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The conditional disclosure of secrets (CDS) setting is among the most basic primitives
studied in information-theoretic cryptography. Motivated by a connection to non-local
quantum computation and position-based cryptography, CDS with quantum resources has
recently been considered. Here, we study the differences between quantum and classical
CDS, with the aims of clarifying the power of quantum resources in information-theoretic
cryptography. We establish the following results:

• For perfectly correct CDS, we give a separation for a promise version of the not-
equals function, showing a quantum upper bound of O(log n) and classical lower
bound of Ω(n).

• We prove a Ω(log R0,A→B(f) + log R0,B→A(f)) lower bound on quantum CDS where
R0,A→B(f) is the classical one-way communication complexity with perfect correct-
ness.

• We prove a lower bound on quantum CDS in terms of two round, public coin, two-
prover interactive proofs.

• We give a logarithmic upper bound for quantum CDS on forrelation, while the best
known classical algorithm is linear. We interpret this as preliminary evidence that
classical and quantum CDS are separated even with correctness and security error
allowed.

We also give a separation for classical and quantum private simultaneous message passing
for a partial function, improving on an earlier relational separation. Our results use novel
combinations of techniques from non-local quantum computation and communication
complexity.
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1 Introduction
The conditional disclosure of secrets (CDS) setting [1] is among the simplest and best
studied settings in information-theoretic cryptography. Classically, it has applications in
attribute based encryption [2], private information retrieval [1], secret sharing [3], and
has a number of connections to communication complexity [4]. Recently, CDS has begun
to be studied in the quantum setting. This first arose because of a connection between
information-theoretic cryptography, including CDS, and non-local quantum computa-
tion [5]. Quantum CDS also later appeared in the context of quantum gravity and the
AdS/CFT correspondence [6]. Some basic properties of quantum CDS were established
in [7], including amplification, closure under constant depth formulas, and several lower
bounds from communication complexity.

The CDS scenario involves three parties, Alice, Bob and the referee. Alice receives
input x ∈ X = {0, 1}n, Bob receives input y ∈ Y = {0, 1}n, and the referee knows both
x and y. Alice additionally holds a secret s ∈ S. An instance of CDS is specified by a
choice of Boolean function f : X × Y → {0, 1}. Alice and Bob can share randomness (in
the classical case) or entanglement (in the quantum case). From their inputs and shared
correlation, Alice and Bob each produce a message which they send simultaneously to
the referee. Their goal is for the referee to be able to recover s when f(x, y) = 1, but
not learn anything about s when f(x, y) = 0. This is illustrated in figure 1 and defined
formally in definitions 4 and 5. We use “robust CDS” to refer to settings in which we allow
non-zero soundness and correctness error, “perfectly secure” or “perfectly correct CDS”
for protocols which have no respective error, and “perfect CDS” when their is neither type
of error.

Here we further explore quantum CDS, with an emphasis on understanding the rela-
tionship between quantum and classical CDS. We ask if quantum resources provide ad-
vantages in implementing CDS, and to what extent the same or analogous lower bounds
apply to quantum CDS as to classical CDS.
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Figure 1: (a) A classical CDS protocol. Alice, on the lower left, holds input x ∈ {0, 1}n and a secret s from
alphabet S. Bob, on the lower right, holds input y ∈ {0, 1}n. Alice and Bob can share a random string r. The
referee, top right, holds x and y. Alice sends a message mA(x, s, r) to the referee; Bob sends a message mB(y, r).
The referee should learn s iff f(x, y) = 1 for some agreed on choice of Boolean function f . (b) A quantum CDS
protocol. The secret can be a quantum system Q or classical string s (the two cases are equivalent). Alice and
Bob can share an entangled quantum state, and send quantum messages to the referee. The referee should be
able to recover the secret iff f(x, y) = 1. Figure reproduced from [7].

1.1 Prior work

Quantum CDS was introduced in [5], where it was shown to be equivalent to f -routing,
a class of non-local computations studied in the context of position-based cryptography
[8, 9]. In an f -routing protocol Alice and Bob are given input strings x ∈ X = {0, 1}n

and y ∈ Y = {0, 1}n respectively, and a quantum system Q is held by Alice. Alice and
Bob share a quantum state, and will act on their locally held systems to each produce two
output systems. They each keep one of the output systems and send the other system
to the other player. The desired functionality of the protocol is specified by a function
f : X × Y → {0, 1}: Alice should receive Q if f(x, y) = 0 , while Bob should receive Q if
f(x, y) = 1. A non-local quantum computation is a generalization of this scenario where
the inputs are fully quantum, and Alice and Bob should jointly enact a general quantum
channel.

The equivalence in [5] shows that an f -routing protocol for a function f gives a
quantum CDS protocol using essentially the same resources. Conversely, a quantum CDS
protocol gives an f -routing protocol using similar resources, but where any random bits
used in the CDS protocol become shared EPR pairs in the f -routing protocol. Further,
classical CDS protocols imply quantum CDS protocols using similar resources. Taken
together then, these results imply that upper bounds on classical CDS give upper bounds
on quantum CDS and f -routing, and that lower bounds on quantum CDS or f -routing
give lower bounds on classical CDS. One result that follows via these connections is a
good upper bound on the communication and entanglement needed to perform quantum
CDS for functions which can be computed by a quantum circuit in constant T -depth,
which was known previously for f -routing [10]. We return to and use this result later.

Beyond the immediate translation of results via the above implications, the connection
between f -routing and classical CDS more broadly gives us a classical analogue and
starting point for addressing open questions in non-local quantum computation. Indeed,
NLQC is a poorly understood subject, with basic questions remaining unanswered despite
considerable effort. Classical CDS provides a sometimes simpler starting point, and we
can look for analogous properties or proofs in the case of NLQC. Aside from the interest
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Classical Quantum

perfectly secure PPcc
QNPcc,
PPcc

perfectly correct coNPcc coQNPcc

robust

log(RA→B + RB→A) ,
IP[2]cc

HVSZKcc

AMcc

log(R0,A→B) + log(R0,B→A), log Q∗A→B

QIP[2]cc

HVQSZKcc

QAM[2, 2]cc

Table 1: Summary of lower bounds on quantum and classical CDS. The bounds are closely analogous: three
classical lower bounds are reproduced in the quantum setting, with the classical lower bounding class replaced by
a quantum analogue of that class. We add to this analogy by adding two new lower bounds, shown in blue.

in NLQC broadly, we are also interested in quantum CDS in particular. Indeed, we ask
about the power of quantum resources in information-theoretic cryptography.

As a first step in exploring these directions, [7] took up the systematic study of
quantum CDS and established a number of basic results. In particular, they proved that
the soundness and correctness parameters of quantum CDS can be efficiently amplified,
that the cost of a CDS protocol doesn’t grow too quickly when combining functions using
small formulas, and began exploring lower bounds on quantum CDS. To do this, they
worked from analogy with the classical setting, where a number of lower bounds have been
proven based on measures of classical communication complexity. These are summarized
in table 1, along with the quantum counterparts known so far. In particular, [7] proved:

• A lower bound on robust CDS from quantum one-way communication complexity,
mirroring the lower bound on classical CDS from classical one-way communication
complexity.

• A lower bound on perfectly correct CDS from PPcc complexity, matching the classical
lower bound for the same setting (that these bounds match is related to the fact
that QPPcc = PPcc).

• A lower bound on robust CDS from two-message interactive quantum proofs, mir-
roring a lower bound from two-message interactive classical proofs in the classical
setting.

A missing part of the analogy was a lower bound on the classical setting from coNPcc

complexity, for which [7] found no quantum analogue. This was later established in
[11], via a technique apparently unrelated to the classical one. Intriguingly, this last
lower bound also led to a new quantum lower bound on perfectly secure quantum CDS
from QNPcc. This also means classical perfectly secure CDS is lower bounded by QNPcc

complexity, which represents a new insight into classical CDS.

1.2 Our results
In this work, we further explore the analogies between quantum and classical CDS, with
the goal of a deeper understanding of both the classical and quantum settings.

Regarding the study of lower bounds, we first revisit the lower bound on quantum
CDS from the one-way quantum communication complexity, and prove that this can be
upgraded to a similar bound in terms of the classical one way communication complexity,

CDQS(f) = Ω̃(log R0,A→B(f) + log R0,B→A(f)). (1)

Here R0,A→B is the classical one-way (deterministic) communication complexity, CDQS(f)
indicates the communication plus entanglement cost of quantum CDS for the function f ,
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and Ω̃ indicates we have ignored a dependence on log CDQS(f). This essentially matches
the lower bound on classical CDS [2],

CDS(f) = Ω(log(R0,A→B(f) + R0,B→A(f))), (2)

with the distinction that the bound is on the communication alone in the classical case.
That these bounds (nearly) match is an indication that the lower bounds from one-way
communication complexity on classical CDS are in some sense weak: the lower bound
for classical CDS must not be fully exploiting the structure of a CDS protocol, since it
already applies to a much broader class of protocols (those using quantum strategies).

In the classical setting, the CDS complexity is lower bounded by [4]

CDS(f) = Ω(IP[2]cc(f)). (3)

From this starting point, [4] adapts standard results on classical interactive proofs to
the communication setting to transform this into a two-message public coin protocol and
hence transform the above bound into

CDS(f) ≥ [AMcc(f)]α − polylog(n) (4)

where α is a constant. Following the analogous strategy in the quantum case, [7] obtained

CDQS(f) = Ω(QIP[2]cc(f)). (5)

Continuing in analogy to the classical strategy however, when we apply standard trans-
formations for quantum interactive proofs we obtain

CDQS(f) = Ω(QMAMcc(f)) (6)

where a QMAM proof involves a message sent to the verifier from the prover, a single
public coin sent to the prover, then a message sent to the verifier. Unfortunately, since
QIP = QIP[3] = QMAM this is a weakening of the bound from QIP[2].

To obtain a non-trivial public coin bound, we look for a new reduction to a two round
public coin protocol that doesn’t take the reduction to QIP[2]cc as its starting point. We
find that such a reduction is possible, but at the expense of adding an additional prover,

CDQS(f) = Ω(QAM[2, 2]cc(f)) (7)

where the right hand side denotes the communication cost of a two-message, two-prover,
public coin proof.

Aside from the study of lower bounds on quantum CDS, we also look for interesting
upper bounds to establish quantum advantages. Indeed we prove that quantum resources
provide an advantage in some CDS settings. Concretely, considering perfectly correct
CDS we prove a lower bound of Ω(n) for a promise version of the not-equals function
in the classical setting, and an O(log n) upper bound using entanglement. The protocol
is a variation of the standard strategy used to solve the Deutsch-Jozsa problem in the
quantum communication complexity setting.

In the robust setting (imperfect correctness and imperfect privacy), we have bounds
that either 1) can be evaluated explicitly (those in terms of one-way communication com-
plexity) but match between the classical and quantum cases or 2) bounds which may
not match (those in terms of AMcc or QAM[2, 2]cc complexity) but cannot be evaluated
explicitly, at least without breakthroughs in communication complexity.1 Consequently,

1In fact the classical lower bound can be framed in terms of AMcc ∩ coAMcc, which is the smallest class against
which explicit bounds are not known in communication complexity.
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we can’t hope for unconditional quantum-classical separations in the robust setting given
the current state of knowledge of classical lower bounds in communication complexity.
However, we explore the power of quantum resources in the robust setting by giving a
O(log n) upper bound for the “forrelation” function [12], a partial function which has been
important for establishing classical-quantum separations in other contexts. Since there
is no known sub-linear classical upper bound for this function, this provides evidence for
the power of quantum resources in robust CDS. The strategy for the protocol combines
techniques from the non-local quantum computation literature with techniques from com-
munication complexity. In particular, [10] showed how to do non-local computations with
low T-depth efficiently, and [13] proved classical-quantum communication separations in
contexts where the quantum protocol has low complexity. Our protocol involves viewing
the quantum CDS protocol as an instance of a non-local computation and implementing
the low complexity protocol of [13] using the low T-depth technique in [10].

2 Background and tools
2.1 Some quantum information tools
Let D(HA) be the set of density matrices on the Hilbert space HA. Given two density
matrices ρ, σ ∈ D(HA), define the fidelity,

F (ρ, σ) ≡
(

tr
(√√

ρ σ
√
ρ
))2

, (8)

which is related to the one norm distance ∥ρ− σ∥1 by the Fuchs-van de Graaf inequalities,

1 −
√
F (ρ, σ) ≤ 1

2 ∥ρ− σ∥1 ≤
√

1 − F (ρ, σ) . (9)

Next define the diamond norm distance, which is a distance measure on quantum chan-
nels.

Definition 1 Let NB→C ,MB→C : L(HA) → L(HB) be quantum channels. The diamond
norm distance is defined by

∥NB→C − MB→C∥⋄ = sup
d

max
ΨAdB

∥NB→C(ΨAdB) − MB→C(ΨAdB)∥1 (10)

where ΨAdB ∈ D(HAd
⊗ HB) and HAd

is a d-dimensional Hilbert space.

The diamond norm distance has an operational interpretation in terms of the maximal
probability of distinguishing quantum channels [14, 15].

From [16] we have the following theorem.

Theorem 2 For any two channels T1 and T2,

∥T1 − T2∥⋄√
∥T1∥⋄ +

√
∥T2∥⋄

≤ inf
V1,V2

∥V1 − V2∥op ≤
√

∥T1 − T2∥⋄ . (11)

where the infimum is over isometric extensions of T1 and T2.

We will make use of the following remark.

Remark 3 For any two channels T1 and T2, we have that

inf
V1,V2

∥V1 − V2∥⋄ ≤ 2
√

∥T1 − T2∥⋄ (12)

where the infimum is over isometric extensions of the channels T1 and T2 labelled V1 and
V2 respectively.
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Proof. Consider the diamond norm ∥V1 − V2∥⋄ for any isometries V1,V2. Using the
lower bound in equation (11) and using that ∥V1∥⋄ = ∥V2∥⋄ = 1, we have

1
2 ∥V1 − V2∥⋄ ≤ inf

P1,P2
∥V1 ⊗ P1 − V2 ⊗ P2∥op (13)

where P1 and P2 are state preparation channels, and we have used that the only isometric
extensions of isometries is to append a state preparation channel. Then, since taking the
state preparation channels to be trivial is one possible choice of state preparation channel,
we have

inf
P1,P2

∥V1 ⊗ P1 − V2 ⊗ P2∥op ≤ ∥V1 − V2∥op (14)

and hence, combining equations (13) and (14)

1
2 ∥V1 − V2∥⋄ ≤ ∥V1 − V2∥op . (15)

Then since this was true for all isometries, we can combine it with the upper bound in
(11) to obtain

1
2 inf

V1,V2
∥V1 − V2∥⋄ ≤

√
∥T1 − T2∥ (16)

as needed.
Given a quantum channel NA→B, we define a complementary channel (N )c

A→C as any
channel such that there exists an isometry VA→BC such that

NA→B(·) = trC(VA→BC (·)V†A→BC)
(N )c

A→C(·) = trB(VA→BC (·)V†A→BC) . (17)

We will use the following bound from [17]. Suppose we have an ensemble of mixed
states, {(pi, ρi)}. Then

max
σ

∑
i

pi

√
F (σ, ρi) ≤

√∑
i,j

pipj

√
F (ρi, ρj). (18)

In words, if the ρi in the ensemble are very different then we can’t choose a σ that is close
to all of them at once.

2.2 Definition of CDS and some basic properties
We begin by defining the classical CDS setting.

Definition 4 A conditional disclosure of secrets (CDS) task with classical resources is
defined by a choice of function f : {0, 1}2n → {0, 1}. The scheme involves input x ∈
{0, 1}n given to Alice and input y ∈ {0, 1}n given to Bob. Alice and Bob share a random
string r ∈ R. Additionally, Alice holds a string s drawn from distribution S, which we call
the secret. Alice sends message mA(x, s, r) ∈ MA to the referee, and Bob sends message
mB(y, r) ∈ MB. We require the following two conditions on a CDS protocol.

• ϵ-correct: There exists a decoding function D(mA, x,mB, y) such that

∀s ∈ S, ∀ (x, y) ∈ X × Y s.t. f(x, y) = 1, Pr
r←R

[D(mA, x,mB, y) = s] ≥ 1 − ϵ .

(19)
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• δ-secure: There exists a simulator producing a distribution Sim taking on values in
M = MAMB such that

∀s ∈ S, ∀ (x, y) ∈ X × Y s.t. f(x, y) = 0,
∥∥∥SimM |xy − PM |xys

∥∥∥
1

≤ δ . (20)

We define the communication cost of a CDS protocol to be

t = log |MA| + log |MB| , (21)

where the logarithms are always taken base 2. For messages encoded into bits, this is the
total number of bits of communication from Alice and Bob to the referee in a given pro-
tocol. Specifically, we maximize t over choices of input x, y. The minimal communication
cost for a function f that achieves ϵ-correctness and δ-security we denote by CDSϵ,δ(f).
We denote the minimal number of shared random bits needed to be CDSϵ,δ(f). We will
also use shorthand CDS(f) = CDS0.09,0.09(f), CDS(f) = CDS0.09,0.09(f).2

We will be especially interested in comparing properties of classical CDS with prop-
erties of quantum CDS, which we define next.

Definition 5 A conditional disclosure of secrets task with quantum resources (CDQS) is
defined by a choice of function f : {0, 1}2n → {0, 1}, and a dQ-dimensional Hilbert space
HQ which holds the secret. The task involves inputs x ∈ {0, 1}n and system Q given to
Alice, and input y ∈ {0, 1}n given to Bob. Alice sends message system MA to the referee,
and Bob sends message system MB. Alice and Bob share a resource state ΨLR with L
held by Alice and R held by Bob. Label the combined message systems as M = MAMB.
Label the quantum channel defined by Alice and Bob’s combined actions N x,y

Q→M . We put
the following two conditions on a CDQS protocol.

• ϵ-correct: There exists a channel Dx,y
M→Q, called the decoder, such that

∀(x, y) ∈ X × Y s.t. f(x, y) = 1,
∥∥∥Dx,y

M→Q ◦ N x,y
Q→M − IQ→Q

∥∥∥
⋄

≤ ϵ . (22)

• δ-secure: There exists a quantum channel Sx,y
∅→M , called the simulator, such that

∀(x, y) ∈ X × Y s.t. f(x, y) = 0,
∥∥∥Sx,y

∅→M ◦ trQ −N x,y
Q→M

∥∥∥
⋄

≤ δ . (23)

The communication pattern of a CDQS protocol is shown in figure 2. We define the
communication cost of a CDQS protocol to be

t = log dim(MA) + log dim(MB) . (24)

For qubit systems this is the total number of qubits of communication from Alice and
Bob to the referee. We maximize the above over choices of input x, y. The minimal com-
munication cost for a function f that achieves ϵ-correctness and δ-security we denote by
CDQSϵ,δ(f). We denote the minimal number of qubits in the shared resource system plus
the qubits of message to be CDQSϵ,δ(f).3 We will also use CDQS(f) = CDQS0.09,0.09(f),
CDQS(f) = CDQS0.09,0.09(f).

Note that for quantum CDS, whenever ϵ, δ ≤ 0.09 we can amplify and achieve pa-
rameters ϵ′ = ϵ2−k, δ′ = δ2−k using an overhead in communication and entanglement of
a factor of k. More precisely, we have the following theorem from [7]:

2As we comment below, the choice of default errors ϵ = δ = 0.09 is motivated by the values for which an amplification
result can be shown in the quantum setting.

3Notice that this notation differs from the classical case, where the overline indicates just the randomness. In the
classical case the randomness lower bounds the communication [4], while in the quantum case we don’t know a similar
statement. This discrepancy leads to the different notations being natural in the two contexts.
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N x N y

L R

MA
MB

Q

Q iff f(x, y) = 1

(a)

Figure 2: A CDQS protocol, with system labels and location of each quantum operation. The density matrix on
MAMB we refer to as the mid-protocol density matrix. We sometimes combine the actions of Alice and Bob to
define N x,y

Q→M = N x
AL→MA

⊗ N y
R→MB

.

Theorem 6 Let FQ be a CDQS protocol for a function f that supports one qubit secrets
with correctness error δ = 0.09 and privacy error ϵ = 0.09, has communication cost c,
and entanglement cost E. Then for every integer k, there exists a CDQS protocol GQ for
f with k-qubit secrets, privacy and correctness errors of 2−Ω(k), and communication and
entanglement complexity of size O(kc) and O(kE), respectively.

Note that in this result we increase the size of the secret while simultaneously amplifying
correctness and security.

We will also make use of the following result about CDQS.

Lemma 7 Suppose that a CDQS protocol is δ secure, and denote the encoding map by
N x,y

Q→M . Then for (x, y) ∈ f−1(0) there exists a decoding map Dx,y such that∥∥∥Dx,y
M ′→Q ◦ (N x,y)c

Q→M ′ − IQ

∥∥∥
⋄

≤ 2
√
δ . (25)

This lemma follows from the proof of theorem 23 in [5]. Briefly, the intuition behind this
result comes from the decoupling theorem: if quantum information is not recoverable
from the channel N x,y

Q→M , then, since information is not destroyed in quantum mechanics,
it must be recoverable from the environment system and hence from the output of any
complementary channel.

CDS is related to another primitive known as private simultaneous message passing,
which we define as follows.

Definition 8 A private simultaneous message (PSM) task is defined by a choice of function
f : X × Y → Z. The inputs to the task are n bit strings x ∈ X and y ∈ Y given to
Alice and Bob, respectively. Alice then sends a message mA(x, r) to the referee, and Bob
sends message mB(y, r). From these inputs, the referee prepares an output bit z ∈ Z. We
require the task be completed in a way that satisfies the following two properties.

• ϵ-correctness: There exists a decoder Dec such that

∀(x, y) ∈ X × Y, Pr[Dec(mA,mB) = f(x, y)] ≥ 1 − ϵ . (26)

• δ-security: There exists a simulator producing a distribution Sim taking on values
in M = MAMB, such that

∀(x, y) ∈ X × Y,
∥∥∥SimM |f(x,y) − PM |xy

∥∥∥
1

≤ δ . (27)
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Stated differently, the distribution of the message systems is δ-close to one that
depends only on the function value, for every choice of x, y.

PSM is a stronger primitive than CDS in that a PSM protocol for a function f implies
the existence of a CDS protocol for the same function with similar efficiency.

Next, we give the quantum definition. We follow the definition of [5].

Definition 9 A private simultaneous quantum message (PSQM) task is defined by a choice
of function f : X × Y → Z. The inputs to the task are n bit strings x ∈ X and y ∈ Y
given to Alice and Bob, respectively. Alice then sends a quantum message system MA to
the referee, and Bob sends quantum message system MB. From the combined message
system M = MAMB, the referee prepares an output qubit on system Z. We require the
task be completed in a way that satisfies the following two properties.

• ϵ-correctness: There exists a decoding map VM→ZM̃ such that

∀(x, y) ∈ X × Y,
∥∥∥trM̃(VM→ZM̃ρM(x, y)V†

M→ZM̃
) − |f(x, y)⟩⟨f(x, y)|Z

∥∥∥
1

≤ ϵ .

(28)

where ρM(x, y) is the density matrix on M produced on inputs x, y.

• δ-security: There exists a simulator, which is a quantum channel SZ→M(·), such
that

∀(x, y) ∈ X × Y, ∥ρM(x, y) − SZ→M(|f(x, y)⟩⟨f(x, y)|Z)∥1 ≤ δ . (29)

Stated differently, the state of the message systems is δ-close to one that depends
only on the function value, for every choice of input.

As in the classical case, a quantum PSM protocol for the function f gives a good quantum
CDS protocol for the same function with similar efficiency [5].

One important difference between CDS and PSM is that PSM is lower bounded lin-
early by the simultaneous message passing model in communication complexity, whereas
the best bounds on CDS in terms of communication complexity (in the case where finite
errors are allowed) are logarithmic. The key distinction is that in CDS the referee knows
the inputs x, y, whereas in PSM the referee does not know the inputs.

3 Revisiting lower bounds from communication complexity

3.1 Lower bounds from one-way communication complexity
In this section we will give a lower bound on quantum CDS in terms of the one-way
classical communication complexity. We first recall how this is defined.

Definition 10 (Classical one-way communication complexity) Let f : {0, 1}n × {0, 1}n →
{0, 1} and δ ∈ [0, 1]. A one-way communication protocol for f is defined as follows. Alice
receives x ∈ {0, 1}n as input and produces a classical string mA as output, which she
sends to Bob. Bob receives y ∈ {0, 1}n and mA, and outputs a bit z. The protocol is
δ-correct if Pr[z = f(x, y)] ≥ 1 − δ.

The classical one-way communication complexity of f , Rδ,A→B(f) is defined as the
minimum number of qubits in mA needed to achieve δ-correctness. We write RA→B(f) ≡
Rδ=0.09,A→B(f).

10



To relate this to quantum CDS, we use the following lemma, reproduced from [7].4
The lemma captures a basic consequence of correctness and security of the CDQS protocol
for the structure of the ‘mid-protocol density matrix’, which is the state on Alice and
Bob’s messages systems along with a reference system.

Lemma 11 (Reproduced from [7]) Consider the mid-protocol density matrix of an ϵ-
correct, δ-secure CDQS protocol whose dQ-dimensional secret is taken to be a maximally
entangled state between Q and reference system Q̄, i.e.

ρQ̄M(x, y) = N x,y
Q→M(Ψ+

QQ̄
) . (30)

where N x,y
Q→M represents the combined actions of Alice and Bob’s operations. Then, when

f(x, y) = 0 we have that for πQ̄ = I/dQ∥∥∥ρQ̄M(x, y) − πQ̄ ⊗ ρM(x, y)
∥∥∥

1
≤ δ , (31)

and when f(x, y) = 1, we have that for all density matrices σQ̄, σM ,

∥∥∥ρQ̄M(x, y) − σQ̄ ⊗ σM

∥∥∥
1

≥ 2
1 − 1√

dQ

− ϵ . (32)

In [7], the authors prove the following lower bound on quantum CDS.

Theorem 12 [Reproduced from [7]] The one-way quantum communication complexity of
f and the communication cost of a CDQS protocol for f are related by

qA + qB = Ω(log Q∗B→A(f)) . (33)

where qA is the number of qubits sent from Alice to the referee, and qB is the number of
qubits sent from Bob to the referee.

The proof idea is as follows. Starting with a quantum CDS protocol, we build a one-
way quantum communication protocol. We have Alice and Bob share the same entangled
state ΨLR as in the CDQS protocol. Then, Alice and Bob perform the CDQS operations,
call them N x

QL→MA
and N y

R→MB
, taking the secret Q to be maximally entangled with a

reference Q̄, and Bob sends his message MB to Alice. Note that from lemma 11, the re-
sulting density matrix ρQ̄M(x, y) will be close to product across Q̄ and M = MAMB when
f(x, y) = 0 and close to maximally entangled when f(x, y) = 1. Repeating this proce-
dure 2qA+qB times, Alice can use standard tomography techniques to make measurements
characterizing the density matrix and hence determine f(x, y). Thus 2qA+qB ≥ Q∗A→B(f),
leading to the claimed bound.

Our observation here is that we can adjust this strategy to get a lower bound from
the classical communication complexity. The strategy is for Bob to send Alice a classical
description of the quantum state ρLMB

(y) = N y
R→MB

(ΨLR) rather than the state itself.
This description is never too much larger than 2qB+E bits, leading to the following bound.

Theorem 13 Consider a robust CDQS protocol which uses a resource state ΨLR with L
and R consisting of E qubits, and where Alice and Bob send qA and qB qubits to the
referee respectively. Then,

qB + E ≥ Ω̃(log R0,B→A(f)) (34)

The Ω̃ notation indicates we have suppressed a dependence on log(qB + E). The same
bound also holds with A ↔ B.

4Similar observations appear earlier in the f -routing literature, going back to [18].
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Proof. Alice and Bob hold descriptions of the CDQS protocol (but need not the same
resource state ΨLR). Upon receiving y, Bob sends to Alice a classical description of the
state

ρLMB
(y) = N y

R→MB
(ΨLR) (35)

which he can compute, since he knows both y and the description of the CDQS protocol.
We have him specify the entries in ρLMB

to k digits, where we choose k later, so that his
message is kd2

Ld
2
B bits. This describes a matrix ρ̂LMB

which has each entry differ from
the corresponding entry of ρLMB

by at most 1/2k, so that

∥ρ̂LMB
− ρLMB

∥2 =

√√√√√dLdMB∑
i,j=1

|aij|2 ≤ dLdMB

2k
. (36)

We can relate this to the trace distance using that, for a d× d matrix, ∥A∥1 ≤
√
d ∥A∥2,

which here gives

∥ρ̂LMB
− ρLMB

∥1 ≤
√
dLdMB

∥ρ̂LMB
− ρLMB

∥2 ≤
d

3/2
L d

3/2
MB

2k
. (37)

After Bob communicates his description of ρ̂ to Alice, Alice will compute the density
matrix ρQ̄M and check if it is close to product or not. From lemma 11, this allows her
to determine f(x, y). Note that since Alice knows the channel N x

LQ→MA
this doesn’t

introduce any additional error,

||ρ̂QM − ρQM ||1 ≤ ||ρ̂LMB
− ρLMB

||1. (38)

Quantitatively, one can check that for Alice to be able to determine ||ρQ̄M − πQ̄ ⊗ ρM ||1
with sufficient precision it suffices for her to learn ρ to within trace distance

||ρ̂Q̄M − ρQ̄M ||1 = γ(ϵ, δ) = 1
2

1 − 1√
dQ

− ϵ

4 − δ

4 . (39)

Then, if the distance to the product state πQ̄ ⊗ ρM is less than γ she can conclude
f(x, y) = 0 with certainty, while if it is larger than that she can conclude f(x, y) = 1
with certainty. In terms of our parameter k, we need then that

d
3/2
L d

3/2
MB

2k
≤ γ(ϵ, δ) (40)

so that k = 3
2(qB +E) + c(ϵ, δ) suffices. Bob’s total communication is k × d2

Ld
2
Mb

, so that

R0,B→A(f) ≤
(3

2(qB + E) + c(ϵ, δ)
)

22(E+qB) (41)

or

qB + E ≥ 1
2 log R0,B→A −O(log(qB + E)) (42)

We also observe the following simple corollary of this theorem.

Corollary 14 A CDQS protocol which uses E qubits of shared resource, qA qubits of mes-
sage from Alice, and qB qubits of message from Bob must satisfy

CDQS(f) = 2E + qA + qB ≥ Ω̃(log R0,B→A(f) + log R0,A→B(f)) (43)

Here, the Ω̃ notation indicates that we’ve suppressed a dependence on log(qA + E) and
log(qB + E).
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Notice that this gives a different lower bound compared to log Q∗B→A, which in general
is smaller than the lower bound above but also lower bounds the communication cost
qA + qB alone, rather than the entanglement cost plus the communication cost. Unlike in
the classical case we do not in general know if the entanglement cost can be much larger
than the communication cost, so a priori these are different bounds. However, in all
known protocols the entanglement and communication costs are similar. In that setting
the lower bound from classical communication complexity is stronger.

3.2 Two-prover, public coin lower bound
In the classical setting, CDS can be lower bounded polynomially by the AMcc complexity,
as we noted in equation (4). To obtain a non-trivial public coin lower bound in the
quantum case, we find it necessary to consider two-prover proof settings. We define the
appropriate two-prover proof setting next.

Definition 15 (Two-prover, two-message, public coin proof) Let f : {0, 1}n × {0, 1}n →
{0, 1} and ϵ, δ ∈ (0, 1). A two-prover, two-message, public coin proof for f in the com-
munication complexity setting is an interactive protocol executed by two provers, prover
1 and prover 2, and two verifiers, Alice and Bob. Provers 1 and 2 both holds strings
x, y ∈ {0, 1}n and begin with a shared entangled state φx,y

P P ′, with prover 1 holding P and
prover 2 holding P ′. Alice knows input x ∈ {0, 1}n, Bob knows input y ∈ {0, 1}n, and
Alice and Bob share input state |Ψ⟩LR which is independent of x, y. The protocol proceeds
as follows.

• Alice shares random bits r ∈ {0, 1}|r| with P .

• Prover 1 prepares systems M = MAMB from system P and sends message systems
MA to Alice and MB to Bob.

• Prover 2 prepares systems M ′ = M ′
AM

′
B from system P ′ and sends message systems

M ′
A to Alice and M ′

B to Bob.

• Alice and Bob apply local operations, which may depend on x and y respectively, and
communicate with one another. After this interaction round, Alice outputs either 0
(reject) or 1 (accept).

We require that

• ϵ-correctness: For all (x, y) ∈ f−1(1), Alice accepts with probability at least 1 − ϵ.

• δ-security: For all (x, y) ∈ f−1(0), Alice accepts with probability at most δ.

The cost of a two-prover, two-message, public coin proof is defined as the total number of
qubits of communication sent by the provers plus the total communication used by Alice
and Bob. The minimal cost over all protocols for a function f that achieves ϵ-correctness
and δ-security we label as QAM[2, 2]ccϵ,δ(f).

We can now state our public-coin lower bound on robust quantum CDS.

Theorem 16 For any fixed ϵp, δp,

CDQS(f) = QAM[2, 2]ccϵp,δp
(f) − c(ϵp, δp) . (44)

Proof. We begin with a CDQS protocol for the function f , which by definition achieves
ϵ, δ ≤ 0.09 and hides a single qubit secret. We then amplify using theorem 6 to achieve
ϵ′, δ′ ≤ 0.09 · 2−k and a k qubit secret. We choose k later to achieve the target ϵp, δp

parameters for the two-prover proof.
The amplified CDQS protocol is defined by Alice and Bob’s operations,

N x
QL→MA

, N y
R→MB

, (45)
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(Ux)† (Uy)†

PP ′

M ′
A MBMA M ′

B

L RQ

Figure 3: The two-prover proof protocol. Alice and Bob receive systems MA and MB from prover P , and systems
M ′

A and M ′
B from prover P ′. Alice applies (Ux

MAM ′
A→QL)†, Bob applies (Uy

R→MBM ′
B

)†. Bob then sends R to
Alice, who measures LR and Q to check they are the inputs to the corresponding CDQS protocol.

as well as a shared resource state, ΨLR. In constructing an interactive proof, we will
consider unitaries Ux

QAL→MAM ′
A

and Uy
BR→MBM ′

B
which purify the above channels, where

A and B are any required local ancilla. Note that we can always find such purifications
with

dM ′
A

≤ dQdLdMA
, dM ′

B
≤ dRdMB

. (46)
Further, we distribute a state |Ψ⟩ELR purifying ΨLR and with EL held by Alice and R
held by Bob. For convenience we will relabel EL → L. Then, Alice and Bob execute the
following:

• Alice sends prover 1 nQ random bits, s.
• Prover 1 sends MA to Alice and MB to Bob; prover 2 sends M ′

A to Alice and M ′
B to

Bob.
• Alice executes (Ux

QAL→MAM ′
A
)†; Bob executes (Uy

BR→MBM ′
B

)†.
• Bob sends R to Alice.
• Alice measures A in the standard basis; Bob measures B in the standard basis.

Additionally, Alice measures LR in a basis that includes |Ψ⟩LR, and measures Q in
the standard basis. If the measurements of A and B all return 0, the measurement
of LR returns |Ψ⟩LR, and the measurement of Q returns s, Alice outputs accept.

The total communication cost of this protocol is

log
(
dMA

dM ′
A
dMB

dM ′
B

)
+ log dR ≤ 2 log dMA

+ 2 log dMB
+ log dQ + log dR

≤ 2 CDQS(f) + k , (47)

where we used the inequalities (46) from above. Thus so long as we can take k to
be constant, this protocol has the required cost. We proceed to study correctness and
security of the protocol.

Correctness: We consider the case where (x, y) ∈ f−1(1). Observe that running the
CDQS protocol forwards would produce a state ϵ close to φx,y

M ′P ⊗|s⟩⟨s|Q where the referee
holds PQ and Alice and Bob hold the purifying system M ′. This state results from the
referee applying the recovery operation Vx,y

M→P Q to the message system he receives, M . In
the two-prover proof, we have the two provers prepare φx,y

M ′P in advance and have prover 1
hold P and prover 2 hold M ′. Then, upon receiving the random string s, prover 1 applies
(Vx,y

M→P Q)† to prepare system M , and then each prover then sends MA,M
′
A,MB,M

′
B to

Alice and Bob according to the pattern shown in figure 3.
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Now, when Alice and Bob implement (Ux
QAL→MAM ′

A
)†⊗ (Uy

BR→MBM ′
B

)† they are com-
pleting running the CDQS protocol in reverse, so will produce the inputs to the protocol
and pass the test. In fact, since the protocol is only approximately correct, the output
is only approximated by a state with the secret stored on the right, so the test is only
passed with some high (but not exactly 1) probability. In appendix A, we show that ϵ′-
correctness of the CDQS protocol implies 2

√
ϵ′-correctness of the two-prover proof. Since

ϵ′ = ϵ2−k, choosing k a large enough constant ensures the two-prover proof is ϵp correct.

Soundness: Now suppose that (x, y) ∈ f−1(0). The provers will try to convince Alice to
accept. Their probability of doing so is

ppass = 1
dQ

∑
s

⟨ψs| ρs |ψs⟩MM ′ . (48)

Here, ρs
MM ′ is the density matrix describing the state prepared by the provers, and |ψs⟩

is the state

|ψs⟩MM ′ = (Ux
QAL→MaM ′

a
⊗ Uy

BR→MbM ′
b
) |Ψ⟩LR |00⟩AB |s⟩Q . (49)

The states ρs
MM ′ and |ψs⟩MM ′ each obey constraints, which will combine to mean the

success probability ppass is small.
The constraint on ρs

MM ′ is that, because only prover P (who prepares M) is given the
random bits, ρs

M ′ = σM ′ is independent of s.
The constraint on |ψs⟩MM ′ is that the ψs

M ′ have nearly orthogonal support. Intuitively,
this occurs because of lemma 7: since s is not stored in M , it is stored in the purifying
system M ′. Since s is stored in M ′ the density matrices on M ′ must be distinguishable
for different values of s. In appendix A we make this precise, showing that

∀s ̸= s′, F (ψs
M ′ , ψs′

M ′) ≤ 4
√
δ . (50)

We then bound the passing probability by

ppass = 1
dQ

∑
s

⟨ψs| ρs |ψs⟩MM ′ = 1
dQ

∑
s

F (ψs
MM ′ , ρs

MM ′)

≤ 1
dQ

∑
s

F (ψs
M ′ , σM ′) . (51)

where in the last line we used that the fidelity increases under the partial trace. The
provers can prepare an arbitrary density matrix on M ′, so we need to consider the maxi-
mum over σM ′ . We now use the bound 18, which constrains a maximization of this form.
Using that, we have

ppass ≤ max
σM′

1
dQ

∑
s

F (ψs
M ′ , σM ′)

≤ max
σM′

1
dQ

∑
s

√
F (ψs

M ′ , σM ′)

≤ 1
dQ

√∑
s,s′

√
F (ψs

M ′ , ψs′
M ′)

≤ 1
dQ

√∑
s,s′

(δss′ + 2(δ′)1/4)

≤ 1
dQ

√
dQ + 2d2

Q(δ′)1/4

=
√

1
dQ

+ 2(δ′)1/4 (52)
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We can recall that dQ = 2k and δ′ = δ2−k, so that

ppass ≤
√

1
2k

+ δ2−k/4 (53)

Since this goes to zero at large k, we can choose k to be a large enough constant so that
ppass ≤ δp.

4 Classical-quantum separations
4.1 Separating perfectly correct CDS and CDQS
In this section we investigate if quantum resources can provide advantages in implement-
ing the conditional disclosure of secrets primitive. In section 4.1 we show an unconditional
separation in the setting of perfectly correct CDS. Our approach is similar to [19], who
prove a separation in the perfectly correct and perfectly secure setting for PSM — we
relax the perfect security requirement and adapt this to CDS.

We will prove a separation for the not-equals function, which recall is defined by

NEQn(x, y) =

0 x = y

1 x ̸= y
(54)

where x, y are n bit inputs. We work in a promise setting where either x = y or x and
y differ in exactly n/2 locations. To get a separation, we need a lower bound on the
classical setting and an upper bound on the quantum setting.

Classical lower bound: Our lower bound for NEQ begins with a lower bound on perfectly
correct CDS proven in [4]. This lower bound is given in terms of the coNPcc complexity,
which we define next.

Definition 17 (coNPcc) A coNPcc communication protocol for a function f : X × Y →
{0, 1} is implemented by two parties, which we call Alice and Bob. Alice receives input
x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n. Both Alice and Bob are given a proof w.
They then independently decide to accept or reject. The coNPcc communication complexity
of a function f , denoted coNPcc(f), is the smallest number c ∈ N such that:

• For any input (x, y) ∈ f−1(0), there exists a witness w ∈ {0, 1}c such that both Alice
and Bob accept when given w.

• For any input (x, y) ∈ f−1(1), there does not exist a witness w such that both Alice
and Bob accept when given w.

Theorem 3 from [4] shows that

pcCDS(f) ≥
(1

4 − o(1)
)

coNPcc(f) − log(n) , (55)

where the left hand side denotes the communication cost for perfectly correct CDS. Con-
sidering the randomness cost of the CDS protocol instead, which we will denote pcCDS(f),
we have more simply

pcCDS(f) ≥ 1
2coNPcc(f) . (56)

These bounds were proven in the context of unrestricted inputs; an examination of their
proof technique however shows that the reduction from perfectly correct CDS to the
coNPcc setting holds input by input. Consequently, the above bounds are also true in
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the promise setting: the randomness cost to implement perfectly correct CDS for the
function f with a given promise on the inputs is lower bounded by the coNPcc complexity,
considered with the same promise on the inputs.

Next, we recall that the coNPcc complexity is the logarithm of the number of rectangles
needed to cover the 0 entries in the communication matrix [20], without covering any 1
entries. We will show that a zero rectangle cannot be too big for the NEQ problem with
the given promise on the inputs. We use the following theorem from [21], letting ∆(s, t)
denote the Hamming distance between s and t.

Theorem 18 Let n be divisible by 4. Let S, T ⊆ {0, 1}n be two families of n-bit vectors
such that for every pair s ∈ S, t ∈ T we have ∆(s, t) ̸= n/2. Then |S| × |T | ≤ 22×0.96n.

This lets us establish the following lower bound.

Lemma 19 Consider NEQn(x, y) with n divisible by 4 and with the promise that either
x = y or x and y differ in exactly half their bits. Then the pcCDS cost is Ω(n).

Proof. Suppose S × T is a 0 rectangle. This means that for s ∈ S, t ∈ T , we have
∆(s, t) ̸= n/2. Then theorem 18 above says that |S| × |T | ≤ 22×0.96n, so the size (area)
of any 0 rectangle is at most 22×0.96n.

On the other hand, suppose we can use less than n/100 bits of communication. Then
letting N be the number of rectangles in the resulting covering of the 0 entries, we have

logN = n

100 . (57)

Let smax be the size of the largest 0 rectangle. A rectangle of size s can only cover
√
s of

the 0’s on the diagonal, which means that the number of rectangles must be at least

N ≥ 2n

√
smax

, (58)

so then

log
(

2n

√
smax

)
≤ n

100 . (59)

Solving this for smax, we find

22×0.99n ≤ smax . (60)

But earlier we found that smax must be smaller than the above, which is a contradiction.
Thus, any such protocol must use more than n/100 bits of communication.

Quantum upper bound: We next proceed to give a logarithmic upper bound using quan-
tum resources. We exploit a solution from [22] to the following distributed Deutsch-Jozsa
problem. Alice and Bob receive inputs x ∈ {0, 1}n and y ∈ {0, 1}n, with the above
mentioned promise. Their goal will be to produce a pair of shorter strings a, b which are
equal if and only if x = y. The idea for our CDS protocol is to use a, b as (shorter) inputs
to a CDS protocol for NEQ.

Lemma 20 Consider NEQn(x, y) with n a power of 2 and with the promise that either
x = y or x and y differ in exactly half their bits. Then the pcCDQS cost, including both
communication and shared entanglement, is O(log n).

17



Proof. Alice and Bob share log n EPR pairs, and both apply controlled phase gates to
prepare the state

|Ψ1⟩ = 1√
n

∑
i

(−1)xi+yi |i⟩A |i⟩B . (61)

Next they both apply the Hadamard operation to obtain
1

n
√
n

∑
a,b,i

(−1)xi+yi+i·a+i·b |a⟩A |b⟩B . (62)

Alice and Bob now both measure in the computational basis. The probability of obtaining
any pair of outcomes (a, b) such that a = b is then∣∣∣∣∣ 1

n
√
n

∑
i

(−1)xi+yi

∣∣∣∣∣
2

. (63)

This is 1/n when x = y, and (because of the promise) 0 otherwise. Thus Alice and Bob
obtain strings a, b of length log n which are always equal when x = y, and never equal
otherwise.

Now, Alice and Bob run a classical CDS protocol for the NEQlog(n) function, with
a, b as their inputs. This can be implemented with linear (in log n) communication and
randomness [4] in the perfect setting, so they use log n communication and randomness
plus the log n EPR pairs we used to shorten the inputs.

Lemmas 19 and 20 together imply a quantum-classical separation for CDS in the case
of perfect correctness. We can also notice that since the quantum upper bound does not
introduce any soundness errors, the same observations separate pCDS and pCDQS, the
versions of CDS and CDQS with both perfect correctness and security.

4.2 Exponential separation of PSQM and PSM for a partial function
In this section we revisit the topic of separations for PSM in the robust (imperfect security
and privacy) setting. In [19] the authors point out that there is a relational problem with
an exponential classical-quantum separation in the robust case, and a separation for a
partial function in the exact setting. Here we show that the exponential separation can
be achieved for a partial function in the robust setting.

To show our separation, we use the following version of the Boolean Hidden Matching
problem defined by Kerenidis and Raz [23]. The problem uses the notion of a perfect
matching, which is an ordered list of n/2 pairs (i, j), i, j ∈ [n] such that each i ∈ [n]
occurs exactly once in the matching.

Definition 21 The Boolean Hidden Matching (BHM) problem is defined by:
• Inputs: Alice receives x ∈ {0, 1}2n and Bob receives an ordered perfect matching M

on [2n] and a string w ∈ {0, 1}n.
• Output: 1 if Mx+w has Hamming weight at least 2n/3, 0 if Mx+w has Hamming

weight less than n/3
We are promised that one of the output conditions is true. Mx refers to the n-bit string
whose kth component is xi + xj, where (i, j) ∈ M is the kth pair in the matching (in
order). All operations are performed over F2.

Classical Lower Bound: BHM was previously used to give an exponential separation
between one-way quantum and one-way randomized communication complexity [24]. In
particular, Theorem 4 in [23] implies that BHM requires Ω(

√
n) communication in the

classical one-way model, and hence in the classical simultaneous model as well. Finally,
we observe that any PSM protocol also gives a classical simultaneous protocol and hence,
any PSM for BHM requires Ω(

√
n) communication.
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Quantum Upper Bound. The intuition for the PSQM for BHM is that, when Alice
and Bob share entanglement, using local measurements there is a randomized reduction
from the BHM problem to the inner product problem on O(log n) bits. We describe this
in more detail below.

Theorem 22 Considering the BHM problem given in definition 21, there is a protocol that
computes this problem in the PSQM model using O(log n) shared EPR pairs and O(log n)
classical communication.

Proof. Alice and Bob start off with log(2n) EPR pairs

1√
2n

∑
i∈[2n]

|i⟩A |i⟩B . (64)

Alice adds her input x in the phase to produce

1√
2n

∑
i∈[2n]

(−1)xi |i⟩A |i⟩B . (65)

Bob measures with n projectors Ei,j ≡ |i⟩ ⟨i|+|j⟩ ⟨j| for each edge (i, j) ∈ M in his perfect
matching. This gives him a random (i, j) ∈ M and the state ignoring the normalization
is

(−1)xi |i⟩A |i⟩B + (−1)xj |j⟩A |j⟩B . (66)

Now, Alice and Bob each apply the Hadamard gate to all their qubits to obtain∑
k,l∈[2n]

[
(−1)⟨k+l,i⟩+xi + (−1)⟨k+l,j⟩+xj )

]
|k⟩A |l⟩B , (67)

where ⟨·, ·⟩ denotes the inner product over F2. The players then measure all their registers.
Observe that |k⟩ |l⟩ has non-zero amplitude if and only if (−1)⟨k+l,i⟩+xi = (−1)⟨k+l,j⟩+xj ,
in other words,

⟨k + l, i+ j⟩ = xi + xj . (68)

Recall the promise on the input that either xi + xj + wi,j = 0 for at least 2n/3 many
(i, j) ∈ M , or xi +xj +wi,j = 1 for at least 2n/3 many (i, j) ∈ M . From the above, we can
replace xi +xj by ⟨k+ l, i+j⟩. Thus, the problem reduces to computing ⟨k+ l, i+j⟩+wi,j

and testing whether it is mostly 0 or mostly 1 for a uniformly random (i, j) ∼ M . We
now embed this into a single instance of inner product. Recall that k belongs to Alice and
l, i, j, w belong to Bob. Thus, Bob can compute b′ = ⟨l, i + j⟩, b = i + j and the players
need to compute ⟨k, b⟩+b′+wi,j which can be viewed as the inner product between (k, 1, 1)
and (b, b′, wi,j) where Alice knows k ∈ [2n] and Bob knows b ∈ [2n], b′, wi,j ∈ {0, 1}.

Altogether, when Alice and Bob share entanglement, by performing local measure-
ments, they can do a randomized reduction to an instance of the inner-product function
on O(log n) bits (where the randomness is over Bob’s measurement outcome (i, j) ∼ M).
Lemma 3 from [25] implies that the inner product function on O(log n) bits has a PSM
of cost O(log n) and this completes the proof.

5 An upper bound for forrelation
In this section we give a logarithmic upper bound on CDQS for the forrelation problem,
which we define more precisely below. The strategy combines techniques from non-local
quantum computation (NLQC) and communication complexity.
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NAB

(a)

VL VR

WRWL

(b)

Figure 4: (a) Circuit diagram showing the local implementation of a channel NAB. (b) Circuit diagram showing
the non-local implementation of the same channel. The operations VL, VR, WL, and WR are quantum
channels. The lower, bent wire represents an entangled state.

We first make some comments on non-local quantum computation. A non-local quan-
tum computation is any process realized in the form shown in figure 4b. Typically, the
goal of an NLQC is to implement a joint channel NAB on two quantum systems A, B,
with A initially held by Alice and B initially held by Bob, as shown in figure 4a. Al-
ice and Bob each act locally on their systems (plus their portions of a shared entangled
state), exchange one simultaneous round of quantum or classical communication, then
act locally again. The overall transformation realized in this process should be (or should
approximate) NAB.

The key result from non-local quantum computation we will make use of is the fol-
lowing, reproduced from [10].

Theorem 23 Any n-qubit quantum circuit CAB using the Clifford+T gate set which has
T -depth d has a protocol for instantaneous non-local computation using O((68n)d) EPR
pairs.

A further comment is that the communication used in the protocol that realizes this
upper bound has the same scaling as the entanglement cost.

Next, we define the forrelation problem, for which we will give a CDQS upper bound
using this NLQC technique. Let n be a power of 2. Define the forrelation of a string
x ∈ {−1, 1}n to be

forr(x) := 1
n

⟨x1|H⊗n |x2⟩ (69)

where x1 is the vector formed by first n/2 bits of x, and x2 is vector formed by the final n/2
bits of x. This problem was defined by [26–28] in the context of oracle separations between
quantum and classical query complexity. Following this, [13] defined a communication
complexity version of this problem as follows.

Definition 24 Alice is given input x ∈ {−1, 1}n and Bob is given y ∈ {−1, 1}n, with n a
power of 2. Then, to solve the Forrelation problem Alice should output the value f(x, y)
defined by

f(x, y) =

−1 if forr(x · y) ≥ α

+1 if forr(x · y) ≤ β
(70)

with α > β > 0 and α − β constant. Here, x · y denotes the point-wise product of x and
y.
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Figure 5: Circuit computing the forrelation function f(x, y). Figure reproduced from [13]. Here, E is the operator
as in 6.

A variant of this problem with a 1/ log n gap was studied by [13] who showed that
it has a quantum simultaneous protocol of O(log3 n) cost when Alice and Bob share
O(log3 n) EPR pairs, but the classical randomized communication cost is Ω̃(n1/4). In this
paper, we consider a constant gap. The advantage of this is that since the gap is constant,
the quantum protocol only needs to be amplified a constant number of times, which turns
out to be important later. On the other hand, it can be shown by combining [13] and [29]
that the classical hardness persists even with constant gap.

In part, our interest in this problem is as a candidate problem to be outside of AMcc.
Indeed, the query problem of estimating forr(x) as in equation 69 is known to be outside
of AM in the query complexity world [28, 29]. If the communication version of the
Forrelation problem is indeed outside of AMcc, then (as explained in the introduction)
our upper bounds for this problem would give a quantum-classical separation for robust
CDS.

• . . .
• . . .

. . . •

. . .

. . .

. . .

Figure 6: The E operator

• •
H = P H T T † H P †

Figure 7: Convenient decomposition of a controlled Hadamard operator as in Figure 6 in [30]. Notice this can
be expressed without any T gates on the upper wire. This allows us to express the circuit of figure 5 in constant
T -depth. Figure reproduced from [13].

We give our upper bound next.

Theorem 25 There exists a constant c > 0 such that the forrelation problem given in
definition 70 can be implemented in the CDQS setting with O(logc n) communication and
O(logc n) randomness.

Proof. The key observation is that there is a way to compute forrelation, labelled f(x, y),
in constant T -depth. We then leverage the connection between NLQC and CDQS, and
the upper bounds in terms of T -depth for NLQC.
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From here we just need to observe that there is a circuit that computes f(x, y) in
constant T -depth. For this, we make use of the circuit given in [13], shown in figure
5. The circuit uses log n qubits. Further, we make use of the decomposition of the
controlled H gate shown in figure 7. To implement this circuit non-locally, we view the
first layer of H gates, E, and the oracle calls as preparing the input state |ψxy⟩. In
other words, Alice and Bob share O(log(2n)) EPR pairs and first introduce a phase into
this shared state based their individual inputs to produce |ψxy⟩. Then we take UAB to
implement the remaining portions of the circuit. E is Clifford, and X is Clifford. Using
the decomposition of the controlled H gate in figure 7 we can implement the cascading
controlled H operators using just two layers of T gates.

The remaining steps to compute f(x, y) are then to perform the measurement and
amplify the outcome by repeating the circuit. We note that the measurement returns one
bit, and to amplify we need to repeat only O(1) times (since the gap α − β is constant)
and take the majority. The circuit implementing taking the majority acts on O(1) qubits,
so contributes at most O(1) to the T -depth. Thus the entire circuit is constant T -depth,
and theorem 23 gives a polynomial (in the circuit size) upper bound in terms of both
entanglement and communication. Since the circuit here has size log n for n the number
of input bits, the entire protocol is implemented with poly(log n) communication and
entanglement.

6 Discussion
In this work we explored the differences and analogies between quantum and classical
CDS. We’ve done so with a few goals in mind: to better understand the power of quantum
resources in information-theoretic cryptography, to better understand classical CDS, and
to better understand non-local quantum computation, of which quantum CDS can be
understood as a special case.

We established that indeed quantum resources can provide advantages for CDS by
finding a separation for perfectly correct CDS. We also gave a novel protocol for forre-
lation, which suggests an advantage in the robust case as well. Exploring the analogies
between lower bounds for classical and quantum CDS, we proved a lower bound on quan-
tum CDS from QAM[2, 2]cc, a two-prover, two-message interactive proof setting. This is,
so far, the closest analogue bound to the classical bound from AMcc.

One property of classical CDS for which we could find no quantum analogue is ran-
domness sparsification [4], which gives that the randomness cost of a CDS protocol never
needs to be larger than the communication cost, up to possible logarithmic differences.
In the quantum case we were unable to determine if this is also true. This seems closely
related to the analogous problem in quantum communication complexity, where it is also
unknown if entanglement larger than the communication can ever be helpful.

A key open question in the study of classical CDS is to establish linear lower bounds
for explicit functions in the robust setting, or to better understand obstructions to doing
so.5 One motivation for studying the quantum case is to bring a new perspective and set
of tools to bear on this problem. Indeed, for the perfectly secure setting the quantum
perspective provides a new lower bound [11]. Our lower bound on robust CDQS in
terms of one-way classical communication complexity reveals a weakness in this bound
as applied to the classical case: somehow the bound does not see enough of the structure
of a CDS protocol to distinguish between quantum and classical protocols. We hope
further exploration of quantum lower bounds will yield insight into the difficult problem
of finding good lower bounds on classical CDS.

5See [31] for some discussion around understanding obstructions.
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A Proof details for the lower bound from QAM[2, 2]cc

We provide details for the proof of theorem 16.

Details on correctness: We give the calculation showing that ϵ-correctness of the CDQS
protocol gives 2

√
ϵ correctness of the two-prover proof. Let

VM→P Q(·) = VM→P Q(·)V†M→P Q

UQAL→MAM ′
A
(·) = UQAL→MAM ′

A
(·)U†QAL→MAM ′

A

UBR→MBM ′
B

(·) = UBR→MBM ′
B

(·)U†BR→MBM ′
B
. (71)

Note that from correctness of the CDQS protocol we have that there exists, for all (x, y) ∈
f−1(1), a channel Dx,y

M→Q such that∥∥∥Dx,y
M→Q ◦ N x,y

Q→M − IQ→Q

∥∥∥
⋄

≤ ϵ. (72)

Using equation (11), we can also obtain that there exists an isometric extension of these
channels which is close in operator norm. Since one isometric extension of Dx,y

M→Q◦N x,y
Q→M

is VM→P Q◦(Ux
QAL→MAM ′

A
⊗Uy

BR→MBM ′
B

)◦Ψ∅→LR (where Ψ∅→LR prepares the state |Ψ⟩LR)
and all isometric extensions are related by an isometry on the purifying system, we have
that all isometric extensions of Dx,y

M→Q ◦ N x,y
Q→M can be expressed in the form

SP M ′ ◦ VM→P Q ◦ (Ux
QAL→MAM ′

A
⊗ Uy

BR→MBM ′
B

) ◦ Ψ∅→LR (73)

where SP M ′(·) = SP M ′(·)S†P M ′ with SP M ′ an isometry. Further, isometric extensions of
the identity channel must just append a state preparation,

IQ → IQ ⊗ W∅→P M ′ . (74)

Now, we employ equation (12) to bound the diamond norm between these isometric
extensions in terms of the diamond norm between the channels, which itself is bounded
by ϵ from equation 72, obtaining

inf
S,W

∥∥∥SP M ′ ◦ VM→P Q ◦ (Ux
QAL→MAM ′

A
⊗ Uy

BR→MBM ′
B

) ◦ Ψ∅→ELR − IQ ⊗ W∅→P M ′

∥∥∥
⋄

(75)
≤ 2

√
ϵ.

Using isometric invariance of the diamond norm, we can rewrite this as

inf
W

∥∥∥VM→P Q ◦ (Ux
QAL→MAM ′

A
⊗ Uy

BR→MBM ′
B

) ◦ Ψ∅→LR − IQ ⊗ W∅→P M ′

∥∥∥
⋄

≤ 2
√
ϵ (76)
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and further as

inf
W

∥∥∥IQAB ⊗ Ψ∅→LR − (Ux
QAL→MAM ′

A
⊗ Uy

BR→MBM ′
B

)† ◦ V†M→P Q ◦ W∅→P M ′

∥∥∥
⋄

≤ 2
√
ϵ.

(77)

We have the provers begin with the state |φx,y⟩P M ′ that is output by the optimizing
W∅→P M ′ . Now, we use the definition of the diamond norm and consider the input state
|s⟩Q |00⟩AB to find that∥∥∥|s⟩Q |00⟩AB |Ψ⟩LR − (Ux

QAL→MAM ′
A

⊗ Uy
BR→MBM ′

B
)† ◦ V†M→P Q |φx,y⟩P M ′

∥∥∥
1

≤ 2
√
ϵ. (78)

In terms of the fidelity this is,

F (|s⟩Q |00⟩AB |Ψ⟩LR , (U
x
QAL→MAM ′

A
⊗ Uy

BR→MBM ′
B

)† ◦ V†M→P Q |φx,y⟩P M ′ |s⟩Q) (79)
≥ 1 − 2

√
ϵ (80)

but also

paccept = | ⟨s|Q ⟨00|AB ⟨Ψ|LR (Ux
QAL→MAM ′

A
⊗ Uy

BR→MBM ′
B

)† ◦ V†M→P Q |φx,y⟩P M ′ |s⟩Q |2

(81)

so that the probability of Alice accepting is at least 1 − 2
√
ϵ for any choice of secret s,

and hence also at least this when averaged over s. Choosing k ≥ log(ϵ/ϵp) (a constant),
we can amplify the protocol sufficiently to achieve the needed correctness parameter.

Soundness: Here we show equation (50), which expresses that the reduced density ma-
trices ψs

M are nearly orthogonal for distinct s. To make this precise, begin with lemma 7
which gives that there exists Dx,y

M ′→Q such that∥∥∥Dx,y
M ′→Q ◦ (N x,y)c

Q→M ′ − IQ

∥∥∥
⋄

≤ 2
√
δ. (82)

Acting on the input |s⟩⟨s|, this gives∥∥∥Dx,y
M ′→Q ◦ (N x,y)c

Q→M ′(|s⟩⟨s|Q) − |s⟩⟨s|Q
∥∥∥

1
≤ 2

√
δ. (83)

Now consider∥∥∥Dx,y
M ′→Q ◦ (N x,y)c

Q→M ′(|s⟩⟨s|Q) − Dx,y
M ′→Q ◦ (N x,y)c

Q→M ′(|s′⟩⟨s′|Q)
∥∥∥

1
. (84)

Inserting |s⟩⟨s| − |s⟩⟨s| + |s′⟩⟨s′| − |s′⟩⟨s′| and applying the reverse triangle inequality and
triangle inequality, we obtain∥∥∥Dx,y

M ′→Q ◦ (N x,y)c
Q→M ′(|s⟩⟨s|Q) − Dx,y

M ′→Q ◦ (N x,y)c
Q→M ′(|s′⟩⟨s′|Q)

∥∥∥
1

≥ ∥|s⟩⟨s| − |s′⟩⟨s′|∥1 − 2
√
δ

= 2(1 − 2
√
δ).

But also, by monotonicity of the trace distance,∥∥∥ρs
M ′ − ρs′

M ′

∥∥∥
1

=
∥∥∥(N x,y)c

Q→M ′(|s⟩⟨s|Q) − (N x,y)c
Q→M ′(|s′⟩⟨s′|Q)

∥∥∥
1

≥
∥∥∥Dx,y

M ′→Q ◦ (N x,y)c
Q→M ′(|s⟩⟨s|Q) − Dx,y

M ′→Q ◦ (N x,y)c
Q→M ′(|s′⟩⟨s′|Q)

∥∥∥
1

so that we obtain
1
2
∥∥∥ρs

M ′ − ρs′

M ′

∥∥∥
1

≥ 1 − 2
√
δ. (85)

Translating this to a bound on the fidelity via the Fuch’s van de Graff inequality, we
obtain

∀s ̸= s′, F (ψs
M ′ , ψs′

M ′) ≤ 4
√
δ (86)

as needed.
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