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Abstract. Secret sharing is a fundamental primitive in cryptography, and it can be
achieved even with perfect security. However, the distribution of shares requires
computational assumptions, which can compromise the overall security of the protocol.
While traditional Quantum Key Distribution (QKD) can maintain security, its
widespread deployment in general networks would incur prohibitive costs.
In this work, we present a quantum protocol for distributing additive secret sharing of 0,
which we prove to be composably secure within the Abstract Cryptography framework.
Moreover, our protocol targets the Qline, a recently proposed quantum network
architecture designed to simplify and reduce the cost of quantum communication.
Once the shares are distributed, they can be used to securely perform a wide range
of cryptographic tasks, including standard additive secret sharing, anonymous veto,
and symmetric key establishment.
Keywords: quantum cryptography · secret sharing

1 Introduction
Secret sharing is a fundamental cryptographic primitive that enables the sharing of a secret
among multiple parties, such that only specific predefined sets of shares allow to recover
the original secret, while any other sets give no information about it.

While classical secret sharing protocols, such as those introduced by Shamir and Blakley
[1, 2], achieve perfect (information-theoretic) security, the effective deployment of secret
sharing protocols faces a critical challenge: the shares must be securely distributed to the
participants, ensuring their privacy and integrity.

In most cases, the share distribution is secured using standard cryptographic approaches
such as public-key encryption, which lowers the overall security of the scheme. More
concretely, using classical cryptography to distribute the shares, the security of data
transmission holds under structured computational assumptions and cannot achieve the
information-theoretic guarantees that secret sharing schemes provide.

This limitation, however, can be circumvented if we consider quantum cryptography.
It is now well known that Quantum Key Distribution (QKD) protocols enable the estab-
lishment of a secure communication channel from an authenticated classical channel by
leveraging the fundamental principles of quantum mechanics [3, 4, 5, 6]. However, while
QKD enhances security, its practical implementation introduces significant challenges.
Establishing secure channels using QKD requires expensive quantum hardware and suffers
from low efficiency. Moreover, scaling such systems to securely distribute the shares of a
secret sharing scheme would be prohibitively inefficient, as both the infrastructure needed
to support QKD and the required amount of secure communication grows rapidly with
the number of participants and communication links.

Recently, a quantum network architecture called Qline has been introduced [7] as an
attempt to increase the connectivity of QKD networks, reduce their costs and improve
their accessibility to end-users. The Qline consists of a standard QKD setup where a single
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qubit source and detector are linked, but with intermediate nodes added in between, which
only have the ability to perform single-qubit rotations—a task that can be implemented
with much cheaper devices. We will call the nodes of the Qline players in this work.

Despite having a simpler setup, it has been recently shown that Qline enables several
interesting cryptographic protocols. Clementi et al. demonstrated a Quantum-enhanced
Classical multiparty computation protocol on the Qline [8]. Later, Doosti et al. [7] showed
that any pair of player can establish symmetric keys with the same level of security as QKD
with the help of trusted end nodes, and Polacchi et al. [9] introduced a protocol for secure
multi-client delegated quantum computing for a Qline connected to a quantum computer.
In all of these protocols, the main idea is to use Qline to allow a pair of nodes to perform a
secure operation (such as communication or computation). We notice that while this can
be used to distribute shares of a secret sharing scheme with information-theoretic security
more cost-effectively compared to pairwise QKD, it still suffers from a linear overhead on
the number of shares for it.

Our main result is to show that additive secret sharing can directly and securely
be performed on the Qline without scaling overhead on the shares. The main novelty
is to exploit the global correlations that Qline provides us to achieve additive secret
sharing of 0 (i.e. the message is fixed). We notice that previous works have introduced
propositions exploiting this idea[10, 11], but they lack a security proof against general
attacks, composable, and under the most general dishonest participant scenarios. On the
other hand, we achieve a protocol that we prove to be secure in the composable framework
of Abstract Cryptography[12], while preserving the benefits of the Qline architecture
regarding simplicity and cost of implementation.

In short, our protocol works as follows. The first player of the Qline sends a random
BB84 states1, each intermediate player re-randomizes the states, and the final player
chooses to measure the received qubits in the Hadamard or computational basis uniformly
at random. Then, the players perform a classical protocol to check the integrity of the
shares and to correct any error incurred by the noise of quantum devices. In order to prove
the security of our protocol, we require that at least 2 players are honest (which is natural
for additive secret sharing of 0), and that the players share a classical authenticated channel
with random subset broadcast (see Section 3.2 for a formal definition and a discussion on
how to implement it). The core of the technical contribution is to show that our protocol
is secure in a composable way.

This work was primarily motivated by the recent implementation of a Qline at VeriQloud,
Paris, France. Our protocol is specifically designed to be compatible with their architecture,
and simulations indicate that the sharing between four participants of a 2 Mbit secret can
be expected to be achieved in less than 5 minutes on their setup.

To illustrate the protocol’s performance, we compare it in Table 1 with the following
alternatives of using classical secret sharing, along with either QKD or Qline’s key estab-
lishment to distribute the shares. In the following table, for each of these alternatives
and depending on the number J of players, we show the cost (hardware requirement) of
an architecture allowing any player to share a secret, and the efficiency, measured in the
number of required qubits to transmit to share one secret. We use realistic and identical
parameters and targeted metrics.

Applications. We describe now some of the applications of the primitive that we im-
plement, i.e. secret sharing of the bit 0, when used along with classical authenticated
communication. First, we notice that we can implement standard additive secret sharing
where the dealer chooses a secret bit string to share instead of having this value fixed to
0. To achieve such a primitive from shares of 0, the dealer can publish the one-time-pad

1In fact, we use the Hadamard Basis and the circular basis, but we prefer to continue the rough
exposition with more well-known states.
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Table 1: Comparison of solutions with 1.7 Mbits share size and 10−11 distinguishing ad-
vantage

QKD + classical Qline + classical Our protocol
secret sharing secret sharing

Cost
Number of quantum channels J2 1 1
Efficiency
Number of qubits to receive J × 107 J × 107 107

encryption of his secret with his share as the key.
Another application is anonymous veto, also known as the Dining Cryptographers

Problem [13], which is also the secure multi-party computation of the multiple-input
boolean OR function. To achieve anonymous veto from n sharings of 0, the players perform
n rounds of announcement with different announcement orders such that each player is
last in one round. for all rounds, following the corresponding announcement order, the
players broadcast either their share, or a random string instead if they wish to veto. For
each round, the sum of the announcements is then compared to the all 0 string: inequality
shows that at least one player vetoed. See [14] for a similar construction.

Finally, symmetric key establishment can be achieved by asking all players but two to
reveal their share and having one of the two remaining players XOR it’s share with all the
thereby-revealed ones. Previous works[7] already introduced the corresponding protocol,
but their security proof requires the honest collaboration of the end nodes of the network.
We discuss in Section 3.2 how, for this particular application, our proof amounts to the
same result, without this trust assumption.

Remarkably, for these applications, our protocol can be run in an offline phase, to then
only in a later online phase, decide the cryptographic task to perform along with the set of
involved players and use the shares together with classical authenticated communications
to securely produce the desired resources at a high bit rate. This opportunity is all the
more meaningful when considering the slow rates imposed by current quantum hardware.

The remainder of the manuscript proceeds as follows. We introduce preliminary
information in Section 2. We then present our assumptions in Section 3.1, our protocol in
Section 4, and it’s security proof in Section 5.

Acknowledgments
We would like to thank Georg Harder and Anthony Leverrier for their valuable assistance

regarding the question of syndrome leakage. We thank Céline Chevalier for her guiding
insights on technical parts of the proof.

ABG is supported by the European Union’s Horizon Europe Framework Program under
the Marie Sklodowska Curie Grant No. 101072637, Project Quantum-Safe Internet (QSI).
This work is part of HQI initiative (www.hqi.fr) and is supported by France 2030 under
the French National Research Agency award number ANR-22-PNCQ-0002. This work was
funded by the European Union’s Horizon Europe research and innovation program under
grant agreement No. 101102140 – QIA Phase 1.

2 Preliminaries
We recall the notation of basic concepts of quantum information theory in Section 2.1. For
a more detailed introduction to the topic, we refer to [15]. In Section 2.2, we present the
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abstract cryptography framework. Finally, in Section 2.3, we review the Qline architecture.
We defer to Appendix A for a summary of the notation used throughout this paper.

2.1 Quantum information theory
We assume basic knowledge about the theory of quantum communication and computing.

We denote the eigenstates of the Hadamard basis by |+⟩ = 1√
2

(
|0⟩ + |1⟩

)
and

|−⟩ = 1√
2

(
|0⟩ − |1⟩

)
. The classical outcome of a measurement in the Hadamard basis

yields 0 if |+⟩ is measured and 1 if |−⟩ is measured.
We denote the eigenstates of the circular basis by |+i⟩ = 1√

2

(
|0⟩ + i |1⟩

)
and |−i⟩ =

1√
2

(
|0⟩ − i |1⟩

)
with i2 = −1. By convention in this paper, we consider that the classical

outcome of a measurement in the circular basis yields 0 if |−i⟩ is measured and 1 if |+i⟩
is measured. This mismatch in the notation between Hadamard and circular basis will
improve the clarity of later equations.

We denote the Pauli Z gate
[
1 0
0 −1

]
, Z 1

2 being the phase gate
[
1 0
0 i

]
.

For a state σR on registers R and S, TrR(σS) denotes the state obtained by tracing
out the register R.

The trace distance Tr|σ − γ| is a measure of the distinguishability between two states
σ and γ. We write σ ≈ϵ γ when Tr|σ − γ| ≤ ϵ

Throughout this article, we use the term single-qubit state to denote a two-dimensional,
potentially mixed, state.

2.2 The abstract cryptography framework
We prove the security of our protocol using the Abstract Cryptography framework [12].
This framework is designed to guarantee the composability of the security of cryptographic
constructions while remaining as general as possible concerning security notions.

In this framework, cryptographic protocols are defined as systems: abstract objects with
interfaces that define all possible inputs and outputs of the said system. Each interface
represents an entity’s access to the system. A cryptographic construction typically includes
player interfaces, where the interactions between the honest players and the system occur,
as well as an adversarial interface, called the outer interface, which encapsulates the
attacker’s capabilities.

Systems can be composed, either in parallel or sequentially. The parallel composition of
two systems R and S, denoted R||S, is a system with the interfaces of both sub-systems. It
simply describes the fact that these systems are put side by side and seen as a whole, unique
system. The behavior of the composed system is naturally defined from the independent
behaviors of the sub-systems (c.f Figure 1).

Figure 1: Composition of abstract systems
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The sequential composition describes the fact that the output of a system can be
used as input by other systems. For instance, two systems R and S can be sequentially
composed at the interfaces iR of R and jS of S if each input (respectively output) of
these interfaces can be associated with a unique output (respectively input) of the other
interface. When it is clear at which interfaces a sequential composition occurs, we denote
it R ◦ S or simply RS without specifying the interfaces iR and jS . The resulting system
has all the interfaces of both sub-systems except from iR and jS .

In this framework, the security of a cryptographic scheme is defined as the “closeness”
of that system to an ideal version of it. In this work, this closeness is measured using
the distinguishing pseudo-metric (as in QKD security proofs [16]), which is defined as the
maximum distinguishing advantage on two systems, over all computationally unbounded
entities (called distinguishers). The distinguishing advantage of a distinguisher on two sets
of signals (inputs and/or outputs) is the value ϵ such that when given either the first set
or the second one with equal probability 1

2 , the distinguisher succeeds in guessing which
one it is with probability 1

2 + ϵ. The distinguishing advantage on two systems P and P̃ is
the distinguishing advantage on their inputs and outputs.

We wright P ≈ϵ P̃ when the distance (measured by the distinguishing pseudo-metric)
between the systems (or signals) P and P̃ is no more than ϵ.

Formally, A protocol P of ideal version P̃ is said to be ϵ-secure if there exists a system
SIM called simulator such that P ≈ϵ P̃ ◦ SIM.

The distinguishing pseudo-metric leads to a composable definition of security (Theorem 1
of [12]), meaning that the composition of an ϵ1-secure and an ϵ2-secure system is always
(ϵ1 + ϵ2)-secure.

2.3 The Qline Architecture
A Qline consists in an initial node that can generate a given range of qubit states, an
arbitrary number of intermediate nodes that can apply certain single qubit operations to
these qubits, and a final node that can measure them in a chosen basis. An example of a
Qline with four players is depicted in Section 2.3.

Player 1 Player 2 Player 3 Player 4

Figure 2: A Qline with four players

In this work, we consider a Qline with the following properties:

• The first node can generate and send the four following states: |+⟩, |−⟩, |+i⟩, |−i⟩.

• The intermediate nodes can apply the Zx operation to single qubit states, with
x ∈ {0, 1

2 , 1,
3
2 }.

• The last node can measure single qubit states in either the Hadamard or the circular
basis.

3 Adversarial model
3.1 Assumptions
We study the security of the protocol under an active, unbounded, and participant adversarial
model. This means that we consider that the adversary has access to noiseless, unbounded,
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quantum and classical computational power and storage (unbounded), that they can attack
the protocol during its execution (active), and most importantly that they can corrupt
parties involved in the protocol, meaning that they take complete control over their
knowledge and behavior (participant). An uncorrupted player is said to be honest.

In order to prove the security of the protocol, we require the following assumptions.

Assumption 1. At least two players are honest.

Note that this is a minimal assumption for our use case. Having only one honest player
would not achieve any interesting result as the goal of the protocol is precisely that the
secret of any player can be recovered using all the other’s secrets.

Assumption 2. Perfect randomness: Each player has access to an independent uniform
random number generator.

Assumption 3. Sealed laboratories: No unwanted information transfer occurs at the
frontier of the honest players laboratories.

This is arguably the most challenging assumption to ensure in practice. It prevents
side-channel attacks, which are inherently difficult to defend against. In particular, this
assumption also encompasses that honest players receive and send only single qubit states,
meaning that no higher-dimensional states arise when expecting two-dimensional ones.

Assumption 4. Classical authenticated channel with random subset broadcast.

We describe Assumption 4 in more details. The players are assumed to have access to
a classical communication channel, which allows them to broadcast classical messages to
all the other players, while ensuring the three following main features:

1. Authentication: The messages going through this channel cannot be tampered
with, and come with the identity of the sender.

2. Random subset broadcast: Whenever required, the players can perform a random
subset broadcast over the channel. In this procedure, each player first inputs an
ordered list of values, and, in a second stage, the procedure randomly samples a
subset of indices for which the corresponding values of all players are revealed and
broadcast to everyone. See Section 3.2 for more details.

3. Distributed coin-flipping: Whenever required, the players can perform a dis-
tributed coin-flipping over the channel. This procedure allows the players to agree on
a value that is uniformly random and independently sampled. The procedure can
abort.

Such a channel is required to prevent potential malicious players to cheat by mak-
ing choices that depend on the other player’s announcements. We further discuss this
assumption in Section 3.2 and provide constructions of such a channel using standard
assumptions.

3.2 Discussion on Assumption 4
Assumption 4 and in particular the aspect of random subset broadcast is rather specific to
our work and is unconventional in cryptography. While it could be replaced with other
standard computational assumptions, we chose to retain Assumption 4 as we believe it best
captures the purpose and significance of the assumption while highlighting the key protocol
components that rely on it for security. In this section, we discuss different approaches to
satisfy Assumption 4 based on more common assumptions.
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Authenticated channel: Authenticated channels are well-studied resources that
can be obtained from many different cryptographic solutions and for different paradigms
[17, 18, 19, 20]. Remarkably, using pre-shared keys, authenticated channels can be obtained
information-theoretically. It is a required assumption in Quantum Key Distribution
protocols [2, 3].

Distributed coin-flipping: distributed coin-flipping is a protocol in which the partic-
ipants agree on a random value with the guarantee that the probability distribution of
the outcome is uniform, no matter what an adversary tries to do. We refer to [21] for a
thorough study of distributed coin-flipping protocols and the required assumptions in our
setup.

A particular situation that appears interesting enough to be mentioned is when one
honest player is identified. This situation can arise when it has already been decided what
the shares are going to be used for. If the goal is for instance to use the shares for the
sharing of a document, the document holder is by definition honest. In this case, a simple
implementation of the coin-flipping that does not involve any further assumption is to
make the honest player sample the random value and simply announce it to the others.

Random subset broadcast: A random subset broadcast is a procedure that breaks
down in two stages. In the first stage, each player chooses (and delivers to the procedure)
a list of values indexed by a given set S and a unique size s is chosen. In the second stage,
a subset of S of size s is randomly sampled and the procedure reveals to all players the
values of each list that correspond to this subset, while the other values remain hidden.

A perhaps quite natural construction of such a procedure would be to use a commitment
scheme and to ask each player to commit on each of his values in the first stage, to then
in the second stage perform a distributed coin flip to randomly sample the subset, and
finally to open their commitments of the required values. Commitment schemes rely on
the assumption of the existence of a One-Way Function [22]. While this assumption is
equivalent to the security of secret key encryption and most currently used implementations
of One-way functions are widely believed to be secure even against quantum computers
([23]), relying on one-way functions bottlenecks the security. One must however notice that
(if using statistically hiding commitments) the binding of the commitment scheme is only
required during the time of the procedure for the final shares to be information-theoretic
secure. This property is called everlasting security and is highly desirable when seeking
long-term security.

A very particular, yet relevant situation is when all honest players are identified. For
instance, this occurs when it has already been decided that the shares resulting from
the protocol will be used to establish secret symmetric keys between two fixed players,
as studied in [7]. In this specific case, a simple implementation of the random subset
broadcast procedure that does not involve any computational assumption is as follows:
First, all dishonest players broadcast all of their values. Then a honest player samples and
announces the subset, and all honest players announce only their values that correspond
to the subset.

4 The Protocol
In this section we present a quantum-assisted secret sharing protocol that is supported by
the Qline architecture described in Section 2.3. This is the prepare-and-measure version of
the protocol and we will introduce the entanglement-based version later.

The protocol involves J players, each having exclusive control of one device of the
Qline architecture. The players are named according to Section 2.3.

The protocol can be decomposed into two major steps: the State distribution step
involving quantum communication and the Post-processing step which only requires
classical computation and communication.
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Parameters
The protocol is parameterized by the following variables:

1. A security parameter N .
2. A correctness parameter η.
3. An integer τ ′ such that τ ′ = ω(log(N)) and τ ′ = o(N).

State distribution (prepare-and-measure version)

1. Each player j ∈ [J ] samples 2N random bits (bj
n)n∈[N ] and (vj

n)n∈[N ] and
computes xj

n = bj
n

2 + vj
n, for all n ∈ [N ].

2. Player 1 generates the state |Φ1⟩ =
⊗

n∈[N ]
Zx1

n |+⟩ and sends it to player 2.

3. Players j ∈ {2, ...J − 1} receive a state Φ̃j−1 from player j − 1, apply the
operation U j =

⊗
n∈[N ]

Zxj
n to it and send the resulting state Φj = U jΦ̃j−1U j†

to player j + 1.
4. Player J receives Φ̃J−1 from player J − 1, and measures each qubit n ∈ [N ]

in either the Hadamard basis if bj
n = 0 or in the circular basis if bj

n = 1. The
classical outcome of these measurements are denoted (vj

n)n∈[N ].

Post-processing (part 1)

At any point, if the classical channel fails, the protocol aborts.
1. Announcements:

1.1. The players perform the first stage of two random subset broadcast
procedures with respectively their basis choices bj

n and values vj
n for

n ∈ [N ], and then the second stages so that all the values bj
n for n ∈ [N ]

are broadcast to all players, while a random subset T ′ of [N ] of size τ ′

is randomly sampled, and only vj
n for n ∈ T ′ are broadcast.

2. Sifting:
2.1. The players compute the indices of the inconclusive rounds U =

{
n ∈

[N ] :
⊕

j∈[J]
bj

n ≠ 0
}

and discard bj
n and vj

n where n ∈ U . We define

L := N − |U| We keep the same notation for the remaining values, but
adjust the indices of the rounds:

(bj
n)n∈[L],j∈[J] := (bj

n)n∈[N ]\U,j∈[J]

(vj
n)n∈[L],j∈[J] := (vj

n)n∈[N ]\U,j∈[J]

We equivalently adjust the indices of T such that T ⊂ [L] (the rounds
in T are still the rounds previously in T ′ \ U)
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Post-processing (part 2)

3. Error estimation:
3.1. The players compute the Qubit Error Rate

q = 1
τ

∣∣∣{n ∈ T :
∑

j∈[J]

(2vj
n + bj

n) = 2 mod 4
}∣∣∣ (1)

If q > δ, the parties abort.
3.2. The players discard bj

n and vj
n for each index n ∈ T . We define M =

L− τ and again adjust the indices such that the remaining values are
(bj

n)n∈[M ],j∈[J] and (vj
n)n∈[M ],j∈[J]

4. Error correction:
4.1. Player J updates his values (vj

n)n∈[M ] as

vj
n := vj

n ⊕
(1

2
( ∑

j∈[J]

bj
n mod 4

))
4.2. The players agree on an error correction margin ν ∈ [0, 1

2 − q], as well
as a linear syndrome decoding protocol2 of correction rate (q + ν) that
they will apply on their respective shares v[J]

[M ].
4.3. According to this syndrome decoding protocol, each player j ∈ [J − 1]

computes and announces the syndrome wj of his share vJ
[M ].

4.4. Player J corrects it’s share vJ
[M ] through the syndrome decoding protocol

using
⊕

j∈[J]
wj as the correction syndrome.

4.5. Correctness check: The players use the distributed coin flipping pro-
cedure to randomly sample fcc from a 2-universal family of linear hash
functions3 from {0, 1}M to {0, 1}η. Each player j ∈ [J ] computes and
announces the hash cj = fcc(vj) and checks that⊕

j∈[J]

cj = 0 (2)

If the check fails, the protocol aborts.
5. Privacy amplification:

5.1. The players agree on an integer K < M and use the distributed coin
flipping procedure to sample a function fpa from a 2-universal family of
linear hash functions from {0, 1}M to {0, 1}K . They compute their final
share as

sj = fpa(vj) (3)

4.1 Correctness
In this section, we prove the correctness of the protocol. For that, we prove in Proposition 1
that when the protocol succeeds, the produced shares are correct with high probability.

2By syndrome decoding, we refer to a protocol allowing one to compute the syndrome of a message,
such that the combined knowledge of this syndrome and a noisy version of the message allows (efficient)
computation of the original message. Such a syndrome decoding protocol comes with a correction rate
such that when the noise is less than or equal to that rate, the correction succeeds except with negligible
probability in N . Linear syndrome decoding protocols can be derived from linear error correcting codes.

3Examples of such 2-universal families of linear hash functions can be found in [24].
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Then, in Proposition 2 we show that when the parties are honest the protocol successfully
terminates if the noise in the devices is low enough. The correctness highly depends on
the correctness parameter η chosen by the players in the protocol during the correctness
check step.

Proposition 1. Let ϵcor = 2−η. Assuming that the protocol successfully terminates, then
with probability at least 1 − ϵcor, ⊕

j∈[J]

sj = 0. (4)

Proof. After the error correction step of a successful execution of the protocol, the correct-
ness check verified that

⊕
j∈[J]

fcc(vj) = 0. Since fcc is sampled from a 2-universal linear

hash family, the probability that
⊕

j∈[J]
vj ̸= 0 is at most 2−η.

Proposition 2. If the parties are honest and the depolarizing noise is µ < δ, then the
protocol successfully terminates except with a probability at most negligible in N .

Proof. The protocol may abort at 3 stages, and we bound each of these probabilities below.
First, the parties would abort during sifting if τ < τ ′

4 . As the player’s basis choices are
uniformly random, the probability for each round n ∈ [N ] that

⊕
j∈[J] b

j
n = 0 is 1

2 . Hence,
by Hoeffding’s bound, except with probability at most e− τ′

8 , τ ≥ τ ′

4 . Similarly, except
with independent probability at most e− N−τ′

8 , M ≥ N−τ ′

4 . Both happen with probability
at least p1 < e− τ′

8 + e− N−τ′
8 .

Secondly, the parties abort during error estimation if q > δ. During the state distribution
step in an ideal noiseless case, for all n ∈ [N ], player J is expected to measure the state

Z

( ∑
j∈[J−1]

vj
n− 1

2 bj
n

)
|+⟩ = Z

⊕
j∈[J−1]

vj
n

Z
− 1

2

∑
j∈[J−1]

bj
n

|+⟩

=


Z

( ⊕
j∈[J−1]

vj
n

)
⊕

(
1
2 (

∑
j∈[J−1]

bj
n mod 4)

)
|+⟩ if

⊕
j∈[J−1]

bj
n = 0

Z

( ⊕
j∈[J−1]

vj
n

)
⊕

(
1
2 (1+

∑
j∈[J−1]

bj
n mod 4)

)
|+i⟩ if

⊕
j∈[J−1]

bj
n = 1

where the first equality comes from the facts that Z2 = I and Za+b = ZaZb.
As a consequence, for all n ∈ [N ] where player J chooses the basis bJ

n =
⊕

j∈[J−1]
bj

n for

his measurement, they should in principle obtain the following result deterministically:

vJ
n =

( ⊕
j∈[J−1]

vj
n

)
⊕

(1
2

(
bJ

n +
∑

j∈[J−1]

bj
n mod 4

))
(5)

Thus, because of the assumption on the noise and using Hoeffding’s bound, the qubit
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error rate

q = 1
τ

∣∣∣{n ∈ T :
∑

j∈[J]

(2vj
n + bj

n) = 2 mod 4
}∣∣∣

= 1
τ

∣∣∣{n ∈ T :
⊕
j∈[J]

bj
n = 0 and 2vj

n = 2 −
∑

j∈[J−1]

2vj
n −

∑
j∈[J]

bj
n mod 4

}∣∣∣
= 1
τ

∣∣∣{n ∈ T :
⊕
j∈[J]

bj
n = 0 and vj

n = 1 −
( ∑

j∈[J−1]

vj
n

)
− 1

2
( ∑

j∈[J]

bj
n mod 4

)
mod 2

}∣∣∣
= 1
τ

∣∣∣{n ∈ T :
⊕
j∈[J]

bj
n = 0 and vj

n ̸=
( ⊕

j∈[J−1]

vj
n

)
⊕ 1

2
( ∑

j∈[J]

bj
n mod 4

)}∣∣∣
= 1
τ

∣∣∣{n ∈ T : bJ
n =

⊕
j∈[J−1]

bj
n and Equation 5 is invalidated

}∣∣∣
is smaller than or equal to the threshold δ, except with probability at most p2 = e−2τ(δ−µ)2 .

Finally, the parties may abort at the correctness check. Note that after error estimation,
for all n ∈ [M ], bJ

n =
⊕

j∈[J−1]
bj

n and thus Equation (5) is satisfied. After Player J updated

their value at the beginning of the error correction step, Equation (5) gives⊕
j∈[J]

vj
n = 0. (6)

Again by Hoeffding’s bound and from the assumed bound on the noise, the Hamming
weight of

⊕
j∈[J]

vj
n will be smaller than or equal to q + ν except with probability at most

p3 = e−2M(q+ν−µ)2 . In this event, after the error correction step, due to the properties of
the error correcting code (see Footnote 2), except with a negligible probability in N that
we denote pec, Equation (6) will strictly be satisfied for all rounds n ∈ [M ]. Hence the
correctness check will pass and the protocol will successfully terminate.

To conclude, by the union bound, the protocol successfully terminates except with
probability at most p1+p2+p3+pec which, taking into account the different minimum values
of τ , q and M under the assumed events, is lower than e− 1

8 τ ′ + e− 1
8 (N−τ ′) + e− (δ−µ)2

2 τ ′ +
e− (ν−(δ−µ))2

2 (N−τ ′) + pec which is negligible in N since τ ′ = ω(log(N)).

Proposition 2 and Proposition 1 together show the correctness of the protocol.

5 Security
This section is dedicated to the proof of security of the protocol described in Section 4.
We first introduce an entanglement-based version of the protocol in Section 5.1 followed by
formal definitions in Section 5.2. We establish the equivalence between the entanglement-
based and the prepare-and-measure versions in Section 5.3, and then show the security of
the entanglement-based version in Section 5.4. Finally, we bring together the results to
conclude the security proof in Section 5.5.

5.1 Entanglement-based version of the protocol
The entanglement-based version of the protocol is identical to the prepare-and-measure
version from Section 4, except for the state distribution step which is defined below. 4

4The entanglement-based version requires the nodes of the Qline to have different capabilities compared
to the prepare-and-measure version. As we only use the entanglement-based version as a tool to show the
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State distribution (entanglement-based version)

1. The players agree on a integer N . Each player j ∈ [J ] samples N random
bits (bj

n)n∈[N ]
2. Player 1 generates N copies of the state 1√

2 (|00⟩ + |11⟩) and sends one qubit
of each copy to player 2.

3. Each player j ∈ {2, ..., J − 1}, obtains N qubits. For each qubit, player
j applies a CNOT gate with the latter qubit as the control qubit of the
operation, and a freshly prepared qubit in the |0⟩ state as the target qubit.
Player j then sends the first qubit to player j + 1

4. Each player j ∈ [J ] measures each of their qubits (ϕj
n)n∈[N ] in either the

Hadamard basis if bj
n = 0 or in the circular basis if bj

n = 1. The classical
outcome of these measurements are denoted (vj

n)n∈[N ]

5.2 Definitions
We hereafter define the systems that are later used to prove the security of the protocol.
This includes the systems QLEB and QLP M respectively implementing the entanglement-
based and the prepare-and-measure versions of the protocol. We first define individual
components in Section 5.2.1, and then the complete systems in Section 5.2.2.

5.2.1 Component systems

• Cauth is a J-player classical authenticated broadcast channel with a random subset
broadcast procedure implementing Assumption 4. It provides each player, honest or
dishonest, with the ability to broadcast messages to all the others while authenticating
the source of the messages. This is modeled by J player interfaces, each with an input
tj for j ∈ [J ] and an output t giving the transcript and the source of all the messages
broadcast in the inputs of the other player interfaces. Cauth provides external entities
with the ability to read the data or block the communications, but not to tamper
with them. This is modeled by an outer interface providing as output no more than
a copy of t, and receiving a binary input ℓ, called a blocking lever, which, if set to
’1’, prevents the messages to pass through. Cauth also provides the players with the
ability to execute the random subset broadcast and distributed coin-flip procedures
described Section 3.2.

• For each honest player j ∈ H, SDj
P M (respectively SDj

EB) is a system implementing
the state distribution step for player j of the prepare-and-measure version (respectively
the entanglement-based version) of the protocol. It has an outer interface with a
N -qubit state input ρj

in and a N -qubits state output ρj
out, as well as an inner interface

outputting the bits bj
[N ] and vj

[N ].

• The post-processing system PP implements the post-processing step of the protocol
described in Section 4 (identical for any player j ∈ H and any version of the
protocol). It has an inner interface with two N -bits inputs for bj

[N ] and vj
[N ], a player

interface with a final share output sj , as well as a side interface managing all the
communications that occur on the classical authenticated channel. This side interface
is designed to be plugged to a player interface of Cauth and thus has an output tj for
outgoing messages and an input t for incoming classical communication.

security of the prepare-and-measure version, this has no impact on the implementation requirements for
the protocol.

12



• The systems Pj
P M (resp. Pj

EB) implement the full prepare-and-measure (resp.
entanglement-based) protocol described in Sections 4 and 5.1 for a given honest
player j ∈ H. Pj

P M (Pj
EB) is the sequential composition of the state distribution

and the post-processing systems at their respective inner interfaces. It thus has the
outer interface of SDj

P M (SDj
EB) as well as the player and side interfaces of PP.

Pj
P M = PP ◦ SDj

P M (7)
Pj

EB = PP ◦ SDj
EB (8)

5.2.2 Complete systems

We define here the main systems that describe the protocol and its security. These systems
are represented Figure 3

• The system QLP M (resp. QLEB) is a theoretical model of the Qline for the prepare-
and-measure version (resp. entanglement-based version) of the protocol. It is
composed of the systems PH

P M (PH
EB) modeling the H honest players, all composed

sequentially to the classical channel Cauth. QLP M (QLEB) has an outer interface
composed of ρH

in and ρH
out the outer inputs and outputs of all honest players, as well

as the unused signals of Cauth, namely the dishonest players inputs and outputs
((tj)j∈[J]\H and J − H copies of t) and the blocking lever ℓ. QLP M (QLEB) also
has a share interface with sH the share outputs of the player interfaces of the honest
player systems PH

P M (PH
EB).

The dishonest players are fully controlled by the outside environment and thus are
not part of the system. Instead, all their inputs and outputs are exposed to the outer
interface of QLP M (QLEB), modeling the fact that the outside world has complete
control over the inputs and absolute knowledge of the outputs.
According to these definitions, the systems QLP M and QLEB can equivalently be
viewed as

QLEB = Cauth ◦ (
∣∣∣∣

j∈HP
j
EB) (9)

QLP M = Cauth ◦ (
∣∣∣∣

j∈HP
j
P M ) (10)

• The ideal secret sharing system I has a share interface and an outer interface. The
share interface has share outputs (sj)j∈H, which are either binary strings of equal
sizes, or the abort symbol ⊥. The ideal property of I is captured by the fact that the
only inputs and outputs of the outer interface, namely those exposed to the external
entities, are the following:

– A binary input ℓ called a a blocking lever, which, if set to 1, forces the system
to abort regardless of any other input (enforcing sj = ⊥ for all j ∈ [J ]).

– An output |s| giving the size of the honest shares outputs.
– A "compromised" share scompr which is a binary string input of size |s|. This

models the fact that I handles dishonest entities: they are allowed to choose
their share, and their sum (bit-wise xor ⊕), called scompr, is taken into account
in the honest shares’ generation.

I guarantees that if ℓ is set to 0, the shares are all uniformly random and independent
of anything else, except for the last share sjH which is given by

sjH =
( ⊕

j∈H\{jH }

sj
)

⊕ scompr (11)
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• The system SIM is a simulator. It has an inner interface meant to connect to the
outer interface of I, involving the blocking lever ℓ, the size |s| of the honest shares,
as well as the compromised share input scompr. SIM also has an outer interface
that matches the one of the QLEB system. This interface consists of the following
inputs and outputs: ρH

in, ρ
H
out, t

[J]\H, t, ℓ.
The simulator is represented in Figure 3. In order to produce inputs and outputs of
the outer interface, the simulator internally runs a copy of the QLEB system and
directly maps every input and output of it’s outer interface to the one of SIM. The
share outputs of QLEB however, labeled sH

SIM, are used to compute the compromised
share output of SIM as

scompr =
⊕
j∈H

sj
SIM (12)

Furthermore, in the event where QLEB aborts (indicated by the output shares being
set to ⊥), the simulator will trigger the blocking lever ℓ of I.

Figure 3: The simulator SIM plugged on I.

5.3 Equivalence between QLEB and QLP M

This section is dedicated to prove the equivalence of the entanglement-based version of the
protocol implemented by the system QLEB and the prepare-and-measure version of the
protocol implemented by QLP M ).
Theorem 1. Under Assumptions 2 and 3, QLP M ≈0 QLEB.

Proof. Let us suppose that for any honest player j ∈ H,

SDj
P M ≈0 SDj

EB . (13)
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Due to the fact that the systems QLP M and QLEB are obtained by an identical
construction, based on respectively SDH

P M and SDH
EB (see Equations (7) to (9)), the

theorem follows from composing onto Equation (13) the systems PP and Cauth. The
remainder of the proof is devoted to prove Equation (13) for any given j ∈ H.

For any j ∈ H, SDj
P M and SDj

EB have the same interfaces, inputs and outputs. We
first notice the following:

• The actions of SDJ
P M and SDJ

EB are the same.

• Both SD1
P M and SD1

EB output random bits (b1
n)n∈[N ] and the quantum state⊗

n∈[N ]
1√
2 (|0⟩ + ib

1
n |1⟩)

Hence, SDJ
P M ≈0 SDJ

EB and SD1
P M ≈0 SD1

EB. We now deal with the case where
1 < j < J .

Consider a distinguisher which is given black-box access to a system S ∈ {SDj
P M ,SDj

EB}
and whose goal is to distinguish the two cases. Let n ∈ [N ] be a fixed round and P be
the register of the single-qubit system input of player j at round n (i.e ρj

n,in). Without
loss of generality, we can consider that the distinguisher holds a register D that contains a
purification of P . The state of the whole system can be written as

|ψin⟩DP = α |ψ0⟩D |0⟩P + β |ψ1⟩D |1⟩P (14)

with α, β ∈ C. If S is SDj
P M , then player j picks uniformly random bj

n and vj
n, and applies

the unitary Zvj
n− b

j
n
2 to system P . The resulting state is described by

|ψout
P M(bj

n,vj
n)⟩DP

= α |ψ0⟩D |0⟩P + i2vj
n−bj

nβ |ψ1⟩D |1⟩P (15)

We show that this state is indistinguishable from the one obtained when S is SDj
EB.

In this case, a CNOT gate is applied using register P as control and the target register,
call it Q, contains a fresh qubit in the state |0⟩Q. The overall state after this operation is
described by:

|ψout
EB⟩DP Q

= (ID ⊗ CNOTP Q)(|ψin⟩DP ⊗ |0⟩Q)
= α |ψ0⟩D |0⟩P |0⟩Q + β |ψ1⟩D |1⟩P |1⟩Q

= 1√
2

[(
α |ψ0⟩D |0⟩P + β |ψ1⟩D |1⟩P

)
|+⟩Q +

(
α |ψ0⟩D |0⟩P − β |ψ1⟩D |1⟩P

)
|−⟩Q

]
(16)

= 1√
2

[(
α |ψ0⟩D |0⟩P − iβ |ψ1⟩D |1⟩P

)
|+i⟩Q +

(
α |ψ0⟩D |0⟩P + iβ |ψ1⟩D |1⟩P

)
|−i⟩Q

]
(17)

The register Q is then measured in either the Hadamard or the circular basis, depending
on the uniformly random bit bj

n. From Equation (16) and Equation (17), one can see that
for all bj

n and |ψin⟩DP , the outcome of the measurement is an uniformly random bit vj
n.

Moreover, the post-measurement state on registers D and P is exactly |ψout
P M(bj

n,vj
n)⟩DP

In conclusion, the outputs of round n of SDj
P M and SDj

EB are exactly the same, and
therefore indistinguishable, which proves Equation (13) for any j ∈ H.

5.4 Security of QLEB

In this section, we prove the security of the entanglement based version of the protocol
described in Section 5.1.
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Theorem 2. Under Assumptions 1, 2, 3, and 4,

QLEB ≈ϵ I ◦ SIM (18)

where ϵ = (H− 1)ϵQKD′ + ϵcor with ϵQKD′ the distinguishing advantage of a QKD protocol
with the same assumptions, and ϵcor = 2−η the correctness parameter defined in Section 4.1

In order to prove Theorem 2, we consider an unbounded distinguisher D which is given
a system S, either equal to QLEB or to I ◦ SIM, uniformly at random. To avoid any
ambiguities, we denote the input and outputs of QLEB by ρH

in, t
[J]\H, ℓ and sH, ρH

out, t , the
input and outputs of I ◦ SIM by ρ̃H

in, t̃
[J]\H, ℓ̃ and s̃H, ρ̃H

out, t̃ , and the input and outputs
of S by ρH

S,in, t
[J]\H
S , ℓS and sH

S , ρ
H
S,out, tS

5.

Lemma 1. The probability for S to abort is the same regardless of whether S is QLEB

or I ◦ SIM. Moreover, conditioned on the event that S aborts, then QLEB ≈0 I ◦ SIM

Proof. Note that in both QLEB and I ◦ SIM, all the inputs are given to a QLEB system,
either directly in the real experiment or forwarded by SIM in the simulated one. This
QLEB system thus produces outputs with the exact same distribution in both cases. This
gives the following:

• Since I ◦ SIM aborts if and only if its simulation of QLEB aborts, the first part of
the lemma trivially holds.

• If the systems abort, all the outputs of QLEB and I ◦ SIM follow the exact same
distribution. The shares sH and s̃H are indeed all set to ⊥, while the other outputs
directly come from the QLEB system. This gives the second part of the lemma

Lemma 1 allows us to focus on the case where the protocol does not abort.
Our goal is now to show that conditioned on S successfully terminating, the systems

QLEB and I ◦ SIM are indistinguishable. In order to prove this, we introduce an
intermediate protocol that we call QKD′. The objective here is that QKD′ be close enough
to standard entanglement-based QKD so that its security follows trivially from historical
results, yet slightly modified so that we can reduce the security of our protocol to the
security of QKD′

In order to define QKD′, we first briefly recall entanglement-based QKD (EB-QKD).6
EB-QKD involves two players, AliceQKD and BobQKD and works as follow:

1. (State distribution) AliceQKD and BobQKD receive N qubits and measure each
qubit either in the computational or in the Hadamard basis, uniformly at random.

2. (sifting) AliceQKD and BobQKD announce their basis choices and discard the rounds
where they did not agree.

3. (Error estimation) AliceQKD and BobQKD agree on a random subset of the
remaining qubits and announce their measurement outcomes for the positions in
that subset. They count the outcomes for which they disagree among this subset
and abort the protocol if the corresponding rate is above a given threshold.

4. (Error correction) AliceQKD announces the syndrome (relative to a given syndrome
decoding protocol) of her secret and BobQKD corrects his secret using this syndrome.
They then compare hashes of the corrected secrets, aborting upon any mismatch.

5This notation consists simply of labels for the inputs and outputs of the abstract systems. They do
not denote the underlying quantum states (that could be potentially entangled).

6We refer the reader to [4] (part I) for a detailed description of EB-QKD.
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5. (Privacy amplification) AliceQKD and BobQKD compute their final key as the
image of their error-corrected measurement outcomes (the raw key) under a 2-
universal hash function.

We define the QKD′ protocol with the following modifications from EB-QKD.

(1) In the state distribution step, for each position n ∈ [N ], BobQKD′ receives from the
eavesdropper two bits b(D)

n and v
(D)
n . Instead of measuring in a basis given by bBob

n ,
he measures in basis b̂Bob

n where

b̂Bob
n = bBob

n ⊕ b(D)
n (19)

Additionally, BobQKD′ computes v̂Bob
n where

v̂Bob
n = vBob

n ⊕ v(D)
n ⊕ (bBob

n ∨ b(D)
n ) (20)

For the rest of the protocol, BobQKD′ uses b̂Bob
n and v̂Bob

n instead of bBob
n and vBob

n .

We notice that these two steps are equivalent to Bob applying Z(v(D)
n + 1

2 b(D)
n )π on his

qubit before measuring in the bBob
n basis7.

(2) Before sifting, AliceQKD′ and BobQKD′ agree on a random subset of all the qubits
received in the state distribution step. At the error estimation step, this subset,
restricted to the rounds that were not discarded during sifting, is used for the error
rate computation instead of a freshly generated one.

(3) In the error correction step, BobQKD′ does not correct his secret and instead an-
nounces its syndrome like AliceQKD′ does.

We claim now that Alice’s key is as secure in QKD′ as in standard QKD. To formalize
this statement, we define the following "mask" systems, that replace or simply remove
access for a given distinguisher to a specific output:

• MI
Alice takes as input the key of AliceQKD′ , and outputs instead a freshly generated,

uniformly random bit string of the same length.

• MBob takes as input the key of BobQKD′ , and has no output.

Our claim amounts to the following Proposition 3, of which we defer the proof to Ap-
pendix B.1.

Proposition 3.
QKD′ ◦ MBob ≈ϵQKD

QKD′ ◦ MBob ◦ MI
Alice (21)

where ϵQKD is the distinguishing advantage of a QKD protocol with the same parameters
and under the same assumptions.

Similarly as above, we define the system MH that takes as input the share sjH and
has no output. Using Proposition 3, we now prove Lemma 2.

Lemma 2. Let ϵQKD′ be the distinguishing advantage of QKD′ when run with the same
parameters as S. Then, assuming S successfully terminates,

QLEB ◦ MH ≈(H−1)ϵQKD′ I ◦ SIM ◦ MH (22)
7In the formula of v̂Bob

n (Equation (20)), v
(D)
n flips the results according to the Zv

(D)
n component of

the operation, and (bj′
n ∨ b

(D)
n ) accounts for the effect of the Z

1
2 b

(D)
n part.
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Proof. Without loss of generality, the output of the distinguisher (on whether S is QLEB

or I ◦ SIM) is the outcome of a given measurement on the state σD containing all the
outputs of S and the private register of the distinguisher. In particular, for all honest
players j ∈ H, we denote Sj the register corresponding to the share output sj . We denote
σD\SjH = TrSjH (σD).

In the remainder of the proof, we will aim to show that for any h ∈ [H − 1],(
1

2K
I

)⊗h−1
⊗ Tr

S
j[h−1] (σD\SjH ) ≈ϵQKD′

(
1

2K
I

)⊗h

⊗ Tr
S

j[h] (σD\SjH ). (23)

We notice that this finishes the proof, since chaining Equation (23) for each h ∈ [H− 1],
we have

σD\SjH ≈(H−1)ϵQKD′

(
1

2K
I

)⊗H−1
⊗ TrSH(σD), (24)

which exactly gives Equation (22).
To conclude the proof of Lemma 2, we prove Equation (23) by contradiction. Let

us suppose that there exist h ∈ [H − 1] and a distinguisher DQL which distinguishes
( 1

2K I)⊗h−1 ⊗ Tr
S

j[h−1] (σD\SjH ) from ( 1
2K I)⊗h ⊗ Tr

S
j[h] (σD\SjH ) with probability ϵD >

ϵQKD′ .
Using this assumption, we will design an attack on QKD′ to contradict Proposition 3,

thus proving Equation (23). The idea is to build a Qline around AliceQKD′ and BobQKD′

such that when they perform QKD′, they are in fact taking part (as players jh and jH

respectively) in a QLEB protocol that we can then attack with DQL. Formally, we will
define a system A represented in Figure 4 which interfaces between the QKD′ protocol
of AliceQKD′ and BobQKD′ at an inner interface, and the distinguisher DQL at an outer
interface. We define below the construction of A in details:

Figure 4: The system A interfacing between QKD′ and DQL.

A simulates the honest player systems Pj
EB of QLEB for j ∈ H \ {jh, jH}.

1. During the state distribution step:

• A directly forwards the quantum inputs/outputs ρj
in/ρj

out of PH\{jh,jH }
EB from/to

the distinguisher at the outer interface of A.
• A interfaces the quantum inputs of AliceQKD′ and BobQKD′ with the quantum

inputs and outputs of honest players jh and jH at its outer interface. Note

18



that when performing QKD′, AliceQKD′ and BobQKD′ exactly follow the state
distribution step of QLEB except for the step where the players propagate
entanglement. A thus simulates this step by receiving at it’s outer interface
from the distinguisher DQL the qubits of input ρjh

in, applying a CNOT gate on
that qubit together with a freshly generated |0⟩ and then sending one qubit
to AliceQKD′ and the second one to DQL via the outer output ρjh

out of A. A
performs similar steps for jH and BobQKD′ .

2. During the post-processing step:

• A maps the blocking lever l of its outer interface to the corresponding input of
the authenticated channel of QKD′

• The simulated honest player systems PH\{jh,jH }
EB comply with AliceQKD′ ’s and

BobQKD′ ’s choices for T ′, ν, the syndrome decoding protocol, fcc, K, and fpa.

• The inputs b(D)
[N ] and v

(D)
[N ] of BobQKD′ , provided by the eavesdropper in QKD′

protocol are defined by:

b(D)
n =

⊕
j∈[J]\{jh,jH }

bj
n

2v(D)
n + b(D)

n =
∑

j∈[J]\{jh,jH }

2vj
n + bj

n mod 4

where the values b[J]\{jh,jH }
[N ] and v

[J]\{jh,jH }
[N ] are defined either by the outputs

of the simulated player systems Pj
EB for honest players j ∈ H \ {jh, jH}, or

by DQL in the announcements of the dishonest players for j ∈ [J ] \ H. Note
that these dishonest announcements v[J]\H

[N ] are all well defined and accessible
to A at this moment because of the random subset broadcast of QLEB (see
Assumption 4) which guarantees that the distinguisher DQL does not use the
honest players’ announcements to produces the dishonest players’ ones. In
other words, as A simulates the whole Qline which contains the authenticated
channel with random subset broadcast, it has control over that channel and can
compute some announcements based on others.

• The simulated honest player systems PH\{jh,jH }
EB receive:

– The announcements of the other simulated honest players.
– The announcements of the dishonest players that come from the distin-

guisher at the outer interface of A.
– The announcements of AliceQKD′ labeled as coming from jh.
– The announcements of BobQKD′ , labeled as coming from jH and slightly

modified in order for the announcements that depend on v̂Bob
n to instead

match with what they would have been if Bob was using vBob
n all along.

This amounts to computing the modification string

vA
n = v̂Bob

n ⊕ vBob
n = v(D)

n ⊕ (bBob
n ∨ b(D)

n ) (25)

for all n ∈ [N ] (see Equation (20)), and to XOR the corresponding check
bits announcement vA

T , syndrome wA, correctness check output cA and
final share sA to the respective announcements of BobQKD′ .

• A sends to DQL at it’s outer interface the following announcements:
– The announcements of the simulated honest player systems PH\{jh,jH }

EB .
– The announcements of AliceQKD′ labeled as coming from jh.
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– The announcements of BobQKD′ , labeled as coming from jH and modified
the exact same way as described above.

• A exposes the following share outputs at it’s outer interface:
– The shares sj[h−1] are all sampled uniformly at random.
– The share sjh is directly the final key output of AliceQKD′ .
– The shares sj{h+1,...,H−1} are directly the output shares of the simulated

honest players Pj{h+1,...,H−1}
EB .

By connecting A onto DQL and QKD′ as depicted in Figure 4, AliceQKD′ and BobQKD′

are performing QKD′, while in the same time QKD′ ◦ A is undergoing the QLEB secret
sharing protocol. To obtain the contradiction, we use the following Proposition 4 which
we prove in Appendix B.2.

Proposition 4. The system A ◦ DQL distinguishes QKD′ ◦ MBob from QKD′ ◦ MBob ◦
MI

Alice with probability ϵD.

As ϵD > ϵQKD′ , this contradicts Proposition 3, hence proving Equation (23).

Lemma 3. If S successfully terminates, then

QLEB ≈ϵ I ◦ SIM (26)

with ϵ = ϵcor + (H − 1)ϵQKD′ where ϵQKD′ is the distinguishing advantage of Alice’s key in
a QKD′ protocol with the same parameters and under the same assumptions.

Proof. We notice that following the description of the protocol, s[J] is a function of the
values v[J]

[N ] of the players along with publicly known data. As these values are all input in
the random subset broadcast functionality of S, they are all well defined in S and thus so
are in particular the dishonest player’s expected shares that we denote s[J]\H

S .
We assume that correctness (Equation (4)) holds for the QLEB system of S. From

Proposition 1, this happens except with probability ϵcor.
If S is I ◦ SIM, by definition of I and SIM (see Equations (11) and (12)), we have

sjH =
( ⊕

j∈H\{jH }

s̃j
)

⊕ scompr

=
( ⊕

j∈H\{jH }

s̃j
)

⊕
( ⊕

j∈H
sj

SIM

)
which as we assume correctness gives

sjH =
( ⊕

j∈H\{jH }

s̃j
)

⊕
( ⊕

j∈[J]\H

sj
S

)
Similarly, if S is QLEB , by correctness,

sjH =
⊕

j∈[J]\{jH }

sj

( ⊕
j∈H\{jH }

sj
)

⊕
( ⊕

j∈[J]\H

sj
S

)
In conclusion, in both cases, sjH is identically defined from the other inputs and outputs

of S as
sjH =

( ⊕
j∈H\{jH }

sj
S

)
⊕

( ⊕
j∈[J]\H

sj
S

)
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As a result, except with probability ϵcor, Lemma 2 holds even when giving the distin-
guisher access to sjH , meaning even when removing the MH systems from Equation (22).
This concludes the proof

Theorem 2 then follows from Lemma 1 and Lemma 3.

5.5 Conclusion on the security
Combining the main results of the previous sections (Theorem 2 and Theorem 1) using
the composability of the security definition, we obtain the following final statement.

Theorem 3. Under Assumptions 1, 2, 3 and 4, the following holds.

QLP M ≈ϵ I ◦ SIM (27)

with
ϵ = ϵcor + (H − 1)ϵQKD (28)

An example for an expression of ϵQKD can be obtained from [4] (Theorem 3, Equations
(57) and (58)), yielding the following, where χ is the size of the syndromes involved in
the error correction step and h(x) = −xlog(x) − (1 − x)log(1 − x) is the binary entropy
function.

ϵQKD′ = 2e− Mτ2
L(τ+1) ν2

+ 1
2

√
2−M

(
1−h(δ+ν)

)
+η+χ+K (29)

For two honest players, our bound for ϵ matches known bounds for standard QKD.
This is natural since the security proof follows from a reduction to QKD. However, the
bound worsens when the number of honest players grows. This counter-intuitive behavior
could be explained by the fact that more honest players imply more potential targets
(shares) to distinguish from uniformly random ones. The composability of our security
definition indeed imposes, in order for the whole scheme to be secure, that all shares are
secure together, and not only individually.
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A Notation

Mathematical notation:
⊕ Addition modulo 2.
∨ Logical "or" between binary variables.
[N ] The set {1, ..., N} of integers ranging from 1 to N .
|A| Size of the set A.
log Base 2 logarithm function of strictly positive real numbers.
h(x) Binary entropy function of x ∈]0, 1[. h(x) = −xlog(x)− (1−x)log(1−x)
R ◦ S The sequential composition of two systems.
R||S The parallel composition of two systems.
≈ϵ Indistinguishability, except with probability ϵ. Between abstract

systems, R ≈ϵ S is relative to the distinguishing pseudo-metric, while
between quantum states σ ≈ϵ γ is relative to the trace distance.

Tr(A) The trace of a matrix A.
|+⟩, |−⟩ Eigenstates of the Hadamard basis.
|+i⟩, |−i⟩ Eigenstates of the circular basis.

Z The Pauli Z single-qubit gate
[
1 0
0 −1

]
. Z 1

2 is the phase gate
[
1 0
0 i

]
Abstract systems and protocols:
Cauth Classical authenticated channel with random subset broadcast subroutine

representing Assumption 4.
SDj

P M ,SDj
EB State distribution system of player j for the prepare-and-measure and

entanglement-based versions of the protocol respectively.
PP Post-processing system.
Pj

P M ,Pj
EB Player j’s whole system for the prepare-and-measure and entanglement-

based versions of the protocol respectively. Pj
P M = PP ◦ SDj

P M and
Pj

EB = PP ◦ SDj
EB

QLP M ,QLEB Whole system of an execution of the prepare-and-measure and
entanglement-based versions of the protocol respectively.

I Ideal system for the secret sharing primitive.
SIM Simulator (see Figure 3).
D Distinguisher which is given S and tries to guess which of the two possible

systems it is.
S Abstract system given to the Distinguisher.

For any variable x and any sets or families A and B, xA
B denotes (xa

b )a∈A,b∈B .
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Protocol parameters:
ϵ Indistinguishability parameter (Security parameter).
τ ′, τ Sizes of the sets T ′ and T respectively.
q Qubit error rate.
δ Threshold of the qubit error rate q for the protocol to proceed after error

estimation.
ν Error correction margin. It is to be chosen by the players to adjust the final

share size K and security parameterϵ.
χ Bit length of the syndromes (wj)j∈[J].
η Correctness parameter and binary size of the output of fcc.
fcc Correctness check hash function mapping {0, 1}M to {0, 1}η.
fpa Privacy amplification hash function mapping {0, 1}M to {0, 1}K .

Indices and Sets:
J Total number of players (j ∈ [J ]).
H The set of honest players (j ∈ H). The elements of H are denoted j1, ..., jH .
H Number of honest players. H = |H|
N Number of rounds of the protocol (n ∈ [N ]).
L Number of remaining data bits after sifting. L = N − |U|
M Number of remaining data bits after error estimation. M = L− τ
K Bit size of the final shares.
T ′, T Set of indices of the check bits, before and after sifting respectively.
U Set of indices of the rounds discarded for uncorrelated basis choices. U ⊂ [N ]

Other notation:
QKD Quantum Key distribution protocol.
QKD′ A slightly modified QKD protocol introduced Section 5.4 and used as a tool

for the security proof
j1, ..., jH The elements of H in their corresponding order on the Qline (meaning j1 <

... < jH)
bj

n, b
j bj

n: Basis bit of player j for round n in QLEB . bj = (bj
n)n∈[N ].

vj
n, v

j vj
n: Value bit of player j for round n in QLEB . vj = (vj

n)n∈[N ]
wj Syndrome of the raw key (vj

n)n∈[M ] of player j announced during the error
correction step

sj Final share of player j. Share output for player j in systems performing secret
sharing.

ρj
n,in Single-qubit quantum state input of player j for round n. ρj

in = (ρj
n,in)n∈[N ]

ρj
n,out Single-qubit quantum state output of player j for round n. ρj

out = (ρj
n,out)n∈[N ]

t Whole transcript of all the classical authenticated communications that occur
during the protocol.

ℓ Blocking lever.
ρH

in, ρ
H
out, t

[J]\H, ℓ, sH inputs and outputs of QLEB .
ρ̃H

in, ρ̃
H
out, t̃

[J]\H, ℓ̃, s̃H inputs and outputs of I ◦ SIM.
ρH

S,in, ρ
H
S,out, t

[J]\H
S , ℓS , s

H
S inputs and outputs of S (in Section 5.4).
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B Proofs
B.1 Proof of Proposition 3
The security of entanglement-based QKD has been shown by several different works
([4, 5, 6]). More concretely, under Assumptions 2, 3 and 4, there exists ϵQKD negligible
in N such that the key obtained by Alice through this protocol is indistinguishable to a
uniformly random bit string of the same length except with probability ϵQKD.

We discuss here why the three differences of QKD′ preserve this indistinguishability.

1. First, we notice that difference (1) does not impact the security because the quantum
communication channel in QKD is assumed to be controlled by the adversary. Any
attack on a QKD protocol with such modification can be turned into an attack on
QKD by simply applying BobQKD′ ’s rotation to the input states of BobQKD.

2. Difference (2) preserves the main properties of the subset for the error rate computa-
tion, which are that it is uniformly random (among all subsets of the same size) and
independent of the secrets of the players. These are indeed sufficient properties to
prove that the error estimation gives a good estimate of the amount of errors outside
that subset 8.

3. For the case of difference (3) we introduce some notation. Let KA and KB be the
respective raw keys (after sifting and before error correction) of Alice and Bob in QKD.
These keys are linked by the relation KA = KB ⊕e where e is the error string that Bob
ought to identify during error correction. By the linearity of the syndrome function
w(·) of the error correcting code, we have that w(KA) = w(KB) ⊕ w(e). Hence,
During the error correction step, as the eavesdropper learns w(KA), difference (3),
which leaks w(KB) to the eavesdropper, is equivalent to leaking w(e). The impact
of the leakage of w(e) (or equivalently of e) in QKD protocols has been studied
in [25]. Under our assumptions, and because the protocol does not make use of
more statistics than the qubit error rate during the parameter estimation step, this
leak does not reveal any additional information on KA to the eavesdropper. As a
consequence, difference (3) does not influence the security of KA.

In conclusion, none of the differences between standard QKD and QKD′ influences the
indistinguishability of Alice’s final key to a random bit string. This concludes the proof.

B.2 Proof of Proposition 4
Let MI

[h−1] and MI
[h] be systems that respectively take as input the shares sj[h−1] and sj[h]

and outputs instead the same amount of random bit strings of the same size. With this
notation, our assumption on the distinguisher amounts to the fact that DQL distinguishes
QLEB ◦ (MH ||MI

[h−1]) from QLEB ◦ (MH ||MI
[h]) with probability ϵD.

We wish to show that

QKD′ ◦ MBob ◦ A ≈0 QLEB ◦ (MH ||MI
[h−1]), (30)

and
(QKD′ ◦ MBob ◦ MI

Alice) ◦ A ≈0 QLEB ◦ (MH ||MI
[h]). (31)

We first focus on Equation (30). Note that in the two systems QKD′ ◦ MBob ◦ A and
QLEB ◦ (MH ||MI

[h−1]), the behavior of all players j ∈ H \ {jh, jH} is the same.
Furthermore, one can see that in both systems:

8Such a proof can be found in [4], Proposition 8.
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• At the state distribution step, the input state of players jh and jH undergoes identical
CNOT gates with freshly generated qubits and is output back. The remaining qubits
are then measured in random basis (for Bob, the basis are bjH

[N ] in QLEB and b̂Bob
[N ] in

QKD′).

• At the sifting step, in QLEB , a round n is discarded if (see Equation (19))

bjh
n ⊕ bjH

n ⊕
[ ⊕

j∈[J]\{jh,jH }

bj
n

]
̸= 0

⇔ bjh
n ⊕ bjH

n ⊕ b(D)
n ̸= 0 (32)

⇔ bjh
n ̸= b̂Bob

n

which is the exact discarding condition of the sifting step of QKD′ ◦ MBob ◦ A.

• At the error estimation step in QLEB , a round n is considered as erroneous if

(2vjh
n + bjh

n ) + (2vjH
n + bjH

n ) +
( ∑

j∈[J]\{jh,jH }

(2vj
n + bj

n)
)

= 2 mod 4

⇔ 2(vjh
n + vjH

n + v(D)
n ) + bjh

n + bjH
n + b(D)

n = 2 mod 4. (33)

Note that because of the sifting step, all rounds satisfying Equation (32) have been
discarded. As a consequence, for all n ∈ [T ], bjh

n = bjH
n ⊕ b

(D)
n and thus bjh

n + bjH
n +

b
(D)
n = 2(bjH

n ∨ b
(D)
n )9. Condition (33) is then equivalent to (see Equation (20))

2
(
vjh

n + vjH
n + v(D)

n + (bjH
n ∨ b(D)

n )
)

= 2 mod 4
⇔ vjh

n + vjH
n + v(D)

n + (bjH
n ∨ b(D)

n ) = 1 mod 2
⇔ vjH

n ⊕ v(D)
n ⊕ (bjH

n ∨ b(D)
n ) ̸= vjh

n

⇔ v̂Bob
n ̸= vjh

n

which is exactly the condition under which rounds are considered erroneous in
QKD′ ◦ MBob ◦ A.

• Since the sifting and error estimation are similar, the announcements are made
following the same process. Moreover, in both systems, they are based on the basis
used to measure the state and the outcome of that measurement. This is indeed
directly the case for QLEB. In QKD′ ◦ MBob ◦ A, the announcements are those
of BobQKD′ based on v̂Bob

[N ] , later XOR-ed by A with announcements corresponding
to vA

[N ] = v̂Bob
[N ] ⊕ vBob

[N ] (see Equation (25)). By linearity of the error correction and
correctness check, the modified announcements exactly match the ones corresponding
to the actual outcomes vBob

[N ] of the measurements of BobQKD′ .

As a consequence, QKD′ ◦ MBob ◦ A and QLEB ◦ (MH ||MI
[h−1]) are indistinguishable,

which gives Equation (30).
The same reasoning applies for Equation (31), the only difference being the share

outputs of players j[h] that are replaced by randomly sampled bit strings in both systems.
Composing DQL onto Equations (30) and (31), and using the property that DQL

distinguishes QLEB ◦ (MH ||MI
[h−1]) from QLEB ◦ (MH ||MI

[h]) with probability ϵD, we
get that the system A ◦ DQL distinguishes QKD′ ◦ MBob from QKD′ ◦ MBob ◦ MI

Alice

with that same probability ϵD. This concludes the proof.

9This is true for any binary a, b, c: a = b ⊕ c ⇒ a + b + c = 2(b ∨ c).
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