. T. S. Cyber; methods and protocols; part 1: Method and
pro forma for threat, vulnerability, risk analysis (tvra). https://standards.
globalspec.com/std/10259890/ts-102-165-1, Accessed 2017-10-01.

[25] INSTITUTE, E. T. S. Cyber; methods and protocols; part 1: Method and
pro forma for threat, vulnerability, risk analysis (tvra). https://standards.
globalspec.com/std/14488631/ts-102-165-1, Accessed 2022-01-01.

[26] ISLAM, M. M., LAUTENBACH, A., SANDBERG, C., AND OLOVSSON,
T. A risk assessment framework for automotive embedded systems. In
Proceedings of the 2nd ACM International Workshop on Cyber-Physical
System Security (New York, NY, USA, 2016), CPSS ’16, Association
for Computing Machinery, p. 3–14.

[27] JING, P., CAI, Z., CAO, Y., YU, L., DU, Y., ZHANG, W., QIAN, C.,
LUO, X., NIE, S., AND WU, S. Revisiting automotive attack surfaces:
a practitioners’ perspective. In 2024 IEEE Symposium on Security and
Privacy (SP) (2024), pp. 2348–2365.

[28] KARRAY, K., DANGER, J.-L., GUILLEY, S., AND ABDE-
LAZIZ ELAABID, M. Attack Tree Construction and Its Application to
the Connected Vehicle. Springer International Publishing, Cham, 2018,
pp. 175–190.

[29] KERN, M., LIU, B., BETANCOURT, V. P., AND BECKER, J. Model-
based attack tree generation for cybersecurity risk-assessments in auto-
motive. In 2021 IEEE International Symposium on Systems Engineering
(ISSE) (2021), pp. 1–7.

[30] KOIDE, T., FUKUSHI, N., NAKANO, H., AND CHIBA, D. Chatspamde-
tector: Leveraging large language models for effective phishing email
detection, 2024.

[31] KONG, H.-K., HONG, M. K., AND KIM, T.-S. Security risk assessment
framework for smart car using the attack tree analysis. Journal of
Ambient Intelligence and Humanized Computing 9, 3 (Jun 2018), 531–
551.

[32] KUMAR, D., ABUHASHEM, Y., AND DURUMERIC, Z. Watch your
language: Investigating content moderation with large language models,
2024.

[33] LAUTENBACH, A., ALMGREN, M., AND OLOVSSON, T. Proposing
heavens 2.0 – an automotive risk assessment model. In Proceedings
of the 5th ACM Computer Science in Cars Symposium (New York, NY,
USA, 2021), CSCS ’21, Association for Computing Machinery.

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://github.com/ASRG/openXSAM
https://github.com/ASRG/openXSAM
https://github.com/0xYYQ/DefenseWeaver
https://github.com/0xYYQ/DefenseWeaver
https://youtu.be/aEAuLp2BaIU
https://youtu.be/aEAuLp2BaIU
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Certificate_authority
https://iho.int/uploads/user/Services%20and%20Standards/ENCWG/ENCWG7/ENCWG7-4.5_2022_EN_ECDIS%20cyber%20security%20guideline%20draft.pdf
https://iho.int/uploads/user/Services%20and%20Standards/ENCWG/ENCWG7/ENCWG7-4.5_2022_EN_ECDIS%20cyber%20security%20guideline%20draft.pdf
https://iho.int/uploads/user/Services%20and%20Standards/ENCWG/ENCWG7/ENCWG7-4.5_2022_EN_ECDIS%20cyber%20security%20guideline%20draft.pdf
https://docs.px4.io/main/en/concept/architecture.html
https://docs.px4.io/main/en/concept/architecture.html
https://logging-log4j.staged.apache.org/log4j/2.x/security.html
https://logging-log4j.staged.apache.org/log4j/2.x/security.html
https://nvd.nist.gov/vuln/detail/cve-2016-6309
https://nvd.nist.gov/vuln/detail/cve-2016-6309
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://standards.globalspec.com/std/10259890/ts-102-165-1
https://standards.globalspec.com/std/10259890/ts-102-165-1
https://standards.globalspec.com/std/14488631/ts-102-165-1
https://standards.globalspec.com/std/14488631/ts-102-165-1

[34] LEE, J., TANG, F., YE, P., ABBASI, F., HAY, P., AND DIVAKARAN,
D. M. D-fence: A flexible, efficient, and comprehensive phishing email
detection system. In 2021 IEEE European Symposium on Security and
Privacy (EuroS&P) (2021), pp. 578–597.

[35] LIN, Y., LIU, R., DIVAKARAN, D. M., NG, J. Y., CHAN, Q. Z., LU,
Y., SI, Y., ZHANG, F., AND DONG, J. S. Phishpedia: A hybrid deep
learning based approach to visually identify phishing webpages. In
30th USENIX Security Symposium (USENIX Security 21) (Aug. 2021),
USENIX Association, pp. 3793–3810.

[36] LIU, P., YUAN, W., FU, J., JIANG, Z., HAYASHI, H., AND NEUBIG,
G. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Computing Surveys 55,
9 (2023), 1–35.

[37] LIU, R., LIN, Y., YANG, X., NG, S. H., DIVAKARAN, D. M., AND
DONG, J. S. Inferring phishing intention via webpage appearance and
dynamics: A deep vision based approach. In 31st USENIX Security
Symposium (USENIX Security 22) (Boston, MA, Aug. 2022), USENIX
Association, pp. 1633–1650.

[38] MACHER, G., SPORER, H., BERLACH, R., ARMENGAUD, E., AND
KREINER, C. Sahara: A security-aware hazard and risk analysis method.
In 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE) (2015), pp. 621–624.

[39] MANDI, Z., JAIN, S., AND SONG, S. Roco: Dialectic multi-robot
collaboration with large language models, 2023.

[40] MEIER, L., HONEGGER, D., AND POLLEFEYS, M. Px4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms. In 2015 IEEE International Conference on Robotics and
Automation (ICRA) (2015), pp. 6235–6240.

[41] MENG, R., MIRCHEV, M., BÖHME, M., AND ROYCHOUDHURY, A.
Large language model guided protocol fuzzing. Proceedings 2024
Network and Distributed System Security Symposium (2024).

[42] MICROSOFT. Microsoft threat modeling tool threats.
https://learn.microsoft.com/en-us/azure/security/develop/
threat-modeling-tool-threats, Accessed 2022-08-25.

[43] MING, X. text2vec: A tool for text to vector, 2022.
[44] NOEL, S., AND JAJODIA, S. Understanding complex network attack

graphs through clustered adjacency matrices. In 21st Annual Computer
Security Applications Conference (ACSAC’05) (2005), pp. 10 pp.–169.

[45] OU, X., BOYER, W. F., AND MCQUEEN, M. A. A scalable approach to
attack graph generation. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (New York, NY, USA, 2006),
CCS ’06, Association for Computing Machinery, p. 336–345.

[46] OU, X., GOVINDAVAJHALA, S., AND APPEL, A. W. MulVAL: A logic-
based network security analyzer. In 14th USENIX Security Symposium
(USENIX Security 05) (Baltimore, MD, July 2005), USENIX Associa-
tion.

[47] OU, X., AND SINGHAL, A. Attack Graph Techniques. Springer New
York, New York, NY, 2011, pp. 5–8.

[48] PEARCE, H., TAN, B., AHMAD, B., KARRI, R., AND DOLAN-GAVITT,
B. Examining zero-shot vulnerability repair with large language mod-
els. In 2023 IEEE Symposium on Security and Privacy (SP) (2023),
pp. 2339–2356.

[49] QIAN, C., LIU, W., LIU, H., CHEN, N., DANG, Y., LI, J., YANG, C.,
CHEN, W., SU, Y., CONG, X., XU, J., LI, D., LIU, Z., AND SUN, M.
Chatdev: Communicative agents for software development, 2024.

[50] RUDDLE, A., WEYL, B., IDREES, S., ROUDIER, Y., FRIEDEWALD, M.,
LEIMBACH, T., FUCHS, A., GÜRGENS, S., HENNINGER, O., RIEKE,
R., RITSCHER, M., BROBERG, H., APVRILLE, L., PACALET, R., AND
PEDROZA, G. Security requirements for automotive on-board networks
based on dark-side scenarios. deliverable d2.3: Evita. e-safety vehicle
intrusion protected applications. Fraunhofer ISI (01 2009).

[51] SAULAIMAN, M. N.-E., KOZLOVSZKY, M., BANATI, A., AND
CSILLING, A. Use cases of attack graph in threat analysis and risk
assessment for the automotive domain. In 2022 IEEE 1st Interna-
tional Conference on Cognitive Mobility (CogMob) (2022), pp. 000085–
000092.

[52] SCHNEIER, B. Attack trees. Dr. Dobb’s journal 24, 12 (1999), 21–29.
[53] SVILICIC, B., BRČIĆ, D., ŽUŠKIN, S., AND KALEBIĆ, D. Raising

awareness on cyber security of ecdis. TransNav: International Journal
on Marine Navigation and Safety of Sea Transportation 13, 1 (2019),
231–236.

[54] SVILICIC, B., KAMAHARA, J., CELIC, J., AND BOLMSTEN, J. As-
sessing ship cyber risks: A framework and case study of ecdis security.
WMU Journal of Maritime Affairs 18 (2019), 509–520.

[55] TAYYAB, M., MUMTAZ, M., MUZAMMAL, S. M., JHANJHI, N. Z.,
ET AL. Swarm security: Tackling threats in the age of drone swarms. In
Cybersecurity Issues and Challenges in the Drone Industry. IGI Global,
2024, pp. 324–342.

[56] THE INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.
Iso/sae 21434:2021 road vehicles — cybersecurity engineering. https:
//www.iso.org/standard/70918.html, Accessed 2021-08.

[57] THOMPSON, M. Uds security access for constrained ecus. Tech. rep.,
SAE Technical Paper, 2022.

[58] VASWANI, A. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[59] WANG, C., ZHANG, J., FENG, Y., LI, T., SUN, W., LIU, Y., AND PENG,
X. Teaching code llms to use autocompletion tools in repository-level
code generation, 2024.

[60] WEI, Y., WANG, Z., LU, Y., XU, C., LIU, C., ZHAO, H., CHEN, S.,
AND WANG, Y. Editable scene simulation for autonomous driving via
collaborative llm-agents. In 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2024), pp. 15077–15087.

[61] WU, S., XIE, J., CHEN, J., ZHU, T., ZHANG, K., AND XIAO, Y. How
easily do irrelevant inputs skew the responses of large language models?,
2024.

[62] XIA, C. S., PALTENGHI, M., LE TIAN, J., PRADEL, M., AND ZHANG,
L. Fuzz4all: Universal fuzzing with large language models. In Pro-
ceedings of the IEEE/ACM 46th International Conference on Software
Engineering (New York, NY, USA, 2024), ICSE ’24, Association for
Computing Machinery.

[63] XU, Y., HAN, X., DENG, G., LI, J., LIU, Y., AND ZHANG, T. Sok:
Rethinking sensor spoofing attacks against robotic vehicles from a
systematic view. In 2023 IEEE 8th European Symposium on Security
and Privacy (EuroS&P) (2023), IEEE, pp. 1082–1100.

[64] XU, Z., YU, C., FANG, F., WANG, Y., AND WU, Y. Language agents
with reinforcement learning for strategic play in the werewolf game,
2024.

[65] ZHANG, Y., RUAN, H., FAN, Z., AND ROYCHOUDHURY, A. Au-
tocoderover: Autonomous program improvement. In Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (New York, NY, USA, 2024), ISSTA 2024, Association for
Computing Machinery, p. 1592–1604.

[66] ZHOU, X., ZHANG, T., AND LO, D. Large language model for
vulnerability detection: Emerging results and future directions. In
Proceedings of the 2024 ACM/IEEE 44th International Conference on
Software Engineering: New Ideas and Emerging Results (New York, NY,
USA, 2024), ICSE-NIER’24, Association for Computing Machinery,
p. 47–51.

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/70918.html

APPENDIX A: COMPLETE ATTACK TREES OF REAL CARS

Experimental Methodology

Each attack tree comprises a threat scenario (root node),
logical nodes (AND, OR), attack objectives (AO−X), and
attack methods (AM−X). For each method, DefenseWeaver
performs step-by-step feasibility assessments (Step F) and
calculates a cumulative feasibility score (Cumulative F).
The threat scenario denotes the ultimate goal of an attack,
while the attack objectives serve as intermediate goals that
support it. Logical nodes connect the attack methods nec-
essary for achieving each objective. Using DefenseWeaver,
we generated four comprehensive attack trees for the four
threat scenarios discussed in Sec V-C (see Fig 10, 11, 12,
13). In these figures, we highlight in red the specific attack
paths detailed in Sec V-C, annotated with feasibility indicators
(Step F and Cumulative F). Guided by these four trees,
each showing at least a “Medium” feasibility rating and a
relatively high risk level (at least 3), we identified 11 practical
attack paths confirmed through penetration tests. Note that the
attack tree serves as a high-level guide and may not exactly
mirror the real-world attack paths uncovered in full detail. The
11 verified attack paths are as follows:

Complete Attack Tree of BCM (Car A)

Drawing on Fig 10, we identified three feasible paths. For
this attack tree, the threat scenario’s overall attack feasibility
is Medium, the potential impact is Major, and the resulting
risk level is 3:

Attack Path 1: By dumping the BCM firmware via the
MCU’s JTAG port, we reverse-engineered the seed-key conver-
sion algorithm for UDS SecurityAccess Service to reconstruct
the complete authentication mechanism. After compromising
the IVI, we sent malicious TCP packets to the Gateway to
trigger the CVE-2016-6309 vulnerability in OpenSSL and ob-
tain a reverse shell. Within this shell, we send malicious CAN
messages—ultimately tampering with the BCM firmware once
the UDS authentication was bypassed.

Attack Path 2: We demodulated TPMS data using FSK
and cracked a non-standard CRC8 algorithm to forge TPMS
signals. Replaying these signals triggered a buffer overflow in
the BCM-MCU component.

Attack Path 3: We successfully detected the JTAG interface
through hardware reverse engineering, including TDI, TDO,
TMS, and TCK, and established a connection. However, when
attempting to read the firmware further, we discovered that it
has built-in read and write protection.s.

Complete Attack Tree of BCM (Car B)

Similarly, based on Fig 11, we discovered three paths.
The threat scenario’s overall attack feasibility is High, the
potential impact is Major, and the final risk level is 4:

Attack Path 4: As in Car A, we identified hard-coded UDS
authentication in the BCM firmware. Through the Gateway’s
UART interface, we exploited CVE-2023-0179 in Linux 6.1
to compromise the Gateway and then tampered with the BCM
firmware via the UDS protocol.

Attack Path 5: We launched a DoS attack by using high-
power signals to attack the radio receiver module, thereby
damaging its gain module.

Attack Path 6: Like Path 2, we can successfully connect
to the JTAG interface, but due to the read protection, we are
unable to read the firmware.

Complete Attack Tree of CDC (Car C)

Based on Fig 12, we identified three paths. The threat
scenario’s overall attack feasibility is Medium, the potential
impact is Serious, and the final risk level is 4:

Attack Path 7: In the T-BOX, we discovered hard-coded
CA certificates and private keys, which allowed us to bypass
the TLS/SSL verification and conduct a man-in-the-middle
attack between the Cloud and the T-BOX. This enabled us to
inject malicious code into the firmware upgrade package. Ad-
ditionally, by reverse-engineering the OTA firmware package
verification process in the firmware, we found a logical flaw
where the CDC would proceed with the upgrade regardless of
whether the firmware package hash was correct. This allowed
us to successfully run the modified firmware on the CDC-
MCU.

Attack Path 8: The CDC-MCU can be upgraded via a USB
drive. By reverse-engineering the firmware, we identified a
logical flaw where the CDC would proceed with the upgrade
regardless of whether the firmware package hash was correct.
We created a malicious firmware package on a USB drive
and successfully ran the modified firmware on the CDC-MCU
through the USB port.

Attack Path 9: We used a timing side-channel attack to
brute-force the ADB access password for the IVI system. We
then controlled the IVI to issue an illegal firmware rollback
request. Due to a design flaw, the old firmware was updated
to the CDC-MCU via the OTA function.

Complete Attack Tree of PKES (Car D)

Lastly, guided by Fig 13, we identified two feasible paths.
The overall attack feasibility is High, the potential impact is
Serious, and the final risk level is 5:

Attack Path 10: We first sniffed the normal UWB (Ultra-
Wideband) signals to analyze the physical layer structure
in use, and sniffed BLE signals to confirm the exchanged
information such as MAC, UUID. Subsequently, we continu-
ously transmitted malicious UWB signals to disrupt the UWB
ranging process. We discovered that when UWB ranging fails
consecutively for a certain period, the car still uses the old
distance data from before the interference. Therefore, as long
as we interfere with the UWB signals while the car owner
is still near the car, and then relay the BLE signals after the
owner has moved away, the UWB ranging data will still reflect
the old distance data from when the owner was near the car.
The PKES still near the car and erroneously unlock the doors
automatically.

Attack Path 11: We used a custom-made RFID relay device
to receive the Select AID data transmitted by the car and
relay it to another relay device positioned near the car’s NFC

card. The NFC card would respond with an encrypted reply,
which the relay device would then forward to the vehicle’s
card reader, thereby unlocking the car door.

APPENDIX B: COMPLETE ATTACK TREES OF CASE
STUDIES

We also generated two complete attack trees based on
previous research and publicly available information (Fig 14
and Fig 15), highlighting high-feasibility paths detailed in
Sec V-D in red. Figure 14 encompasses most UAV-related
attack paths from [63], whereas Fig 15 includes all high-risk
vulnerabilities referenced in [53].

Complete Attack Tree of UAV

Fig 14 reveals three highly feasible paths, with an overall
attack feasibility of High, a potential impact of Major, and
a risk level of 4:

Attack Path 1: By transmitting electromagnetic interfer-
ence signals at specific frequencies, the normal operation of
the MPU60001.0 hardware chip is disrupted, causing distor-
tion in the gyroscope signals it outputs. This leads to drone
instability and subsequent image processing errors.

Attack Path 2: By sending spoofed GPS signals to interfere
with the drone’s positioning system, the drone receives incor-
rect geographical information, causing its camera to fail to
focus or accurately target objects, resulting in blurred images
that disrupt the drone’s functionality.

Attack Path 3: By tampering with the positioning signals
transmitted between drones, the swarm algorithm of the entire
drone fleet is disrupted, causing delays in reaching the target
location and affecting the timeliness of drone rescue missions.

Complete Attack Tree of ECDIS

Likewise, Fig 15 guides three highly feasible paths, with
an overall attack feasibility of High, a potential impact of
Major, and a final risk level of 4:

Attack Path 1: Attackers can exploit vulnerabilities in the
RDP service, such as CVE-2019-0708, to gain unauthorized
remote desktop access and execute malicious code on the
ECDIS system.

Attack Path 2: By exploiting known vulnerabilities in the
Apache web server, such as directory traversal or remote code
execution vulnerabilities, malicious code can be uploaded to
the server.

Attack Path 3: By updating incorrect ENC files through
the USB interface of the ECDIS system, the navigation data is
tampered with, causing the vessel to deviate from its intended
route.

APPENDIX C: COMPARISON WITH HUMAN EXPERTS

1) Study Setup: To scientifically and objectively assess
whether the attack trees designed by DefenseWeaver are supe-
rior to those designed by human experts, we conducted a three-
step scoring process: establishing scoring criteria, designing
attack trees by experts, and scoring by experts.

TABLE II: Seven-member review team

ID Exp1 Co.2 Position3 Task4

Expert A 5 C3 TARA, Test Dsgn, Scr
Expert B 3 C3 TARA, Test Dsgn, Scr
Expert C 10 C3 TARA, Test Crt, Dsgn, Scr
Expert D 6 C1 TARA, Manag Crt, Dsgn, Scr
Expert E 5 C2 TARA, Manag Crt, Dsgn, Scr
Expert F 12 C4 TARA, Manag, Reg Crt, Dsgn, Scr
Expert G 5 C4 TARA, Manag, Reg Crt, Dsgn, Scr

1 Years of working experience in security;
2 C1, C2: 1st party vehicle manufacturer,C3: 3rd party supplier;
C4: TARA assessment agency.
3 TARA: Threat Analysis and Risk Assessment; Manag: Project
manager; Reg: Regulation-related study; Test: Security testing.
4 Crt: establishing scoring criteria; Dsgn: designing Attack Trees;
Scr: conducting scoring .

Recruitment. To ensure the professionalism and objectivity
of the results, we invited experts from the automotive cyberse-
curity field of first-tier automotive manufacturers (2 persons),
third-party suppliers (3 persons), and TARA ssessment agency
(2 persons) from multiple countries (China and Germany) to
form a seven-member review team, with their information
presented in Table II. On average, the team members have
about 6 years of experience in the security field, with Expert
c and Expert f having over 10 years of experience. Their posi-
tions include TARA, security testing, project management, and
regulation study. Tasks were assigned based on their positions
and interviews (5 persons establishing the scoring criteria, all
experts designing the attack trees, and conducting scoring),
ensuring that all participants have sufficient experience to
competently perform their tasks.

Procedure. To ensure a thorough and unbiased evaluation
of the attack trees, we assembled a seven-member review
team to conduct a comprehensive scoring analysis. The team
assessed the attack trees designed by DefenseWeaver and those
created by seven experts (each expert contributed six attack
trees targeting four automotive components and two other
electronic systems). Experts selected five key scoring dimen-
sions—rationality, non-redundancy, novelty, level of detail,
and configuration alignment—based on ISO/SAE 21434 to
capture different aspects of attack tree quality. Each dimension
was scored on a scale of 1 to 4 points, allowing for a nuanced
comparison (Table III). To maintain fairness and minimize
potential bias, we implemented a structured scoring process:
(i) DefenseWeaver’s attack trees were evaluated by all seven
reviewers to ensure broad consensus. (ii) The experts’ attack
trees were scored only by individuals not involved in their
creation, preventing author-related biases. For consistency, the
score for each dimension was calculated as the average based
on the total points and the number of reviewers. To visually
represent the overall performance differences, we plotted the
five-dimensional scores into radar charts (Fig. 9) and compared
their areas. This approach allowed us to objectively quantify
the comprehensive superiority of the attack trees, rather than
relying on subjective judgments.

TABLE III: Overall Comparison with Human Experts

System Dimension DefenseWeaver Expert Improv.

BCM A

Rationality 3.40 3.10 ↑ 9.68%
Non-redundancy 3.40 3.70 ↓ 8.11%

Novelty 2.60 1.30 ↑ 100.00%
Level of detail 4.00 3.00 ↑ 33.33%
System align. 3.60 2.15 ↑ 67.44%

BCM B

Rationality 3.40 3.05 ↑ 11.48%
Non-redundancy 3.40 3.55 ↓ 4.23%

Novelty 2.20 1.25 ↑ 76.00%
Level of detail 4.00 2.90 ↑ 37.93%
System align. 3.60 2.20 ↑ 63.64%

CDC

Rationality 3.60 3.30 ↑ 9.09%
Non-redundancy 3.60 3.30 ↑ 9.09%

Novelty 2.60 1.20 ↑ 116.67%
Level of detail 3.80 2.45 ↑ 55.10%
System align. 3.80 2.85 ↑ 33.33%

PKES

Rationality 4.00 3.90 ↑ 2.56%
Non-redundancy 3.60 3.75 ↓ 4.00%

Novelty 3.00 1.35 ↑ 122.22%
Level of detail 3.80 3.35 ↑ 13.43%
System align. 3.80 3.05 ↑ 24.59%

UAV

Rationality 3.67 3.58 ↑ 2.51%
Non-redundancy 4.00 3.90 ↑ 2.56%

Novelty 3.00 1.70 ↑ 76.47%
Level of detail 3.67 2.50 ↑ 46.80%
System align. 3.67 2.75 ↑ 33.45%

Ship

Rationality 3.67 3.62 ↑ 1.38%
Non-redundancy 4.00 4.00 -

Novelty 3.00 1.20 ↑ 150.00%
Level of detail 4.00 2.25 ↑ 77.78%
System align. 3.80 2.50 ↑ 52.00%

Overall

Rationality 3.62 3.43 ↑ 5.79%
Non-redundancy 3.67 3.70 ↓ 0.90%

Novelty 2.73 1.33 ↑ 105.00%
Level of detail 3.88 2.74 ↑ 41.46%
System align 3.71 2.58 ↑ 43.68%

2) Scoring Criterion: Experts have selected five core
evaluation dimensions (Table IV)—logical rationality, non-
redundancy, configuration alignment, level of detail, and nov-
elty—based on ISO/SAE 21434 and industry white papers to
comprehensively assess the quality of attack trees(as shown
in Table IV). The rationale for each dimension is as follows:
(i) Logical Rationality : ISO/SAE 21434 requires each attack
path should be logically sound and follow security reasoning
(no implausible leaps). This includes ensuring that the local
attack objectives are clearly defined and realistic, the attack
methods are technically feasible and relevant to the context, the
logical nodes accurately represent the steps and relationships
in the attack process, the feasibility and impact ratings are
reasonable, and the overall attack path is consistent with the
defined threat scenarios; (ii) Non-redundancy: According to
TARA optimization principles, the attack tree should avoid
duplicate or redundant paths, focusing on unique attack vectors
and avoiding analytical redundancy aligns with the minimal
attack tree criterion; (iii) Configuration Alignment: ISO/SAE
21434 mandate that attack tree nodes strictly correspond
to system modeling elements (e.g., ECUs, communication
protocols), ensuring TARA’s practical applicability; (iv) Level
of Detail: the attack steps should be described with sufficient
technical detail and specificity (e.g., including concrete attack
techniques or CVE examples); (v) Novelty: While ensuring

TABLE IV: Attack Tree Scoring Criteria

Dimension Score Level Description

Logical rational-
ity

1 Poor All paths are considered
unreasonable

2 Limited Only very few paths are
reasonable

3 Good Most paths are reasonable with
some exceptions

4 Excellent Nearly all paths are reasonable

Non-redundancy 1 Poor All reasonable paths are
completely repetitive

2 Limited Majority of paths are redundant
3 Good Few paths are repetitive
4 Excellent All paths are unique

Configuration
alignment

1 Poor Uses substantial irrelevant
information

2 Limited Uses some relevant information
mixed with irrelevant data

3 Good Uses 60% of system modeling
information

4 Excellent Uses 80% of system modeling
information

Level of detail 1 Poor Incomprehensible to users
2 Limited Specifies target objects (e.g.,

attacking TBOX)
3 Good Specifies objects with attack

techniques (e.g., MITM on
TBOX’s WiFi)

4 Excellent Includes objects, techniques, and
examples (e.g., MITM on TBOX’s
WiFi using CVE-XXXX)

Novelty 1 Poor No new attack methods provided
2 Limited 1-2 unexpected attack methods
3 Good 2-3 unexpected attack methods
4 Excellent More than 3 unexpected attack

methods

compliance, the attack tree should include creative attack
methods beyond well-known threat templates to enhance the
comprehensiveness of threat coverage. Each dimension was
scored on a four-point scale from Poor (1) to Excellent (4). The
final score for each dimension is the average of all reviewers’
ratings for that criterion on a given tree.

AND

OR

Intercept IVI firmware
during cellular network upgrade...

Reverse-engineer the
firmware and exploit Linux 6.1
CVE-2023-0179...

Exploit known vulnerabilities
or weaknesses in IVI component by
sending malicious code or
commands through ETH channel.

Physically access through
JTAG debug port to implant
malicious firmware or execute
arbitrary code.

Send malicious
data via the gateway

Use gateway to perform UDS27
authentication on CAN 3 channel to
corrupt firmware.

Disable BCM-MCU's door opening
function to disrupt its availability.

Dump BCM firmware via JTAG. Reverse engineer the
 complete UDS
authentication algorithm.

AND

OR

Replay malicious tire pressure
signals to cause buffer overflow in

BCM-MCU module.

Send malicious data via Radio
module.

Send forged tire pressure signals
via 433M channel

Send malicious data via TPMS.

Access TPMS component's debug
interface to tamper with its

firmware and send malicious data.

OR

Perform man-in-the-
middle attack on 433M
channel to tamper with

tire pressure data

Fault injection
on TC399 chip...

Use JTAG to
rewrite chip

firmware or alter
door control logic

in firmware...

Send crafted heartbeat
packets through CAN2 channel,
causing gateway service to
crash due to memory leakage.

Send malicious data via ODB.

Exploit known software
vulnerabilities or public CVE

vulnerabilities by sending
malicious CAN messages

through ODB component's
external interface.

AM - 1 AM - 2 AM - 3

AM - 4

AM - 5
AM - 6

AO - 1

AO - 2

Step_F: Med Cumulative_F: Med

Cumulative_F: High

Step_F: High Cumulative_F: High Step_F: Med Cumulative_F: Med

Cumulative_F: MedStep_F: High

Cumulative_F: Med

Step_F: High Cumulative_F: High Step_F: High Cumulative_F: Med

Cumulative_F: Med

Exploit the RCE in OpenSSL
1.1.0a (e.g., CVE-2016-6309) by sending
crafted TCP packets, then reverse shell
and execute UDS commands.

Fig. 10: Attack tree BCM (Car A)

OR

Exploit IVI vulnerabilities via
 IVI-Gateway to send malicious code or commands.

Use IVI-Gateway to
send crafted packets via
Ethernet, triggering CVE-
2023-0179 in Gateway's
Linux 6.1 to run malicious
code as root.

Attack gateway chip
 via JTAG to prevent BCM-
MCU from receiving door
opening commands.

Send forged tire pressure signals
via 433M channel，

Send malicious data via TPMS.

Perform replay attacks using
captured tire pressure signal

data, continuously sending false
low-pressure warnings, causing
BCM-MCU to receive incorrect
signals and mistakenly believe

all tires are under low pressure,
thus failing to normally execute

the door opening operation.

Conduct electromagnetic
interference attacks on low-

power radio modules to prevent
them from receiving signals sent

by TPMS.Access
Linux 6.1 via UART
debug port.

AND

Exploit CVE-
2023-0179 on Gateway
to send malicious CAN
messages as root.

Send malicious data
via the gateway

Use gateway to perform UDS27
authentication on CAN 3 channel to
corrupt firmware.

Disable BCM-MCU's door opening
function to disrupt its availability.

Dump BCM firmware via JTAG. Reverse engineer the
 complete UDS
authentication algorithm.

AND

OR

Replay malicious tire pressure
signals to cause buffer overflow in

BCM-MCU module.

Send malicious data via Radio
module.

Fault injection
on TC399 chip...

Use JTAG to
rewrite chip

firmware or alter
door control logic

in firmware...

AM - 1
AM - 2 AM - 3

AO - 1

Step_F: Med Cumulative_F: Med

Cumulative_F: High

Step_F: High Cumulate:High Step_F: High Cumulative_F: High

Cumulative_F: High

OR

AND

Intercept IVI firmware
during cellular network upgrade...

Reverse-engineer the
firmware and exploit Linux 6.1
CVE-2023-0179...

AM - 5AM - 4

Step_F: High Cumulative_F: High Step_F: Med Cumulative_F: Med

AND

Step_F: High Cumulate: High Step_F: Low Cumulate:Low

Cumulative_F: High

Step_F:High Cumulate:High
Step_F: Low Cumulate:Low

AO - 2

AM - 6

AM - 8AM - 7

Fig. 11: Attack tree BCM (Car B)

OR

Send malicious
firmware via the gateway.

Exploit CDC-MCU's OTA
upgrade logic vulnerabilities to
send malicious firmware via the
GW-CDC-MCU channel, replacing
the original firmware.

Tamper with CDC-MCU firmware,
affecting its integrity.

Attackers need to reverse-
engineer previously intercepted
OTA firmware samples to find
firmware verification logic issues.

AND

OR

Use the USB interface to
upload malicious firmware via

a USB drive, replacing the
legitimate firmware in the

CDC-MCU.

AM - 1 AM - 2

AO - 1

Step_F: Med Cumulative_F: Med

Cumulative_F: Med

Step_F: High Cumulative_F: Med

Cumulative_F: Med

Use ODB for malicious operations.

Exploit protocol ODB-GW channel to
send specially crafted diagnostic
commands to the GW, causing it to
execute malicious firmware updates.

Use the GW-IVI channel to send
malicious firmware, causing the IVI
system to execute unauthorized
firmware updates.

Physically connect to the vehicle's
OBD-II port, use the diagnostic
instrument-GW channel for
communication, and send
malicious diagnostic commands
to gain access to the CDC-MCU

Exploit known CDC-MCU
software vulnerabilities or
publicly known CVE
vulnerabilities to send
specially crafted data packets
via the OBD-II port to tamper
with the CDC-MCU firmware.

AND

Use IVI for malicious operations.

OR

First obtain ADB debugging
permissions, then use IVI to
flash malicious firmware
onto the CDC-MCU.

Find vulnerabilities in the Android
system of the IVI components,
obtain system high-level
permissions through these
vulnerabilities, and then control
the IVI to flash the CDC-MCU.

Use TBOX for malicious operations.

Utilize the GW-TBOX channel
to send malicious firmware, or
cause the IVI system to perform
unauthorized firmware updates

Step_F: High Cumulative_F: Med

Cumulative_F: Med

OR

Transmit OTA upgrade
firmware via the HTTPS
channel and replace it with
malicious firmware.

Exploit the HTTPS SSL CA
 certificates and private keys in
the T-Box to perform man-in-
the-middle attacks via HTTPS to
intercept OTA upgrade firmware.
Attackers can insert malicious
firmware during this process,
replacing or modifying the
original firmware.

Attackers can use
publicly known CVE
vulnerability (such as CVE-
2024-1086) exploitation
tools to attack the T-Box,
gain control, and then
replace or modify the
firmware during the OTA
upgrade process.

Exploit vulnerabilities in Apache
services (such as the log4j2
vulnerability) to execute remote code,
thereby gaining control of Car Cloud.

ANDAND

Send malicious firmware update
packages via the OTA function to
replace the original CDC-MCU
firmware.

Use Car Cloud for
malicious operations

Attackers need to reverse-engineer
previously intercepted OTA

firmware samples to find firmware
verification logic issues.

AND

AM - 3

AO - 2

AM - 4

Step_F: Med Cumulative_F: Med

Step_F: High Cumulative_F: High

Step_F: Low Cumulative_F: Low

Cumulative_F: Med

Step_F: Med Cumulative_F: Low

AM - 5

AO- 3

AM - 6 AM - 7

AM - 8

Step_F: Low Cumulative_F: Low

Fig. 12: Attack tree CDC (Car C)

OR

Use Gateway for malicious operations.

Use replay attacks on the CAN-FD
channel. Attackers can intercept

legitimate CAN-FD communication data
and resend it at the right time to deceive

the system into thinking the car door
should be opened.

Illegally open the car door and
destroy its integrity.

Replay NFC signals to illegally open
the car door.

OR

After a DoS attack on the UWB,
 exploit Bluetooth channel
vulnerabilities to perform Bluetooth
relay attacks. Capture and forward
legitimate users' PKES door opening
signals to illegally open the car door.

AM - 2

Step_F: High Cumulative_F: High

Cumulative_F: High

Perform a DoS attack on the UWB system to
 temporarily disable it for subsequent Bluetooth
relay attacks. The steps include: 1. Analyze the UWB
communication protocol to find possible DoS attack
points; 2. Send a large number of forged data packets
to hinder distance data updates; 3. Monitor the UWB
system status to confirm it has failed.

AND

Use phone's bluetooth for
malicious operations.

Capture and
analyze Phone
Bluetooth signals
for door opening
signals.

Relay
door opening
signals after
authentication.

Exploit software vulnerabilities in
Gateway, such as unpatched OTA
update service vulnerabilities, to

gain control of Gateway by
sending malicious firmware

update packages.

Use replay attacks on the CAN channel.
Capture and replay legitimate door

opening commands to deceive the OBD-
Gateway channel, making it think the
door opening command is legitimate.

Use OBD for malicious operations.

Use OBD for malicious operations.

Physically access the OBD debug port and
use hardware debugging tools to send

messages to open the car door.

Use NFC Reader for malicious
operations

Utilize NFC relay attacks to
capture and forward

authentication signals from NFC
Reader, bypassing the physical

proximity requirement to illegally
gain vehicle access.

Use phone’s uwb for malicious
operations.

Capture and
analyze the physical
layer structure of
Phone UWB signals.

Send high-power
UWB signals to cover
normal signals.

Forward key exchange
information such as
encrypted random numbers
sent by both parties to
establish authentication.

Step_F: High Cumulative_F: High

Step_F: High

Cumulative_F: High

Step_F: High

Cumulative_F: High

Step_F: High

Cumulative_F: HighStep_F: High Cumulative_F: HighStep_F: High

Cumulative_F: High

Cumulative_F: High Cumulative_F: High

AM - 1

AM - 4AM - 3AM - 7AM - 6AM - 5

AO- 2 AO- 1

AND AND

Fig. 13: Attack tree PKES (Car D)

OR

Conduct malicious operations using the
Data transmission module.

Use SPI channel to send specially
crafted malicious signals, interfering

with the Flight Controller's reception of
correct remote control signals,

preventing drones from executing flight
instructions correctly.

Prevent drones from locking and
locating targets, causing rescue

missions to fail.

Exploit the CVE-2021-26461
 in Nuttx 10.0.0 for remote code
injection/execution, modifying
positioning data sent to other
drones and delaying the positioning
of the entire drone swarm.

OR

Send electromagnetic interference
signals of specific frequencies to
interfere with the normal operation of
the MPU6000 hardware chip, causing
the output gyroscope signals to distort
and leading to drone shaking and
image processing errors, preventing
drones from locking targets.

AM - 5

Step_F: High Cumulative_F: High

Cumulative_F: High

Send erroneous information to
mislead the navigation fusion algorithm,
preventing drones from locating.

Use INS for malicious operations.
Send false 2.4G interference data

through the channel Ground station -
Data transmission module, disrupting

the data processing flow of the data
transmission module and causing data

packet loss or incorrect parsing.

Use Ground station for
malicious operations.

Exploit unauthorized vulnerabilities in the
Ground station to take control and send
2.4G erroneous information, tampering

with drone positioning instructions.

Tamper with gyroscope signals in
the Inertial Navigation System through
man-in-the-middle attacks, causing
drone shaking.

Step_F: High Cumulative_F: Med

Step_F: High Cumulative_F: High

Cumulative_F: High

AM - 1

AM - 6

AO- 2

Attackers sniff publicly
available Zigbee

network information
in data packets.

Attackers impersonate
legitimate ZigBee
devices and send

misaligned positioning
instructions.

Conduct malicious operations using the
Navigation module.

Send false radar signals through the CAN
protocol to interfere with the normal operation

of the Radar module, preventing it from
correctly receiving and processing location
information from the Navigation module.

Send forged GPS signals to carry
out GPS spoofing attacks, causing the
navigation module to receive incorrect
positioning information.

Step_F: High Cumulative_F: Med

Cumulative_F: Med

AM - 2

AO- 1

OR

Use Satellite for malicious
operations.

Send forged GPS signals to carry out
GPS spoofing attacks on satellites,
causing them to receive incorrect

positioning information and fail to
lock and locate targets correctly.

Exploit software vulnerabilities or
known public CVE vulnerabilities

（e.g. CVE-2020-7244）in satellite
components to remotely control

satellite systems and send
erroneous GPS data.

Use strong light to
illuminate UAVs, affecting
the performance of visual
SLAM, leading to errors in

image processing and
feature extraction, and thus

affecting positioning
accuracy.

Use Hackrf to send false
GPS signals to interfere with
the UAV's positioning system

Use Radar for malicious
operations.

end high-power signals
to the radar, damaging
the radar gain module

and causing radar
failure, thereby

affecting positioning.

Use external exposed
interfaces of Radar

components to
implant malware,
causing it to send

erroneous radar data.

Inject invisible laser pulses
into the lidar sensor to

remotely and covertly cause
the sensor to discard

legitimate point clouds of
real obstacles in the scene,

performing a 45° attack.

AND

OR

OR

OR

AND

The UAV is at the wrong
location and cannot focus or
locate the target correctly,
resulting in a blurred image and
affecting the target lock.

AM - 3 AM -4

AM - 7

Step_F: Med Cumulative_F: Med

Step_F: High Cumulative_F: High

Step_F: High Cumulative_F: High

Fig. 14: Attack tree UAV (Uav E)

Use GPS spoofing to send
false GPS signals to ECDIS,
triggering malicious code

execution.

Execute malicious code on ECDIS to steal
ship's confidential information.

Exploit SMB v1
vulnerabilities (e.g.,

EternalBlue) to
perform remote code
execution by sending

malicious SMB
requests to ECDIS.

OR

Exploit unpatched VNC
server vulnerabilities to send
crafted requests to ECDIS and
steal confidential information.

AM - 3

Cumulative_F: High

Use VNC server for
malicious operations.

Exploit known VNC
server vulnerabilities (e.g.,
CVE-2019-13050) to gain

control of virtual machines.

Move laterally to
ECDIS systems via VNC to
locate confidential files.

Exploit known vulnerabilities in
Apache Web servers (e.g., CVE-2021-
41773, log4j2) to steal information or
upload malicious code.

Inject forged ENC files
through ECDIS USB update
interfaces to tamper with
navigation data and cause
ships to deviate from
planned routes.

Attack ECDIS via Remote
Desktop Protocol (RDP)
services, exploiting
vulnerabilities like CVE-2019-
0708 to execute malicious code.

AND

Use satellites for
malicious operations.

Use HackRF to send spoofed
GPS signals, triggering buffer

overflow vulnerabilities.

Exploit software vulnerabilities in
satellite components (e.g., CVE-2020-

7244) to remotely control satellite
systems and send malicious GPS data.

OR

Step_F: High Cumulative_F: High

Step_F: High Cumulative_F: High
Step_F: High Cumulative_F: High

AM - 1AM - 3

Fig. 15: Attack tree ECDIS (Ship E)

	Introduction
	Basics of Automotive Cyber Security
	TARA in Automotive Industries
	TARA Pipeline.
	Mandatory Regulations

	Related Work
	DefenseWeaver: Approach
	System Overview
	Atomic Structure Representation
	Comprehensive Description of Configurations
	Logical Path Extraction and Atom Construction

	LLM-based Attack Methods Inference
	Multi-Agent Roles for Automated TARA
	Attack Tree Generation
	Risk Assessment of Threat Scenarios

	Fine-Tuning and RAG for Adaptation

	Evaluation
	Implementation
	Open Science and Ethics Considerations
	Experimental Analysis on Real Vehicles
	Vehicles Under Examination
	BCM: Identical Logical Paths but Different Attack Methods Due to Configuration Variations
	CDC: New Attack Vectors from Cloud Services
	PKES: Discovering Unforeseen Attack Surfaces
	Responsible Disclosure and Summary

	Case Studies on Other Electronic Systems
	Systems Under Examination
	Unmanned Aerial Vehicle (UAV)
	ECDIS of Ships

	Comparison with Human Experts

	Limitations and Future Work
	Conclusion
	References
	Study Setup
	Scoring Criterion

