
Cryptography without Long-Term Quantum Memory
and Global Entanglement

Classical Setups for: One-Time Programs, Copy Protection, Stateful
Obfuscation

Lev Stambler
levstamb@umd.edu

Joint Center for Quantum Information and Computer Science, University of
Maryland, College Park, MD 20742, USA

Department of Computer Science, University of Maryland, College Park, MD 20742,
USA

NeverLocal Ltd. London, WC2H 9JQ, UK

April 21, 2025

Abstract

We show how oracles which only allow for classical query access can be
used to construct a variety of quantum cryptographic primitives which do not
require long-term quantum memory or global entanglement. Specifically, if a
quantum party can execute a semi-quantum token scheme (Shmueli 2022) with
probability of success 12 + 𝛿, we can build powerful cryptographic primitives with a
multiplicative logarithmic overhead for the desired correctness error. Our scheme
makes no assumptions about the quantum party’s noise model except for a simple
independence requirement: noise on two sets of non-entangled hardware must
be independent.

Using semi-quantum tokens and oracles which can only be queried classically,
we first show how to construct a “short-lived” semi-quantum one-time program
(OTP) which allows a classical sending party to prepare a one-time program on
the receiving party’s quantum computer. We then show how to use this semi-
quantum OTP to construct a semi-quantum “stateful obfuscation” scheme (which
we term “RAM obfuscation”). Importantly, the RAM obfuscation scheme does
not require long-term quantum memory or global entanglement. Finally, we show
how RAM obfuscation can be used to build long-lived one-time programs and
copy-protection schemes.

1 Introduction
Quantum cryptography is a field that has seen rapid growth in the last few decades, enabling
a panoply of new cryptographic primitives, impossible in the classical world. One of those
primitives is the one-time program (OTP) [1], which allows a sender to prepare a quantum
state on the receiver’s side such that the receiver can evaluate a function only once using the
quantum state. Some variants of OTPs, such as for sufficiently randomized functionalities, are

1

possible to construct in the quantum setting [2–4], while others require stronger assumptions,
mainly stateless oracles which only accept classical inputs [5–8] or computational restrictions on
the receiver’s quantum computational power [9–12]. We note that classically accessible oracles
can be instantiated using a variety of different assumptions, such as TEEs, custom hardware,
or even a trusted third party/ distributed system.

Unfortunately though, most OTP constructions and other quantum primitives require long-
term quantum memory or global entanglement to capture their full power. For example, one
would hope that a one-time program could be stored for a few days or weeks prior to its
evaluation, but this is not possible in the current state of quantum technology. Specifically, in
order to have a one-time program which can be stored for a long time, existing OTP schemes
would require a sort of quantum memory which can last for a long time.

When assuming a simple noise model, such as Markovian noise, we can use quantum error
correction with a logarithmic overhead in the number of qubits to store the OTP. However,
given the current state of quantum technology, we know that simple noise models do not hold
in practice, especially when considering longer time scales [13–16]. It is thus unclear whether
we can achieve a logarithmic overhead in the number of qubits for long-term quantum memory
in practice. Indeed, a detailed analysis by Gidney and Ekerå shows that quantum computers
must have quite a large overhead in order to achieve reasonable logical error rates [17].

Moreover, when we consider other primitives, such as copy-protection [18], we run into even
more constraints. Specifically, the existing schemes may require global entanglement to run
the program. For example, existing instantiations of generalized copy-protection [19] require
running the entire quantum state in superposition.

In this work, we assume the existence of classically accessible oracles and semi-quantum tokens
[20] to construct a variety of quantum primitives which do not require long-term quantum
memory or global entanglement. Moreover, we show that these primitives are “semi-quantum”,
meaning that the sender/ preparing party can be classical while the receiver/ evaluating party
is quantum¹.

We first construct a semi-quantum OTP which allows a sender to prepare a quantum state on
the receiver’s side such that the receiver can evaluate a function using their quantum state.
We then show how to use this semi-quantum OTP to construct a semi-quantum “stateful
obfuscation” scheme (which we term “RAM obfuscation”). We can define RAM obfuscation
as a scheme which prepares a black-box circuit on the receiver’s side, 𝐶0, such that when the
receiver evaluates 𝐶0(𝑥), the circuit 𝐶0 transitions to a new circuit 𝐶1 depending on the input
𝑥. Then, the receiver can evaluate 𝐶1 on a new input 𝑥′ to get a new circuit 𝐶2 and so on.

In a similar way to Goyal et. al’s method of bootstraping one-time programs to reusable
programs [21], we use our semi-quantum OTP to build RAM obfuscation. Our construction of
RAM obfuscation can be thought of as a sort of “refreshing” of the semi-quantum OTP: i.e. we
build RAM obfuscation by having a one-time program output a new one-time program upon
evaluation. Importantly, because our one-time programs are semi-quantum, the preparation of
the new one-time program does not require any entanglement with the old one-time program!
Thus, we can view the new one-time program as only having a “classical” connection to
the old one-time program. And so, our RAM obfuscation scheme does not require long-term

¹Technically, we also require non-malleable and CPA public key encryption schemes, though we skip over
this detail in the introduction.

2

quantum memory or global entanglement for the receiver to continuously evaluate the program.
Using a simple Chernoff bound and our noise-independence assumption between non-entangled
hardware, we can also show that the overhead of our scheme is logarithmic in the correctness
error of the underlying semi-quantum token scheme.

Finally, we show how our RAM obfuscation scheme can be used to build “long-lived” one-
time programs and copy-protection schemes². Long-lived one-time programs are simply a one-
time program which can be stored for a long duration of time prior to its evaluation. Both
constructions are relatively simple and follow from the construction of RAM obfuscation and
its soundness properties. Because our RAM obfuscation scheme does not require long-term
quantum memory or global entanglement, we immediately get that our long-lived one-time
programs and copy-protection schemes do not require long-term quantum memory or global
entanglement as well.

1.1 Main Results

We now give a high-level overview of our results.

Fault-Tolerant Semi-Quantum Tokens
First, we show how a semi-quantum token scheme [20] can be made “fault-tolerant” with
minimal assumptions on the underlying quantum hardware. At a high level, a semi-quantum
token scheme allows a classical party to prepare a quantum state on the receiver’s side such
that the receiver can “sign” a classical bit on behalf of the sending party using their quantum
state. Importantly, the receiver should only be able to sign once.

To encode a semi-quantum token scheme, we require the following:
• The probability of a correctness error is less than 1

2 − 𝛿 for some 𝛿 ∈ 1
poly(⋅) .

• We can run independent quantum circuits simultaneously and across time which do not
impact each other in terms of noise/ error rate.

Then, we can simply construct a fault-tolerant semi-quantum token scheme by running the
semi-quantum token scheme in parallel. A signature on a bit 𝑏 is accepted if a majority of
the signatures are accepted for the underlying semi-quantum token schemes. Because all of the
semi-quantum token schemes are independent, we can use a Chernoff bound to show that the
probability of a correctness error decreases exponentially with the number of repeated semi-
quantum token schemes.

Given that the remainder of our constructions (one-time programs, RAM obfuscation, etc.) are
built on top of semi-quantum tokens, their fault-tolerance properties are inherited from the
semi-quantum token scheme as well.

Semi-Quantum One-Time Programs
We will now give a high-level overview of our construction of semi-quantum one-time programs
from semi-quantum tokens. We start by requiring that the semi-quantum token scheme has a
single-round setup process. We note that the setup for the token scheme in Ref. [20] is already
single-round. We use a classically accessible oracle as follows³:

²Given that RAM obfuscation implies black-box obfuscation, we can also use RAM obfuscation to build
many other primitives. We also note that RAM obfuscation is on its own quite a powerful primitive.

³Within the scheme itself, the classical oracle is not instance specific but rather a “universal” oracle which
can be used to evaluate any function. This universality is important for our construction of RAM obfuscation.

3

1. For each index 𝑖 ∈ [𝑛], the receiver and sender engage in the setup process for the semi-
quantum token scheme

2. The sender also sends a classical oracle which only allows for the evaluation of a function 𝑓 :
{0, 1}𝑛 → {0, 1}𝑚 on 𝑥 if each input bit of 𝑥 is signed under the sender’s key

3. To evaluate the function 𝑓 on 𝑥, the receiver “signs” each bit of 𝑥𝑖 using their 𝑖-th semi-
quantum token and then sends 𝑥 to the oracle as well as their signatures.

We can see that in the above, the receiver can only evaluate the function 𝑓 on 𝑥 once as the
receiver can only sign for each 𝑖 ∈ [𝑛] once. Moreover, the protocol has a single-round setup as
the receiver sends the first message to the sender. We thus have our first result:

Theorem 1.1 (Informal Statement of Semi-Quantum One-Time Programs): Assuming the
existence of semi-quantum token scheme and classically accessbile oracles, then we can
construct a semi-quantum one-time program with a single-round setup.

Semi-Quantum RAM Obfuscation
Given a semi-quantum one-time program, we can then construct a semi-quantum RAM
obfuscation scheme by having the one-time program output a new one-time program state upon
evaluation. In more detail, say we want to obfuscate a recursive function P𝑖(𝑥) which outputs
some output 𝑦𝑖 and its next evaluation function P𝑖+1(⋅). We can then encode a modified version,
P0, into a one-time program such that when the receiver evaluates P0(𝑥), the program outputs
𝑦0 as well as a new one-time program which encodes the next evaluation function P1. We can do
this because our one-time programs have a single-round setup: the evaluating party can initiate
the interactive setup process for 𝑃1 prior to evaluating 𝑃0 and so P0 can act as the “sending
party” for 𝑃1

4!

We can follow this recursion to get a new one-time program 𝑃𝑖 which encodes the next setup
function for P𝑖+1 as well. In this way, we can build RAM obfuscation by having a one-time
program output a new one-time program upon evaluation. For a visualization of our RAM
obfuscation scheme, see Figure 1.

Moreover, we have a rather straightforward property inherited from the semi-quantum one-time
program: our RAM obfuscation scheme is fault-tolerant, single-round setup, and semi-quantum.

Theorem 1.2 (Informal Statement of RAM Obfuscation): Assuming the existence of a
single-round setup semi-quantum token scheme, we can construct a semi-quantum RAM
obfuscation scheme which also has a single-round setup.

We also get the following fault-tolerance property:

However, for the sake of simplicity, our introduction will focus on a specific instance of the oracle. Within the
real protocol, the oracle itself is fixed as part of a global setup and is not instance specific.

4We note that within the actual protocol, the setup process for 𝑃1 requires some additional information
prior to the receiver generating their setup messages. We can think of this additional information as being
part of the setup process for 𝑃0.

4

P₀ P₁ P₂
x0

y0 y1 y2

P₁ setup P₂ setup P₃ setup

x1 x2

Figure 1: A visualization of our RAM obfuscation scheme. Each box, 𝑃𝑖 represents a one-
time program which outputs 𝑦𝑖 = 𝑃𝑖(𝑥𝑖) and the next one-time program 𝑃𝑖+1 given its setup

messages.

Theorem 1.3 (Informal Statement of Fault-Tolerance for RAM Obfuscation): Assuming
the existence of a semi-quantum token scheme with correctness error less than 1

2 − 𝛿 and
classically accessbile oracles, we can construct a semi-quantum RAM obfuscation scheme
with input size 𝑛 which has correctness error 𝜀 for ℓ evaluations of the program with
multiplicative overhead 𝑂(log(ℓ𝑛

𝜀) ⋅ 1
𝛿2).

To highlight the difference between our fault-tolerance theorem and existing fault-tolerance
theorems, we provide a simple example of a potential architecture which could be used to
build our fault-tolerant semi-quantum token scheme (and thus our RAM obfuscation scheme)
in Figure 2.

Figure 2: Each quantum computer is represented by a yellow circle and classical communication
is represented by a dashed blue line.

Long-Lived One-Time Programs and Copy-Protection
Finally, we get to our two main applications of RAM obfuscation explored in this paper: long-
lived one-time programs and copy-protection schemes. We note that both of these applications
are built on top of our RAM obfuscation scheme and thus inherit its fault-tolerance properties
and lack of long-term quantum memory and global entanglement.

First, we can use RAM obfuscation to build “long-lived” one-time programs. The construction
is a simple application of RAM obfuscation. To encode a function 𝑓 , we can simply encode the
function into a recursive program P𝑖 such that P𝑖(⊥) outputs nothing except for P𝑖+1(⋅) and
P𝑖(𝑥) outputs 𝑓(𝑥) and next recursive program P⊥

𝑖+1 where P⊥
𝑖+1 is a recursive encoding of a

5

“null” function. We can then see that the receiver can choose to evaluate 𝑓 on 𝑥 at any-time step
but can only do so once. Because each of the one-time program evaluations are semi-quantum,
no entanglement is needed between the evaluations. We thus have the following result:

Theorem 1.4 (Informal Statement of Long-Lived One-Time Programs): Assuming the
existence of a semi-quantum token scheme with correctness error less than 12 and classically
accessbile oracles, we can construct a long-lived and fault-tolerant one-time program with
a logarithmic overhead in the correctness error.

We then show how to use RAM obfuscation to build semi-quantum copy-protection schemes. To
copy-protect function 𝑓 , we first choose some secret PRK key 𝐾 and then encode the function
into a recursive program P𝑖(𝑥, 𝑘𝑖) such that P𝑖(𝑥, 𝑘𝑖) outputs (𝑓(𝑥), PRF(𝐾, 𝑖 + 1)) and the
next recursive program P𝑖+1(⋅, 𝑘𝑖+1) if and only if 𝑘𝑖 = PRF(𝐾, 𝑖). Otherwise, the program
outputs nothing except for P⊥

𝑖+1(⋅, 𝑘𝑖+1) where P⊥
𝑖+1 is a recursive encoding of a “null” function,

effectively destroying the program.

Then, by the soundness of RAM obfuscation, we cannot evaluate P𝑖 twice for the same 𝑖. But
then, any non-communicating parties which try to clone 𝑓 have to do one of the following:
1. Evaluate P𝑖 twice for the same 𝑖. Note that this breaks the soundness of RAM obfuscation

and is thus impossible.
2. Evaluate P𝑖 once and then the other party evaluates P𝑗 for some 𝑗 ≠ 𝑖. Assuming that 𝑖 < 𝑗,

the second party must have known 𝑘𝑖 in order to evaluate P𝑖+1, …P𝑗−1. Also, the second party
must have been able to evaluate P𝑗−1 in order to get 𝑘𝑗. But then, the second party must have
evaluated P𝑖 at some point in order to get 𝑘𝑖, breaking the soundness of RAM obfuscation!

Also, just as with the long-lived one-time programs, no entanglement is needed between the
evaluations.

We thus have the following result:

Theorem 1.5 (Informal Statement of Copy-Protection): Assuming the existence of a semi-
quantum token scheme (with correctness error < 1

2) and classically accessible oracles, we
can construct a semi-quantum copy-protection scheme which is also also fault-tolerant
with a logarithmic overhead in the correctness error.

Notation
Throughout this paper, we will use several notational conventions. Generally, we will use
lowercase letters for vectors and uppercase letters for matrices. When referring to the elements
of a vector or matrix, we will use superscript notation, e.g. 𝑥𝑖 refers to the 𝑖th element of vector
𝑥 and 𝐴𝑖 to refer to the 𝑖-th row of matrix 𝐴. For sets, we will generally use script letters such
as 𝒮, and for any set 𝒮, |𝒮| will denote its cardinality. We will also use calligraphic letters to
denote oracles, usually denoted with 𝒪. We will also use the notation 𝒜𝒪 to denote an algorithm
𝒜 with classical oracle access to 𝒪. Also, for any function 𝑓 , 𝑓(⋅) represents its evaluation.

6

We will also use the notation 1-𝑃 to denote an oracle which can only be queried classically once.
And so, 𝒜1-𝑃 denotes an algorithm 𝒜 with oracle access to 𝑃 which can only be classically
queried once.

Outline
The paper is organized as follows. In Section 2, we provide a brief overview of the necessary
background material for the rest of the paper. Then in Section 3, we review semi-quantum
tokenized signature schemes and show how they can be made fault-tolerant in a simple way.
Next, in Section 4, we define and construct receiver-first single-round semi-quantum one-
time programs (OTP). Following our OTP construction, we construct a semi-quantum RAM
obfuscation scheme in Section 5. Then, in Section 6, we show how to use our RAM obfuscation
scheme to construct long-lived OTPs and copy-protection schemes. Finally, in Section 7, we
conclude with a discussion of future work and open problems.

2 Preliminaries
In this section, we provide a brief overview of the necessary background material for the rest
of the paper.

2.1 Different Notions of Public Key Encryption

We will use the simulation-based definition of non-malleable public key encryption from Bellare
et al. [22].

Definition 2.1 (CPA 𝖯𝖪 Non-Malleable Encryption) : Let 𝖯𝖪 = (𝖯𝖪.𝙶𝚎𝚗, PKEncr,
𝙿𝙺.𝙳𝚎𝚌𝚛) be a public key encryption scheme. Let 𝒜 = (𝒜1, 𝒜2) be an adversary consisting
of a pair of BQP algorithms. Let Sim = (Sim1, Sim2) be a pair of algorithms which we call
the simulator. We say that a 𝖯𝖪 scheme is non-malleable for every (quantum) adversary,
𝒜, and polynomial time computable function, Sim, if for all relations 𝑅,

Pr[𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,𝑅(𝜆) = 1] − Pr[𝙴𝚡𝚙𝚝Sim, 𝖯𝖪,𝑅(𝜆) = 1] ≤ negl(𝜆) (1)

where the experiments are defined as
𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,𝑅(𝜆):

(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝜆)
(𝑀, 𝑠1, 𝑠2) ← 𝒜1(𝚙𝚔)
𝑥 ← 𝑀; 𝑦 ←

$
𝙿𝙺.𝙴𝚗𝚌𝚛𝚙𝚔(𝑥)

𝑦′ ← 𝒜2(𝑦, 𝑠2)
𝑥′ ← 𝙿𝙺.𝙳𝚎𝚌𝚛𝚜𝚔(𝑦′)
If 𝑅(𝑥, 𝑥′, 𝑀, 𝑠1) then return 1
Else return 0

𝙴𝚡𝚙𝚝Sim, 𝖯𝖪,𝑅(𝑘)
(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝑘)
(𝑀, 𝑠1, 𝑠2) ← NMSim1(𝚙𝚔)
𝑥 ← 𝑀
𝑦′ ← NMSim2(𝑠2)
𝑥′ ← 𝙿𝙺.𝙳𝚎𝚌𝚛sk(𝑦′)
If 𝑅(𝑥, 𝑥′, 𝑀, 𝑠1) then return 1
Else return 0 (2)

We also use the CPA notion of secure public key encryption from Ref. [23]:

Definition 2.2 (CPA 𝖯𝖪 Encryption) : Let 𝖯𝖪 = (𝖯𝖪.𝙶𝚎𝚗, PKEncr,𝙿𝙺.𝙳𝚎𝚌𝚛) be a public
key encryption scheme. We say that a 𝖯𝖪 scheme is CPA secure for every (quantum)
polynomial time computable function, 𝒜, and polynomial time computable function, Sim,
if

Pr[𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,0(𝜆) = 1] − Pr[𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,1(𝜆) = 1] ≤ negl(𝜆) (3)

where the experiments are defined as

7

𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,0(𝜆):
(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝜆)
(𝑚1,0, 𝑚1,1, …, 𝑚𝑞,0, 𝑚𝑞,1) ← 𝒜1(𝚙𝚔)

where |𝑚𝑖,0| = |𝑚𝑖,1| for 𝑖 ∈ [𝑞]
For all 𝑖 ∈ [𝑞], 𝑐𝑖 ← 𝙿𝙺.𝙴𝚗𝚌𝚛𝚙𝚔(𝑚𝑖,0)
�̂� ← 𝒜(𝑐1, …, 𝑐𝑞) for ̂𝑏 ∈ {0, 1}
Return ̂𝑏

𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,1(𝜆):
(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝜆)
(𝑚1,0, 𝑚1,1, …, 𝑚𝑞,0, 𝑚𝑞,1) ← 𝒜1(𝚙𝚔)

where |𝑚𝑖,0| = |𝑚𝑖,1| for 𝑖 ∈ [𝑞]
For all 𝑖 ∈ [𝑞], 𝑐𝑖 ← 𝙿𝙺.𝙴𝚗𝚌𝚛𝚙𝚔(𝑚𝑖,1)
�̂� ← 𝒜(𝑐1, …, 𝑐𝑞) for ̂𝑏 ∈ {0, 1}
Return ̂𝑏

(4)

2.2 Entropy and Pseudo-Entropy

We also make use of basic notions of information theory and its computational analogues.

Definition 2.3 (Minimum Entropy) : The minimum entropy of a random variable 𝑋,
conditioned on 𝑌 , is defined as

𝐻∞(𝑋 | 𝑌) = − log2 𝔼𝑦←𝑌 (max
{𝑥}

Pr[𝑋 = 𝑥 | 𝑌 = 𝑦]) (5)

Definition 2.4 (HILL Entropy [24,25]) : Let 𝑋, 𝑌 be ensembles of jointly distributed
random variables. We define the pseudo-entropy of 𝑋 conditioned on 𝑌 to be at least
ℓ(𝜆), denoted by 𝐻𝖧𝖨𝖫𝖫(𝑋 | 𝑌) ≥ ℓ(𝜆) if there exists some 𝑋′ distributed with 𝑌 such that
(𝑋, 𝑌) ≈c (𝑋′, 𝑌) and 𝐻∞(𝑋′ | 𝑌) ≥ ℓ(𝜆).

3 Semi-Quantum Tokenized Signature Schemes
We present Shmueli’s semi-quantum tokenized signature scheme [20] though we slightly modify
the definition in the following ways; we:
• split up the classical communication protocol into two separate algorithms. First, we have a

fixed secret/ public key pair for the classical party and a separate evaluation key for a single
quantum token.

• omit the quantum verification algorithm 𝚀𝚅 from the definition, as it is not used in our
construction.

• relax correctness to hold with probability 1
2 + 𝛿 instead of 1 − negl(𝜆) for 𝛿 ∈ poly−1(𝜆).

We note that our changes are quite surface-level and do not change the underlying construction
or security of the scheme proposed by Shmueli.

Definition 3.1 (Semi-quantum tokens, 𝙲𝚀-𝚃𝙾𝙺 [20]) : A semi-quantum tokenized signature
scheme consists of algorithms (𝚂𝚎𝚗, 𝚁𝚎𝚌, 𝚂𝚒𝚐𝚗, 𝙲𝚅) with the following syntax:

• 𝚙𝚔 ← 𝚂𝚎𝚝𝚞𝚙(𝚜𝚔): A classical polynomial-time deterministic algorithm that takes as
input a classical secret key 𝚜𝚔 and outputs a public key 𝚙𝚔.

• (𝚎𝚔, |𝗊𝗍⟩𝚎𝚔) ← ⟨𝚂𝚎𝚗(𝚜𝚔, 𝚙𝚔), 𝚁𝚎𝚌(𝚙𝚔)⟩OUT𝚂𝚎𝚗,OUT𝚁𝚎𝚌
: a classical-communication protocol

between a PPT algorithm Sen and a QPT algorithm Rec. At the end of interaction the
sender outputs a classical evaluation key 𝚎𝚔 and the receiver outputs a quantum state
|𝗊𝗍⟩𝚎𝚔.

• 𝜎𝑏 ← Sign(𝚙𝚔, 𝚎𝚔, |𝗊𝗍⟩𝚎𝚔, 𝑏): A QPT algorithm that gets as input the public key 𝚙𝚔, a
candidate token |𝗊𝗍⟩𝚙𝚔 and a bit 𝑏 ∈ {0, 1} and outputs a classical string 𝜎𝑏.

• 𝙲𝚅(𝚙𝚔, 𝚎𝚔, 𝜎𝑏, 𝑏) ∈ {0, 1}: A classical polynomial-time deterministic algorithm that takes
as input the public key 𝚙𝚔, evaluation key 𝚎𝚔, a classical string 𝜎𝑏 and a bit 𝑏 ∈ {0, 1},
and outputs a bit.

8

The scheme satisfies the following guarantees:

Statistical Correctness: There exists a 𝛿 ∈ poly−1(𝜆) such that for every 𝜆 ∈ ℕ,

Pr[𝙲𝚅(𝚙𝚔, 𝚎𝚔, 𝚂𝚒𝚐𝚗(𝚎𝚔, |𝗊𝗍⟩𝚎𝚔, 𝑏), 𝑏)] ≥ 1
2

+ 𝛿 (6)

where the probability is over (𝚎𝚔, |𝗊𝗍⟩𝚙𝚔) ← ⟨𝚂𝚎𝚗, 𝚁𝚎𝚌⟩OUTSen,OUTRec
)

Security: For every 𝒜 = {𝐴𝜆, 𝜌𝜆}𝜆∈ℕ a quantum polynomial-time algorithm there exists
a negligible function negl(⋅), such that for states sampled by the setup, 𝚙𝚔 ← 𝚂𝚎𝚝𝚞𝚙 and
subsequent interaction with the sender, (𝚎𝚔, QT) ← ⟨𝚂𝚎𝚗, 𝒜⟩OUTSen,OUT𝐴

, for every 𝜆 ∈ ℕ,
then the probability that

QT = (𝜎0, 𝜎1), such that 𝙲𝚅(𝚙𝚔, 𝜎0, 0) = 𝙲𝚅(𝚙𝚔, 𝜎1, 1) = 1 (7)

is negligible in 𝜆.

We further require that the protocol ⟨𝚂𝚎𝚗, 𝚁𝚎𝚌⟩OUTSen,OUTRec
 is single-round protocol. More

formally, we have the following definition:

Definition 3.2 (Receiver-first single-round 𝙲𝚀-𝚃𝙾𝙺) : A 𝙲𝚀-𝚃𝙾𝙺 scheme is receiver-first
single-round if the protocol ⟨𝚂𝚎𝚗, 𝚁𝚎𝚌⟩OUTSen,OUTRec

 is a single-round protocol. Specifically,
the protocol is initiated by the receiver sending a message to the sender, and the sender
responds with a message to the receiver. When a 𝙲𝚀-𝚃𝙾𝙺 is receiver-first single-round, we
specify 𝚂𝚎𝚗(𝚜𝚔, 𝚙𝚔, 𝑧) as the sender’s algorithm where 𝑧 is the receiver’s message instead
of as an interactive protocol. Moreover, as 𝚂𝚎𝚗 is the last algorithm, we also require that
the message of 𝚂𝚎𝚗 is simply just the evaluation key 𝚎𝚔. This is illustrated in Table 1.

Sending Party (Classical) Receiving
Party (Quantum)

⟵⟵
𝑧 𝜌, 𝑧 ← 𝚁𝚎𝚌(𝚙𝚔)

𝚎𝚔 ← 𝚂𝚎𝚗(𝚜𝚔, 𝚙𝚔, 𝑧) ⟶⟶
𝚎𝚔

Table 1: Illustration of receiver-first single-round for the 𝙲𝚀-𝚃𝙾𝙺 scheme

For completeness, we present the modified setup and interactive portion of the scheme in
Protocol 8 within Appendix A though we note that the scheme is essentially the same as the
original scheme proposed by Shmueli. As classical verification and signing remain unchanged,
we do not present them in Appendix A.

3.1 Fault-Tolerant Lifting for 𝙲𝚀-𝚃𝙾𝙺 Schemes

We now highlight one of the main advantages for the use of 𝙲𝚀-𝚃𝙾𝙺 schemes in our construction.
Mainly, we show that the 𝙲𝚀-𝚃𝙾𝙺 scheme can be lifted to a fault-tolerant version of the scheme
as long as the correctness of the scheme holds with probability 1/2 + 𝛿 for 𝛿 = poly−1(𝜆).

Theorem 3.1 (Fault-tolerant lifting of 𝙲𝚀-𝚃𝙾𝙺): Let (𝚂𝚎𝚝𝚞𝚙, 𝚂𝚎𝚗, 𝚁𝚎𝚌, 𝙲𝚅) be a 𝙲𝚀-𝚃𝙾𝙺
scheme such that the following holds:
• The scheme is correct with probability 1/2 + 𝛿.
• The scheme is secure against quantum adversaries.

9

Then there exists a fault-tolerant version of the scheme (𝚂𝚎𝚝𝚞𝚙′, 𝚂𝚎𝚗′, 𝚁𝚎𝚌′, 𝙲𝚅′) such that
the correctness of the scheme holds with probability 1 − 𝜀TOK for any 𝜀TOK > 0 with
multiplicative overhead of 𝑂(log(1

𝜀TOK
) ⋅ 1

𝛿2) over the original scheme.

Proof sketch : The construction follows from a simple repetition of the 𝙲𝚀-𝚃𝙾𝙺 scheme.
Using 𝑤 = 𝑂(log(1

𝜀) ⋅ 1
𝛿2) independent copies of the scheme, we can amplify the correctness

of the scheme to 1 − 𝜀 using standard Chernoff bounds by requiring a signature for 0 to
have at least 𝑤

2 + 1 copies from the underlying scheme accept a signature on 0. To sign for
1, at least 𝑤

2 + 1 copies of the scheme accept a signature for 1. The security of the scheme
follows from the fact that the 𝙲𝚀-𝚃𝙾𝙺 scheme is secure against quantum adversaries and
so producing a signature for 0 and 1 would require the adversary to produce a signature
for both 0 and 1 for at least one copy of the scheme by the pigeonhole principle. ∎

4 Semi-Quantum One-Time Programs
In this section, we define a semi-quantum one-time program (𝙲-𝙾𝚃𝙿) with global setup and
construct a semi-quantum one-time program from semi-quantum tokens (𝙲𝚀-𝚃𝙾𝙺) and classically
accessible oracles.

Definition 4.1 (Semi-quantum one-time program) : A semi-quantum one-time
program (𝙲-𝙾𝚃𝙿) with global setup outputting oracle 𝒪𝙲-𝙾𝚃𝙿 is defined by the
tuple (𝙲-𝙾𝚃𝙿.𝚐𝚕𝚘𝚋𝚊𝚕_𝚜𝚎𝚝𝚞𝚙, 𝙲-𝙾𝚃𝙿.𝚜𝚎𝚝𝚞𝚙𝒪𝙲-𝙾𝚃𝙿 , 𝙲-𝙾𝚃𝙿.𝚐𝚎𝚗𝒪𝙲-𝙾𝚃𝙿 , 𝙲-𝙾𝚃𝙿.𝚎𝚟𝚊𝚕𝒪𝙲-𝙾𝚃𝙿) such that
for global security parameter 𝜆 and setup, we have

𝙲-𝙾𝚃𝙿.𝚐𝚕𝚘𝚋𝚊𝚕_𝚜𝚎𝚝𝚞𝚙(𝚖𝚜𝚔): outputs global auxiliary information 𝚊𝚞𝚡 for master secret
key 𝚖𝚜𝚔 as well as oracle 𝒪𝙲-𝙾𝚃𝙿. Then, for a fixed program 𝑃 , we have
1. 𝙲-𝙾𝚃𝙿.𝚜𝚎𝚝𝚞𝚙 outputs a classical public key 𝚙𝚔 associated to 𝚜𝚔.
2. 𝙲-𝙾𝚃𝙿.𝚐𝚎𝚗 is defined by an interactive protocol, ⟨𝒞𝙲-𝙾𝚃𝙿, 𝒬𝙲-𝙾𝚃𝙿⟩OUT𝒞𝙲-𝙾𝚃𝙿,OUT𝒬𝙲-𝙾𝚃𝙿

, where
𝒞𝙲-𝙾𝚃𝙿 is the classical party and 𝒬𝙲-𝙾𝚃𝙿 is the quantum party. Moreover, we require that
the protocol is single-round as pictured in Table 2. We have OUT𝒬𝙲-𝙾𝚃𝙿

= (|☄⟩, 𝗍𝖺𝗀, 𝚎𝚔).
3. 𝙲-𝙾𝚃𝙿.𝚎𝚟𝚊𝚕(𝑥, |☄⟩, 𝗍𝖺𝗀, 𝚎𝚔, 𝚙𝚔) outputs the evaluation of the program 𝑃(𝑥) on input 𝑥

given the state |☄⟩, tag 𝗍𝖺𝗀, and the evaluation key 𝚎𝚔.

Program Delegating
Party (Classical)

Program Receiving Party
(Quantum)

⟵⟵
𝗍𝖺𝗀 |☄⟩, 𝗍𝖺𝗀 ← 𝒬𝙲-𝙾𝚃𝙿(𝚙𝚔)

𝚎𝚔, 𝚙𝚔′ ← 𝒞𝙲-𝙾𝚃𝙿(𝑃 , 𝚜𝚔, 𝗍𝖺𝗀) ⟶⟶
𝚎𝚔

Table 2: Shape of 𝙲-𝙾𝚃𝙿.𝚐𝚎𝚗

For soundness, we will use a simultation-based definition and leave the UC-based definition for
future work. Because the interactive protocol within generation is single-round, we can define
the soundness of the scheme relative to a classical oracle, 𝒞𝙲-𝙾𝚃𝙿, which can only be called once.
In other words, we represent the sender’s generation algorithm as a classical oracle which can
only be queried once. This simplifies the soundness definition and our proofs.

10

Definition 4.2 (𝙲-𝙾𝚃𝙿 Simulation-Based Soundness) : We say that a 𝙲-𝙾𝚃𝙿 scheme is sound
with correctness error 𝜀corr for program 𝑃 relative to 𝚜𝚔 and auxiliary information, 𝚊𝚞𝚡, if:
• 𝐻𝖧𝖨𝖫𝖫(𝚜𝚔 | 𝑃 , 𝚊𝚞𝚡) = 𝐻𝖧𝖨𝖫𝖫(𝚜𝚔): i.e. the program 𝑃 is computationally independent of

the secret key 𝚜𝚔.
• For every adversary, 𝒜, there exists a simulator Sim such the following holds:

𝒜𝒪𝙲-𝙾𝚃𝙿, 1-𝒞𝙲-𝙾𝚃𝙿(𝑃 , 𝚜𝚔,⋅)(𝚙𝚔, 𝚊𝚞𝚡) ≈c Sim𝒪𝙲-𝙾𝚃𝙿, 1-𝑃 (𝚊𝚞𝚡) (8)
where 1-𝑃 returns an evaluation of 𝑃 with probability 1 − 𝜀corr.

Instantiating Semi-Quantum One-Time Programs from 𝙲𝚀-𝚃𝙾𝙺s

In this section, we will instantiate semi-quantum one-time programs (Definition 4.1) from semi-
quantum tokens (𝙲𝚀-𝚃𝙾𝙺, as per Definition 3.1) as well as classically accessible oracles.

4.1 𝙲-𝙾𝚃𝙿s from a Classically Accessible Oracles and 𝙲𝚀-𝚃𝙾𝙺s

Though one often constructs one-time memories to build one-time programs, we will construct
one-time programs directly for ease of exposition5.

The construction roughly follows the ideas presented in the introduction, though with one
key difference:
1. We use a global classically accessible oracle which can be reused for multiple one-time

programs.
2. The oracle has an associated master secret and public key (𝚖𝚜𝚔, 𝚖𝚙𝚔) which is used by the

sending party to encrypt the one-time program alongside the evaluation key for the quantum
tokens.

3. The classically accessible oracle only evaluates the program if the input has an associated
signature.

Moreover, in the first step of the soundness proof, we make use of a non-malleable public-key
encryption scheme which “ties” the encryption of the evaluation key to the encryption of the
program: we can then ensure that any query to the oracle, attempting to evaluate the program,
under a different evaluation key will fail. Then, we use make use of the “sign-once” nature of
the quantum tokens to ensure that the evaluation key is only valid for a single evaluation of
the program. Next, we use standard notions of public-key encryption to replace the encryption
of the program by a randomly chosen program.

We now present the construction, with the classical oracle specified in Oracle 1 and the protocol
specified in Protocol 2.

5To the author’s knowledge, it may still be possible to first construct one-time memories and then construct
one-time programs from one-time memories. But, because we use non-standard security definitions, this paper
would still need to prove soundness of one-time programs from one-time memories. We thus find it easier to
construct one-time programs directly rather than construct one-time memories and then construct one-time
programs from one-time memories.

11

Oracle 1: Classically Accessible Oracle for the One-Time Program with secret 𝚖𝚜𝚔

Inputs (𝑥, 𝚌𝚝𝐴, 𝜎) for input 𝑥, cipher-text 𝚌𝚝𝐴 for (𝑃 , 𝚎𝚔, 𝚙𝚔), and signatures 𝜎 for each
bit of 𝑥.
Hard-coded 𝚖𝚜𝚔 is the master secret key

1 Use 𝚖𝚜𝚔 to decrypt 𝚌𝚝𝐴 and obtain 𝚎𝚔, 𝚙𝚔 and 𝑃
2 Parse 𝚎𝚔 = (𝚎𝚔1, …, 𝚎𝚔𝑛)
3 Parse 𝚙𝚔 = (𝚙𝚔1, …, 𝚙𝚔𝑛)
4 for 𝑖 ∈ [𝑛]
5 Let 𝑏𝑖 be the 𝑖-th bit of 𝑥
6 If 𝙲𝚀-𝚃𝙾𝙺.𝙲𝚅(𝚙𝚔𝑖, 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔𝑖, 𝜎𝑖, 𝑏𝑖) = 0
7 Return ⊥
8 Return 𝑃(𝑥)

Protocol 2: 𝙲-𝙾𝚃𝙿 from 𝙲𝚀-𝚃𝙾𝙺 for program 𝑃 : {0, 1}𝑛 → {0, 1}𝑛

𝙲-𝙾𝚃𝙿.𝚐𝚕𝚘𝚋𝚊𝚕_𝚜𝚎𝚝𝚞𝚙(𝚖𝚜𝚔) :
Let 𝒪𝙲-𝙾𝚃𝙿 where 𝒪𝙲-𝙾𝚃𝙿 is the classical oracle for Oracle 1 with hard-coded master-secret
key 𝚖𝚜𝚔
Let 𝚖𝚙𝚔 ← 𝖯𝖪.𝙶𝚎𝚗(𝚖𝚜𝚔) be a public key for 𝚖𝚜𝚔
Publish auxiliary information 𝚊𝚞𝚡𝙲-𝙾𝚃𝙿 = (𝚖𝚙𝚔, 𝒪𝙲-𝙾𝚃𝙿)

𝙲-𝙾𝚃𝙿.𝚜𝚎𝚝𝚞𝚙(𝚜𝚔) where 𝚜𝚔 = (𝚜𝚔1, …, 𝚜𝚔𝑛):
𝚙𝚔𝑖 ← 𝙲𝚀-𝚃𝙾𝙺.𝚂𝚎𝚝𝚞𝚙(𝚜𝚔𝑖) for 𝑖 ∈ [𝑛]
Send

𝚙𝚔 = (𝚙𝚔1, …, 𝚙𝚔𝑛) (9)
to the receiver

𝙲-𝙾𝚃𝙿.𝚐𝚎𝚗 :
Follows the protocol outlined in Table 2 with the quantum (receiving) party 𝒬𝙲-𝙾𝚃𝙿, first
doing the following:

For 𝑖 ∈ [𝑛], let |☄⟩𝑖, 𝑧𝑖 ← 𝙲𝚀-𝚃𝙾𝙺.𝚁𝚎𝚌(𝚙𝚔𝑖) for classical tag 𝑧𝑖

Sends 𝑧 = (𝑧1, …, 𝑧𝑛) to the classical party
The classical (sending) party upon receiving 𝑧 = (𝑧1, …, 𝑧𝑛): 𝒞𝙲-𝙾𝚃𝙿(𝑃 , 𝚜𝚔, 𝑧) proceeds:

Sample evaluation key 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔𝑖 ← 𝙲𝚀-𝚃𝙾𝙺.𝚂𝚎𝚗(𝚙𝚔𝑖, 𝚜𝚔𝑖, 𝑧𝑖)
Let 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔 = (𝚎𝚔1, …, 𝚎𝚔𝑛)
Send 𝚌𝚝𝐴 = 𝙿𝙺.𝙴𝚗𝚌𝚛(𝚖𝚙𝚔, [𝑃 , 𝚙𝚔, 𝚎𝚔]) to the quantum party

𝙲-𝙾𝚃𝙿.𝚎𝚟𝚊𝚕𝒪𝙲-𝙾𝚃𝙿(𝚙𝚔, 𝑥, 𝚌𝚝𝐴, 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔, |☄⟩)
Parse 𝚙𝚔 = (𝚙𝚔1, …, 𝚙𝚔𝑛) and |☄⟩ = |☄⟩1, …, |☄⟩𝑛

For 𝑖 ∈ [𝑛], let 𝜎𝑖 ← 𝙲𝚀-𝚃𝙾𝙺.𝚂𝚒𝚐𝚗(𝚙𝚔𝑖, 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔𝑖, |☄⟩𝑖, 𝑥𝑖) and 𝜎 = (𝜎1, …, 𝜎𝑛)
Output 𝒪𝙲-𝙾𝚃𝙿(𝑥, 𝜎, 𝚌𝚝)

12

Theorem 4.1 (Soundness of 𝙲-𝙾𝚃𝙿 from 𝙲𝚀-𝚃𝙾𝙺): Assuming a 𝙲𝚀-𝚃𝙾𝙺 scheme has
correctness error 𝜀TOK, non-malleability and CPA security for public key encryption, and
a classically accessible oracle, 𝒪𝙲-𝙾𝚃𝙿, the protocol Protocol 2 is sound with correctness
error 𝑛 ⋅ 𝜀TOK by the definition of Definition 4.2 as long as 𝐻𝖧𝖨𝖫𝖫(𝚜𝚔 | 𝑃 , 𝚊𝚞𝚡) = 𝐻𝖧𝖨𝖫𝖫(𝚜𝚔).

Proof : We prove Theorem 4.1 by providing a simulator Sim such that the experiments
are indistinguishable for any given adversary. We show that the real and simulated
experiments are indistinguishable via the following hybrids.

• 𝙷𝚢𝚋0: the real protocol
• 𝙷𝚢𝚋1,0: replace the first call to 𝒪𝙲-𝙾𝚃𝙿 with 𝒪1(𝑥, 𝚌𝚝′, 𝜎) as follows:

‣ If 𝑃 ′ is independent of 𝑃 (i.e. 𝐻𝖧𝖨𝖫𝖫(𝑃 | 𝑃 ′) = 𝐻𝖧𝖨𝖫𝖫(𝑃) and vice-versa), return
𝒪𝙲-𝙾𝚃𝙿(𝑥, 𝚌𝚝′, 𝜎)

‣ If 𝚌𝚝′ = 𝚌𝚝𝐴, return 𝒪𝙲-𝙾𝚃𝙿(𝑥, 𝚌𝚝𝐴, 𝜎)
‣ Otherwise, return ⊥

• 𝙷𝚢𝚋1,𝑖: replace the 𝑖-th call to 𝒪𝙲-𝙾𝚃𝙿 with 𝒪1(𝑥, 𝚌𝚝′
𝑃 ′,𝚙𝚔′,𝚎𝚔′ , 𝜎) as follows:

‣ If 𝑃 ′ is independent of 𝑃 given the prior 𝑖 − 1 calls to 𝒪1, return 𝒪1(𝑥, 𝚌𝚝′, 𝜎)
‣ If 𝚌𝚝′ = 𝚌𝚝𝐴, return 𝒪𝙲-𝙾𝚃𝙿(𝑥, 𝜎, 𝚌𝚝𝐴, 𝚎𝚔′)
‣ Otherwise, return ⊥

• 𝙷𝚢𝚋2: Replace 𝚌𝚝𝐴 = 𝚌𝚝𝑃, 𝚜𝚔 with 𝚌𝚝⊥ = 𝙿𝙺.𝙴𝚗𝚌𝚛(𝚖𝚙𝚔, [⊥, 𝚙𝚔, 𝚎𝚔]). Then, replace
𝒪1(𝑥, 𝚌𝚝′, 𝜎) with 𝒪2(𝑥, 𝚌𝚝′, 𝜎) as follows:
‣ If 𝚌𝚝′ = 𝚌𝚝⊥, return 𝒪1(𝑥, 𝚌𝚝𝐴, 𝜎)
‣ Otherwise, return 𝒪1(𝑥, 𝚌𝚝′, 𝜎)

• 𝙷𝚢𝚋3: Replace 𝒪2 with 𝒪1-𝑃
3 (𝑥, 𝚌𝚝′, 𝜎) as follows:

‣ If 𝚌𝚝′ ≠ 𝚌𝚝𝐴, return 𝒪2(𝑥, 𝚌𝚝′, 𝜎)
‣ Check if 𝙲𝚀-𝚃𝙾𝙺.𝙲𝚅(𝚙𝚔𝑖

𝙲𝚀-𝚃𝙾𝙺, 𝚎𝚔𝑖, 𝜎𝑖, 𝑥𝑖) = 1 for all 𝑖 ∈ [𝑛].
– If the check passed, then check if 𝑥 has been called and if yes, retrieve 𝑃(𝑥) from

memory. If not, return 𝑃(𝑥) and store 𝑃(𝑥). Note that each check passes with
probability at least 1 − 𝜀corr and thus, for honest generation, the check passes with
probability 1 − 𝑛 ⋅ 𝜀corr.

– Otherwise, return ⊥
• 𝙷𝚢𝚋4: The same as before except that the simulator samples random public key and

private key pairs for the quantum tokens, 𝚙𝚔𝑖, 𝚜𝚔𝑖. Then sample a corresponding
evaluation key, 𝚎𝚔𝑖, for the tag. Replace the encryption of 𝚌𝚝⊥ with 𝚌𝚝⊥ =
𝙿𝙺.𝙴𝚗𝚌𝚛(𝚖𝚙𝚔, [⊥, 𝚙𝚔, 𝚎𝚔])

• 𝙷𝚢𝚋5: The simulated protocol.

∎

For a proof of the indistinguishability of the hybrids, we refer the reader to Appendix B.

Finally, as a simple corollary of the correctness error and overhead of the 𝙲𝚀-𝚃𝙾𝙺 scheme, we
have the following:

Corollary 4.1 (Fault-Tolerance Overhead) : To achieve a correctness error of 1 − 𝜀corr
for the 𝙲-𝙾𝚃𝙿 scheme, we require 𝑂(log(𝑛/𝜀corr) ⋅ 1

𝛿2) copies of the 𝙲𝚀-𝚃𝙾𝙺 scheme and
thus incur a multiplicative overhead of 𝑂(log(𝑛/𝜀corr) ⋅ 1

𝛿2) over just using a single 𝙲𝚀-𝚃𝙾𝙺
scheme per input bit.

13

5 RAM-Oracles
We can view the “refreshing” of one-time programs as a sort of one-time to many-time lift as in
Ref. [7]. Unlike the normal notion of stateful oracles though, we will consider a slightly stronger
notion. To disambiguate, we will refer to our notion of stateful oracles as RAM-oracles rather
than stateful oracles. The motivation for this is that we provide a mechanism for a (stateless)
oracle to be equipped with some “encrypted and authenticated” RAM of fixed size.

Definition 5.1 (RAM-Oracle) : A stateful RAM-oracle for a program 𝑃 , connoted R𝒪,
with authenticated RAM, is an oracle which maintains an updatable state across queries.
Specifically, we model any algorithm 𝒜 with oracle access to R𝒪𝑝 and starting state RAM0
as follows: the algorithm’s queries to the oracles, 𝑥1, …, 𝑥ℓ with outputs 𝑦1, …, 𝑦ℓ, can be
broken down as follows

(𝑦𝑖, RAM𝑖) = 𝑃(𝑥𝑖, RAM𝑖−1).
where RAM𝑖 is the updated state of the oracle after query 𝑥𝑖.

We then say that a scheme is a RAM-blackbox obfuscator if it can be used to construct a RAM-
oracle for any program 𝑃 . Specifically, we use the following definition:

Definition 5.2 (RAM-Blackbox Obfuscator) : A RAM-blackbox obfuscator is a tuple of
algorithms (R𝒪.𝚜𝚎𝚗𝚍, R𝒪.𝚎𝚟𝚊𝚕) such that:
• R𝒪.𝚜𝚎𝚗𝚍(1𝜆, 𝑃 , RAM0) specifies an interactive protocol between the sending, R𝒪.𝒮

and receiving party, R𝒪.ℛ.
• R𝒪.𝚎𝚟𝚊𝚕(𝑃 , 𝑥, R̃AM𝑖−1) outputs the evaluation of the program 𝑃(𝑥) on input 𝑥 and

new memory state R̃AM𝑖 given the state R̃AM𝑖−1.

Then, for soundness, we require that for every BQP adversary, 𝒜, there exists a simulator
SimR𝒪 such that

𝒜(R𝒪.𝚜𝚎𝚗𝚍(1𝜆, 𝑃 , RAM0), 𝚊𝚞𝚡0) ≈c Sim
R𝒪𝑃,RAM0
R𝒪 (1𝜆, 𝚊𝚞𝚡0)

for auxiliary input 𝚊𝚞𝚡 where we define Sim
R𝒪𝑃,RAM0
R𝒪 as a collection of BQP algorithms

𝐴0, 𝐴1, …, 𝐴ℓ where

Sim
R𝒪𝑃,RAM0
R𝒪 =

𝐴ℓ⚬(𝕀, R𝒪[𝑃 , RAMℓ−1])⚬…⚬(𝕀, R𝒪[𝑃 , RAM1])⚬𝐴1 ⚬ (𝕀, R𝒪[𝑃 , RAM0])⚬𝐴0

and (𝕀, R𝒪[𝑃 , RAMℓ−1]) represents a call to the RAM-oracle R𝒪 with initial state RAMℓ−1
and identity oracle 𝕀 (for passing state between 𝐴𝑖, 𝐴𝑖+1).

5.1 Instantiating RAM-Oracles with C-OTPs

We now show how to instantiate RAM-oracles using the semi-quantum one-time programs
defined above (Definition 4.1).

First, we must define a “recursive” encoding for a program such that its evaluation produces
a new one-time program to “refresh” the original program and allow for multiple queries to
the program. We do this in a very similar manner to how Goyal et al. construct “pay-per-use”
programs from one-time programs [21].

Definition 5.3 (Recursive Program Encoding, 𝑃) : We define the program 𝑃 𝚜𝚔
RAM𝑖

 for
original program 𝑃 : ℛ𝒜ℳ × 𝒳 → ℛ𝒜ℳ × 𝒳 as follows:

14

𝑃 𝚜𝚔
RAM𝑖

(𝑥, 𝗍𝖺𝗀𝑖+1) = (𝑃(RAM𝑖, 𝑥), 𝚎𝚔𝑖+1[𝑃𝑖+1], 𝚙𝚔𝑖+2)

where:
• 𝚜𝚔𝑖 = 𝙿𝚁𝙵(𝚜𝚔, 𝑖) and 𝚙𝚔𝑖 = 𝙲-𝙾𝚃𝙿.𝚜𝚎𝚝𝚞𝚙(𝚜𝚔𝑖)
• 𝚎𝚔𝑖+1[𝑃𝑖+1] = 𝒞𝙲-𝙾𝚃𝙿(𝑃RAM𝑖+1

, 𝚜𝚔𝑖+1, 𝗍𝖺𝗀) for the program 𝑃RAM𝑖+1
 where RAM𝑖+1, 𝑦 =

𝑃(RAM𝑖, 𝑥)

Protocol 3: RAM-Oracle Setup Scheme

Sending Procedure, R𝒪.𝚜𝚎𝚗𝚍(1𝜆, 𝑃 , RAM0):
The sender runs 𝚊𝚞𝚡𝙲-𝙾𝚃𝙿 ← 𝙲-𝙾𝚃𝙿.𝚐𝚕𝚘𝚋𝚊𝚕_𝚜𝚎𝚝𝚞𝚙(𝚖𝚜𝚔) for random secret key
The sender chooses a program 𝑃 and initial RAM state RAM0.
The sender samples a secret key 𝚜𝚔. Let 𝚜𝚔0 = 𝙿𝚁𝙵(𝚜𝚔, 0) and 𝚜𝚔1 = 𝙿𝚁𝙵(𝚜𝚔, 1).
The sender generates

𝚙𝚔0 ← 𝙲-𝙾𝚃𝙿.𝚜𝚎𝚝𝚞𝚙(𝚜𝚔0, 𝚊𝚞𝚡𝙲-𝙾𝚃𝙿), 𝚙𝚔1 ← 𝙲-𝙾𝚃𝙿.𝚜𝚎𝚝𝚞𝚙(𝚜𝚔1, 𝚊𝚞𝚡𝙲-𝙾𝚃𝙿) (10)
and oracle 𝒪𝙲-𝙾𝚃𝙿 with 𝚖𝚜𝚔 embedded.
The sender then sends 𝚙𝚔0, 𝚙𝚔1, 𝒪𝙲-𝙾𝚃𝙿 to the receiver.
The sender and receiver engage in an interactive protocol specified by 𝙲-𝙾𝚃𝙿.𝚐𝚎𝚗 for program
𝑃RAM0

 where 𝑃RAM0
 is defined as per Definition 5.3. The receiver ends up with evaluation

key 𝚎𝚔0 for 𝑃RAM0
.

Evaluation Procedure, R𝒪.𝚎𝚟𝚊𝚕(𝑃RAM𝑖
, 𝑥) for round 𝑖 ≥ 0:

The receiver runs |👻⟩𝑖+1, 𝗍𝖺𝗀𝑖+1 ← 𝒬𝙲-𝙾𝚃𝙿(𝚙𝚔𝑖+1)
The receiver then runs 𝑦, 𝚎𝚔𝑖+1, 𝚙𝚔𝑖+2 ← 𝙲-𝙾𝚃𝙿.𝚎𝚟𝚊𝚕 ((𝑥, 𝗍𝖺𝗀𝑖+1), |👻⟩𝑖, 𝗍𝖺𝗀𝑖, 𝚎𝚔𝑖, 𝚊𝚞𝚡𝙲-𝙾𝚃𝙿)
where 𝑦 = 𝑃(RAM𝑖, 𝑥)
The receiver then outputs result 𝑦 and stores the new state |👻⟩𝑖+1, 𝚎𝚔𝑖+1, and 𝚙𝚔𝑖+2.

Theorem 5.1 (Scheme Simulation Soundness): The RAM-oracle scheme in Protocol 3
is sound assuming that the underlying 𝙲-𝙾𝚃𝙿 scheme is sound for program 𝑃RAM for all
RAM ∈ ℛ𝒜ℳ as per Definition 4.2 as long as

𝐻𝖧𝖨𝖫𝖫(𝚜𝚔 | 𝚊𝚞𝚡0, 𝑦1, 𝑦2, …, 𝑦ℓ) = 𝐻𝖧𝖨𝖫𝖫(𝚜𝚔)
where 𝚊𝚞𝚡0 is the initial auxiliary information and 𝑦1, 𝑦2, …, 𝑦ℓ are the outputs of the
program 𝑃 on queries 𝑥1, 𝑥2, …, 𝑥ℓ with RAM states RAM1, RAM2, …, RAMℓ

6.

Proof : Note that though the sending procedure is interactive, there is only one-round of
interaction between the sender and receiver. So, we can model the adversary as a single
algorithm, 𝒜, with access to a single classical invocation of the sender’s classical program
which we will denote as 1-𝒞𝙲-𝙾𝚃𝙿. Also, as we give 𝒜 access to oracle 𝒪𝙲-𝙾𝚃𝙿, we will write
𝒜1-𝒞𝙲-𝙾𝚃𝙿,𝒪𝙲-𝙾𝚃𝙿 to denote the adversary with access to the oracle 1-𝒞𝙲-𝙾𝚃𝙿 and 𝒪𝙲-𝙾𝚃𝙿. When
clear from context, we will drop the superscript for 𝒪𝙲-𝙾𝚃𝙿 for brevity.

6We require this condition to ensure that the secret key 𝚜𝚔 is sufficiently hidden from the adversary
throughout the execution of the protocol as otherwise, the adversary could learn the obfuscated program
while the simulator would be unable to from the secret key 𝚜𝚔 alone.

15

We will prove that our scheme is sound by showing that
𝒜𝒪𝙲-𝙾𝚃𝙿, 1-𝒞𝙲-𝙾𝚃𝙿(𝑃,𝚜𝚔0,⋅) ≈c

𝑆ℓ⚬(𝕀, 1-𝑃 (RAMℓ−1, 𝗍𝖺𝗀)⚬…⚬(𝕀, 1-𝑃 (RAM1, ⋅)⚬𝑆1 ⚬ (𝕀, 1-𝑃 (RAM0, ⋅))⚬𝑆0.
(11)

for simulators 𝑆0, …𝑆ℓ. Consider the following hybrids:
• 𝙷𝚢𝚋0: the real protocol
• 𝙷𝚢𝚋1: replace 𝒜1-𝒞𝙲-𝙾𝚃𝙿(𝚙𝚔0, 𝚊𝚞𝚡) with the simulator for the one-time program: 𝑆1-𝑃 .

Then break up 𝑆 into 2, 𝑆0, 𝑆′
1, 𝑆1 such that

𝑆 = 𝑆1(𝚙𝚔2, ⋅) ⚬ 𝑆
′1-𝒞𝙲-𝙾𝚃𝙿(𝑃RAM1,𝚜𝚔1,⋅)
1 ⚬ 𝑆(1-𝑃(RAM0,⋅).

0 (12)
• 𝙷𝚢𝚋𝑖 for 𝑖 ∈ {2, …, ℓ′} for some ℓ′ ≥ ℓ choosen later in the proof. Replace the last pair

of simulators, 𝑆𝑖−1 ⚬ 𝑆′
𝑖−1 with 𝑆𝑖−1 ⚬ 𝑆1-𝑃RAM𝑖−1 . Then, take 𝑆1-𝑃RAM𝑖−1 and replace it

with three simulators, 𝑆𝑖−1, 𝑆′
𝑖 , 𝑆𝑖 such that

𝑆 1-𝑃RAM𝑖−1 = 𝑆𝑖(𝚙𝚔𝑖+1, ⋅) ⚬ 𝑆
′1-𝒞𝙲-𝙾𝚃𝙿(𝑃RAM1,𝚜𝚔1,⋅)
𝑖 (𝚙𝚔𝑖, ⋅) ⚬ 𝑆(1-𝑃(RAM0,⋅).

𝑖−1 (13)

To prove that the hybrids are valid, we first note that as 𝐻𝖧𝖨𝖫𝖫(𝚜𝚔 | 𝑃 , 𝚊𝚞𝚡) = 𝐻𝖧𝖨𝖫𝖫(𝚜𝚔),
we have that 𝚜𝚔𝑖 = 𝙿𝚁𝙵(𝚜𝚔, 𝑖) is indistinguishable from random and thus we can apply our
simulation secure one-time programs.

Next, note that 𝑃RAM𝑖
 simultaneously evaluates 𝒞𝙲-𝙾𝚃𝙿(𝑃RAM𝑖+1

, 𝚜𝚔𝑖+1, ⋅), outputs 𝚙𝚔𝑖+2,
and evaluates 𝑃(RAM𝑖, ⋅). So, a simulator which can first evaluate 𝑃(RAM𝑖, ⋅) and then
evaluate 𝒞𝙲-𝙾𝚃𝙿(𝑃RAM𝑖+1

), and then receive 𝚙𝚔𝑖+2 is strictly stronger than (and can thus
simulate) the adversary in the real protocol.

Finally, note that after the ℓ-th hybrid, we have

𝑆 = 𝑆ℓ(𝚙𝚔ℓ, ⋅) ⚬ 𝑆
′1-𝒞𝙲-𝙾𝚃𝙿(𝑃RAM1,𝚜𝚔1,⋅)
ℓ ⚬ 𝑆 1-𝑃(RAMℓ−1,⋅)

ℓ−1 ⚬ … ⚬ 𝑆 1-𝑃(RAM1,⋅)
1 ⚬ 𝑆 1-𝑃(RAM0,⋅)

0 (14)
Given that 𝑆 runs in polynomial time, we can always find some polynomially large ℓ′ ≥
ℓ such that 𝑆ℓ, 𝑆′

ℓ is the null simulator as 𝑆’s runtime is consumed by 𝑆ℓ−1, …, 𝑆0.

We thus have our desired result as we can re-write 𝑆 as a set of RAM oracle calls:
𝑆ℓ⚬(𝕀, R𝒪[𝑃 , RAMℓ−1])⚬…⚬(𝕀, R𝒪[𝑃 , RAM1])⚬𝑆1 ⚬ (𝕀, R𝒪[𝑃 , RAM0])⚬𝑆0. (15)

∎

5.2 Short-Lived States are Good Enough

Another useful property of our RAM-oracle scheme is that we do not require long-term storage
of quantum states but rather require short-term (though still with sufficient fidelity) storage of
quantum states.

Specifically, we have the following lemma:

Lemma 5.1 (Short-Lived States are Good Enough) : Assume that non-entangled qubits
have independent noise and that the evaluation of the RAM-obfuscated recursively
encoded program, 𝒪𝑃RAM

 takes 𝜔 time to evaluate. Then, if we are using the RAM-oracle
scheme in Protocol 3 alongside the 𝙲-𝙾𝚃𝙿 scheme in Protocol 2, we have that

Pr[failed evaluation after ℓ queries] ≤ 1 − ℓ ⋅ 𝑝 (16)
where 𝑝 is the probability of a fault occurring during a single 𝙲-𝙾𝚃𝙿 evaluation taking
place over time-scale 𝜔 and ℓ is the number of queries to the program.

16

Proof : The proof follows from a direct inspection of the RAM-oracle scheme in Protocol 3
and the union bound. Note that for each round of the RAM-oracle, we have to evaluate
1 one-time program. Then, the lack of shared quantum resources between rounds and
independence assumption of non-entangled hardware means that the probability of a
fault occuring in each round is independent of the probability of a fault occuring in all
proceeding rounds. So, a simply application of the union bound gives us our desired result.
∎

Finally, we get that our RAM-oracle scheme is fault-tolerant with a logarithmic multiplicative
overhead using Corollary 4.1.

Corollary 5.1 (Logarithmic Overhead implies fault-tolerance) : 𝑂(log(ℓ𝑛
𝜀corr

) ⋅ 1
𝛿2)

overhead is sufficient for a protocol with probability of correctness 1 − 𝜀corr.

Proof : Recall, by Corollary 4.1, that the 𝙲𝚀-𝚃𝙾𝙺 scheme in outlined in Section 3.1 has a
multiplicative overhead of 𝑂(log(ℓ𝑛

𝜀corr
) ⋅ 1

𝛿2) for achieving correctness probability 1 − 𝜀corr
ℓ𝑛 .

So, we have that the overall failure probability for the RAM-oracle scheme in Protocol 3
is 𝜀corr

ℓ𝑛 ⋅ ℓ𝑛 = 𝜀corr. ∎

6 Applications of RAM Oracles
In this section, we discuss some applications of our RAM oracles. Given that RAM oracles
imply stateless black-box oracles, we will not delve into the applications of stateless black-box
oracles as they are already well-known and numerous.

6.1 Long-Lived One-Time Programs without Long-Lived Quantum
Memory

Long-lived quantum memory is a very expensive resource, requiring large error-correcting over-
head. Especially when considering non-Markovian noise, it is not clear as to the cost of such
memory (say holding a qubit for a year).

Instead, we can use our RAM oracles to construct a quantum cryptographic scheme which
does not require long-lived quantum memory though “simulates” the use cases of such long-
lived memory.

As one-time programs can be used to construct many quantum cryptographic schemes (such
as certifiable deletion, quantum tokens, etc.), we will show how to construct “long-lived” one-
time memories from our RAM oracles which imply both classical and one-time programs.

We will prove soundness relative to the following simulation-based notion for one-time memories:

Definition 6.1 (One-Time Memory) : A one-time memory is a protocol between a sender
and receiver which can be represented as a tuple of algorithms (𝚙𝚛𝚎𝚙𝚂𝚝𝚊𝚝𝚎, 𝚛𝚎𝚊𝚍𝚂𝚝𝚊𝚝𝚎)
where:
• 𝚙𝚛𝚎𝚙𝚂𝚝𝚊𝚝𝚎 is a probabilistic algorithm which takes as input 𝑠0, 𝑠1 ∈ 𝒮 and outputs a

quantum state 𝜌 as well as classical auxiliary information aux.
• 𝚛𝚎𝚊𝚍𝚂𝚝𝚊𝚝𝚎 is a (potentially probabilistic) algorithm which takes as input 𝜌, aux and

𝛼 ∈ {0, 1} and outputs a classical string 𝑠𝛼 with probability 1 − 𝜀.

Definition 6.2 (Correctness) : A one-time memory (𝚙𝚛𝚎𝚙𝚂𝚝𝚊𝚝𝚎, 𝚛𝚎𝚊𝚍𝚂𝚝𝚊𝚝𝚎) is said correct
with probability 𝜀 if for all 𝑠0, 𝑠1 ∈ 𝒮, we have that

17

Pr[𝑠𝛼 = 𝑠𝛼′] ≥ 1 − 𝜀 (17)
where 𝑠𝛼 = 𝚛𝚎𝚊𝚍𝚂𝚝𝚊𝚝𝚎(𝚙𝚛𝚎𝚙𝚂𝚝𝚊𝚝𝚎(𝑠0, 𝑠1), 𝛼).

We adopt the definition of soundness for one-time memories in Ref. [10].

Definition 6.3 (Soundness) : A one-time memory (𝚙𝚛𝚎𝚙𝚂𝚝𝚊𝚝𝚎, 𝚛𝚎𝚊𝚍𝚂𝚝𝚊𝚝𝚎) is said to be
sound relative to an adversary, 𝒜, which interacts with the protocol, if there exists a
simulator Sim for every inverse sub-exponential 𝛾(⋅) for every 𝑠0, 𝑠1 ∈ 𝒮 such that Sim
makes at most one query to 𝑔𝑠0,𝑠1 : {0, 1} → {𝑠0, 𝑠1} (where 𝑔(𝛼) = 𝑠𝛼) and

𝒜(prepState(1𝜆, 𝑠0, 𝑠1)) ≈
𝛾(𝜆)

Sim𝑔𝑠0,𝑠1(1𝜆) (18)

where ≈
𝛾(𝜆)

 denotes statistical distance of at most 𝛾(𝜆).

Oracle 4: RAM Oracle for long-lived one-time memory for {𝑠0, 𝑠1}

Inital State RAM0 = ⊥ and current state RAM𝑖 = 𝑎 for 𝑎 ∈ {⊥, ⊤}
Inputs: 𝑏 ∈ {0, 1} ∪ {⊥}

1 If 𝑎 = ⊥ and 𝑏 ≠ ⊥ then
2 RAM𝑖+1 = ⊤
3 Return 𝑠𝑏
4 Else
5 RAM𝑖+1 = 𝑎
6 Return ⊥

We define the protocol for one-time memory as follows:

Protocol 5: Long-Lived One-Time Memory

𝙾𝚃𝙼.𝚙𝚛𝚎𝚙𝚂𝚝𝚊𝚝𝚎(1𝜆, 𝑠0, 𝑠1):
Let 𝐶 be the RAM program outlined in Oracle 4.
With RAM0 = ⊥, engage in the interactive protocol between the reciever and sender via
R𝒪.𝚜𝚎𝚗𝚍(1𝜆, 𝐶, RAM0)

𝙾𝚃𝙼.𝚛𝚎𝚊𝚍𝚂𝚝𝚊𝚝𝚎(1𝜆, 𝐶RAM𝑖
, 𝛼):

Run R𝒪.𝚎𝚟𝚊𝚕(𝐶RAM𝑖
, 𝛼)

Theorem 6.1 (One-Time Program Correctness): The one-time memory protocol outlined
above (Protocol 5) is correct with probability 1 − 𝜀corr where 𝜀corr is the probability of
error for the RAM oracle.

Proof : The proof follows from the fact that the RAM oracle is simulation sound and thus
allows evaluation of 𝑠0 and 𝑠1 can be done with probability 1 − 𝜀corr. ∎

18

Theorem 6.2 (One-Time Program Security): For every BQP 𝒜, the protocol outlined in
Oracle 4 is sound.

Proof : Assume towards contradiction that the scheme is not simulation secure: i.e. there
exists a BQP adversary 𝒜 such that eq. (18) is broken. Then, we can construct a BQP
adversary 𝒜′ which breaks the simulation soundness of the RAM oracle. Specifically,
𝒜′ calls 𝒜 to get 𝑠0, 𝑠1. Then, 𝒜′ can trivially distinguish between the real and RAM
obfuscated simulated protocol as no set of calls to the RAM oracle returns a message
other than ⊥ more than once. ∎

6.2 Semi-Quantum Copy Protection

Though various definitions for copy-protection exist, we take the definition of copy-protection
from Coladangelo et al. [26] due to both its simplicity and focus on classical circuits. We slightly
modify the definition though to allow for the sender to be a classical party and the receiver to
be a quantum party. We thus need to modify the setup (known as the “protection” procedure)
to allow for an interactive protocol between the sender and receiver. We also allow for multi-
bit output.

Definition 6.4 (Quantum copy-protection scheme, [26]) : Let 𝒞 be a family of classical
circuits with an 𝑚 bit output. A quantum copy-protection (CP) scheme for 𝒞 is a pair of
QPT algorithms (CP.Protect, CP.Eval) with the following properties:

• 𝙲𝙿.𝙿𝚛𝚘𝚝𝚎𝚌𝚝 = ⟨𝚂𝚎𝚗(1𝜆, 𝐶), 𝚁𝚎𝚌⟩⟨⋅,OUT𝚁𝚎𝚌⟩: is a classical communication protocol between
PPT 𝚂𝚎𝚗 and QPT 𝚁𝚎𝚌.

At the end of the interaction 𝚁𝚎𝚌 outputs a quantum state 𝜌.
• 𝙲𝙿.𝙴𝚟𝚊𝚕 takes as input a quantum state 𝜌 and a string 𝑥, and outputs 𝑚 bits.

We say that the scheme is correct if, for any 𝜆 ∈ ℕ, 𝐶 ∈ 𝒞, and any input string 𝑥 to 𝐶:
Pr[𝙲𝙿.𝙴𝚟𝚊𝚕(𝜌, 𝑥) = 𝐶(𝑥) : 𝜌 ← 𝙲𝙿.𝙿𝚛𝚘𝚝𝚎𝚌𝚝(1𝜆, 𝐶)] ≥ 1 − negl(𝜆). (19)

Ref. [26] then go on to define security as a game between a challenger and an adversary consisting
of a triple of QPT algorithms 𝒜 = (𝒫, ℱ1, ℱ2)—a “pirate” 𝒫 and two “freeloaders” ℱ1 and ℱ2.
The game is specified by a security parameter 𝜆, a distribution 𝐷𝜆 over circuits in 𝒞, and an
ensemble {𝐷𝐶}{𝐶∈𝒞} where 𝐷𝐶 is a distribution over pairs of inputs to 𝐶 ∈ 𝒞. Moreover, they
refer to {𝐷𝜆}𝜆∈ℕ as the program ensemble, and to {𝐷𝐶}𝐶∈𝒞 as the input challenge ensemble.
Then, the security game is defined as follows:

1. The challenger samples 𝐶 ← 𝐷𝜆 and sends 𝜌 ← CP.Protect(1𝜆, 𝐶) to 𝒫.
2. 𝒫 creates a state on registers 𝐴 and 𝐵, and sends 𝐴 to 𝐹1 and 𝐵 to 𝐹2.
3. (input challenge phase:) The challenger samples (𝑥1, 𝑥2) ← 𝐷𝐶 and sends 𝑥1 to 𝐹1 and 𝑥2

to 𝐹2. (𝐹1 and 𝐹2 are not allowed to communicate).
4. ℱ1 and ℱ2 each return bits 𝑏1 and 𝑏2 to the challenger.

𝐴 = (𝑃 , 𝐹1, 𝐹2) win if 𝑏1 = 𝐶(𝑥1) and 𝑏2 = 𝐶(𝑥2). Then, let random variable
𝙿𝚒𝚛𝚊𝚝𝚒𝚗𝚐𝙶𝚊𝚖𝚎(𝜆, 𝑃 , 𝐹1, 𝐹2, 𝐷𝜆, {𝐷𝐶}) denote whether the game is won.

19

Colagangelo et al. also define 𝑝triv
𝐷𝜆,{𝐷𝐶}𝐶∈𝒞

 to be the winning probability that is trivially possible
due to correctness: the pirate forwards the copy-protected program to one of the freeloaders,
and leaves the other one with guessing as his best option. Formally:

Definition 6.5 (The trivial probability of winning, 𝑝triv
𝐷𝜆,{𝐷𝐶}𝐶∈𝒞

) : Let �̂�𝐶 be the induced
distribution of winning answer pairs, and let �̂�𝐶,𝑖, for 𝑖 ∈ {1, 2} be its marginals. Then,
one can define the optimal guessing probability of any of the two freeloaders,

𝑝triv
𝐷𝜆,{𝐷𝐶}𝐶∈𝒞

= max
𝑖∈{1,2}

max
𝑏∈{0,1}𝑚

𝔼{𝐶←𝐷𝜆}[�̂�𝐶,𝑖(𝑏)]. (20)

We can now define the security of a quantum copy-protection scheme.

Definition 6.6 (Quantum copy-protection security, [26]) : A quantum copy-protection
scheme for a family of circuits 𝒞 is said to be secure with respect to the ensemble {𝐷𝜆}{𝜆∈ℕ}
of distributions over circuits in 𝒞, and with respect to the ensemble {𝐷𝐶}{𝐶∈𝒞}, where
𝐷𝐶 is a distribution over pairs of inputs to program 𝐶 ∈ 𝒞, if for any QPT adversary
(𝑃 , 𝐹1, 𝐹2), any 𝜆 ∈ ℕ,

Pr[𝙿𝚒𝚛𝚊𝚝𝚒𝚗𝚐𝙶𝚊𝚖𝚎(𝜆, 𝑃 , 𝐹1, 𝐹2, 𝐷𝜆, {𝐷𝐶}) = 1] ≤ 𝑝triv
𝐷𝜆,{𝐷𝐶}𝐶∈𝒞

+ negl(𝜆). (21)

Oracle 6: RAM Oracle for Copy Protection for Classical Circuit, 𝐶 : {0, 1}𝑛 → {0, 1}𝑚and
hardcoded PRF secret 𝐾

Inital State RAM0 = 0
Inputs RAM𝑖 = 𝑖 and input 𝑥 ∈ {0, 1}𝑛, 𝑡 ∈ {0, 1}𝜆

1 If 𝑖 = −1 then
2 Return ⊥
3 If 𝑡 ≠ 𝙿𝚁𝙵(𝐾, 𝑖) then
4 Set RAM𝑖+1 = −1
5 Return ⊥
6 Else
7 Set RAM𝑖+1 = 𝑖 + 1
8 Return 𝐶(𝑥), 𝙿𝚁𝙵(𝐾, (𝑖 + 1))

Protocol 7: Copy Protection from RAM Oracles

𝙲𝙿.𝙿𝚛𝚘𝚝𝚎𝚌𝚝(1𝜆, 𝐶):
Let 𝐶′ be the RAM program outlined in Oracle 6.
With RAM0 = 0, engage in the interactive protocol between the reciever and sender via
R𝒪.𝚜𝚎𝚗𝚍(1𝜆, 𝐶′, RAM0)

𝙲𝙿.𝙴𝚟𝚊𝚕(1𝜆, 𝐶RAM𝑖
, 𝑥):

Run R𝒪.𝚎𝚟𝚊𝚕(𝐶RAM𝑖
, 𝑥)

We can then use our RAM oracle to construct a copy-protection scheme as shown in Protocol 7.

20

Theorem 6.3 (Copy Protection Correctness): The protocol in Protocol 7 is correct with
probability 𝜀corr where 𝜀corr is the probability of correctness for the RAM oracle.

Proof : The proof follows from the fact that RAM obfuscation allows for the simulation
of the program 𝐶 and thus evaluation of 𝐶(𝑥). ∎

Theorem 6.4 (Copy Protection Security): For every BQP 𝒜, the above protocol is sound:
i.e.

Pr[𝙿𝚒𝚛𝚊𝚝𝚒𝚗𝚐𝙶𝚊𝚖𝚎(𝜆, 𝒫, ℱ1, ℱ2, 𝐷𝜆, {𝐷𝐶}) = 1] ≤ 𝑝triv
𝐷𝜆,{𝐷𝐶}𝐶∈𝒞

+ negl(𝜆). (22)

Proof : Assume towards contradiction that the scheme is not copy-protection secure. Then,
there exists freeloaders, ℱ1, ℱ2 such that ℱ1 and ℱ2 can output 𝑃(𝑥1), 𝑃 (𝑥2) respectively
without communicating. Then, we can construct a BQP adversary 𝒜′ which breaks the
simulation soundness of the RAM oracle. First, note that by the soundness of RAM
obfuscation, we can consider the collection (𝒫, ℱ1, ℱ2) as a single adversary, 𝒜′ which is
then modeled by a tuple of algorithms, 𝐴1, …, 𝐴𝑞, for some polynomial 𝑞, such that

𝒜′ = 𝐴𝑞⚬R𝒪[𝐶, RAM𝑞−1]⚬…⚬R𝒪[𝐶, RAM1]⚬𝐴1 ⚬ R𝒪[𝐶, RAM0]⚬𝐴0. (23)

Next, note that if ℱ1 and ℱ2 can output 𝑃(𝑥1), 𝑃 (𝑥2) beyond the trivial probability, then
𝒜′ must make a call to the RAM oracle with 𝑥1 and 𝑥2. We will say that 𝑥 is called at
time step 𝑖 if 𝒜′ makes a call to the RAM oracle with 𝑥𝛼 at time step 𝑖 (i.e. with 𝐴𝑖).
Note that by simulation soundness, only one call to the RAM oracle can be made at a
time step. Then, there are two cases:

Case 1: 𝑥1 and 𝑥2 are called at the same time step. Note that as ℱ1 and ℱ2 do not
communicate, then 𝑃 must be called separately at the same time step. But note that, by
the simulation soundness of RAM obfuscation, 𝒜′ can only make one call to the RAM
oracle at a time step.

Case 2: 𝑥1 and 𝑥2 are called at different time steps. Assume that 𝑥1 is called at timestep
𝑖 and 𝑥2 is called at timestep 𝑗 with 𝑖 < 𝑗. But then, as ℱ1 and ℱ2 do not communicate, ℱ1
has some state after timestep 𝑖 which contains 𝙿𝚁𝙵(𝐾, 𝑖). Note that as ℱ2 cannot call the
RAM oracle at timestep 𝑖 and that 𝙿𝚁𝙵(𝐾, 𝑖) ≈c uniform, ℱ2 cannot call the RAM oracle
at timestep 𝑖 + 1 without setting the state to the constant reject state (i.e. the state set
to −1). But then, ℱ2 cannot call the RAM oracle at timestep 𝑖 + 2, …, 𝑖 + (𝑗 − 𝑖) as only
ℱ1 can call the RAM oracle at these time steps.

And so, if ℱ1 and ℱ2 can output 𝑃(𝑥1), 𝑃 (𝑥2) with non-trivial probability, then 𝒜′ must
break the simulation soundness of the RAM oracle or ℱ1 and ℱ2 must communicate. ∎

Remark 6.1 : Though we do not explore stateful copy-protection in this paper, we note
RAM obfuscation seems amenable to this task as well.

21

6.3 More Applications

RAM obfuscation is a powerful primitive which can be used to construct a variety of other
primitives. Without going into details, we can also construct:
• Smart contracts and cryptocurrency without a blockchain: just as in Amos et al. [27], we

can construct a blockchain-less cryptocurrency by having a RAM oracle act as a “trusted
wallet” which keeps track of a user’s balance. When the user want to send some money, they
use their RAM oracle (as a trusted wallet) to interact with the RAM oracle of the receiver.
Then, both RAM oracles update their state to reflect the new balance. We can view this as
a sort of “strengthening” of quantum money.

• Obfuscation for turing machines and processors: the program of the RAM oracle can be used
to update the state of a turing machine or procesor at each step in a rather simple way.

• A “unique soul” for a computer: though a sci-fi-esque concept, we can use copy protection
alongside RAM oracles to ensure that a robot cannot copy itself but also cannot be internally
inspected! In some sense, this can be thought of as a “unique soul” for a computer in that
it is bound to one point in space and time but cannot be inspected and modified at will.

7 Conclusions and Future Work
In this work, we have shown how to construct a variety of quantum cryptographic primitives
using classically accessible oracles and semi-quantum tokens. Using the semi-quantum nature
of quantum tokens, we are able to construct semi-quantum one-time programs and RAM
obfuscation schemes which inherit the underlying fault-tolerance of the quantum tokens. We
also show how to use our RAM obfuscation scheme to construct long-lived one-time programs
and copy-protection schemes: i.e. we construct primitives which can be used over long time
periods without requiring coherent quantum memory or global entanglement over the same
time period.

At first glance, our use of publicly-verifiable quantum tokens may be too strong of a requirement
for our construction as we only allow for the adversary to have classical access to token’s
verification oracle. We thus believe that our construction can be simplified to use weaker
cryptographic primitives, such as remote-state preperation in combination with quantum MAC
tokens [28], which have the added benefit of being more efficient and noise tolerant. We leave
this as an open problem for future work.

We also note that though our construction is “fault-tolerant,” if the underlying quantum token
scheme has correctness error less than half, achieving a non-trivial correctness error is quite
a difficult task. Though the progress of quantum error correction and computation has been
rapid, the construction of non-trivial correctness error for quantum tokens remains a challenging
open problem.

Acknowledgements
The author is grateful to the helpful discussions and feedback from Fabrizio Romano Genovese,
Gorjan Alagic, Stefano Gogioso, and Yi-Kai Liu. The author also acknowledges funding
and support from NeverLocal Ltd, Neon Tetra LLC, and from the NSF Graduate Research
Fellowship Program.

22

Bibliography
[1] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, One-Time Programs, in Advances

in Cryptology–CRYPTO 2008: 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings 28 (2008), pp. 39–56.

[2] S. Gunn and R. Movassagh, Quantum one-time protection of any randomized algorithm,
Arxiv Preprint Arxiv:2411.03305 (2024).

[3] A. Gupte, J. Liu, J. Raizes, B. Roberts, and V. Vaikuntanathan, Quantum one-time
programs, revisited, Arxiv Preprint Arxiv:2411.01876 (2024).

[4] M.-C. Roehsner, J. A. Kettlewell, J. Fitzsimons, and P. Walther, Probabilistic one-time
programs using quantum entanglement, Npj Quantum Information 7, 98 (2021).

[5] A. Broadbent, S. Gharibian, and H.-S. Zhou, Towards Quantum One-Time Memories from
Stateless Hardware, Quantum 5, 429 (2021).

[6] A. Behera, O. Sattath, and U. Shinar, Noise-tolerant quantum tokens for MAC, Arxiv
Preprint Arxiv:2105.05016 (2021).

[7] K.-M. Chung, M. Georgiou, C.-Y. Lai, and V. Zikas, Cryptography with disposable
backdoors, Cryptography 3, 22 (2019).

[8] L. Stambler, Quantum One-Time Memories from Stateless Hardware, Random Access
Codes, and Simple Nonconvex Optimization, Arxiv Preprint Arxiv:2501.04168 (2025).

[9] L. Stambler, Information Theoretic One-Time Programs from Geometrically Local QNC0
Adversaries, Arxiv Preprint Arxiv:2503.22016 (2025).

[10] Q. Liu, Depth-Bounded Quantum Cryptography with Applications to One-Time Memory
and More., in 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
(2023).

[11] Y.-K. Liu, Building One-Time Memories from Isolated Qubits, in Proceedings of the 5th
Conference on Innovations in Theoretical Computer Science (2014), pp. 269–286.

[12] Y.-K. Liu, Single-Shot Security for One-Time Memories in the Isolated Qubits Model,
in Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II 34 (2014), pp. 19–36.

[13] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. Fisher, A. Garg, and W. Zwerger,
Dynamics of the dissipative two-state system, Reviews of Modern Physics 59, 1 (1987).

[14] M. H. Amin, P. J. Love, and C. Truncik, Thermally assisted adiabatic quantum
computation, Physical Review Letters 100, 60503 (2008).

[15] M. Amin and F. Brito, Non-Markovian incoherent quantum dynamics of a two-state
system, Physical Review B—Condensed Matter and Materials Physics 80, 214302 (2009).

[16] M. W. Johnson et al., Quantum annealing with manufactured spins, Nature 473, 194
(2011).

[17] C. Gidney and M. Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits, Quantum 5, 433 (2021).

23

[18] S. Aaronson, Quantum Copy-Protection and Quantum Money, in 2009 24th Annual IEEE
Conference on Computational Complexity (2009), pp. 229–242.

[19] S. Aaronson, J. Liu, Q. Liu, M. Zhandry, and R. Zhang, New Approaches for Quantum
Copy-Protection, in Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings,
Part I 41 (2021), pp. 526–555.

[20] O. Shmueli, Semi-Quantum Tokenized Signatures, in Annual International Cryptology
Conference (2022), pp. 296–319.

[21] R. Goyal and V. Goyal, Overcoming Cryptographic Impossibility Results Using Blockchains,
in Theory of Cryptography: 15th International Conference, TCC 2017, Baltimore, MD,
USA, November 12-15, 2017, Proceedings, Part I 15 (2017), pp. 529–561.

[22] M. Bellare and A. Sahai, Non-Malleable Encryption: Equivalence between Two Notions,
And an Indistinguishability-Based Characterization, in Annual International Cryptology
Conference (1999), pp. 519–536.

[23] D. Boneh and V. Shoup, A graduate course in applied cryptography, Draft 0.5 (2020).

[24] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from
any one-way function, SIAM Journal on Computing 28, 1364 (1999).

[25] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin, Conditional Computational Entropy, Or toward
Separating Pseudoentropy from Compressibility, in Advances in Cryptology-EUROCRYPT
2007: 26th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007. Proceedings 26 (2007), pp.
169–186.

[26] A. Coladangelo, C. Majenz, and A. Poremba, Quantum copy-protection of compute-and-
compare programs in the quantum random oracle model, Quantum 8, 1330 (2024).

[27] R. Amos, M. Georgiou, A. Kiayias, and M. Zhandry, One-shot Signatures and Applications
to Hybrid Quantum/Classical Authentication, (2020).

[28] A. Behera, O. Sattath, and U. Shinar, Noise-Tolerant Quantum Tokens for MAC, (2021).

24

A Modified Token Generation Protocol
We present a modified token generation protocol for the semi-quantum tokenized signature
scheme. As the signing and verification algorithm remain completely unchanged from [20], we
only present the modified token generation protocol.

Protocol 8: Token Generation Protocol

𝚂𝚎𝚗 is classical and 𝚁𝚎𝚌 is quantum. The joint input is the security parameter 𝜆 ∈ ℕ.

𝚂𝚎𝚝𝚞𝚙:

1
𝚂𝚎𝚗 samples a random 𝜆

2 -dimensional subspace 𝑆 ⊂ {0, 1}𝜆, described by a matrix 𝑀𝑆 ∈
{0, 1}𝜆

2 ×𝜆

2 𝚂𝚎𝚗 samples OTP key 𝑝𝑥 ← {0, 1}𝜆2
2 to encrypt 𝑀 (𝑝𝑥)

𝑆 = QHE.OTP𝑝𝑥
(𝑀𝑆)

3 𝚂𝚎𝚗 generates fhek ← QHE.Gen(1𝜆, 1ℓ(𝜆)) for some polynomial ℓ(⋅)
4 𝚂𝚎𝚗 computes 𝚌𝚝𝑝𝑥

← QHE.Encfhek(𝑝𝑥)
5 𝚂𝚎𝚗 sends the encryption 𝚙𝚔 = (𝑀 (𝑝𝑥)

𝑆 , 𝚌𝚝𝑝𝑥
) to Rec

𝚁𝚎𝚌(𝑀 (𝑝𝑥)
𝑆 , 𝚌𝚝𝑝𝑥

):

6
Let 𝐶 be the quantum circuit that for an input matrix 𝑀 ∈ {0, 1}𝜆

2 ×𝜆, outputs a uniform
superposition of its row span

7 Rec homomorphically evaluates 𝐶: (|𝑆⟩𝑥,𝑧, 𝚌𝚝𝑥,𝑧) ← QHE.Eval((𝑀 (𝑝𝑥)
𝑆 , 𝚌𝚝𝑝𝑥

), 𝐶)
8 Rec saves the quantum part |𝑆⟩𝑥,𝑧 and sends the classical part 𝗍𝖺𝗀 = 𝚌𝚝𝑥,𝑧 to Sen

𝚂𝚎𝚗 then:
9 Sen decrypts 𝗍𝖺𝗀 using the OTP key 𝑝𝑥 to get (𝑥, 𝑧) = QHE.Dec𝑝𝑥

(𝗍𝖺𝗀)
10 if 𝑥 ∈ 𝑆 then
11 The interaction is terminated
12 Let 𝑀𝑆⟂ ∈ {0, 1}{𝜆

2 ×𝜆} be a basis for 𝑆⟂ (as a matrix)
13 Let 𝑤 be the first row in 𝑀𝑆
14 Let 𝑀𝑆0

∈ {0, 1}{(𝜆
2 −1)×𝜆} be the rest of the matrix 𝑀𝑆, without 𝑤

15 Sen computes indistinguishability obfuscations:
16 𝑂𝑆0+𝑥 ← iO(𝑀𝑆0

, 𝑥)
17 𝑂𝑆0+𝑤+𝑥 ← iO(𝑀𝑆0

, 𝑤 + 𝑥)
18 𝑂𝑆⟂+𝑧 ← iO(𝑀𝑆⟂ , 𝑧)
19 All obfuscations use padding poly'(𝜆) for some polynomial poly'
20 Sen sends the obfuscations to Rec

B Missing Proofs for the Semi-Quantum OTP
In this section, we present the missing proofs for the semi-quantum OTP scheme. We first recall
the series of hybrid games used in the proof of Theorem 4.1:

• 𝙷𝚢𝚋0: the real protocol
• 𝙷𝚢𝚋1,0: replace the first call to 𝒪𝙲-𝙾𝚃𝙿 with 𝒪1(𝑥, 𝚌𝚝′, 𝜎) as follows:

25

‣ If 𝑃 ′ is independent of 𝑃 (i.e. 𝐻𝖧𝖨𝖫𝖫(𝑃 | 𝑃 ′) = 𝐻𝖧𝖨𝖫𝖫(𝑃) and vice-versa), return
𝒪𝙲-𝙾𝚃𝙿(𝑥, 𝚌𝚝′, 𝜎)

‣ If 𝚌𝚝′ = 𝚌𝚝𝐴, return 𝒪𝙲-𝙾𝚃𝙿(𝑥, 𝚌𝚝𝐴, 𝜎)
‣ Otherwise, return ⊥

• 𝙷𝚢𝚋1,𝑖: replace the 𝑖-th call to 𝒪𝙲-𝙾𝚃𝙿 with 𝒪1(𝑥, 𝚌𝚝′
𝑃 ′,𝚙𝚔′,𝚎𝚔′ , 𝜎) as follows:

‣ If 𝑃 ′ is independent of 𝑃 given the prior 𝑖 − 1 calls to 𝒪1, return 𝒪1(𝑥, 𝚌𝚝′, 𝜎)
‣ If 𝚌𝚝′ = 𝚌𝚝𝐴, return 𝒪𝙲-𝙾𝚃𝙿(𝑥, 𝜎, 𝚌𝚝𝐴, 𝚎𝚔′)
‣ Otherwise, return ⊥

• 𝙷𝚢𝚋2: Replace 𝚌𝚝𝐴 = 𝚌𝚝𝑃, 𝚜𝚔 with 𝚌𝚝⊥ = 𝙿𝙺.𝙴𝚗𝚌𝚛(𝚖𝚙𝚔, [⊥, 𝚙𝚔, 𝚎𝚔]). Then, replace calls to
𝒪1(𝑥, 𝚌𝚝′, 𝜎) with 𝒪2(𝑥, 𝚌𝚝′, 𝜎) as follows:
‣ If 𝚌𝚝′ = 𝚌𝚝⊥, return 𝒪1(𝑥, 𝚌𝚝𝐴, 𝜎)
‣ Otherwise, return 𝒪1(𝑥, 𝚌𝚝′, 𝜎)

• 𝙷𝚢𝚋3: Replace 𝒪2 with 𝒪1-𝑃
3 (𝑥, 𝚌𝚝′, 𝜎) as follows:

‣ If 𝚌𝚝′ ≠ 𝚌𝚝𝐴, return 𝒪2(𝑥, 𝚌𝚝′, 𝜎)
‣ Check if 𝙲𝚀-𝚃𝙾𝙺.𝙲𝚅(𝚙𝚔𝑖

𝙲𝚀-𝚃𝙾𝙺, 𝚎𝚔𝑖, 𝜎𝑖, 𝑥𝑖) = 1 for all 𝑖 ∈ [𝑛].
– If the check passed, then check if 𝑥 has been called and if yes, retrieve 𝑃(𝑥) from memory.

If not, return 𝑃(𝑥) and store 𝑃(𝑥). Note that each check passes with probability at least
1 − 𝜀corr and thus, for honest generation, the check passes with probability at least 1 −
𝑛 ⋅ 𝜀corr.

– Otherwise, return ⊥
• 𝙷𝚢𝚋4: The same as before except that the simulator samples random public key and private

key pairs for the quantum tokens, 𝚙𝚔𝑖, 𝚜𝚔𝑖. Then sample a corresponding evaluation key, 𝚎𝚔𝑖,
for the tag. Replace the encryption of 𝚌𝚝⊥ with 𝚌𝚝⊥ = 𝙿𝙺.𝙴𝚗𝚌𝚛(𝚖𝚙𝚔, [⊥, 𝚙𝚔, 𝚎𝚔])

• 𝙷𝚢𝚋5: Replace the adversary with the simulator

Lemma 6.1 :
𝙷𝚢𝚋0 ≈c 𝙷𝚢𝚋1,0 (24)

and
𝙷𝚢𝚋1,𝑖−1 ≈c 𝙷𝚢𝚋1,𝑖 (25)

as long as 𝒜 makes at most polynomially many queries to 𝒪𝙲-𝙾𝚃𝙿.

Proof : Assume towards contradiction that there exists a distinguisher 𝐷 which can
distinguish between 𝙷𝚢𝚋0 and 𝙷𝚢𝚋1,0 or 𝙷𝚢𝚋1,𝑖 and 𝙷𝚢𝚋1,𝑖+1 with non-negligible probability.
The proof follows in the same manner for both cases, so we will assume that 𝐷 can
distinguish between 𝙷𝚢𝚋1,𝑖 and 𝙷𝚢𝚋1,𝑖+1 with non-negligible probability. Then , let 𝑠2 be
the protocol’s state after the 𝑖 queries to 𝒪1. Note that 𝑠2 is independent of 𝚖𝚜𝚔 as we
require that 𝐻𝖧𝖨𝖫𝖫(𝚖𝚜𝚔 | 𝑃 , 𝚊𝚞𝚡) = 𝐻𝖧𝖨𝖫𝖫(𝚖𝚜𝚔) and so neither any call to the program or
auxilary state reveal information about 𝚖𝚜𝚔.

Next, recall the two indistinguishable games in the security definition of non-malleable
encryption (Definition 2.1):

26

𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,𝑅(𝜆):
(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝜆)
(𝑀, 𝑠1, 𝑠2) ← 𝒜1(𝚙𝚔)
𝑥 ← 𝑀; 𝑦 ←

$
𝙿𝙺.𝙴𝚗𝚌𝚛𝚙𝚔(𝑥)

𝑦′ ← 𝒜2(𝑦, 𝑠2)
𝑥′ ← 𝙿𝙺.𝙳𝚎𝚌𝚛𝚜𝚔(𝑦′)
If 𝑅(𝑥, 𝑥′, 𝑀, 𝑠1) then return 1
Else return 0

𝙴𝚡𝚙𝚝Sim, 𝖯𝖪,𝑅(𝑘)
(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝑘)
(𝑀, 𝑠1, 𝑠2) ← NMSim1(𝚙𝚔)
𝑥 ← 𝑀
𝑦′ ← NMSim2(𝑠2)
𝑥′ ← 𝙿𝙺.𝙳𝚎𝚌𝚛sk(𝑦′)
If 𝑅(𝑥, 𝑥′, 𝑀, 𝑠1) then return 1
Else return 0 (26)

where 𝚜𝚔 and 𝚙𝚔 correspond to the master secret key (𝚖𝚜𝚔) and its associated public
key (𝚖𝚙𝚔).

Then, in the non-malleable experiment (Definition 2.1), define relationship 𝑅 as follows:
𝑅(𝑥 = (𝑃 , 𝚎𝚔, 𝚙𝚔), 𝑥′ = (𝑃 ′, 𝚎𝚔′, 𝚙𝚔′), 𝑀, "") = 1

 if Pr[𝑃 ′ = 𝑃 | 𝑃 ← ℬ(𝑃 , 𝑠2)] − Pr[𝑃 ′ = 𝑃 | 𝑃 ← ℬ′(𝑠2)] > 𝜀
(27)

for all BQP algorithm ℬ, ℬ′, 𝜀 ∈ negl(𝜆). We now show that if 𝐷 can distinguish between
𝙷𝚢𝚋1,𝑖 and 𝙷𝚢𝚋1,𝑖+1, then we can construct an adversary 𝒜 which can distinguish the
real experiment from the simulated experiment of Definition 2.1 with non-negligible
probability.

Note that NMSim2 in the non-malleable simulator which produces cipher-text encrypting
𝑦′ = (𝑃 ′, 𝚎𝚔′, 𝚙𝚔′) independently of cipher-text 𝑦 = 𝙿𝙺.𝙴𝚗𝚌𝚛𝚙𝚔(𝑃 , 𝚎𝚔, 𝚙𝚔) given 𝑠2. Thus,
𝑃 ′ is independent of 𝑃 . But, if 𝐷 can distinguish between 𝙷𝚢𝚋1,𝑖 and 𝙷𝚢𝚋1,𝑖+1, then 𝒜 can
distinguish between the real and simulated experiments with non-negligible probability as,
in the real distribution, 𝐷 can find some ciphertext encoding 𝑃 ′ which is not independent
of 𝑃 . ∎

Lemma 6.2 :
𝙷𝚢𝚋1,𝑞 ≈c 𝙷𝚢𝚋2 (28)

Proof : Assume towards contradiction that distinguisher 𝐷 can distinguish between the
two hybrids. We can define 𝒜 whichs breaks the CPA security of the public key encryption
scheme as follows:
• First 𝒜 receives the program 𝑃 as auxiliary input as well as the secret key 𝚜𝚔.
• Then, 𝒜 simulates the distribution of 𝐷 in the real protocol given one of two cipher-

texts 𝚌𝚝𝐴 or 𝚌𝚝⊥.
• Then, 𝒜 can distinguish between the two distributions with non-negligible probability

using 𝐷.

Next, note that the following two distributions are indistinguishable by CPA
𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,𝑅(𝜆):

(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝜆)
𝐴 = (𝚖𝚙𝚔, [𝑃 , 𝚙𝚔, 𝚎𝚔]) ← 𝒜1(𝚙𝚔)
𝑦 ←

$
𝙿𝙺.𝙴𝚗𝚌𝚛𝚙𝚔(𝐴)

𝑦′ ← 𝒜2(𝑦, 𝐴)
Return 𝑦′

𝙴𝚡𝚙𝚝𝒜, 𝖯𝖪,𝑅(𝜆):
(𝚙𝚔, 𝚜𝚔) ← 𝖯𝖪.𝙶𝚎𝚗(1𝜆)
𝐴 = [𝑃 , 𝚙𝚔, 𝚎𝚔] ← 𝒜1(𝚙𝚔)
𝑦 ←

$
𝙿𝙺.𝙴𝚗𝚌𝚛𝚙𝚔([⊥, 𝚙𝚔, 𝚎𝚔])

𝑦′ ← 𝒜2(𝑦, 𝐴)
Return 𝑦′ (29)

Given knowledge of 𝐴 = [𝑃 , 𝚎𝚔, 𝚙𝚔], 𝒜2 can simulate all calls to 𝒪1 and 𝒪2 in both cases.
So, 𝒜2 can internally simulate distinguisher 𝐷. Then, if the 𝒜2 can distinguish between

27

the two distributions, it can distinguish between the game in eq. 29 with non-negligible
probability, breaking the cpa security of the public key encryption scheme. ∎

Lemma 6.3 :
𝙷𝚢𝚋2 ≈c 𝙷𝚢𝚋3 (30)

Proof : Assume towards contradiction that a distinguisher 𝐷 can distinguish the two
hybrids. Then, with non-negligible probability, 𝐷 can query 𝒪2 with 𝑥, 𝚌𝚝′, 𝜎 and 𝑥′, 𝚌𝚝′, 𝜎′

with 𝑥 ≠ 𝑥′ such that 𝙲𝚀-𝚃𝙾𝙺.𝙲𝚅 outputs 1 for both queries. Then, 𝐷 can break the security
of the token scheme as the adversary can produce a valid signature for 𝑥 and 𝑥′ under
the same evaluation key. Note that 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔 is independent of 𝑃 , 𝚎𝚔. Without loss of
generality, assume that 𝑥′

𝑖 ≠ 𝑥𝑖.

Define 𝒜 as follows:
• Sample random 𝚜𝚔′

• Let 𝚙𝚔 = (𝚙𝚔1, …, 𝚙𝚔𝑛, 𝙿𝙺.𝙴𝚗𝚌𝚛(𝚖𝚙𝚔, [⊥, 𝚎𝚔′, 𝚙𝚔′])) where 𝚙𝚔′
1, …, 𝚙𝚔′

𝑖−1, 𝚙𝚔𝑖, …, 𝚙𝚔′
𝑛 are

the public keys for the token scheme with 𝚙𝚔′
𝑗 for 𝑖 ≠ 𝑗 equaling a ample of 𝖯𝖪.𝙶𝚎𝚗(1𝜆)

• Internally simulate 𝙲-𝙾𝚃𝙿.𝚐𝚎𝚗 with 𝚙𝚔 except that we use the real messages for the 𝑖-th
evaluation keys to get (𝚎𝚔′

1, …, 𝚎𝚔′
𝑖−1, 𝚎𝚔𝑖, 𝚎𝚔′

𝑖+1, …, 𝚎𝚔′
𝑛) with 𝑖 being randomly choosen.

• Output 𝑥, 𝜎, 𝚌𝚝′, 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔 and 𝑥′, 𝜎′, 𝚌𝚝′, 𝙲𝚀-𝚃𝙾𝙺.𝚎𝚔 with 𝑥 ≠ 𝑥′ using 𝐷.

Note that, in the above, 𝒜 simulates the distribution of 𝐷 in the real protocol. Also,
note that as 𝑥 ≠ 𝑥′, Pr𝑖[𝑥𝑖 ≠ 𝑥′

𝑖] ≥ 1
𝑛 . And so, if 𝐷 can output two signatures for different

messages such that 𝙲𝚀-𝚃𝙾𝙺.𝙲𝚅 outputs 1 with non-negligible probability, than 𝒜 can break
the security definition of Definition 3.1 with inverse polynomial probability. ∎

Lemma 6.4 :
𝙷𝚢𝚋3 = 𝙷𝚢𝚋4 (31)

Proof : Note that the cipher-text, 𝚌𝚝⊥, in the previous hybrid encodes a random public-key
and the null program, ⊥. Thus, 𝚌𝚝⊥ encodes the same distribution of underlying messages
as 𝚌𝚝⊥. ∎

Lemma 6.5 :
𝙷𝚢𝚋4 = 𝙷𝚢𝚋5 (32)

Proof : Note that as the simulator samples 𝚙𝚔, 𝚜𝚔, 𝚎𝚔 in lieu of the setup party, the
simulator can now simulate the call to 𝒞𝙲-𝙾𝚃𝙿. Moreover, by 𝙷𝚢𝚋3, the simulator can make a
single call to 𝑃 va 𝒪1-𝑃

3 . We thus have that the original adversary’s view is indistinguishable
to the simulator’s, Sim1-𝑃,𝒪𝙲-𝙾𝚃𝙿(𝚊𝚞𝚡). ∎

28

	Introduction
	Main Results
	Fault-Tolerant Semi-Quantum Tokens
	Semi-Quantum One-Time Programs
	Semi-Quantum RAM Obfuscation
	Long-Lived One-Time Programs and Copy-Protection

	Notation
	Outline

	Preliminaries
	Different Notions of Public Key Encryption
	Entropy and Pseudo-Entropy

	Semi-Quantum Tokenized Signature Schemes
	Fault-Tolerant Lifting for CQ-TOK Schemes

	Semi-Quantum One-Time Programs
	Instantiating Semi-Quantum One-Time Programs from CQ-TOKs
	C-OTPs from a Classically Accessible Oracles and CQ-TOKs

	RAM-Oracles
	Instantiating RAM-Oracles with C-OTPs
	Short-Lived States are Good Enough

	Applications of RAM Oracles
	Long-Lived One-Time Programs without Long-Lived Quantum Memory
	Semi-Quantum Copy Protection
	More Applications

	Conclusions and Future Work
	Acknowledgements
	Bibliography
	Modified Token Generation Protocol
	Missing Proofs for the Semi-Quantum OTP

