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Abstract
This paper conducts a comparative study of three IoT-based PRNG models, including Logistic Map, Double Pendulum,
and Multi-LFSR, implemented on an FPGA platform. Comparisons are made across key performance metrics like
randomness, latency, power consumption, hardware resource usage, energy efficiency, scalability, and application
suitability. Compared to Multi-LFSR, Logistic Map, and Double Pendulum Models provide perfect quality randomness,
which is quite apt for high-security grade applications; however, the requirements of these models concerning power
and hardware resources are also considerably high. By contrast, the Multi-LFSR comes into its own due to its
lower latency, power consumption, and resource-efficient design. It is, therefore, suited for embedded or real-time
applications. Furthermore, environmental sensors will also be introduced as entropy sources for the PRNGs to enhance
the randomness of the systems, particularly in IoT-enabled battery-powered FPGA platforms. The experimental results
confirm that the Multi-LFSR model has the highest energy efficiency, while the Logistic Map and Double Pendulum
outperform in generating numbers with very high security. The study thus provides a deeper insight into decision-
making for selecting PRNG models.
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Introduction

Algorithmic random number generators are everywhere,
from simulation to computational creativity, and are used
for all kinds of tasks. One of the generators is a Pseudo-
Random Number Generator (PRNG). Chaotic PRNGs, such
as those based on spatial chaotic maps of the Logistic type,
have been shown to improve complexity and sensitivity,
making them ideal for Monte Carlo simulations (Al-Daraiseh
et al.2023). Hardware-based PRNGs using multiple Linear
Feedback Shift Register (LFSRs) have enhanced simulation
capabilities, offering scalability and real-time performance
for secure environments (Akter et al. 2024). Moreover,
PRNGs utilizing two-dimensional (2D) chaotic mappings
provide improved randomness and uniformity, critical for
cryptography and simulation applications (Hu2023).

PRNGs play a big part in machine learning frameworks
like TensorFlow and PyTorch to produce stochastic streams
for optimization and regularization techniques, such as
Stochastic Gradient Descent (SGD) and dropout. However,
research highlights that commonly used algorithms like
Mersenne Twister (Matsumoto and Nishimura 1998;
Marsland 2014), and Permuted Congruential Generator
(PCG), (Bouillaguet et al.2020) allow for great randomness;
alongside this, another computational efficiency problem.
This problem led to inconsistent results in the outcome across
different platforms (Antunes and Hill 2024). Furthermore,
the choice of seed values has introduced variability in results,

raising concerns about the robustness of empirical findings
and the potential for ”p-hacking” in sensitive applications
(Naimi et al.2024).
Recently, by harnessing the power of Generative

Adversarial Networks (GANs), PRNGs have received their
conceptual design, permitting a variety of new possibilities
for slight randomness generation. These GAN-based PRNGs
generate statistically viable randomness with rigorous tests
like acceptance from the National Institute of Standards
and Technology (NIST) suite, rendering them suitable
for data creation and cryptographic purposes (Wu et al.
2024). Similarly, Wasserstein GAN (WGAN), (Weng2019)
methods remove issues like overfitting and ensure high-
quality randomness for machine learning applications
(Okada et al.2023). A newer approach is combining chaotic
generators with numerical solvers. This way, given chaos’s
capability to generate dense pseudo-random sequences,
the method provides greater security and unpredictability,
especially for cryptographic and high-security machine-
learning applications (Yacoub et al.2023).
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This paper proposes a field-programmable gate array
(FPGA) implementation of a pseudo-random number gen-
erator (PRNG) built by Internet-of-Things (IoT) techniques.
The PRNG is fed by multiple chaotic models and sensor-
based entropy sources to provide increased randomness.
The FPGA-based architecture can include real-time IoT
data acquisition, processing, and communication distribu-
tion, making it particularly applicable for portable security
solutions.

Review of Hardware-based Pseudo-Random
Number Generators
PRNGs are usually implemented on different classes of
integrated circuits or FPGAs due to their fast processing at
the required flexibility in specific demanding applications.
Chaotic systems, which include items such as the Lorenz
attractors (Pal and Mukhopadhyay 2020) and elementary
cellular automata (Du et al. 2024), also find standard
hardware implementations, because such systems have
an intrinsic ability to produce pseudo-random sequences.
Hardware implementations of PRNGs based on chaotic
systems were then joined with a block-cipher system to
form random encryption keys, effectively solving both the
speed requirements and safety in encryption and decryption
of digital images (Akter et al. 2024). When realized
on hardware, these chaotic systems demonstrate excellent
throughput, with some systems achieving speeds upwards
of 49,946.62 Mbps (Abbassi et al. 2022). Additionally,
integrating advanced chaotic systems, like the Half-Unit-
Biased (HUB) format, into PRNG designs has improved
their efficiency and chaotic behavior. This integration
ensures the generated numbers maintain unpredictability
while minimizing resource consumption, a crucial factor
in large-scale hardware applications (Anurag et al. 2024).
Furthermore, a new hardware architecture for chaos-based
PRNGs has been developed using the HUB format. This
architecture enhances chaotic-based systems’ performance
and resource efficiency by combining tent and Bernoulli
maps, ensuring assertive chaotic behavior and better pseudo-
randomness. This development has significantly improved
the speed and security of hardware PRNGs (Da Silva et al.
2023). These implementations often exhibit low resource
utilization, making them suitable for embedded systems
and IoT devices that require compact and energy-efficient
designs (Gafsi et al.2023).
Research into hardware PRNGs is instead offering excit-

ing avenues by exploiting novel transformation algorithms,
like Multiple Deep-Dynamic Transformation (MDDT), for
throughput enhancement. Throughput speeds of newer hard-
ware designs are as high as 14.4 Gbps,making them ideal for
higher-speed applications requiring secure random number
generation, ranging from secure communication systems to
simulations(Li et al. 2024). Finally, implementing strong
PRNGs for encryption tasks, such as color image encryption,
shows how these technologies can be adapted to different
domains,providing fast and secure key generation for image-
based cryptographic systems (Akter et al.2024).
Another prominent trend in hardware PRNGs is using

Cryptographically Secure Pseudo-Random Number Gener-
ators (CSPRNGs). These systems are designed to be secure

against various attacks, and they typically use cryptographic
hash functions such as Secure Hash Algorithm-2 (SHA-2) or
SHA-3. Recent research has highlighted the advantages of
using the SHA-3 algorithm for hardware-based CSPRNGs,
noting improvements in energy efficiency and performance
and better resource utilization compared to SHA-2-based
solutions (Crocetti2023). These improvements make SHA-
3 an attractive choice for designing secure PRNGs in hard-
ware, especially in applications requiring a high degree of
security, such as blockchain and secure communications
(Gafsi et al. 2023). Even though hardware PRNGs have
progressed enormously, there still exist challenges. One of
the core issues is ensuring that the randomness not only
appears random statistically but can also resist physical
attacks. Hardware-based attacks like side-channel analysis
can sometimes exploit weaknesses in the PRNG’s design.
Researchers have been looking at possible countermeasures
to address such risks, including using noise sources, secured
key management, and blended systems that combine the
strengths of various extraction methods for random values.

PRNG using FPGA

When designed on an FPGA, these PRNGs exhibit improved
random bit sequence lengths, offering over 200 times
better performance than simpler LFSR-based systems, which
makes them suitable for high-performance systems (Akter
et al. 2024 ) . The use of chaotic systems for FPGA-based
PRNGs has been explored in various studies. One approach
uses the system’s chaotic dynamics to produce fast and high-
quality random numbers based on an n-dimensional non-
degenerate chaotic system, which was implemented (Luo
et al. 2024). The alternative method is to use multiple
deep-dynamic transformations to increase the entropy and
throughput of PRNGs. The technique focuses on how
different iterative transformations can be used to suitably
address the problem of improving the quality of randomness
while at the same time making appropriate use of the
available FPGA space. The approach was observed to
surpass traditional designs of PRNGs in terms of speed and
randomness, endowing it with a greatly optimized solution
for high-performance applications (Li et al.2024). Another
development is the introduction of lightweight reseeding
schemes for FPGA-based PRNGs. Reseeding refreshes the
internal state of the PRNG, preventing the generator from
becoming predictable over time (Sivaraman et al.2024). This
technique is beneficial in environments where continuous
randomness is required, such as in wireless sensor networks,
where energy efficiency and low resource consumption
are essential. The reseeding mechanism ensures that the
PRNG remains robust and unpredictable throughout its
operation,thus enhancing its suitability for long-term use in
wireless applications. Similarly, integrating Artificial Neural
Networks (ANNs) with chaotic systems for PRNGs has
been studied to enhance entropy generation further. Lastly,
ANNs are combined with chaotic systems to optimize the
randomness of the generated sequences (Sharobim et al.
2023). The ability of ANNs to learn and adapt to complex
patterns is utilized to fine-tune the chaotic system’s behavior,
ensuring the production of high-entropy random numbers.
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Design of PRNG using IoT Techniques in
Portable FPGA Platforms
Logistic map-based PRNG, Double Pendulum-based PRNG,
and Multi-LFSR-based PRNG were implemented on the
Xilinx CMOD-A7 FPGA, utilizing its robust processing
capabilities to generate high-quality random numbers in real-
time.

The Logistic Map Based Pseudo-Random
Number Generators for FPGA Implementations
Equation (1) defines the Logistic Map algorithm.

xn+1 = r · xn (1 — xn ), (1)

It serves as a base model for chaotic behaviors,
demonstrating an aspect of determinism behind what appears
to be complicated and uncorrelated behavior. The behavior
of r is crucial in this case, given that it dictates when
stable behavior gives way to chaotic behavior. Here,
between 1 and 3 inclusive means fixed point attractors,
while beyond 3.57, this leads to chaotic dynamics, in
which very slight changes in initial conditions lead to
vastly different outcomes (Teo et al. 2024a). Several
studies have highlighted the logistic map’s potential for
generating high-quality random numbers. For example, in
cryptographic applications, the chaotic nature of the logistic
map enables the production of unpredictable sequences,
crucial for secure encryption algorithms. The logistic map’s
recursive and iterative structure also makes it suitable
for hardware implementations, particularly on FPGAs.
There, it can be integrated with other chaotic systems to
enhance both randomness and performance. Additionally,
the logistic map’s applicability extends beyond cryptography
into population modeling and financial forecasting, where
its chaotic behavior can mimic real-world dynamic systems.
Using a Logistic Map algorithm, an FPGA-based PRNG
system enhances randomness by leveraging its chaotic
properties. The system utilizes a Central Limit Theorem
(CLT) transformation to refine the distribution of generated
numbers into a Gaussian form, improving statistical
properties (Teo et al.2024a).

LFSR-Based Pseudo-Random Number
Generators for FPGA Implementations
Today, LFSR-based pseudo-random number generators are
two popular techniques implemented in FPGA designs
mainly because of their efficiency, simplicity, and low
hardware resource requirements. For LFSR, bits are shifted
through a register by applying a deterministic feedback
function based typically on an XOR structure, which utilizes
algebraic structures known as primitive polynomials to
ensure maximum length of the sequence generated by the
LFSR function and enhanced quality of randomness that
is obtainable throughout the construction of any design
function. Let’s then write the generic LFSR state transition
equations (2):

St+1 = (St ≫ 1) ⊕ (St · P) (2)

where:

• St represents the current state of the LFSR,
• St+1 is the next state after shifting,
• ≫ 1 denotes a right shift by one position,
• P is the primitive polynomial defining the feedback
taps,

• ⊕ represents the XOR operation.

A commonly used maximal-length LFSR can be described
by the equation 3:

Xn = (Xn−k ⊕ Xn−m) (3)

Where k, m are predefined tap positions chosen based on
the selected primitive polynomial.

A dual-LFSR approach was proposed, integrating two
LFSRs with an XOR gate to enhance randomness while
maintaining low resource consumption on a Basys3 FPGA.
The design significantly improved the sequence length by
over 200 times compared to traditional single LFSR-based
PRNGs, demonstrating the advantages of using multiple
polynomials for enhanced entropy (Akter et al.2024). Simi-
larly, a study on low-cost FPGA implementations for Quan-
tum Key Distribution (QKD) applications explored non-
linearity integration in LFSR-based PRNGs, ensuring better
unpredictability (Chandravanshi et al. 2023). The research
highlighted that minimal non-linearity could increase ran-
domness while maintaining computational efficiency. Fur-
ther improvements in multi-bit LFSR architectures were
examined where different primitive polynomials were ana-
lyzed for their impact on randomness quality and hardware
performance (Sony et al.2022). FPGA synthesis andimple-
mentation results revealed that selecting optimal polynomi-
als affects the statistical properties of generated sequences.
Meanwhile, a reversible LFSR design was proposed, aim-
ing to reduce power consumption by 10% compared to
traditional irreversible approaches. The study evaluated 4,
8, 16, and 32-bit LFSRs on FPGA platforms, demonstrat-
ing that the power efficiency of PRNGs can be improved
without compromising randomness quality (Bailey et al.
2022). A Multi-LFSR PRNG enhanced with IoT sensor
inputs to improve entropy and unpredictability. Combining
multiple LFSRs with different feedback polynomials over-
comes periodicity issues and generates high-quality ran-
dom sequences. Environmental sensors provide additional
randomness, ensuring robust security (Teo et al. 2024b).
These studies collectively illustrate the adaptability of LFSR-
based PRNGs for various FPGA applications, reinforcing
the importance of feedback polynomial selection and non-
linearity enhancements in PRNG design.

Double Pendulum

Due to its highly nonlinear nature, the double pendulum
system has become an essential object of study in chaotic
dynamics. Its governing equations are typically derived using
the Lagrangian formulation, combining the system’s kinetic
energy equation 5 and potential energy equation 6 to obtain
a system of nonlinear coupled differential equations (4),
(Kumar et al.2019).
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− = 0, i = 1, 2

L = KE − U

where KE is the kinetic energy and U is the potential energy.

KE =
1
m1 l21θ̇21 +

1
m2 [(l1θ̇1 )2 + (l2θ̇2 )2

2 2 (5)
+ 2l1 l2θ̇1θ̇2 cos(θ1 − θ2 )]

U = −m1gl1 cosθ1 − m2g(l1 cosθ1 + l2 cosθ2 ) (6)

The pendulum’s starting position, lengths, and weights
comprise these basic conditions. They serve as the random
number generator’s seed. These values are then applied to
the governing equations (7) & (8) that describe the double
pendulum. A system employs an FPGA to compute the
chaotic motion equations of a double pendulum, and the
generated numbers are analyzed through histogram and time-
series tests, confirming strong randomness properties, (Teo
et al.2024c).

d1 = L1 (2m1 + m2 − m2 cos(2θ1 − 2θ2 )) (7)

d2 = L2 (2m1 + m2 − m2 cos(2θ1 − 2θ2 )) (8)

The angular acceleration equations (9) & (10) are derived
as:

ω′1 = 1 + m2 )sinθ1 − m2gsin(θ1 − 2θ2 )

−2sin(θ1 − θ2 )m2
[ω2

2L2 + ω 2
1L1 cos(θ1 − θ2

)])

(9)

ω′2 = ω 2
1L1 (m1 + m2 )

+ g(m1 + m2 )cosθ1 + ω2
2L2m2 cos(θ1 − θ2 )

)

(10)

Where:

• ω1 = θ̇1 , ω2 = θ̇2 (angular velocity)
• θ : angle of pendulum (0 is vertical downwards,
counterclockwise is positive)

• L : length of the rod (constant)
• T : tension in the rod
• m : mass of the pendulum
• g : gravitational constant

Recent research has focused on analyzing the role of
saddle points in the global phase space of the double
pendulum’s chaotic motion (Kaheman et al.2023). Studies
show that saddle points form boundaries near unstable
periodic orbits, causing complex trajectory transitions in the
chaotic phase space (Levien and Tan 1993 ) . Experimental
validations have further supported the accuracy of numerical
simulations (Maiti et al. 2016). Furthermore, bifurcation

analysis has revealed the effects of different initial conditions
on chaotic behavior and introduced methods to measure the
intensity of chaos based on basins of attraction (Qin and
Zhang2024).
The straightforward construction of the Double Pendulum

system, but with the highly complex chaotic features,
makes it a popular system for validating chaos theory
and nonlinear dynamics methods. The research underway
ranges from purely experimental and numerical studies of
chaotic features of the system, to more applied work in
physics related to control systems and aerospace dynamics
in connection with saddle point transport theory in orbital
dynamics (Kaheman et al. 2023). Future research could
further integrate machine learning techniques to predict
chaotic trajectories and optimize control strategies to
stabilize chaotic motion (Rafat et al.2009).

Results
Table 1 shows the power consumption of the three PRNG
models. It can be observed that the Logistic Map requires
the highest power consumption in the logic and signal
processing stages, mainly due to the complexity of the
chaotic system. On the other hand, the Double Pendulum
and Multi-LFSR models exhibit lower power consumption,
making them more energy-efficient in the signal and logic
stages. The Double Pendulum model has lower power
consumption than the Logistic Map, which makes it a more
suitable candidate for low-power applications.

Logistic Map Double Pendulum Multi-LFSR

Static 0.485W 0.075W 0.077W
Signals 8.762W 0.546W 0.787W
Logic 10.047W 0.443W 0.491W
I/O 7.629W - -
DSP 2.629W 0.812W 1.069W

Table 1. The Power Consumption of three PRNG
models—Logistic Map, Double Pendulum, and Multi-LFSR

Table 2 summarizes the resource utilization in terms. The
Logistic Map requires significantly more LUTs and flip-
flops than the other models, indicating its complexity in
hardware implementation. The Double Pendulum and Multi-
LFSR models are more resource-efficient, requiring fewer
resources for the same functionality. The Multi-LFSR is the
most resource-efficient model, requiring the least LUTs, flip-
flops, and I/Opins, making it a good candidate for embedded
applications where resource constraints are a concern.

Logistic Map Double Pendulum Multi-LFSR

LUT 663 126 71
FF 169 143 68
DSP 3 - -
I/O 22 15 34

Table 2. The Resource Utilization of three PRNG
models—Logistic Map, Double Pendulum, and Multi-LFSR

To determine the efficacy of three different designs of
pseudo-random number generators (Multi-LFSR, Logistic

(4)
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Logistic Map Double Pendulum Multi-LFSR

Randomness High High Medium
Latency High Medium Low
Power Consumption 29.559W(98% Dynamic) 1.877W (96% Dynamic) 2.451W (97% Dynamic)
Hardware Resource Usage High Medium Low
Energy Efficiency Low High Very High
Scalability Low Medium High
Application Suitability High-Security High-Security Embedded, Real-time

Table 3. Comparison of three PRNG models—Logistic Map, Double Pendulum, and Multi-LFSR

Map, and Double Pendulum), we measured their Latency
on FPGA and compared them for various applications. The
FPGA is an Xilinx CMOD-A7 that utilizes clock cycle
counting, ILA, and UART transmission time measurement
to evaluate how long it takes to generate random numbers
with each algorithm. We found that the fastest was the Multi-
LFSR PRNG, requiring only 1-2 clock cycles (10-20 ns), due
to the simple shift register used, with potential applications
in high-speed encryption where very low latency is a factor.
On the other hand, the Logistic Map PRNG, being nonlinear
and chaotic in computations, required an average of 5-
10 clock cycles (50-100 ns), thus making it applicable to
most embedded systems with reasonable randomness. On the
other hand, the Double Pendulum PRNG, whose time latency
is longer due to higher computing needs like trigonometric
operations and, hence, takes around 20- 50+ clock cycles
(200-500 ns), meaning it can be used for any applications
requiring high security where real-time constraints are not
minimized.
In Table 3. On the one hand, the Logistic Map implies

high power consumption (29.559W) and low utilization of
hardware resources. Thus, it is the least energy-efficient.
By contrast, the Double Pendulum has maximum power
efficiency (1.877W) and a medium-exhaustion of hardware
resources, but still performs poorly as the Multi-LFSR. The
Multi-LFSR is well-known for its low power consumption
(2.451W) and lean resource utilization. Thus, it is well-suited
for embedded and real-time applications, where low latency
and high energy efficiency are demanded. Additionally, it
will scale very well with extra resources to accommodate
larger systems. While the Logistic Map and Double
Pendulum are applicable for applications that need very high
randomness and security, the Multi-LFSR is credited when
resource limitations and real-time performance are the main
priority.

Conclusion
This research paper has endeavored to thoroughly compare
three hardware-based pseudo-random number generator
models, namely Logistic Map, Double Pendulum, and Multi-
LFSR, as embodied in the Xilinx CMOD-A7 FPGA. The
analysis states that Logistic Map and Double Pendulum
models, which offer very high randomness and are therefore
aligned with high-security applications, consume more
power and require more hardware resources. On the other
hand, the Multi-LFSR model has less latency, lower
power consumption, and more efficient usage of FPGA
resources, which appears to be most suitable for embedded

Figure 1. Real-time Pseudo Random Number Generator
Display

systems and real-time applications, in which low energy
consumption and performance in a short time are essential.
Furthermore, incorporating environmental sensors as entropy
sources creates improved randomness, bringing additional
flexibility to the PRNGs, which are suitable for IoT-
enabled, battery-powered FPGA platforms. The model of
the Multi-LFSR is therefore rated higher in terms of
energy use, scale-up mechanism development, and further
application portability. In contrast, the Logistic Map and
Double Pendulum models would fit into the applications
requiring more security, although at a computational cost.
Therefore, the final choice should be made according to
the specific application requirement regarding the degree of
randomness, security, resource efficiency, or performance
within a real-time setting. Future works will be focused
on optimizing such models for ASIC implementation
designs to enhance energy efficiency and adaptive entropy
techniques in further vulnerability against challenges for
high-complexity hardware-based random number generators
in IoT surroundings.
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