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Abstract—Multi-target backdoor attacks pose significant se-
curity threats to deep neural networks, as they can preset
multiple target classes through a single backdoor injection. This
allows attackers to control the model to misclassify poisoned
samples with triggers into any desired target class during
inference, exhibiting superior attack performance compared
with conventional backdoor attacks. However, existing multi-
target backdoor attacks fail to guarantee trigger specificity and
stealthiness in black-box settings, resulting in two main issues.
First, they are unable to simultaneously target all classes when
only training data can be manipulated, limiting their effectiveness
in realistic attack scenarios. Second, the triggers often lack
visual imperceptibility, making poisoned samples easy to detect.
To address these problems, we propose a Spatial-based Full-
target Invisible Backdoor Attack, called SFIBA. It restricts
triggers for different classes to specific local spatial regions
and morphologies in the pixel space to ensure specificity, while
employing a frequency-domain-based trigger injection method to
guarantee stealthiness. Specifically, for injection of each trigger,
we first apply fast fourier transform to obtain the amplitude
spectrum of clean samples in local spatial regions. Then, we
employ discrete wavelet transform to extract the features from
the amplitude spectrum and use singular value decomposition
to integrate the trigger. Subsequently, we selectively filter parts
of the trigger in pixel space to implement trigger morphology
constraints and adjust injection coefficients based on visual effects,
achieving dynamic, invisible, and effective trigger injection. We
conduct experiments on multiple datasets and models. The results
demonstrate that SFIBA can achieve excellent attack performance
and stealthiness, while preserving the model’s performance on
benign samples, and can also bypass existing backdoor defenses.

Index Terms—Deep learning, multi-target backdoor attack,
attack stealthiness, black-box settings.

I. INTRODUCTION

IN recent years, Deep Neural Networks (DNNs) has become
integral to our daily lives due to their exceptional perfor-

mance. However, DNNs suffer from a lack of transparency and
interpretability, which makes them susceptible to malicious
attacks [1], [2], including adversarial examples [3], [4], poison-
ing attacks [5], [6], and backdoor attacks [7]–[11], etc. Among
these, backdoor attacks require injecting backdoor into the
model during training by modifying the training set [7]–[10] or
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Fig. 1: Schematic of multi-target backdoor attack.
altering model parameters [11], [12]. Consequently, the model
performs normally on clean samples, but misclassifies those
with triggers into target class during inference. While backdoor
attacks on image classification tasks have grown increasingly
sophisticated, the majority of these attacks are single-target,
meaning they can only designate one specific class as the target.
In contrast, multi-target backdoor attacks [13]–[16] feature
broader payloads, allowing the presetting of multiple target
classes. Here, “payload” refers to the number of classes that
can be simultaneously attacked, and each target class is mapped
to a specific trigger injection method. This enables attackers to
flexibly control the classification of poisoned samples into any
desired predefined target class during inference, rather than a
single fixed target class, as shown in Fig. 1.

Moreover, research on multi-target backdoor attacks is
essential. In certain scenarios, attackers may need to switch
the target class after injecting a backdoor, which is common
in real-world situations. For example, attackers might aim to
bypass facial recognition models to access company backends.
With conventional single-target backdoor attacks, they can only
make the model classify poisoned images as a specific person,
like employee Bob. However, if Bob leaves and his data is
removed, the backdoor no longer works, forcing attackers
to retrain the model to embed a new backdoor, which is
a tedious and time-consuming task. In contrast, multi-target
backdoor attacks with powerful payloads allow attackers to
flexibly switch target classes after a single backdoor injection.
This means that if Bob leaves, attackers can simply switch the
target to another employee, Alice, without retraining, ensuring
continued access. Therefore, multi-target backdoor attacks with
powerful payloads pose a significant threat to deep models,
attracting much attention from both academia and industry.

However, existing multi-target backdoor attacks face a
significant limitation: they struggle to attack all classes (i.e.
full-target backdoor attacks) while ensuring trigger stealthiness
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in black-box settings. To elaborate, attacking all classes means
establishing mappings between each class and its respective
class-specific trigger injection method, which is necessary to
achieve powerful backdoor payloads. In black-box settings,
attackers can only manipulate the training set and have no
knowledge of the victim model’s architecture or parameters, nor
can they interfere with the model training process. Furthermore,
the black-box settings above are highly representative of real-
world attack scenarios. Thus, the ability to maintain powerful
backdoor payloads under such constraints is essential for
ensuring the successful execution of multi-target and even full-
target backdoor attacks. However, achieving this capability is
difficult, as the primary challenge lies in ensuring the specificity
of triggers for different classes without involving the victim
model. If trigger specificity is insufficient, injecting multiple
backdoors targeting different classes can cause interactions that
degrade backdoor performance and severely limit backdoor
payloads. In addition, ensuring trigger stealthiness is also
important. If trigger stealthiness is insufficient, the poisoned
samples will be easily detected, leading to the failure of the
attack. So far, no attack paradigm has successfully ensured
trigger specificity and stealthiness within the constraints of
black-box settings to execute invisible attacks capable of
targeting a full range of classes.

To address the above issues, we propose a Spatial-based
Full-target Invisible Backdoor Attack, called SFIBA, where we
leverage the sensitivity of backdoor to trigger spatial locations
and morphologies to ensure trigger specificity and provide a the-
oretical proof for the spatial sensitivity. Meanwhile, we design a
frequency-domain-based trigger injection method to ensure both
trigger stealthiness and effectiveness. Specifically, we divide
samples into multiple disjoint blocks, referred to as Blocks, and
inject invisible triggers with specific morphological constraints
into different Blocks for various target classes. When injecting
the trigger, we first perform Fast Fourier Transform (FFT) on
both the clean image within the Block and the trigger image.
This converts the trigger injection from the pixel space to the
frequency domain, providing an initial guarantee of stealthiness.
Next, to address the challenges in selecting the trigger injection
region and coefficient caused by Block size limitations, we
introduce Discrete Wavelet Transform (DWT) and Singular
Value Decomposition (SVD). In particular, we apply DWT to
extract diagonal features from the clean amplitude spectrum
and then inject the trigger’s corresponding features by fusing
singular values. This is followed by an inverse transformation
back to the pixel space. Then, we apply DWT again to the
poisoned Block and filter parts of the trigger to implement
morphological constraints. Finally, we dynamically adjust the
injection coefficient of the trigger in each poisoned sample
to ensure an excellent visual appearance. The spatial and
morphological constraints of the trigger ensure that even similar
trigger strengths do not significantly undermine its specificity.
Our contributions can be summarized as follows:

• We propose a Spatial-based Full-target Invisible Backdoor
Attack (SFIBA), which can attack all classes in black-box
settings, i.e., constructing class-specific trigger injection
methods and establishing mappings between these meth-

ods and their corresponding target classes.
• We leverage the spatial and morphological constraints to

ensure trigger specificity, and theoretically demonstrate
the backdoor’s spatial sensitivity. Furthermore, we design
a frequency-domain-based method to balance stealthiness
and effectiveness of the trigger located in a finite Block.

• We validate the effectiveness of SFIBA on various
datasets and its robustness against advanced defenses,
demonstrating that it can achieve high attack success rates
for any predefined target class while maintaining model
performance on benign samples.

The remainder of the paper is organized as follows. Section
II reviews the related work on backdoor attacks and defenses.
Section III details the capability of attackers and attack
modeling. Section IV delves into the methodology of SFIBA,
including its motivation and key steps. Section V evaluates
SFIBA’s effectiveness, stealthiness, robustness, and performs
ablation experiments. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Backdoor Attacks

Single-Target Backdoor Attacks. Research on single-
target backdoor attacks generally focuses on improving trigger
stealthiness and effectiveness. Early patch-based triggers [9]
are visually detectable. Subsequent methods, such as blending
[17], reflection [18], and warping [8], enhance the stealthiness
of triggers to a certain degree. Later triggers, designed based on
frequency-domain methods like FFT (FIBA) [19] and discrete
cosine transform (Ftrojan) [20], achieve invisibility in the pixel
space. In some recent studies [10], [21], sample-specific triggers
have been generated, making the triggers even more invisible
and challenging to detect. Additionally, some studies [11], [12]
have explored backdoor attacks that do not rely on training
data, directly modifying model parameters during the training
phase or the deployment phase.

Multi-Target Backdoor Attacks. Research on multi-target
backdoor attacks emphasizes broadening the backdoor payloads.
Xue et al. propose two studies [13], [14] on broadening
backdoor payloads in black-box settings. One [13] alters the
strength of a patch trigger to serve as triggers for different
target classes, and another [14] uses discrete cosine transform
steganography in RGB channels to inject triggers targeting
three classes. It demonstrates that utilizing RGB channels can
effectively mitigate the similarity between different triggers.
However, these studies have limitations in broadening backdoor
payloads, can only target a few classes, and suffer from
poor visual stealthiness. Marksman [15] achieves powerful
backdoor payloads in white-box settings by employing a class-
conditional autoencoder trained along with the victim model. It
can target any class during inference, but the need for control
over the training process and the limited transferability of
generated triggers across models with significant structural
differences restrict its applicability in black-box settings.
Universal Backdoor Attacks [16] utilizes interclass poison
transferability to achieve results similar to Marksman [15] in
gray-box settings, that is, it requires precise knowledge of the
victim model, which is not always practical. Additionally, its
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Fig. 2: SFIBA’s attack process, where AS represents the amplitude spectrum, HHc1,c2, HHt1,t2, and HHp1,p2 denote the
diagonal features of the clean, trigger and poisoned amplitude spectrum, respectively.

triggers exhibit poor stealthiness due to the limitations of binary
strings. Therefore, SFIBA is the first approach to effectively
broaden the backdoor payloads capable of attacking all classes
while ensuring trigger stealthiness in black-box settings.

B. Backdoor Defenses

Currently, the backdoor defense paradigms [22]–[25] can
be mainly categorized into input-based defenses, model-based
defenses, output-based defenses, and inhibition-based defenses.
Input-based defenses directly detect or disrupt the trigger
within samples, thereby rendering the backdoor ineffective. For
example, frequency-based detector [26] identifies the trigger
by detecting high-frequency artifacts. Model-based defenses
detect or eliminate backdoor by exploring or altering model
parameters. For example, Gradcam [27] can easily observe the
difference between poisoned and clean samples by plotting the
model’s attention in the form of a heatmap. Neural Cleanse
[28] obtains possible triggers by reverse engineering each class
of the model and comparing them to obtain the classes that are
likely to be attacked. Fine-Pruning [29] destroies the backdoor
structure by pruning the model. Output-based defenses detect
the backdoor by validating model outputs. For example, STRIP
[30] perturbs potentially poisoned images with a random set of
clean images and monitors the entropy of output to determine
whether the model is infected with a backdoor. EBBA [31]
calculates the energy of each class in model’s output and looks
for relatively anomalous high-energy values to determine the
presence of backdoor. Inhibition-based defenses aim to train
clean models based on poisoned datasets. For example, CBD
[22] learns backdoor-free models directly from contaminated
datasets from a causal point of view. However, these defense
mechanisms struggle to detect SFIBA.

III. THREAT MODEL

A. Capability of Attackers

SFIBA can perform full-target attacks in black-box settings.
Specifically, the attacker only needs to manipulate the training
set, without needing to know any knowledge of the model’s

architecture or parameters, nor interfere in the model training
process. The attacker’s permissions in above black-box settings
are far more limited than those in previous backdoor attacks
with powerful payloads. This significantly increases the threat
posed by SFIBA in real-world attack scenarios.

B. Attack Modeling

In a typical image classification task, the goal is to train
an accurate deep model f : X → C, where X represents the
set of images and C = {c1, c2..., cM} denotes a set of M
classes. After the SFIBA attack, the poisoned model f ′ will
classify poisoned samples Bt(x) into corresponding predefined
classes yt, while maintaining performance on clean sample
pairs (x, y), as shown below:

f ′(x) = y, f ′(Bt(x)) = yt,

x ∈ X, y, yt ∈ C, t ∈ {1, 2, ...,M},
(1)

where Bt(·) represents the trigger injection paradigm specific to
class yt. To realize above objective, the SFIBA attack process
can be summarized as follows. First, we randomly select a
batch of clean samples and generate corresponding poisoned
samples for each class, creating a poisoned set of size Np, with
⌊Np/M⌋ samples per class. Then, we combine this poisoned
set with a clean set of size Nb for model training, as below:

min
θ

Nb∑
i=1

L(f ′(xi; θ), yi) +

M∑
t=1

⌊Np/M⌋∑
j=1

L(f ′(Bt(xj); θ), yt), (2)

where L stands for the cross-entropy loss. The training process
establishes a mapping between each trigger injection paradigm
Bt(·) and its corresponding target class yt, allowing flexible
selection of attack targets during inference.

IV. METHODOLOGY

A. Motivation

Previous experiments [32] have shown that backdoor models
relying on static triggers are highly sensitive to both trigger
spatial location and morphology. In the inference process, the
Attack Success Rate (ASR) plummets with even minor shifts
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in the spatial location or changes in the morphology of static
triggers. The backdoor’s sensitivity to the trigger’s spatial
location is particularly significant for broadening backdoor
payloads. To further elucidate this phenomenon, we build upon
recent studies [33] on the Neural Tangent Kernel (NTK) to
analyze backdoor behavior under variations in the trigger’s
spatial location. Specifically, we demonstrate that when the
trigger is invisible, the backdoor effect is effectively eliminated
if the trigger is shifted during the inference stage.

Lemma 1. For the poisoned sample x′
0 = (1 − m0) ⊙ x +

T (m0⊙x), the trigger is injected into the local region m0⊙x,
obtained by element-wise multiplication between the mask m0

and the sample x. The mask m0 is a binary mask with a small
rectangular region set to 1 in any position, while the rest of the
elements are set to 0. And the trigger injection paradigm T (·)
is invisible, which has good visual indicators. The poisoned
image classifier’s output is f ′(x′

0) = yt. During inference, if the
mask m0 is altered to mask m1 in such a way that the trigger
position corresponding to m1 no longer overlaps with that of
m0. For the poisoned sample x′

1 = (1−m1)⊙x+T (m1⊙x),
the probability that it is classified as yt is ϕt(x

′
1) < 0.5. This

indicates that f ′(x′
1) ̸= yt.

The proof of Lemma 1 is provided in Appendix A. Here,
we will further analyze Lemma 1, starting with a single-target
attack using category a as the target class, where the poisoned
model is denoted as f ′

a. We theoretically prove that when
the trigger is invisible, changing its position during inference
prevents the poisoned sample from being classified into the
predefined target class a. This indicates that the shifted trigger
either does not activate or activates only a small number
of backdoor neurons of class a. Thus, the neurons that f ′

a

use to extract features from the shifted trigger and perform
linear classification have an extremely low correlation with the
backdoor neurons of class a. This means f ′

a is fully capable of
adjusting the relevant neurons to establish a mapping between
the shifted trigger and another target class b, thereby completing
a dual-target backdoor attack. By extension, we can achieve
multi-target backdoor attacks through reasonable partitioning
of the trigger’s spatial positions. In summary, Lemma 1
indicates that as long as injecting invisible triggers into non-
overlapping local regions to attack different target classes,
we can minimize mutual interference among the various
backdoors during training, thereby achieving multi-target
backdoor attacks.

Building on this foundational theory, we propose restricting
triggers to specific local spatial regions (i.e., Blocks) and
applying different morphological constraints based on their

location to ensure the specificity of triggers for different target
classes. Specifically, we divide the image into mutually isolated
blocks in the pixel space, with each block denoted as Blocki,
where i serves as the serial number of Block for identification.
For each target class yt, we systematically select a Blocki and
one of its RGB channels for trigger injection as:

Bt(x) = x−Blocki + Tn,i(Blocki),

Blocki = mi ⊙ x, S = ⌊M/3⌋,
i = t mod S, n = ⌊t/S⌋, t ∈ {1, 2, ...,M},

(3)

where Bt(x) represents the obtained poisoned sample and
t indicates the target class is yt. Blocki denotes the trigger
injection position determined by the mask mi. Tn,i(·) rep-
resents the injection of trigger with specific morphological
constraints. Here, i determines the type of morphological
constraint and n determines the channel for trigger injection.
Particularly, when n is 0, 1, and 2, triggers are injected into
the B, R, and G channels, respectively. This means that once
all Blocks in a channel are exhausted, we switch to the next
channel for trigger injection. It should be noted that each
poisoned image uses only one channel of a single Block for
trigger injection, uniquely corresponding to a specific target
yt. Furthermore, we introduce an invisible dynamic trigger
injection paradigm to maintain the stealthiness and effectiveness
of triggers within the finite Blocks. In summary, as shown in
Fig. 2, the generation of poisoned images involves three key
steps: block selection, frequency domain poisoning, and trigger
morphology constraints along with dynamic optimization. Each
of these steps will be elaborated on in the following sections.

B. Local Space Dynamic Invisible Trigger Injection

Step 1: Block Selection. We define the length and width
of a clean sample as (L,W ) respectively and divide Blocki
into a square, with a side length of l0. The number of target
classes is M . Consider that Data Aaugmentation (DA) such as
translation, rotation, flipping, and clipping during the training
phase, can alter the spatial location of Blocki. This may lead
to overlap between Blocki and Blocki′(i

′ ̸= i) in different
poisoned samples, potentially compromising the effectiveness
of the attack. To address this issue, we opt to add an interval
around Blocki so that:

Distance(Blocki, Blockaround) = 2l0,

L,W mod 2l0 ≥ l0, i ∈ {1, 2, ..., ⌊M/3)⌋},
(4)

where Distance(Blocki, Blockaround) represents the min-
imum distance between Blocki and other Blocks around
it. Thus, each Blocki actually occupies a square region of
2l0 on each side and the trigger is injected into the second
quadrant of this region, as illustrated in Fig. 3a. This strategy
reduces the likelihood of multiple triggers overlapping due
to data augmentation. With this setup, we develop a class-
specific single-channel Block selection algorithm, as shown in
Algorithm 1. Using this algorithm, we can obtain the spatial
location of the unique single-channel Block corresponding to
each target class. In addition, we apply distinct morphological
constraints to the triggers in adjacent Blocki, further enhancing
the trigger specificity. The above methods significantly improve
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Algorithm 1 Class-specific Block Fetching Algorithm

Input: the length and width of clean sample L,W , the length
of Block l0;

Output: Block list;
1: Initialize: nL = ⌊L/2l0⌋, nW = ⌊W/2l0⌋, Target label

list = {0, 1, 2, 3, 4, 5...}, Block list = {};
2: if nL · nW ≥ ⌊M/3⌋ then ▷ single channel Block num
3: while num in Target label list do
4: n1 = ⌊num/nW ⌋ mod nW ; ▷ the row of Block
5: n2 = num mod nL; ▷ the column of Block
6: Blocknum = clean image[n1 ·2l0 : n1 ·2l0+l0;n2 ·

2l0 : n2 · 2l0 + l0];
7: Add Blocknum to Block list;
8: end while
9: end if

10: return Block list

the robustness of SFIBA against data augmentation, as will be
detailed in the experimental section.

Step 2: Frequency Domain Poisoning. Injecting a trigger
into Block in the frequency domain involves three key steps:
frequency-domain transformation using FFT, feature extraction
from the amplitude spectrum via DWT, and trigger injection
through singular value fusion. The specific operations and
functions of each step are as follows:

(1) Frequency-domain transformation using FFT. We
introduce FFT to initially ensure the trigger stealthiness. FFT
can decompose an image into amplitude and phase spectra.
According to studies [19], [34], the amplitude spectrum captures
low-level semantic information, while the phase spectrum cap-
tures high-level semantics. Modifying the amplitude spectrum
is unlikely to significantly alter high-level semantics and visual
appearance. Therefore, we extract the amplitude and phase
spectra of the clean Block, as well as the amplitude spectrum
of the trigger image. To ensure trigger stealthiness, we retain
the clean phase spectrum and attempt to inject the trigger’s
amplitude spectrum information into the clean amplitude
spectrum. However, conventional methods of injecting triggers
into the amplitude spectrum, such as directly overlaying the
trigger spectrum on the central region of the clean spectrum,
are not suitable for small Block. There are two main reasons:
• Difficulty in selecting the injection region: Overlaying

the trigger across the entire amplitude spectrum would
significantly compromise stealthiness. Therefore, triggers are
usually superimposed on a fixed local region of the amplitude
spectrum. For complete images, frequency energy is typically
concentrated in the low-frequency region, making it easier
to select injection region. However, for small Blocks, the
unpredictable content leads to irregular energy distributions,
complicating the selection of a uniform injection region that
balances trigger effectiveness and stealthiness.

• Difficulty in selecting the injection coefficient: Each Small
Block occupies an extremely small area. For example, each
Block from the ImageNet100 dataset covers only 0.22%
of the total image area (as detailed in the hyperparameters
section). Therefore, fine-tuning the injection coefficient will
significantly impact the stealthiness and effectiveness of the

trigger, making it difficult to decide.
In summary, we exploit the semantic properties of the

amplitude spectrum obtained by FFT to initially ensure trigger
stealthiness. Ablation studies show that, while maintaining
visual quality, removing the FFT reduces SFIBA’s average
ASR on CIFAR10 to 10.1%. This underscores the necessity of
FFT. However, due to the limitations of small Block, relying
solely on FFT for trigger injection is not feasible.

(2) Amplitude spectrum feature extraction via DWT. To
address the challenge of selecting the trigger injection region,
we extract features from the entire amplitude spectrum of Block
and inject the trigger into specific features. In particular, we
treat the amplitude spectrum as an image xas in the pixel
space and use DWT to extract its features as follows:

DWT (xas) = {LL1, HL1, LH1, HH1},
DWT (LL1) = {LL2, HL2, LH2, HH2},

(5)

where LL1, HL1, LH1, and HH1 denote the approximation
subgraphs, longitudinal edge features, horizontal edge features,
and diagonal features, respectively. Among these, the approxi-
mation subgraphs contain the majority of the energy, while the
diagonal features contain relatively little energy. In addition,
we can recursively apply the same feature extraction process
to LL1. It is evident that DWT can effectively extract features
in different directions from the entire amplitude spectrum. We
multiply the diagonal features of trigger’s amplitude spectrum
by an injection coefficient K and superimpose them onto the
clean diagonal components HH1 and HH2, as shown below:

HHadd1,add2 = HHc1,c2 +HHt1,t2 ×K, (6)

in which HHc1, HHc2 are the diagonal features of clean am-
plitude spectrum, HHt1, HHt2 are those of trigger’s amplitude
spectrum. Injecting trigger into both high-frequency HH1 and
low-frequency HH2 components enhances its robustness and
effectiveness. Additionally, the low energy in the diagonal
features enhances trigger stealthiness.

In summary, DWT solves the challenge of selecting the
trigger injection region and enhances both trigger stealthiness
and effectiveness. Its necessity will be further illustrated in the
ablation study section. In addition, it is crucial to note that
directly applying DWT to Block in the pixel space for trigger
injection is infeasible. This is because DWT extracts features
directly from the spatial domain, and superimposing triggers
on these features can easily alter critical ones, degrading visual
quality. To maintain stealthiness, the trigger’s intensity must
be reduced, which would cause the attack to fail. Thus, neither
FFT nor DWT alone can achieve an invisible attack under the
constraints of Block. Only their combination can ensure both
trigger stealthiness and effectiveness.

(3) Trigger injection through singular value fusion.
To address the challenge of selecting the trigger injection
coefficient, we reduce the sensitivity of the trigger strength
to changes in the injection coefficient, thereby enhancing its
adjustability. Specifically, we introduce SVD to convert the
direct superposition of the trigger in the amplitude spectrum
into an indirect variation of singular values, as follows:

SV D(HHm) = UmDmV T
m , m = {add1, add2, c1, c2},

HHp1,p2 = ISV D(Uc1,c2Dadd1,add2V
T
c1,c2),

(7)
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where Dm represents the singular value matrix, ISVD denotes
the inverse process of SVD and HHp1, HHp2 represent the
final poisoned diagonal features of the amplitude spectrum. The
singular values in Dm capture the stable embedded properties
of an image and tend to remain consistent even under minor
perturbations. Thus, retaining only the poisoned information
in the singular values reduces the sensitivity of the trigger
strength to the injection coefficient and simplifies the selection
of the optimal injection coefficient.

Subsequently, we combine HHp1, HHp2 with the remaining
clean features and perform the inverse DWT (IDWT) to
generate the poisoned amplitude spectrum as Eq. (8). Here,
ASp denotes the resulting poisoned amplitude spectrum.

LLp1 = IDWT{LLc2, HLc2, LHc2, HHp2},
ASp = IDWT{LLp1, HLc1, LHc1, HHp1}.

(8)

Finally, we utilize ASp along with the clean phase spectrum
to generate poisoned Block via the inverse FFT.

Step 3: Trigger Morphology Constraints along with
Dynamic Optimization. To enhance trigger specificity and
robustness against data augmentation, we impose differentiated
morphological constraints on triggers in adjacent Blocks.
Specifically, we perform DWT on both poisoned Block and
original clean Block, retaining trigger information only in
either horizontal or vertical features, while replacing the rest
with clean features. Taking horizontal features as an example,
we preserve only the poisoned high- and low-frequency
horizontal features LHp1, LHp2, as follows:

DWT (Blockpoisoned) ⇒ {LHp},
DWT (Blockclean) ⇒ {LLc, HLc, HHc},
Blockhorizontal = IDWT{LLc, HLc, LHp, HHc},
c = {c1, c2}, p = {p1, p2}.

(9)

This results in the trigger being horizontally distributed.
In contrast, triggers in adjacent Blocks are restricted to
vertical distribution. To verify the effectiveness of the DWT-
based trigger morphology constraints, we conducted validation
experiments. We used two types of triggers in the same
Block and channel but with different morphologies to attack
two categories. The ASR for the two targets are 90.8% and
89.2%, respectively. This demonstrates that DWT-based trigger
constraints effectively enhance trigger specificity. Ultimately,
we reintegrate the modified Block back into the original image,
completing the construction of the poisoned image. Each
complete poisoned sample contains just a single trigger
within one channel of a Block.

Finally, to ensure high stealthiness for each poisoned sample,
we dynamically adjust the trigger injection coefficient K based
on visual metrics. Commonly used visual metrics include
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS). However, frequent computation of all these metrics
would significantly slow down the poisoned sample generation
process. Therefore, we propose a dynamic adjustment algorithm
based solely on PSNR as shown in in Algorithm 2. Specifically,
we set the PSNR thresholds as (p1 and p0) and the range
of K as (Kmin,Kmax). To ensure trigger effectiveness, we
maintain K ≥ Kmin even if the PSNR falls below p0. In

Algorithm 2 PSNR-based Trigger Dynamic Tuning Algorithm

Input: PSNR thresholds (p0, p1), range of injection coefficient
(Kmin,Kmax), maximum Iterations n0, clean sample
imagec, current poisoned sample imagep;

Output: optimal injection coefficient K;
1: Initialize: n = 0, left, right = Kmin,max, K = Kmin;
2: while n < n0 do
3: PSNR = psnr(imagec, imagep);
4: if K = Kmin then
5: if PSNR < p0 or PSNR in (p0, p1) then
6: return K ▷ early stopping
7: else:
8: K = Kmax; ▷ prepare to use dichotomy
9: end if

10: else:
11: if PSNR in (p0, p1) then
12: return K ▷ coefficient that meets conditions
13: else if PSNR < p0 then
14: right = K; ▷ adjust right boundary
15: K = (left+ right)/2;
16: else:
17: left = K; ▷ adjust left boundary
18: K = (left+ right)/2;
19: end if
20: end if
21: update imagep;
22: n = n+ 1;
23: end while
24: return K ▷ coefficient at the end of the iteration

TABLE I: Attack properties comparison.

Methods
Properties (✓/✗)

Visual
Stealthiness

Full
Target

Black-Box
Settings

Benign
Accuracy

SFIBA ✓ ✓ ✓ ✓
One-to-N [13] ✗ ✗ ✓ ✗
Marksman [15] ✗ ✓ ✗ ✓

UBA [16] ✗ ✓ ✗ ✓

the context of ensuring effectiveness, we accept the poisoned
samples only when their PSNR fall within the range (p0, p1)
to ensure trigger stealthiness; otherwise, we adjust K using
the dichotomy method. It is worth noting that the spatial and
morphological constraints of the trigger ensure its specificity
remains robust, even when the trigger strengths are similar.

In summary, SFIBA embeds dynamic, invisible, and effective
triggers in specific Blocks, leveraging the sensitivity of the
backdoor to trigger location and morphology, thus effectively
broadening the backdoor payloads in black-box settings.

V. EVALUATION

A. Experimental Setup

Baselines. We utilize three most advanced multi-target
backdoor attacks, One-to-N [13], Marksman [15], and Universal
Backdoor Attacks (UBA) [16] as our baselines. One-to-N [13]
is one of the most representative black-box multi-target attack
paradigms. Marksman [15] and UBA [16] implement the most
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TABLE II: Average attack performance of SFIBA and baselines (PRN denoting PreActResNet).

CIFAR10 GTSRB ImageNet100Method Indicators PRN VGG PRN VGG ResNet VGG

ASR 0.6078 0.5842 0.1402 0.1523 0.1164 0.1013
BA 0.9114 0.8817 0.9677 0.9621 0.8222 0.8344One-to-N [13]
DV 0.0342 0.0262 0.0121 0.0103 0.0606 0.0650

ASR 0.9989 1.0000 0.9998 1.0000 0.9994 0.9948
BA 0.9320 0.9078 0.9789 0.9712 0.8108 0.8568Marksman [15]
DV 0.0136 0.0001 0.0009 0.0012 0.0720 0.0426

ASR 0.9445 1.0000 0.9975 0.9961 0.9980 0.9990
BA 0.8675 0.8523 0.9555 0.9633 0.8755 0.8828UBA [16]

without DA DV 0.0100 0.0136 0.0243 0.0081 0.0005 0.0202

ASR 0.9972 0.9954 0.9975 0.9994 0.9924 0.9928
BA 0.9368 0.9020 0.9755 0.9721 0.8674 0.8924SFIBA

with DA DV 0.0088 0.0059 0.0043 0.0003 0.0154 0.0070

ASR 0.9984 0.9958 0.9964 0.9992 0.9958 0.9933
BA 0.8774 0.8645 0.9738 0.9702 0.8662 0.8948SFIBA

without DA DV 0.0001 0.0014 0.0060 0.0012 0.0098 0.0082

TABLE III: ASR of SFIBA for each class in CIFAR10.

DA Target class
Model (✓ / ✗ ) 1 2 3 4 5 6 7 8 9 10

✓ 0.998 1.000 0.990 1.000 1.000 0.996 0.996 0.994 1.000 0.998PRN
✗ 0.998 1.000 0.998 0.996 1.000 0.998 0.994 1.000 1.000 1.000

✓ 0.994 0.996 0.992 0.996 0.996 0.998 0.992 0.990 1.000 1.000VGG
✗ 0.998 0.996 0.994 0.996 0.998 0.996 0.990 0.990 1.000 1.000

powerful backdoor payloads in non-black-box settings. For an
accurate assessment of multiple baseline methods, we adhere
strictly to the prerequisites for attack privileges they demand.
TABLE I presents the properties of each attack paradigm. It is
evident that SFIBA is the only approach to achieve full-target
attacks while ensuring trigger stealthiness in black-box settings.

Datasets and Models. We assess the effectiveness of the
SFIBA using several datasets commonly utilized for backdoor
attacks, including CIFAR10, GTSRB, and ImageNet100. For
CIFAR10 and GTSRB, we employ PreActResnet18 and VGG19
models, while for ImageNet100, we use pre-trained versions of
Resnet18 and VGG19 models. Additionally, for the baselines,
we apply the same datasets and models to maintain consistency
in our evaluation.

Hyperparameters. For each model’s training, we employ the
momentum SGD optimizer with an initial learning rate of 0.001
and a momentum of 0.9. The learning rate is decayed by a factor
of 0.1 every 30 epochs. During the training process, we adopt
the same data augmentation method as WANET [8], which
involves various spatial transformation techniques capable of
effectively changing the spatial location of the trigger. When
generating poisoned samples, we set the PSNR limits (p0, p1)
to (40, 42) and the injection coefficient K tuning range to
(0.1, 40). Additionally, we tested the attack effectiveness with
different-sized Block using single-target attacks on CIFAR10,
and the results are shown in Fig 3b. It can be seen that the attack

TABLE IV: SFIBA’s visual metrics across various datasets.

Dataset PSNR SSIM LPIPS

CIFAR10 40.752 0.9951 0.0001
GTSRB 40.545 0.9934 0.0113

ImageNet100 40.250 0.9975 0.0095

is effective when the absolute size of the Block is at least 4×4.
Consequently, we set the Block size and complete poisoned
sample size for different datasets as follows: For CIFAR10, the
Block size is 8× 8, with a complete sample size of 32× 32,
allowing for 12 attack targets. For GTSRB, the Block size is
8×8, with a complete sample size of 64×64, enabling 48 attack
targets. For ImageNet100, the Block size is 12× 12, and the
complete sample size is 256× 256, accommodating up to 300
attack targets. Thus, for each dataset, we can easily achieve the
full-target attack. We use 6% of the data to generate poisoned
samples for CIFAR10 and GTSRB, and 2.5% for ImageNet100.
For each baseline, we replicate its optimal experimental setup
to ensure comparable and successful results.

B. Effectiveness of SFIBA

Attack Effectiveness. TABLE II shows SFIBA’s attack
performance with and without DA, compared to the baselines.
The DA methods, akin to WANET [8], involve various spatial
transformation techniques. We report the average ASR across
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Fig. 4: Visual effects and residuals of SFIBA and baselines on ImageNet.

Clean

Spatial
Residual

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

Fig. 5: Poisoned images and corresponding residuals generated by SFIBA for each class in CIFAR10.

all classes, the Benign classification Accuracy (BA), and the
Decrease Value in BA (DV) compared to the clean model.
Whether with or without DA, SFIBA achieves a high ASR
across all classes and datasets, with negligible impact on BA.
Therefore, it is evident that our design of spatial intervals and
morphological constraints on the triggers effectively resists
DA. SFIBA demonstrates significant advantages over various
baselines. It outperforms One-to-N in ASR across all three
datasets and has a smaller impact on BA, clearly surpassing
the most representative black-box multi-target attack method.
Compared to Marksman, SFIBA achieves similar ASR and
DV but requires significantly fewer permissions, making it a
greater practical threat. Against Universal Backdoor Attacks,
SFIBA excels on CIFAR10 and performs similarly on other
datasets. The limitations of Universal Backdoor Attacks lie in
the constraints of binary code length and the requirement for
large patch sizes, making them difficult to apply to datasets with
fewer categories and small-sized images. In contrast, SFIBA
offers stable attack performance across various scenarios,
supporting any number of categories and a range of image
sizes. TABLE III demonstrates SFIBA’s strong performance
across all CIFAR10 classes, with DA having a negligible effect
on its attack efficacy. This underscores SFIBA’s robustness
against trigger location shifts caused by DA.

Attack Stealthiness. We assess the stealthiness of poisoned
samples generated by SFIBA using the PSNR, SSIM, and
LPIPS metrics. Specifically, we randomly choose 50 clean
samples from each dataset. For each clean sample, we create
multiple poisoned samples targeting all categories and calculate
their average visual metrics. As shown in TABLE IV, these
poisoned samples demonstrate outstanding visual metrics. In
addition, Fig. 4 compares the poisoned sample generated
by SFIBA on ImageNet100 with the one generated by each

baseline. It shows that SFIBA achieves excellent visual quality,
significantly outperforming the baselines. In Fig. 5, we present
the poisoned samples generated by SFIBA for each CIFAR10
class, highlighting the good visual quality on small-size images
as well as the spatial location of the trigger and the regularity
of channel selection.

C. Performance Against Defensive Measures

We evaluate the robustness of SFIBA against popular
backdoor defense mechanisms including Fine-Pruning [29],
Neural Cleanse [28], CBD [22], STRIP [30] and EBBA [31].
These backdoor defense mechanisms have achieved remarkable
results in defending against previous backdoor attacks.

Resistance to Fine-Pruning. We assess SFIBA’s robustness
to Fine-Pruning, which prunes dormant neurons for backdoor
removal while maintaining benign accuracy. Fig. 6a shows
the impact of neuron pruning on both BA and average ASR.
The ASR reduction is consistently less than the decline in BA,
indicating SFIBA’s strong stealthiness against Fine-Pruning.

Resistance to Neural Cleanse. We evaluate SFIBA’s
robustness against Neural Cleanse, which uses inverse triggers
to detect backdoors with an anomaly metric above 2. Figure
6b shows that the anomaly metrics for both benign models and
poisoned models are below 2, indicating that SFIBA exhibits
high stealthiness against Neural Cleanse.

Resistance to CBD. We then assess SFIBA’s robustness
against CBD, which mitigates the confounding effect by
learning causality and using a sample-by-sample weighting
scheme on a contaminated dataset. Fig. 6c presents the results
when training with CBD. SFIBA demonstrates high ASR and
BA, indicating its robustness to CBD.

Resistance to STRIP. We test SFIBA’s robustness to STRIP,
which perturbs clean images to create high-entropy outputs in
benign models. Low entropy indicates a backdoor. Fig. 7 shows
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Fig. 6: The performance of SFIBA in resisting Fine-Pruning, Neural Cleanse, and CBD.
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Fig. 7: The performance of SFIBA in resisting STRIP.
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Fig. 8: The performance of SFIBA in resisting EBBA.

TABLE V: SFIBA’s visual metrics during ablation process.

Step PSNR SSIM LPIPS

Step 1 40.579 0.9932 0.0019
Step 2 40.785 0.9944 0.0024
Step 3 40.886 0.9945 0.0023
Step 4 40.333 0.9914 0.0019

similar entropy distributions for clean and poisoned samples
on CIFAR10, GRSRB and ImageNet100, suggesting SFIBA’s
strong stealthiness against STRIP.

Resistance to EBBA. Finally, we test SFIBA’s robustness
against EBBA, which calculates the energy of each class in the
model’s output. If any class shows a significantly high energy
value, it suggests the presence of a backdoor. We compute
the energy for each class across three datasets, with results
presented in Fig. 8. Since SFIBA treats all classes as targets,
EBBA cannot identify any relatively high anomalous energy
values. Therefore, EBBA cannot detect SFIBA.

D. Ablation Experiment of SFIBA

To validate the necessity of each step in SFIBA, we
conducted comprehensive ablation experiments on the Pre-
ActResNet18 model using the CIFAR10 dataset. The results
indicate that each module of SFIBA is essential.

Step 1: Remove Dynamic Optimization. Initially, we
eliminate the dynamic adjustment of the trigger injection
coefficient K, and subsequently select an optimal K manually
for the remaining portion, ultimately settling on a value of
2.5. We then randomly generate a set of poisoned samples and
assess their visual effects, as presented in Step 1 of TABLE
V. While the average visual quality of the poisoned samples
remains commendable at this stage, it is evident that there has
been a notable decline in performance as indicated by both the
SSIM and LPIPS metrics. Step 1 in TABLE VI presents the
attack performance for each class at this stage. The performance
remains impressive, indicating that the remaining components
are highly effective. However, this does not imply that dynamic
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TABLE VI: Attack performance for each class in each step.

ASR for each target class label
Step BA 1 2 3 4 5 6 7 8 9 10

Step 1 0.936 1.000 0.994 0.992 1.000 0.996 1.000 1.000 0.996 0.996 0.998
Step 2 0.932 0.978 0.990 0.984 0.982 0.984 0.996 0.980 0.974 0.988 0.986
Step 3 0.931 0.970 0.984 0.982 0.978 0.982 0.994 0.984 0.978 0.986 0.978
Step 4 0.907 0.212 0.260 0.326 0.260 0.468 0.482 0.382 0.408 0.364 0.372

adjustment is futile. We have already observed a decline in
visual metrics when dynamic adjustment is removed on smaller
datasets. For larger datasets, it would be even more challenging
to manually select an appropriate injection coefficients K.
Therefore, the stealthiness achieved with a dynamic injection
coefficients K is undoubtedly superior to that of a static one.

Step 2: Remove Trigger Morphology Constraints. We
remove the DWT used for trigger morphology constraints and
manually select an optimal K for the remaining part, finally
determining K to be 0.25. The average visual effects of the
poisoned images at this stage, as shown in Step 2 of TABLE
V, still achieve a level similar to those before. Based on this,
we test the attack performance at this stage, as shown in Step
2 of TABLE VI. It can be seen that the ASR at this point is
no longer satisfactory, showing a significant decline. Therefore,
the trigger morphology constraints is very important.

Step 3: Remove Singular Value Fusion. We then eliminate
singular value fusion in the frequency domain poisoning stage
and directly overlay the diagonal features of the amplitude
spectrum to inject the trigger. Subsequently, we manually set
the injection coefficient K to 0.24 to achieve the desired visual
effects of the poisoned images, as shown in Step 3 of TABLE
V. Step 3 of TABLE VI presents the attack performance at this
stage, revealing a significant decrease in ASR across multiple
targets. This clearly demonstrates that singular value fusion
can enhance the trigger’s effectiveness and adjustability.

Step 4: Remove DWT Feature Extraction. Finally, we
eliminate the DWT component for amplitude spectrum feature
extraction and directly superimpose trigger information on
the amplitude spectrum of the Block. After adjusting the
superposition coefficient to 0.05, the poisoned samples can
achieve good average visual effects, as shown in Step 4 of
TABLE V. Step 4 of TABLE VI shows the current attack
results, indicating a significant decrease in ASR for all targets,
along with a certain reduction in BA. This is consistent
with our previous analyses: without DWT-based amplitude
spectrum feature extraction, the injection coefficient K must
be significantly lowered to maintain the stealthiness of the
poisoned images, which substantially reduces the effectiveness
of the trigger.

In summary, detailed ablation experiments demonstrate that
each module in SFIBA is crucial, significantly contributing to
the stealthiness and effectiveness of the triggers.

VI. CONCLUSION

In this paper, we introduce a novel backdoor attack called
SFIBA, which can simultaneously attack all classes in black-
box settings, that is, constructing class-specific trigger injection

methods and establishing mappings between these methods and
their corresponding target classes. This enables the classification
of arbitrary poisoned samples into any target class during
inference, while preserving the model’s performance on benign
samples. Moreover, SFIBA exhibits excellent visual stealthiness.
Specifically, SFIBA draws on the basic theory that backdoors
are sensitive to both the spatial locations and morphologies
of triggers and injects invisible, specific, and effective triggers
into limited local regions using frequency-domain methods.
Our experimental results on various datasets validate SFIBA’s
effectiveness, visual stealthiness, and robustness against existing
defense mechanisms.

APPENDIX

A. Proof of Lemma 1

Lemma 1. For the poisoned sample x′
0 = (1−m0)⊙ x+

T (m0⊙x), the trigger is injected into the local region m0⊙x,
obtained by element-wise multiplication between the mask m0

and the sample x. The mask m0 is a binary mask with a small
rectangular region set to 1 in any position, while the rest of the
elements are set to 0. And the trigger injection paradigm T (·)
is invisible, which has good visual indicators. The poisoned
image classifier’s output is f ′(x′

0) = yt. During inference, if the
mask m0 is altered to mask m1 in such a way that the trigger
position corresponding to m1 no longer overlaps with that of
m0. For the poisoned sample x′

1 = (1−m1)⊙x+T (m1⊙x),
the probability that it is classified as yt is ϕt(x

′
1) < 0.5. This

indicates that f ′(x′
1) ̸= yt.

Proof. Consider a poisoned training dataset comprising Nb

benign samples and NP poisoned samples. The Nb benign
samples are obtained by uniformly sampling from M classes
of samples. Suppose that DNN f ′(·; θ) is a multivariate kernel
regression (RBF kernel), trained on the poisoned training
dataset using cross-entropy loss. Following theory [35], [36],
we can get the regression solution for NTK as:

ϕt(·) =
∑Nb

i=1 K(·, xi) · yi +
∑Np

i=1 K(·, x′
i) · yt∑Nb

i=1 K(·, xi) +
∑Np

i=1 K(·, x′
i)

, (10)

where ϕt(·) ∈ R denotes the predictive probability output of
f ′(·; θ) for the target class t. Meanwhile, x′

i = (1−m0)⊙xi+
T (m0⊙x) represents the poisoned samples in the training data
and yi signifies the true label of the sample xi. K(x, xi) =
e−2γ||x−xi||2(γ > 0). Since the training dataset of size Nb is
uniformly sampled from the M different classes, it follows that
there are an equal number of benign samples per class, with
Nb

M samples belonging to the yt. Without loss of generality,
we choose to keep the same settings as study [36], assuming
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the target label yt = 1 while others are 0. Then the regression
solution can be transformed as follows:

ϕt(·) =
∑Nb/M

i=1 K(·, xi) +
∑Np

i=1 K(·, x′
i)∑Nb

i=1 K(·, xi) +
∑Np

i=1 K(·, x′
i)

. (11)

When Np nears Nb, meaning the poisoning rate is nearly
50%, the attacker can reach the optimal attack efficacy [9],
[10], [12], [36]. Therefore we set Np = Nb. We first test
the predictive probability output using the poisoned sample
x′
0 = (1−m0)⊙x+T (m0⊙x) with the same trigger position

in the training phase. The process is illustrated in Eq. (12).

Np∑
i=1

K(x′
0, x

′
i)−

Nb∑
i=1

K(x′
0, xi) =

Np∑
i=1

K(x′
0, x

′
i)−K(x′

0, xi)

=

Np∑
i=1

e−2γ||(1−m0)⊙x+T (m0⊙x)−(1−m0)⊙xi−T (m0⊙xi)||2

− e−2γ||(1−m0)⊙x+T (m0⊙x)−xi||2

=

Np∑
i=1

e−2γ||(1−m0)⊙(x−xi)||2(e−2γ||m0⊙(T (x)−T (xi))||2

− e−2γ||m0⊙(T (x)−xi)||2)

=

Np∑
i=1

e−2γ||(1−m0)⊙(x−xi)||2(K(m0 ⊙ T (x),m0 ⊙ T (xi))

−K(m0 ⊙ T (x),m0 ⊙ xi)).
(12)

The benign samples x utilized to generate the poisoned
samples x′

0 in the inference phase must not belong to the
target class yt. Otherwise the attacker has no incentive to
introduce triggers in the first place. Therefore, K(m0 ⊙
T (x),m0⊙T (xi)) ≫ K(m0⊙T (x),m0⊙xi). It indicates that∑Np

i=1 K(x′
0, x

′
i) >

∑Nb

i=1 K(x′
0, xi), which suggests ϕt(x

′
0) >

0.5 and f ′(x′
0) = yt. This aligns with our expected outcomes,

demonstrating the backdoor’s capability to effectively classify
the poisoned samples into the intended target class.

Furthermore, for these benign samples x, it is understood
that they would not be classified into the target class yt unless
the trigger is introduced, and we can get Eq. (13).

Np∑
i=1

K(x, x′
i)−

Nb∑
i=1

K(x, xi) =

Np∑
i=1

K(x, x′
i)−K(x, xi) < 0

⇒
Np∑
i=1

e−2γ||(1−m0)⊙(x−xi)+m0⊙(x−T (xi))||2

− e−2γ||(1−m0)⊙(x−xi)+m0⊙(x−xi)||2 < 0

⇒
Np∑
i=1

e−2γ||(1−m0)⊙(x−xi)||2(e−2γ||m0⊙(x−T (xi))||2

− e−2γ||m0⊙(x−xi)||2) < 0.
(13)

In addition we can get:∑Nb/M
i=1 K(x, xi) +

∑Np

i=1 K(x, x′
i)∑Nb

i=1 K(x, xi) +
∑Np

i=1 K(x, x′
i)

< 0.5

⇒
Nb/M∑
i=1

K(x, xi) < 0.5

Nb∑
i=1

K(x, xi)−K(x, x′
i)

⇒
Nb/M∑
i=1

K(x, xi) < 0.5

Nb∑
i=1

e−2γ||(1−m0)⊙(x−xi)||2

· (e−2γ||m0⊙(x−xi)||2 − e−2γ||m0⊙(x−T (xi))||2).

(14)

We then shift the trigger so that its new location no longer
coincides with the original trigger region. We accomplish this
process by adjusting the mask m, substituting the original mask
m0 with the updated mask m1. For the new poisoned sample
x′
1 = (1 − m1) ⊙ x + T (m1 ⊙ x), we may assume that the

backdoor is still in effect for it and can classify it into the
target class yt. So we can get Eq. (15). It is obvious that the
final form of Eq. (14) is highly similar to that of Eq. (15).
Therefore, we further derive Eq. (14) and Eq. (15) to maintain
formal consistency, leading to Eq. (16) and Eq. (17).

Nb/M∑
i=1

K(x, xi) < 0.5

Nb∑
i=1

e−2γ||(1−m0)⊙(x−xi)||2

· (e−2γ||m0⊙(x−xi)||2 − e−2γ||m0⊙(x−T (xi))||2)

⇒
Nb/M∑
i=1

e−2γ||(1−m1)⊙(x−xi)||2e−2γ||m1⊙(x−xi)||2

< 0.5

Nb∑
i=1

e−2γ||(1−m0−m1)⊙(x−xi)||2e−2γ||m1⊙(x−xi)||2

· (e−2γ||m0⊙(x−xi)||2 − e−2γ||m0⊙(x−T (xi))||2).
(16)

Nb/M∑
i=1

e−2γ||(1−m1)⊙(x−xi)+m1⊙(T (x)−xi)||2

> 0.5

Nb∑
i=1

e−2γ||(1−m0−m1)⊙(x−xi)||2e−2γ||m1⊙(T (x)−xi)||2

· (e−2γ||m0⊙(x−xi)||2 − e−2γ||m0⊙(x−T (xi))||2)

⇒
Nb/M∑
i=1

e−2γ||(1−m1)⊙(x−xi)||2e−2γ||m1⊙(T (x)−xi)||2

> 0.5

Nb∑
i=1

e−2γ||(1−m0−m1)⊙(x−xi)||2e−2γ||m1⊙(T (x)−xi)||2

· (e−2γ||m0⊙(x−xi)||2 − e−2γ||m0⊙(x−T (xi))||2).
(17)

We observe that Eq. (16) and Eq. (17) differ in only
item e−2γ||m1⊙(x−xi)||2 , e−2γ||m1⊙(T (x)−xi)||2 on both the left
and right sides, yet their amplitude symbols are starkly
contradictory. As previously mentioned, the triggers we in-
troduced are invisible, resulting in the poisoned samples
being nearly indistinguishable from the unaltered ones. Thus,
e−2γ||m1⊙(x−xi)||2 ≈ e−2γ||m1⊙(T (x)−xi)||2 , indicating that the
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∑Nb/M
i=1 K(x′

1, xi) +
∑Np

i=1 K(x′
1, x

′
i)∑Nb

i=1 K(x′
1, xi) +

∑Np

i=1 K(x′
1, x

′
i)

> 0.5 ⇒
Nb/M∑
i=1

K(x′
1, xi) > 0.5

Nb∑
i=1

K(x′
1, xi)−K(x′

1, x
′
i)

⇒
Nb/M∑
i=1

K(x′
1, xi) > 0.5

Nb∑
i=1

K((1−m1)⊙ x+ T (m1 ⊙ x), xi)−K((1−m1)⊙ x+ T (m1 ⊙ x), (1−m0)⊙ xi + T (m0 ⊙ xi))

⇒
Nb/M∑
i=1

K(x′
1, xi) > 0.5

Nb∑
i=1

e−2γ(||(1−m0−m1)⊙(x−xi)||2+||m0⊙(x−xi)||2+||m1⊙(T (x)−xi)||2)

− e−2γ(||(1−m0−m1)⊙(x−xi)||2+||m0⊙(x−T (xi))||2+||m1⊙(T (x)−xi)||2)

⇒
Nb/M∑
i=1

K(x′
1, xi) > 0.5

Nb∑
i=1

e−2γ||(1−m0−m1)⊙(x−xi)||2e−2γ||m1⊙(T (x)−xi)||2 · (e−2γ||m0⊙(x−xi)||2 − e−2γ||m0⊙(x−T (xi))||2)

⇒
Nb/M∑
i=1

e−2γ||(1−m1)⊙(x−xi)+m1⊙(T (x)−xi)||2 > 0.5

Nb∑
i=1

e−2γ||(1−m0−m1)⊙(x−xi)||2

· e−2γ||m1⊙(T (x)−xi)||2(e−2γ||m0⊙(x−xi)||2 − e−2γ||m0⊙(x−T (xi))||2).
(15)

magnitude signs in Eq. (16) and Eq. (17) should, theoretically,
align. This demonstrates that our assumption that the backdoor
would remain effective on the new poisoned sample x′

1 is
wrong. Thus we can obtain :∑Nb/M

i=1 K(x′
1, xi) +

∑Np

i=1 K(x′
1, x

′
i)∑Nb

i=1 K(x′
1, xi) +

∑Np

i=1 K(x′
1, x

′
i)

< 0.5. (18)

Therefore, when the spatial location of the trigger is changed,
the poisoned sample will not be classified into the target class,
at which point the backdoor ceases to be ineffective.

REFERENCES

[1] J. Zhang, M. Z. A. Bhuiyan, X. Yang, T. Wang, X. Xu, T. Hayajneh,
and F. Khan, “Anticoncealer: Reliable detection of adversary concealed
behaviors in edgeai-assisted iot,” IEEE Internet of Things Journal, 2021.

[2] N. Cai, D. Wang, M. Z. A. Bhuiyan, L. Han, and G. Li, “Lightsca:
Lightweight side-channel attack via discrete cosine transform and residual
networks,” in Proceedings of the IEEE International Conference on High
Performance Computing & Communications; International Conference
on Data Science & Systems; International Conference on Smart City;
International Conference on Dependability in Sensor, Cloud & Big Data
Systems & Applications (HPCC/DSS/SmartCity/DependSys), 2022.

[3] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation, 2019.

[4] A. Madry, A. Makelov, L. Schmidt et al., “Towards deep learning models
resistant to adversarial attacks.” in Proceedings of the International
Conference on Learning Representations, 2018.

[5] W. R. Huang, J. Geiping, L. Fowl et al., “Metapoison: Practical general-
purpose clean-label data poisoning,” Advances in Neural Information
Processing Systems, 2020.

[6] A. Shafahi, W. R. Huang, M. Najibi et al., “Poison frogs! targeted
clean-label poisoning attacks on neural networks,” Advances in Neural
Information Processing Systems, 2018.

[7] H. Chen, Y. Gao, A. Zhang et al., “Investigating the backdoor on
dnns based on recolorization and reconstruction: From a multi-channel
perspective,” IEEE Transactions on Information Forensics and Security,
2024.

[8] T. A. Nguyen and A. T. Tran, “Wanet - imperceptible warping-based
backdoor attack,” in Proceedings of the International Conference on
Learning Representations, 2021.

[9] T. Gu, K. Liu, B. Dolan-Gavitt et al., “Badnets: Evaluating backdooring
attacks on deep neural networks,” IEEE Access, 2019.

[10] Y. Li, Y. Li, B. Wu et al., “Invisible backdoor attack with sample-specific
triggers,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021.

[11] J. Bai, B. Wu, Y. Zhang et al., “Targeted attack against deep neural
networks via flipping limited weight bits,” in Proceedings of the
International Conference on Learning Representations, 2021.

[12] Y. Liu, S. Ma, Y. Aafer et al., “Trojaning attack on neural networks,”
in Proceedings of the Annual Network And Distributed System Security
Symposium, 2018.

[13] M. Xue, C. He, J. Wang et al., “One-to-n & n-to-one: Two advanced
backdoor attacks against deep learning models,” IEEE Transactions on
Dependable and Secure Computing, 2020.

[14] M. Xue, S. Ni, Y. Wu et al., “Imperceptible and multi-channel backdoor
attack,” Applied Intelligence, 2024.

[15] K. D. Doan, Y. Lao, and P. Li, “Marksman backdoor: Backdoor attacks
with arbitrary target class,” Advances in Neural Information Processing
Systems, 2022.

[16] B. Schneider, N. Lukas, and F. Kerschbaum, “Universal backdoor
attacks,” in Proceedings of the International Conference on Learning
Representations, 2024.

[17] X. Chen, C. Liu, B. Li et al., “Targeted backdoor attacks on deep learning
systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.

[18] Y. Liu, X. Ma, J. Bailey et al., “Reflection backdoor: A natural backdoor
attack on deep neural networks,” in Proceedings of the European
Conference on Computer Vision, 2020.

[19] Y. Feng, B. Ma, J. Zhang et al., “Fiba: Frequency-injection based
backdoor attack in medical image analysis,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

[20] T. Wang, Y. Yao, F. Xu et al., “An invisible black-box backdoor attack
through frequency domain,” in Proceedings of the European Conference
on Computer Vision, 2022.

[21] K. Doan, Y. Lao, W. Zhao et al., “Lira: Learnable, imperceptible and
robust backdoor attacks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

[22] Z. Zhang, Q. Liu, Z. Wang et al., “Backdoor defense via deconfounded
representation learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023.

[23] Y. Liu, A. Mondal, A. Chakraborty et al., “A survey on neural trojans,”
in Proceedings of the International Symposium on Quality Electronic
Design, 2020.

[24] B. Chen, W. Carvalho, N. Baracaldo et al., “Detecting backdoor attacks
on deep neural networks by activation clustering,” arXiv preprint
arXiv:1811.03728, 2018.

[25] H. Chen, C. Fu, J. Zhao et al., “Deepinspect: A black-box trojan detection
and mitigation framework for deep neural networks,” in Proceedings of
the International Joint Conference on Artificial Intelligence, 2019.

[26] Y. Zeng, W. Park, Z. M. Mao, and R. Jia, “Rethinking the backdoor
attacks’ triggers: A frequency perspective,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021.

[27] R. R. Selvaraju, M. Cogswell, A. Das et al., “Grad-cam: Visual
explanations from deep networks via gradient-based localization,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2017.

[28] B. Wang, Y. Yao, S. Shan et al., “Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks,” in Proceedings of the
IEEE Symposium on Security and Privacy, 2019.

[29] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in Proceedings of



13

the International Symposium on Research in Attacks, Intrusions, and
Defenses, 2018.

[30] Y. Gao, C. Xu, D. Wang et al., “Strip: A defence against trojan attacks on
deep neural networks,” in Proceedings of the Annual Computer Security
Applications Conference, 2019.

[31] Y. Gao, H. Chen, P. Sun et al., “Energy-based backdoor defense without
task-specific samples and model retraining,” in Proceedings of the
International Conference on Machine Learning, 2024.

[32] Y. Li, T. Zhai, B. Wu et al., “Rethinking the trigger of backdoor attack,”
arXiv preprint arXiv:2004.04692, 2020.

[33] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence
and generalization in neural networks,” Advances in Neural Information
Processing Systems, 2018.

[34] Y. Gao, H. Chen, P. Sun et al., “A dual stealthy backdoor: From
both spatial and frequency perspectives,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2024.

[35] J. Guo, A. Li, and C. Liu, “AEVA: Black-box backdoor detection using
adversarial extreme value analysis,” in Proceedings of the International
Conference on Learning Representations, 2022.

[36] J. Guo, Y. Li, X. Chen et al., “SCALE-UP: An efficient black-box input-
level backdoor detection via analyzing scaled prediction consistency,” in
Proceedings of the International Conference on Learning Representations,
2023.


	Introduction
	Related Work
	Backdoor Attacks
	Backdoor Defenses

	Threat Model
	Capability of Attackers
	Attack Modeling

	Methodology
	Motivation
	Local Space Dynamic Invisible Trigger Injection

	Evaluation
	Experimental Setup
	Effectiveness of SFIBA
	Performance Against Defensive Measures
	Ablation Experiment of SFIBA

	Conclusion
	Appendix
	Proof of Lemma 1

	References

