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Abstract―The security of cloud environments, such as 
Amazon Web Services (AWS), is complex and dynamic. 
Static security policies have become inadequate as threats 
evolve and cloud resources exhibit elasticity [1]. This paper 
addresses the limitations of static policies by proposing a 
security policy management framework that uses 
reinforcement learning (RL) to adapt dynamically. 
Specifically, we employ deep reinforcement learning 
algorithms, including deep Q Networks and proximal policy 
optimization, enabling the learning and continuous 
adjustment of controls such as firewall rules and Identity 
and Access Management (IAM) policies. The proposed RL 
based solution leverages cloud telemetry data (AWS Cloud 
Trail logs, network traffic data, threat intelligence feeds) to 
continuously refine security policies, maximizing threat 
mitigation, and compliance while minimizing resource 
impact. Experimental results demonstrate that our adaptive 
RL based framework significantly outperforms static 
policies, achieving higher intrusion detection rates (92% 
compared to 82% for static policies) and substantially 
reducing incident detection and response times by 58%. In 
addition, it maintains high conformity with security 
requirements and efficient resource usage. These findings 
validate the effectiveness of adaptive reinforcement learning 
approaches in improving cloud security policy management.    
Keywords―Cloud Security, Reinforcement Learning, 
Adaptive Policy Management, Deep Q Network (DQN), 
Proximal Policy Optimization (PPO), Intrusion Detection 

I. INTRODUCTION 
 Cloud security is a critical concern as more 
organizations rely on cloud infrastructure. AWS and other 
cloud platforms provide security configurations such as 
firewall rules and IAM policies, which are typically 
managed through static policies set by administrators. 
However, static policies cannot adapt to the dynamic 
nature of cloud environments, where workloads, users, 
and attack patterns change rapidly [1]. This rigidity 
exposes cloud deployments to new threats or 
misconfigurations that are not covered by static rules. For 
instance, static firewall rules may fail to detect novel 
attack patterns, and fixed IAM roles may become over 
privileged as resources scale, increasing risk. 

 Problem Statement: Traditional cloud security policy 
management cannot keep pace with evolving threats and 
agile DevOps practices. Manual policy updates are error 

prone and slow. While cloud providers offer monitoring 
tools like AWS Guard Duty, which uses threat 
intelligence and machine learning to identify suspicious 
activities [5], countermeasures are often not automated. 
This gap can lead to delayed or inadequate responses. 
Security teams also face alert fatigue due to high volumes 
of alerts and false positives [4], further delaying response 
times. 

 Proposed Solution: We propose an RL based adaptive 
security policy management framework for cloud 
environments. An RL agent continuously analyzes the 
state of the cloud environment (security events, 
configurations, and threats) and autonomously updates 
security policies. Unlike static rule sets, the RL agent 
learns to optimize policies (such as adjusting AWS 
security group rules, IAM permissions, or intrusion 
detection thresholds) based on observed threats and 
changes. The agent’s objective is to maximize a reward 
function tied to security outcomes (e.g., threat mitigation 
and compliance) while minimizing incidents and policy 
violations. 

 Our framework targets AWS cloud security, 
integrating the RL agent with AWS security controls 
using AWS APIs to automate firewall rules and IAM 
policy updates. We employ deep reinforcement learning 
algorithms, Deep Q Network (DQN)[7] for value based 
policy learning and Proximal Policy Optimization 
(PPO)[8] for policy gradient learning, to handle complex 
state and action spaces in cloud environments. The RL 
agent is trained using both simulated attack scenarios and 
real AWS log data to ensure generalizability. 

 Research Objectives and Contributions: This research 
aims to develop and evaluate an autonomous RL based 
system for optimizing cloud security policies. Key 
contributions include: 

 Policy Framework: An RL based architecture 
integrated with cloud security monitoring and 
enforcement components for adaptive policy management 
in AWS environments. The framework resolves 
inconsistencies between policies across services and 
automates real time responses to threats. 

 Cloud Security RL Model: A formulation of cloud 
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security management as a Markov Decision Process 
(MDP), defining state, action, and reward functions for 
cloud specific contexts. We implement DQN and PPO to 
automate AWS security policy updates. 

 Experimental Validation: An AWS testbed using real 
security logs and simulated attacks (CICIDS2017/2018 
datasets and AWS Cloud Trail data) to train and evaluate 
the RL agent. We measure detection rates, response times, 
compliance scores, and resource overhead, comparing 
results to baseline static policies and traditional machine 
learning approaches. 

 Insights for Cloud Security: Discussion of challenges 
such as RL scalability in large scale clouds, adversarial 
manipulation risks, and compliance constraints (e.g., 
GDPR/CCPA). We also outline future enhancements, 
including federated learning for multiorganization security 
and adversarial training to improve the RL agent’s 
robustness. 

 The findings demonstrate that reinforcement learning 
can enable adaptive cloud security, reducing the need for 
manual policy configurations and enhancing resilience to 
evolving threats. The rest of this paper is organized as 
follows: Section 2 reviews related work on security policy 
management and learning based security. Section 3 
presents the RL based framework and model design. 
Section 4 describes the experimental setup in an AWS 
environment. Section 5 explains the RL agent training 
process. Section 6 outlines the test scenarios and 
performance metrics. Section 7 discusses results and 
analysis. Section 8 addresses challenges and limitations. 
Section 9 suggests future work, and Section 10 concludes 
the paper. 

II. RELATED WORK 
 Traditional Security Policy Management: Historically, 
cloud and network security policies have been managed 
through static configurations and rule based systems. 
Administrators define firewall rules, access control lists, 
and IAM policies based on best practices and anticipated 
threats. While this approach is straightforward, it lacks 
adaptability. Prior studies have noted that static security 
policies cannot accommodate the dynamic behavior of 
modern networks and cloud workloads [1]. As a result, 
policy staleness can occur, policies become outdated as 
new services are deployed or new vulnerabilities are 
discovered. Tools like Cloud Security Posture 
Management (CSPM) attempt to detect misconfigurations, 
but they often still rely on predefined rules or periodic 
audits rather than realtime adaptation. 

 Machine Learning in Cloud Security: In recent years, 
machine learning (ML) techniques have been applied to 
improve threat detection and anomaly identification in 
cloud environments. For example, AWS GuardDuty 
employs anomaly detection and threat intel to identify 
suspicious activities (such as account compromises) by 
analyzing CloudTrail logs and network flow logs [5]. 
Various research works have applied supervised learning 
and clustering to intrusion detection using cloud traffic 
datasets (CICIDS2017, CSECICIDS2018, etc.), 
demonstrating high detection rates for known attack 
patterns. However, ML models in security are typically 
trained offline and deployed to detect or alert, rather than 
to actively enforce policy changes. One limitation is that 

even if an ML model detects an anomaly, responding to it 
(e.g., blocking an IP or disabling a user account) is usually 
left to predefined scripts or human intervention. 
Moreover, static ML models can struggle with concept 
drift as attacker tactics evolve, models may need 
retraining. They are also prone to false positives, which in 
a cloud context can cause unnecessary service disruptions 
if acted upon without verification [10]. This has led to 
interest in more adaptive, decision making AI for security. 

 Reinforcement Learning in Security: Reinforcement 
learning, with its emphasis on an agent learning from 
interaction with an environment, offers a promising 
approach for adaptive cybersecurity. Prior work has 
explored RL for various security tasks. For instance, 
researchers have applied deep RL to network intrusion 
detection and attack mitigation, often using simulation 
environments or games. A recent multicloud security 
orchestration framework by Vemula et al. leveraged a 
deep RL agent (using PPO) to autonomously detect and 
respond to threats across AWS, Azure, and GCP, showing 
improved cross cloud threat mitigation [3]. Their system 
dynamically orchestrated security policies and resource 
allocations in response to threats, highlighting the 
potential of RL to handle heterogeneous cloud scenarios. 
Another study by Chhetri et al. introduced a cognitive 
hierarchy DQN model for cloud Security Operations 
Centers[4], modeling the interaction between human 
analysts and an RL driven attacker to improve defense 
strategies. This multiagent perspective demonstrated that 
RL agents can learn sophisticated strategies in response to 
adaptive adversaries, achieving higher data protection 
compared to static strategies. 

 These efforts underscore the emerging trend of 
applying RL in cybersecurity. However, gaps remain. 
Many existing studies focus on specific subproblems (e.g., 
game simulations of attacker defender interactions, or 
high level orchestration) rather than low level cloud 
policy enforcement. The application of RL specifically to 
cloud security policy management in a real provider 
environment (AWS) has not been extensively explored in 
literature. Traditional RL research often assumes a well 
defined environment (like a simulated network or game); 
the complexity of real cloud infrastructure with its scale, 
real time constraints, and need for compliance poses 
additional research questions. Our work builds on the 
above by bringing an RL agent into direct interaction with 
an AWS cloud environment for adaptive policy control, 
and rigorously evaluating it with both real attack data and 
cloud logs. 

 Summary of Novelty: Compared to prior work, our 
approach uniquely integrates AWS cloud native data 
(Cloud Trail events, Cloud Watch logs, etc.) into the RL 
state, and the agent’s actions directly map to AWS 
security controls. We also combine multiple data sources 
(live cloud logs and benchmark intrusion data) to train the 
agent, bridging the gap between simulation and reality. 
This research thus advances the state of the art by 
demonstrating that an RL agent can manage and update 
cloud security policies on the fly, offering a level of 
adaptiveness beyond static policies or pretrained ML 
detectors. 

 Traditional Security Policy Management: Classic 
approaches to cloud and network security are based on the 



setting of static configurations and rule based systems. 
Firewalls rules, access control lists and IAM policies are 
defined according to best practices and potential threats. 
This approach is easy to implement but has one major 
drawback: it is not very flexible. Previous research has 
pointed out that static security policies are inadequate to 
deal with the dynamic nature of the modern networks and 
cloud computing environments[1]. As a result, policy 
staleness may happen, that is, policies may become 
irrelevant as new services are introduced or new 
vulnerabilities are discovered. CSPM tools attempt to 
identify misconfigurations, but they do so using either set 
of defined rules or through periodic scans as opposed to 
real time detection. 

 Machine Learning in Cloud Security: Over the past 
few years, ML techniques have been used in the context 
of threat detection and anomaly detection in cloud 
environments. For instance, AWS GuardDuty uses 
anomaly detection and threat intelligence to identify 
unauthorized activities (e.g., account take over) from 
CloudTrail logs and network flow logs[5]. Numerous 
research articles have employed supervised learning and 
clustering for intrusion detection using cloud traffic 
datasets (CICIDS2017, CSE-CIC-IDS2018 etc.) and have 
achieved high detection rate for known type of attacks. 
However, the security related ML models are usually 
trained offline and used for detection or alerting purpose 
and not for actual policy enforcement and change. A 
major limitation is that even though the model may detect 
an anomaly, acting on it (for example, blocking an IP or 
disabling a user account) is usually delegated to 
predefined scripts or human decision making. 
Furthermore, static ML models are also prone to concept 
drift where as the attacker’s tactics evolve the models may 
require retraining. They also suffer from high false 
positive rates, which in the cloud computing environment 
can result in unnecessary service down time if the alerts 
are not properly verified before taking action on them[10]. 
This has led to the exploration of more decisional and 
adaptive AI in security. 

Adaptive Security Management: The intelligent systems 
implementation, specifically the management framework 
for energy crisis, highlights the importance of using 
reinforcement learning algorithms for adjusting cloud 
environment security optimization [14]. The value of AI 
and machine learning in improving the decision-making 
process, similar to adaptive policy security management 
in cloud computing, is captured in the adaptive 
agricultural IoT-based intelligent system for disease 
forecasting [15]. Secure and efficient identity 
management is important for adaptive security models 
and is underscored in distributed ledger technology-based 
immutable authentication credential system (D-IACS) 
[16]. AI ability to accurately predict diseases is 
demonstrated through application of machine learning in 
classifying lung diseases, paralleling the needs in adaptive 
security policy frameworks [17]. The application of 
machine learning and rule induction in healthcare and 
agriculture serves as a propellant for dynamic decision 
making and provides substantial advantages to cloud 
security management [18]. The postulation of the AI and 
predictive analytics use in healthcare optimizes patient 
outcomes justifies the claim on the use of reinforcement 
learning for data-centric efficient and secure system 

decisions [19]. Lastly, the advancements in intelligent 
techniques for short-term load forecasting show how 
machine learning and AI can be leveraged for precise 
predictions, which is also critical in adaptive security 
policies for cloud environments [20]. 

 Reinforcement Learning in Security: Reinforcement 
learning, which is concerned with an agent learning from 
interaction with an environment, seems to be a good 
approach for adaptive cybersecurity. The application of 
RL in security has been studied for various tasks in the 
past. For instance, deep RL has been used in the context 
of network intrusion detection and attack mitigation and 
usually in simulations or games. Recent work by Vemula 
et al. presented a multicloud security orchestration 
framework that used a deep RL agent (powered by PPO) 
to autonomously identify and respond to threats across 
AWS, Azure, and GCP, achieving better crosscloud threat 
management[3]. The system of the authors was able to 
effectively design the security policies and allocate 
resources for the cloud environments in order to counter 
the threats that are prevalent in the hybrid environment. A 
different study by Chhetri et al. proposed a cognitive 
hierarchy DQN model for cloud Security Operations 
Centers[4] which modeled the interaction between human 
analysts and an RL inspired attacker to develop optimal 
countermeasures. This multiple agents paradigm showed 
that RL agents are capable of developing complex 
strategies in response to the hostile environment of the 
adversary, and gain better DP than the static strategies. 

 These efforts indicate that the use of RL in 
cybersecurity is becoming a trend. However, gaps exist. 
Many current studies are focused on particular aspects 
(e.g., small scale games of attacker defender or high level 
orchestration) but not on the level of cloud policy 
enforcement. The application of RL to cloud security 
policy management in a real provider environment (AWS) 
has not been fully investigated in the literature. Classical 
RL research often assumes a known environment (e.g., a 
simulated network or a game); the research questions for 
the real cloud infrastructure are the scale, the realtime 
operation, and the compliance. Our work continues the 
previous efforts and introduces an RL agent to work 
directly in the AWS cloud environment for policy control 
and evaluates it using real attack data and cloud logs. 

III. PROPOSED FRAMEWORK 
 Architecture Overview: The proposed RLbased 
security policy management framework is depicted in 
Figure below, which illustrates the system’s architecture 
and data flows (from monitoring to action enforcement). 
The framework consists of several interconnected 
components working in a closed feedback loop: 

A. Data Ingestion Module 
 This module continuously collects securityrelevant 
data from the cloud environment. In the AWS context, it 
aggregates logs and events from sources such as AWS 
CloudTrail (API activity logs), Amazon VPC Flow Logs 
(network traffic metadata), AWS CloudWatch alarms, and 
external threat intelligence feeds. It may also ingest 
outputs from AWS security services (GuardDuty findings, 
AWS Config rules evaluations). The data ingestion 
component ensures realtime feed of events to the RL 
agent, which is crucial for timely decision making. All 



incoming data is timestamped and queued for processing. 

B. Feature Extraction Layer 
 Raw log and event data are high volume and not 
directly suitable as input to an RL model. The feature 
extraction layer parses and transforms this data into a 
structured state representation. It converts CloudTrail logs 
into features such as counts of unusual API calls, failed 
login attempts, or changes to security groups. Network 
traffic statistics (from flow logs or IDS outputs) are 
distilled into features like connection rates, detected attack 
signatures, or anomaly scores. Policy compliance data 
(e.g., whether current configurations violate any known 
best practices or compliance rules) is also encoded. By 
condensing raw events into salient features (e.g., 
“excessive AWS IAM privilege use detected” as a 
boolean, or numeric threat level scores), this layer reduces 
state dimensionality and noise, enabling the RL agent to 
focus on key indicators of the cloud’s security state. This 
step draws on domain knowledge – for example, known 
indicators of compromise and policy violation patterns are 
used to engineer features[3]. 

C. Deep Reinforcement Learning Agent 
 At the core of the framework is the RL agent. The 
agent observes the current state (the feature vector 
representing the cloud’s security posture and recent 
events) and decides on an action to apply to the cloud 
environment’s security policies. We model the agent’s 
interaction with the cloud as a Markov Decision Process 
(MDP). The state space encompasses the security status of 
cloud resources, including: active security rules, open 
ports, privileged users, recent alerts or incidents, 
compliance flags, and any ongoing attack metrics. The 
action space is defined as a set of permissible security 
policy changes. These actions can include: (a) modifying 
firewall rules (e.g., block or allow traffic from a specific 
IP range, adjust AWS Security Group or Network ACL 
entries), (b) adjusting IAM policies or roles (tighten 
permissions for a role if suspicious activity is detected, or 
require multifactor authentication), (c) isolating or 
quarantining a compute instance (e.g., by moving it to a 
lockeddown security group), (d) enabling additional 
security services or logging (turn on an AWS WAF rule, 
or increase CloudWatch monitoring on a resource), and 
(e) crosscloud actions (if multicloud, e.g., replicate a 
block rule in another cloud environment). The actions are 
discrete and impact the cloud configuration. The agent’s 
policy is learned using deep neural networks: for DQN, a 
deep Q network approximates the Q value for each state 
action pair; for PPO, a policy network outputs a 
probability distribution over actions. 

D. Policy Management Module 
 This component acts as the bridge between the RL 
agent’s decisions and the actual cloud security controls[3]. 
When the RL agent selects an action, the policy 
management module translates it into the appropriate API 
calls or configurations in AWS. For example, if the action 
is ”block suspicious IP”, the module will call the AWS 
EC2 or VPC API to update the relevant Security Group or 
AWS Network Firewall rule. It maintains a centralized 
view of the current security policies across the cloud 
environment. This module also performs policy 
versioning and consistency checks – ensuring that 

changes made by the RL agent do not conflict with each 
other or leave the system in an inconsistent state. In 
multiaccount or multicloud scenarios, it propagates policy 
updates to the respective platforms to enforce a unified 
security posture. This helps prevent gaps where one part 
of the environment remains vulnerable due to 
unsynchronized policies [3]. 

E. Response Execution Engine 
 Time is critical during attacks. The response execution 
engine is responsible for promptly carrying out the 
security actions decided by the agent [3]. It is 
implemented using event driven automation (for example, 
AWS Lambda functions or AWS Systems Manager 
Automation runbooks) that listen for the RL agent’s 
action signals. Once triggered, the engine executes the 
low level commands: e.g., revoke a set of IAM 
credentials, deploy a new firewall rule, or launch an 
isolation workflow for a compromised instance. After 
execution, it reports the outcome (success/failure and any 
resulting system state changes) back to the RL agent as 
feedback. 

 Reinforcement Learning Model Design: We design the 
RL problem with careful consideration of states, actions, 
and rewards: 

 State Space: The state is a comprehensive 
representation of cloud security at a given time. It 
includes numeric features like the number of active 
connections, counts of denied vs. allowed traffic, anomaly 
scores from IDS/IPS, compliance deviation metrics (how 
far the current config drifts from compliance baseline), 
and binary flags for specific alerts (e.g., “root account API 
call detected” yes/no). For AWS, an example state could 
be: [10 active security groups, 3 GuardDuty threat 
findings in last hour, 1 IAM user with anomalous activity, 
0 compliance violations]. We also include previous action 
context if needed, enabling the agent to account for recent 
changes (this can help the agent learn not to flip flop 
actions). The state is high dimensional but our feature 
extraction ensures each element is meaningful and scaled. 
This formulation follows the approach of prior RL 
security research that define states based on aggregated 
security events and context[3]. 

 Action Space We define a finite set of actions relevant 
to policy management. To keep the action space tractable, 
actions are somewhat abstracted (parametrized actions can 
be broken down for implementation). Examples of 
discrete actions: 

BlockTraffic(srcIP) Insert a rule to block traffic from a 
suspected malicious source IP or range. 

RestrictUser(userID) Apply a more restrictive IAM policy 
to a user/role showing suspicious behavior (e.g., remove 
admin privileges). 

OpenPort(service) Open or increase access on a 
port/service if needed (could be used to restore 
connectivity after a false alarm, ensuring availability). 

IsolateInstance(instanceID) Quarantine an EC2 instance 
by moving it to a lockeddown network segment. 

IncreaseMonitoring(resource) Turn on additional logging 
or diagnostics on a resource (e.g., enable AWS CloudTrail 
for all regions if not already, or enable VPC Flow Logs on 



a VPC). 

NoOp (do nothing) Sometimes the best action is to 
maintain current policies (the agent should learn to avoid 
unnecessary changes). 

 Reward Function We carefully craft the reward 
function to guide the agent toward desirable security 
outcomes. The agent receives a positive reward for actions 
that improve security or compliance, and negative rewards 
for actions that degrade security or violate policies. 
Concretely, we assign: 

 Threat Mitigation Reward: If an action successfully 
stops an ongoing attack or prevents an incident (e.g., 
blocking an IP that was exfiltrating data), reward +R1 (a 
moderate positive value). We detect this by observing 
subsequent state – e.g., threat alerts drop after the action. 

 Incident Penalty: If a security breach occurs (e.g., an 
intrusion not stopped) or an attack succeeds because the 
agent failed to act, reward R2 (large negative penalty). 
This encourages the agent to proactively prevent breaches. 

 
Fig. 1. State Space and Actions 

 Compliance Reward: If an action leads to a more 
compliant state (for instance, it fixes a configuration that 
violated a rule, like closing an open S3 bucket or enabling 
encryption), reward +R3. 

 Compliance Violation Penalty: If the agent’s action 
itself causes a violation (for example, removing a security 
control or shutting down a logging mechanism that is 
required), reward R4. 

 Resource Utilization Penalty/Reward: We introduce a 
small penalty for actions that cause heavy resource usage 
or cost (like turning on an expensive monitoring across all 
instances might incur cost or performance hit), to ensure 
efficiency. Conversely, efficient management (reducing 
unnecessary logging or restoring service availability) 
could yield a small positive reward. 

 Stability Bonus: To prevent oscillations, if the agent 
maintains a secure state over a period without additional 
incidents, it gets a small continuous reward, reinforcing 
that maintaining security (not just reacting) is valuable. 

 The values R1...R4 are tuned during experimentation. 
For example, we set a high penalty for incidents (to 
strongly discourage failing to stop attacks) and relatively 
high reward for mitigation. Compliance is also weighted 

high due to its importance in enterprise settings. This 
reward shaping ensures the agent’s goal aligns with real 
world security objectives: maximize threat prevention and 
compliance, minimize disruptions and cost [3]. Through 
trial and error in training, the agent learns which 
sequences of actions lead to higher cumulative rewards. 

 Optimization Algorithms: We implement two RL 
algorithms to train the agent: DQN and PPO. DQN is a 
value based off policy algorithm where a deep neural 
network approximates the Q value for each action given a 
state [7]. We use a replay buffer to stabilize training and 
an ϵ greedy strategy for exploration (starting with more 
random actions and decaying ϵ to favor learned policy 
over time). DQN is suitable since many of our actions are 
discrete decisions (like block or allow something). 
However, DQN can be challenged by large state spaces 
and partial observability. Proximal Policy Optimization 
(PPO) is a policy gradient method that has shown stable 
performance in complex environments [8]. PPO directly 
optimizes the policy with clipped objective functions to 
avoid too large updates, making training more stable. We 
chose PPO to handle scenarios with more continuous or 
subtle policy adjustments and to compare against DQN. 
PPO can also naturally handle a continuous action space if 
we had one (e.g., if tuning a continuous parameter like a 
threshold), though in our case actions are discrete. Using 
both algorithms allows us to evaluate which is more 
effective for cloud security tasks – prior research indicates 
that PPO often outperforms DQN on complex control 
problems in terms of achieving higher reward and 
consistency[9], but DQN might be simpler to implement 
for discrete actions. 

 
Fig. 2. Reward Function 

 System Architecture. The flow of information can be 
summarized as fol lows: The data ingestion and feature 
extraction components feed the RL agent with the current 
state. The agent’s decision is passed to the policy 
management module, which uses the response engine to 
enforce the action in the AWS envi ronment. The 
environment changes as a result, which is detected by 
monitoring, and the new state is fed back to the agent. 
This loop repeats continuously. Es sentially, the RL agent 
and the cloud form an interactive loop: the agent “steers” 
the cloud’s security configuration, and the cloud provides 
rewards/punishments via the outcomes of those actions. 

 By designing the framework in this modular way, we 
ensure that our solution can be integrated with actual 
cloud deployments. For implementation, each component 
can be realized with AWS services: e.g., ingestion via 
AWS Kinesis or Data Pipeline, feature extraction on 
AWS Lambda or SageMaker, the RL agent running in 
AWS SageMaker RL, and actions executed via AWS 
CloudFormation or Lambda invoking AWS SDK calls. In 



the next sections, we discuss how we set up this 
framework in a controlled environment for 
experimentation and how the agent was trained with real 
and simulated data. 

 
Fig. 3. System Architecture 

IV. Experimental Setup 
 To evaluate the proposed framework, we created a test 
environment that mimics a real world AWS cloud 
deployment with common services and security 
monitoring in place. This environment allowed safe 
training and testing of the RL agent on various threat 
scenarios without impacting production resources. The 
experimental setup consisted of the following components 
and data sources: 

A. AWS Cloud Testbed Configuration 
 We deployed a dedicated AWS environment for 
experiments, including a Virtual Private Cloud (VPC) 
with multiple subnets, EC2 instances, and typical cloud 
services. The architecture included: 

 Web Server Tier: Two Amazon EC2 instances running 
a web application (one Linux/Apache server and one 
Windows/IIS server) to simulate a public facing service. 
These were placed in a public subnet behind an AWS 
Security Group (firewall). 

 Database Tier: An EC2 instance running a database 
(MySQL) in a private subnet, not directly internet 
accessible. This instance had its own Security Group and 
was intended to simulate sensitive data storage. 

 Monitoring and Logging: AWS CloudTrail was 
enabled for the account to log all API calls. AWS VPC 
Flow Logs were turned on for the subnets to capture IP 
traffic metadata. Amazon CloudWatch was used to 
centralize logs (application logs, OS logs) and trigger 
alarms on certain events (e.g., CPU spikes potentially 
indicating DoS attack). 

 Security Services: AWS GuardDuty was enabled to 
provide baseline threat detection alerts (used as part of 
state features for the RL agent). AWS Config was used to 
track compliance with a set of rules (like “S3 buckets 
should not be public” and “EC2 instances should not have 
wide open SSH ports”) – any Config rule violations were 
flagged to the agent. 

 Network Firewall: In addition to Security Groups, we 
simulated an AWS Network Firewall controlling egress 
rules for the VPC. This was to test the RL agent in 
firewall optimization scenarios. This environment was 
sized to be representative yet manageable. Importantly, it 
allowed us to generate and collect rich security data 
(CloudTrail logs, flow logs, etc.) in a controlled manner. 
The RL agent did not directly run on the EC2s; instead, 
we used AWS SageMaker and AWS Lambda for the 
agent logic and actions. The environment provided the 
playground in which the agent acts. 

B. Data Sources for Training and Testing 
A mix of realworld and simulated data was used to drive 
the experiments: 

 Intrusion Detection Datasets: We incorporated 
network traffic and event data from well known intrusion 
detection system (IDS) datasets CICIDS2017 and CSE-
CIC-IDS2018. The CICIDS2017 dataset contains benign 
traffic and a variety of common attack types (Brute force, 
DoS, DDoS, infiltration, web attacks, etc.) captured over a 
week[6]. CSE-CIC-IDS2018 is a newer dataset with 
extended attack scenarios (including crypto mining 
attacks and lateral movement). We replayed portions of 
these datasets in our environment by generating traffic 
patterns and log events corresponding to the attacks. 

 AWS CloudTrail Logs: We collected actual 
CloudTrail logs from our test account for normal 
operations and attack scenarios. For baseline normal 
behavior, the logs included typical activities (launching 
instances, user logins, S3 bucket access, etc.). During 
simulated attacks, CloudTrail captured relevant events 
(e.g., an attacker created a new IAM user or an access key 
was misused). 

 Threat Intelligence Feeds: We integrated external 
threat intel data, including known malicious IPs/domains 
from opensource intelligence (Alien Vault OTX, 
Spamhaus). We also used AWS threat intel from 
GuardDuty, which provides AWS managed lists of 
malicious hosts[5]. 

 Compliance and Configuration Data: We defined a set 
of compliance criteria (in line with CIS AWS 
Foundations). AWS Config was set up with rules for 
these. Violations (like an open port) were included in the 
RL state so the agent could learn to correct them. We also 
simulated GDPR/CCPA constraints, e.g., an EU based 
EC2 instance not accessible from non EU IPs, marking 
that as a violation. 

 Simulated Attack Scenarios: Various test scenarios 
combined network based intrusions, insider IAM misuse, 
multivector in filtration, etc. 

C. Baseline Security Policies 
 At the start of experiments, we defined a baseline 
static security policy configuration: 



A default set of Security Group rules (allow necessary 
traffic, block others). 
Predefined IAM roles with least privilege (no wildcards). 
AWS Config rules in monitoring mode (no 
autoremediation). 
GuardDuty alerting only (no automated incident 
response). 
No manual or scripted incident response except for the 
baseline’s ML based detection with a time delay. 

This baseline let us compare how the RL agent improved 
on typical static or partially automated approaches. 

V. TRAINING OF RL AGENT 
 Training a reinforcement learning agent for cloud 
security poses unique challenges. Unlike games or 
simulated environments that run quickly, cloud 
environment interactions can be slower and safetycritical. 
We designed a training regimen that combines offline 
training on historical data with online training in the live 
testbed, using careful safeguards. 

 
Fig. 4. Experimental Setup 

A. Training Environment and Tools 
We utilized AWS SageMaker RL for provisioning the 

training jobs. SageMaker RL provides managed instances 
with preinstalled RL toolkits and allowed us to scale up 
the necessary compute (we used GPU based instances for 
neural network training to speed up learning). The agent 
and environment were implemented in Python using 
TensorFlow and the OpenAI Gym interface. We created a 
custom Gym environment for our AWS testbed, where 
reset() initializes or randomizes the cloud state (e.g., 
starting with certain attacks) and step(action) carries out 
the agent’s action via AWS APIs and returns the new state 
and reward. 

Because real cloud operations (like modifying a 
security group or reading logs) have latency, we used a 
hybrid approach: 

Fast Simulated Model for Training: We built a local 
simulator approximating how the cloud responds to 
actions (e.g., blocking an IP stops the relevant attack). 
This simulator was informed by real data distributions, 
letting us train the agent rapidly in many episodes. 

Periodic Sync with Real Environment: After certain 
milestones in simulation, we validated the agent’s 
behavior in the actual AWS testbed for a few episodes, 
gathering real transitions and rewards, which were added 
to the replay buffer (for DQN) or used to finetune PPO. 

B. DQN and PPO Implementation Details 
DQN: A neural network with two hidden layers (256, 

128 units) with ReLU activations, outputting Q values for 
each action. We used experience replay (buffer size 
50,000, batch size 64), Adam at LR=0.0005, ϵ greedy 
exploration decaying from 1.0 to 0.01 over 10k steps, and 
a target network updated every 1000 steps. 
PPO: An actorcritic architecture with similar network 
sizes for policy and value functions. We used clip 
ratio=0.2, GAE λ = 0.95, discount γ = 0.99, 2048 
timesteps per update, minibatch=64, 10 epochs, and 
LR=1e 4. PPO was chosen for its robustness to 
hyperparameters and stability on complex tasks[13]. 

C. Reward Shaping and Training Curriculum 
Initially, the agent performed poorly (random actions). 
We used curriculum learning: 
Early epochs: Single attack scenarios only, large positive 
rewards for correct defense actions. 
Later: Multiple simultaneous threats plus compliance 
constraints. We also added benign anomalies to 
discourage false positives. 
Feature Refinement: We pruned noisy features, focusing 
on strong signals (e.g., “unusual API pattern score” 
instead of raw counts). 
We monitored episodic reward and key metrics. Both 
DQN and PPO steadily improved; PPO generally 
converged more smoothly. 

D. Training Challenges and Solutions 
Exploration vs Exploitation: The agent could get stuck 

in local optima. We prolonged exploration, injecting 
stochasticity in both DQN (ϵ resets) and PPO (adding 
noise to policy logits). 
Sparse Rewards: Security incidents are relatively rare. We 
introduced small intermediate rewards (e.g., a slight 
negative each timestep an attack continued, encouraging 
faster mitigation). 
Safety: We placed guardrails on dangerous actions (e.g., 
never delete all firewall rules). Humanin the loop checks 
were used early in real testbed training to prevent lockouts 
or catastrophic disruptions. 
Compute Time: We used distributed training with 
multiple parallel environment copies, accelerating data 
collection 
After tens of thousands of steps (combining simulation 
and real episodes), we had stable DQN and PPO models 
ready for systematic testing. 

VI. EXPERIMENTATION AND TESTING 
We evaluated the trained RL agent in scenarios 

designed to measure effectiveness under different attack 
types, comparing it to baseline static policies and a non 
RL adaptive method. We used metrics such as: 

Threat Mitigation Rate Detection Accuracy 
(TPR/FPR) 
Incident Response Time 
Policy Changes Count 



Compliance Score 
Resource Utilization/Overhead 

 
Fig. 5. Training Loop 

A. Scenario 1: Firewall Policy Optimization under 
Network Attacks 
We simulated port scans, DDoS, web attacks (SQL 

injection, XSS). The RL agent learned to insert deny rules 
for malicious IPs and enable AWS WAF for HTTP 
exploits, significantly reducing the impact. We measured 
time from attack onset to mitigation. 

B. Scenario 2: IAM Policy Management under Credential 
Compromise 
An insider or attacker used compromised IAM 

credentials. The RL agent responded by restricting or 
revoking them upon detecting anomalous CloudTrail 
patterns. We tested false alarms (legitimate large scale 
changes) to see if the agent overreacted. 

C. Scenario 3: MultiCloud Coordinated Security 
We extended to Azure in a limited form, letting the 

RL agent block IPs or tokens across both clouds. 
Although basic, it showed the approach can unify security 
posture in multicloud contexts[3]. 

D. Performance Metrics 
All runs recorded threat mitigation rate, detection 

accuracy, response time, compliance violations fixed vs. 
created, overhead, etc. We repeated each scenario 
multiple times with random seeds to check consistency.  

 
Fig. 6. Experimental Scenarios 

VII. RESULTS AND ANALYSIS 

A. Threat Mitigation and Detection 
 Our RL agent surpassed 95% mitigation across 

scenarios, vs. 70–75% for static and ∼ 85% for 
ML+human. True positives were ∼ 96%, with 7–10% 
false positives. Notably fewer successful attacks occurred 
under RL. 

B. Incident Response Time 
The RL agent responded within seconds (2–5 seconds 

for network attacks, under 10 seconds for IAM misuse), 
drastically faster than manual responses (minutes). This 
realtime adaptation stopped attacks before serious 
damage. 

C. Policy Adaptation and Compliance 
On average, the RL agent made 5 or so daily policy 

updates, aligning with actual needs. It also fixed existing 
compliance issues (like open ports), unlike baselines that 
left them. The Table. I represent reward shaping 
successfully included compliance as a performance 
metric. 

Table I. Security Performance Comparison of Baseline Approaches vs. RL Agent 

Approach Threat 
Mitigation 

Incident 
Response Time 

TRUE 
Positive Rate 

FALSE 
Positive Rate 

Avg. Daily Policy Updates Compliance Issues 

Static Policies 72% N/A(Manual, delayed) 80% 15% 0 2  outstanding 
ML + Human Oversight 85% 5–15 min 89% 10% 1–2 manual 1–2 outstanding 
RL Agent (DQN) 93.70% 3–7 sec 94% 9.50% 4–6 automated 0 
RL Agent (PPO) 95.40% 2–5 sec 96% 7% 5–7 automated 0 
 
 

D. Comparing DQN and PPO 
Both performed well. PPO had slightly higher 

success rates (∼ 95.4% vs. ∼ 93.7%) and fewer false 
positives. DQN sometimes converged to local optima if 
exploration was insufficient. PPO was more stable across 
training seeds. 

E. Resource Overhead 
Enabling additional logging or carrying out frequent 

firewall updates added ∼ 5% overhead to CPU. We 
consider this acceptable given the security gains. No 
catastrophic changes or lockouts occurred once guardrails 
were in place. 

VIII. CHALLENGES AND LIMITATIONS 
While promising, RL based security policy management 
faces issues: 



Scalability: Large enterprise clouds with thousands of 
resources need hierarchical or multiagent RL. Training 
might become prohibitively time consuming if every 
resource is tracked individually. 
Adversarial Attacks on the RL Agent: Attackers might 
manipulate logs or the agent’s reward signals. Secure 
pipelines and adversarial training approaches are needed 
to harden the system. 
Compliance Tensions: Automated changes must still 
respect regulations (GDPR, CCPA). Some decisions 
require human approval or must be explainable for audits. 
Integration and Maintenance: Production use requires 
robust rollback, advanced logging, partial manual 
oversight, and potential retraining if the environment 
changes drastically. 
Generalizability: Our approach targets AWS specifically. 
Other cloud providers or onprem systems may require 
reimplementation or additional training data. 

IX. FUTURE WORK 
Several directions can expand upon our work: 
Federated/Distributed Learning: Scaling to multiaccount 
or multiorganization deployments. Federated RL could 
allow organizations to share model insights without 
sharing raw data, accelerating learning of new threat 
patterns[2]. 
MultiAgent and Adversarial Training: Introducing a Red 
Team RL agent to simulate attackers, forcing the Blue 
Team RL agent (our defender) to adapt to novel attack 
strategies in a selfplay manner[4]. This could expose the 
defender to a broader range of threats than scripted 
scenarios. 
Real Time Threat Intelligence Integration: Dynamically 
ingest newly published malicious IPs/domains and block 
them preemptively. Conversely, discovered IoCs by the 
RL agent could be shared out, creating a continuous 
feedback loop with external threat intel feeds. 
Explainable RL: Developing methods (e.g., feature 
attribution, rule extraction) to justify the agent’s policy 
updates. This is especially important in regulated 
environments demanding audits or rootcause analysis. 
Extending to New Domains: Container security, 
serverless, data loss prevention, or zero trust network 
architectures. RL could adapt microservice policies or 
automatically enforce zero trust principles in ephemeral 
deployments. 
Long Term Production Studies: Deploying the agent in a 
production or largescale staging environment over 
months. Observing continuous adaptation, concept drift, 
and periodic retraining would validate viability in real 
operations. 

X. CONCLUSION 
This paper presented an adaptive security policy 
management framework for AWS cloud environments 
based on reinforcement learning. By continuously 
analyzing cloud telemetry and adjusting controls (firewall 
rules, IAM policies, etc.), the RL agent achieves faster, 
more effective threat mitigation than static policies or 

partially automated machine learning. Through 
experimental evaluation with real and simulated attack 
data, we showed high detection accuracy, reduced 
incident response times, and improved compliance. 
However, challenges remain in scaling to large multicloud 
systems, defending against adversarial manipulations, 
ensuring regulatory compliance, and providing 
explainability. Future work on federated training, 
multiagent adversarial play, and advanced interpretability 
methods could further enhance the real world feasibility 
of an autonomous RL driven security engine. Overall, our 
findings indicate that reinforcement learning can offer a 
promising, self adaptive approach to modern cloud 
security. 
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