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Abstract. Federated learning (FL) enhances privacy and reduces com-
munication cost for resource-constrained edge clients by supporting dis-
tributed model training at the edge. However, the heterogeneous nature
of such devices produces diverse, non-independent, and identically dis-
tributed (non-IID) data, making the detection of backdoor attacks more
challenging. In this paper, we propose a novel federated representative-
attention-based defense mechanism, named FeRA, that leverages cross-
client attention over internal feature representations to distinguish be-
nign from malicious clients. FeRA computes an anomaly score based on
representation reconstruction errors, effectively identifying clients whose
internal activations significantly deviate from the group consensus. Our
evaluation demonstrates FeRA’s robustness across various FL scenarios,
including challenging non-IID data distributions typical of edge devices.
Experimental results show that it effectively reduces backdoor attack suc-
cess rates while maintaining high accuracy on the main task. The method
is model-agnostic, attack-agnostic, and does not require labeled reference
data, making it well suited to heterogeneous and resource-limited edge
deployments.

Keywords: Federated Learning · Edge devices · Backdoor Attack.

1 Introduction

Federated learning (FL) enables a set of distributed clients to collaboratively
train a global model without sharing raw data [11]. In FL, edge devices train
local models on their user data and periodically send updates to a central server
which aggregates them. While preserving data privacy, FL introduces new at-
tack surfaces. An especially subtle and harmful threat is the backdoor attack,
which is a form of targeted model poisoning attack [2]. In a backdoor attack,
malicious clients inject a hidden behavior into the global model: the model per-
forms normally on standard (clean) inputs, but misclassifies inputs that contain
a specific attacker-chosen trigger into a target class. Since backdoored models
maintain high accuracy on benign data, detecting them is difficult [1]. Unlike
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untargeted attacks that noticeably degrade overall accuracy, backdoors remain
stealthy until the trigger is present, thus requiring specialized defense strategies.

Defenses against backdoor attacks in FL are generally categorized into three
groups: pre-aggregation, in-aggregation, and post-aggregation defenses [18]. Pre-
aggregation methods, such as Krum [3], Bulyan [12], AFA [14], and Auror [20],
aim to detect and exclude malicious client updates before aggregation. Anomaly
detection techniques [17] also fall into this category. However, these approaches
often rely on strong assumptions about data distributions and attack patterns,
which may not hold in practice, making them vulnerable to sophisticated or co-
ordinated backdoor attacks [18]. In-aggregation strategies, like differential pri-
vacy [15] and robust learning rates [19], mitigate threats during model aggre-
gation without specific assumptions about attack methodologies. While effec-
tive against certain backdoor attacks, they typically degrade the global model’s
accuracy, presenting a trade-off between robustness and performance [23]. Post-
aggregation defenses focus on restoring model integrity after aggregation through
techniques like model pruning and fine-tuning [4]; however, their effectiveness
against complex semantic backdoors remains uncertain [18]. Thus, there is a
need for a defense that is robust, does not degrade main-task accuracy and
introduces minimal overhead, especially for resource-constrained edge clients.

Recent research [24] suggests that analyzing the internal feature representa-
tions of models can reveal backdoor anomalies that are not evident from weights
alone. When all clients are benign and learning the same task, their intermedi-
ate neural representations tend to align in a common feature space. In contrast,
a backdoored model, despite behaving normally on clean data, often develops
divergent internal activations due to optimizing for the trigger behavior.

In this paper, we propose a federated representative-attention-based (FeRA)
mechanism which is a novel anomaly detection method that leverages an atten-
tion mechanism over client representations to identify malicious updates. Our
approach requires only a small set of common reference inputs and does not
assume any prior knowledge of the attack. In summary, our contributions are:

– We propose FeRA, a novel FL defense leveraging self-attention on intermedi-
ate model activations. By reconstructing client representations from others,
our method highlights clients that deviate from the global feature space.

– Unlike prior methods that use fixed metrics and analyzes client-submitted
weight vectors making it incompatible to secure aggregation, our approach
captures complex relationships across clients’ models, allowing a more adap-
tive and robust comparison than simple pairwise similarities.

– We evaluate the robustness of FeRA against state-of-the-art (SOTA) back-
door attacks under diverse non-IID federated learning conditions. Our results
show that FeRA significantly reduces backdoor success rates while preserv-
ing clean model performance and incurring minimal overhead on resource-
constrained edge clients.

The rest of the paper is organized as follows. Section 2 presents background
information. Section 3 introduces our proposed solution - FeRA. In Section 4,



FeRA: Defending the Edge 3

we provide an extensive evaluation of FeRA. Section 5 surveys related work.
Section 6 concludes the paper and outlines potential future directions.

2 Background and Problem Setting

In this section, we provide a detailed background on FL, backdoor attacks in FL,
and introduce key ideas underpinning attention-based model interpretability.

FL in Edge Environments. FL has emerged as a key paradigm for privacy-
preserving collaborative model training across distributed, resource-constrained
edge devices.

Let {Dk}Kk=1 be the datasets stored across K edge devices (or clients), each
training locally without exposing raw data. Formally, FL seeks to solve:

min
w

F (w) =

K∑
k=1

|Dk|
|D|

Fk(w), Fk(w) =
1

|Dk|
∑

(xi, yi)∈Dk

ℓ
(
w; xi, yi

)
, (1)

where ℓ(·) is the local loss, w is the model parameters, and |D| =
∑K

k=1|Dk| [11].
The server initiates a global model w(0) and repeatedly updates it: each device
k computes w(t)

k = w(t−1)−η∇Fk

(
w(t−1)) and the server aggregates via w(t) =∑m

k=1 αk w
(t)
k , where η is the local learning rate, and αk = |Dk| /

∑m
j=1|Dj |.

Only a fraction m of devices (out of K) may be selected each round, reflecting
limited communication or power constraints in edge deployments. Edge devices
often operate autonomously and may be physically exposed or weakly secured,
increasing their susceptibility to attacks and amplifying the risk of targeted
model poisoning attacks [18]. Thus, methods for securing FL systems, especially
under non–IID data, remain an active research area.

Backdoor attacks in FL. Backdoor attacks are a targeted poisoning strategy
wherein malicious clients attempt to implant a specific misclassification behavior
(the backdoor) into the global model [2]. Concretely, an adversary chooses a
trigger T (e.g., a pixel pattern, or a rare input sample for semantic backdoors)
and a target label yt. During local training, the malicious client injects samples(
x+T, yt

)
into its dataset. The goal is for the global model to learn fw(∗)(x+T ) =

yt, while still retaining high accuracy on clean inputs x.
Since FL only inspects local updates, poison samples remain concealed [21].

Classic centralized backdoor attacks (e.g., BadNets [7]) were extended to FL
by boosting malicious updates to overcome the diluting effect of aggregation.
FL backdoor variants appear in different forms. For instance, model poison-
ing [1] lets attackers rescale or directly manipulate local gradients ∇Fk to domi-
nate the aggregation; edge-case backdoors [25] exploit rare or out-of-distribution
“edge” inputs to insert subtle targeted attacks; and distributed backdoor attacks
(DBA) [27] split a trigger across multiple colluding clients, making each update
appear benign while collectively embedding the backdoor. Mathematically, these
strategies exploit the FL averaging operation to push the global parameters w(t)
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toward a poisoned optimum w(∗). The result is a model that performs normally
on clean data but consistently predicts yt on triggered inputs x+ T .

Representation via attention While most defenses focus on weigh vectors
or gradient norms, recent studies reveal that internal feature representations
offer more discriminative cues for distinguishing malicious from benign model
behavior [13,24]. Specifically, if ϕw(x) denotes the intermediate-layer activations
of a model with parameters w, then benign clients tend to exhibit similar high-
level feature representations on clean reference inputs, while backdoored models
show anomalous deviations.

Previous approaches such as ARIBA [13] analyze static model parameters,
e.g., convolutional kernel gradients - breaking them into smaller fragments and
applying unsupervised outlier scoring (e.g., Mahalanobis distance) to detect
structural bias caused by backdoors. FLDetector [28], on the other hand, em-
ploys consistency in client updates across rounds, using the Cauchy mean value
theorem to predict expected behavior and identify attackers who deviate from it.
These approaches either require hand-crafted statistical tests or rely on multi-
round histories, making them less flexible for real-time, round-level detection.

More closely aligned with our method, FedAvgCKA [24] introduced the use of
centered kernel alignment (CKA) to quantify pairwise similarity between client
feature representations on a shared root dataset. Malicious models are flagged
based on their low similarity with the majority. However, computing all pair-
wise similarities across multiple layers incurs high overhead. In contrast, our
proposed defense adapts the multi-head self-attention mechanism introduced in
the Transformer architecture by Vaswani et al. [22] to the federated setting for
client model comparison. Instead of using attention to aggregate token-level se-
quences, we apply it over client-level representation vectors derived from shared
reference inputs. Each client’s representation is treated as a query and recon-
structed via attention-weighted combinations of its peers’ representations. The
core idea is that benign clients, sharing similar internal representations, can ef-
fectively “explain” each other, yielding low reconstruction error. In contrast, a
malicious client whose representation deviates due to backdoor objectives cannot
be accurately reconstructed from others, resulting in a high anomaly score.

This attention-based mechanism allows us to move beyond static similarity
metrics (e.g., cosine distance, kernel alignment), to capturing more nuanced dy-
namic relationships across models. Unlike CKA-based defenses that rely on fixed
pairwise statistics or ARIBA’s handcrafted outlier tests on filter weights, FeRA
introduces a learned, adaptive framework for anomaly detection. Each attention
head can capture different subspaces of representation similarity, enabling richer
modeling of inter-client behavior. Thus, FeRA provides a flexible and generaliz-
able approach to identifying poisoned models even in heterogeneous FL systems.

System model. We consider a FL system typical of edge deployments, con-
sisting of a central server and a set of K client devices (edge nodes). The clients
collaboratively train a global model (e.g., a deep neural network for image or
sensor data classification). In each training round t, a subset of m clients (out
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of K) is selected and receives the current global model parameters w(t). Each
selected client k uses its local dataset Dk to perform some training (e.g., a few
epochs of stochastic gradient descent (SGD) and obtains an updated model w(t)

k .
The client then sends this update (or the model parameters) to the server. The
server aggregates the m received models into a new global model w(t+1). This
process repeats for T rounds until convergence.

Adversary goals and adversarial capabilities. In line with federated back-
door literature [16,5,27], we consider a honest-but-curious aggregator that faith-
fully performs model aggregation but lacks direct visibility into client data or
any knowledge of the attacker’s backdoor trigger patterns. A minority subset of
clients is compromised, denoted by M with |M| = m < K

2 . These malicious
devices can perform data poisoning (e.g., flipping labels or inserting trigger sam-
ples (x ⊕ T, ymal)) and/or model poisoning (e.g., scaling or constraining local
updates) to embed a covert mapping x ⊕ T 7→ ymal into the global model pa-
rameters w(t+1). They strive to remain close to benign updates on non-trigger
data so as to evade detection, potentially colluding on their poisoning strategies
to inject or distribute backdoors more effectively. Following the model in [16,27],
the adversary can adapt its malicious contributions if it anticipates the server’s
defense. Attackers, however, cannot alter the server’s aggregation routine or the
reference data used to evaluate internal representations. For edge devices, an
overt drop in main-task accuracy or large parameter divergence would immedi-
ately raise suspicion. Thus, malicious clients often resort to partial attacks over
multiple rounds or carefully tune their gradients to approximate benign signals.

Defense Objective. Our main objective is to neutralize any backdoor func-
tionality while preserving the global model’s accuracy on benign inputs. Specif-
ically, we seek to constrain malicious updates so that no persistent mapping
x ⊕ T 7→ ymal can take root in the aggregated model. By leveraging cross-
client representation consistency checks, our defense aims to detect and exclude
anomalous activations before they significantly bias model convergence toward
the trigger. In doing so, we ensure that attackers cannot dominate learned feature
subspaces even when they collectively attempt to manipulate their updates.

3 FeRA Overview and Design

Unlike prior methods [24,13] that use fixed metrics (e.g., cosine distance, kernel
alignment) to compare models, FeRA employs a self-attention module to recon-
struct each client’s representation from those of other clients (see Fig. 1). By
operating at the representation level, FeRA is resilient to weight obfuscation or
scaling attacks, focusing instead on functional behavior. Moreover, the atten-
tion mechanism captures complex relationships across clients’ models, allowing
a more adaptive and robust comparison than simple pairwise similarities. This
makes our method especially suited for edge devices, where non-IID data is the
norm and adversaries can be stealthy and adaptive.
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Fig. 1. A high-level overview of FeRA: at each round, the server performs representa-
tion extraction and attention-based anomaly detection before aggregating models.

Overview. In each training round t, the server performs the following steps: (1)
It receives updated local models w1, w2, . . . , wm from the m selected clients (after
each client trains on its local data for that round). (2) It feeds a small reference
dataset Dref into each client’s model to obtain internal activations at a chosen
layer. These activations are aggregated to form a representative feature vector
ri for each client’s model Wi. (3) Using a multi-head self-attention mechanism,
it attempts to reconstruct each client’s representative vector using the vectors
from all other clients. This produces a reconstructed representation r̂i for each
client i based on its peers’ representations. (4) It computes the reconstruction
error for each client i, defined as the distance between ri and its reconstruction
r̂i (ei = ∥ri − r̂i∥2). This scalar ei serves as an anomaly score indicating how
well client i’s update aligns with the others. (5) It converts each anomaly score
into a non-negative weight, assigning higher weights to clients with low scores
and zero weight to those exceeding the threshold.

Design Challenges. We outline three core design challenges encountered.

Ch-1 - Selection of representation layer. Choosing the appropriate neural layer
from which to extract features is critical. If the chosen layer is too early in the
network, it will capture mostly low-level or generic features that are common
to all inputs, making it hard to distinguish subtle backdoor-induced anomalies.
On the other hand, if the representation is taken from a layer too close to the
output, an adversary could manipulate the model’s final layers to hide the back-
door influence, thereby masking internal anomalies. We balance this trade-off
by selecting an intermediate-high layer that captures high-level semantic fea-
tures yet is not overly influenced by the final classifier. We found that using the
penultimate fully-connected layer for CNN models (or the global pooling layer
in residual architectures) yields representations that are both discriminative and
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stable across clients. We validated this choice through ablation studies in Ap-
pendix B, observing that backdoored models tend to produce markedly divergent
embeddings at these layers while benign models cluster tightly in feature space.

Ch-2 - Non-IID diversity. In federated edge systems, clients naturally operate
on heterogeneous and non-IID data distributions. This non-IID nature poses a
challenge for anomaly detection, as benign clients may produce divergent repre-
sentations that mimic the behavior of malicious updates. Traditional distance-
based methods often misclassify such benign deviations as attacks, especially un-
der severe heterogeneity. FeRA mitigates this issue using a self-attention-based
reconstruction strategy, where each client’s embedding is evaluated relative to
others. This relational encoding allows FeRA to tolerate diverse but benign client
behavior while identifying truly anomalous (and often non-reconstructable) rep-
resentations. We evaluate this capability under varying Dirichlet non-IID set-
tings in §4, showing that FeRA maintains high detection fidelity even as data
distributions diverge.

Ch-3 - Ensuring computational efficiency and scalability. Incorporating an at-
tention based detection mechanism into each training round introduces addi-
tional overhead that must be kept feasible for large-scale deployments. A naive
implementation of multi-head attention across m clients would incur O(m2 · d)
time complexity for d-dimensional representations, which can be prohibitive as
m grows. We employ several techniques to ensure scalability: we limit the num-
ber of clients processed per round to a fixed-size subset when necessary (many
FL systems already sample a subset of clients each round); we restrict the ref-
erence dataset Dref to a small but representative set of inputs, which keeps the
cost of forward passes and the dimension of each representation manageable; we
implement the attention operations in a vectorized manner and optimize the di-
mensionality d of the chosen layer’s embedding (using a pooling layer that yields
a compact vector) to reduce computation without sacrificing fidelity. Our anal-
ysis in §4 confirms that the overall FeRA runtime grows modestly with clients
number.

FeRA Design. We formalize FeRA in Alg. 1. This algorithm is integrated into
the FL workflow at the server side. Next, we describe each component in detail.

Representation extraction. The first component of FeRA aims to obtain a com-
parable feature representation from each client’s model. Prior work [24] suggests
that backdoor differences often manifest in deeper layers, so ℓ could be the
penultimate layer or last convolutional layer of a CNN. We designate a particu-
lar internal layer ℓ of the neural network (as determined by the analysis in C1)
to extract activations. Formally, let f

(ℓ)
i (x) denote the output feature vector of

model Wi at layer ℓ for input x. The server uses the common reference dataset
Dref = x(1), x(2), . . . , x(R) and computes f

(ℓ)
i (x(j)) for each client i and each

sample x(j) ∈ Dref. This yields a set of R activation vectors per client. We then
condense these into a single representative embedding for each client. A simple
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Algorithm 1 FeRA: Federated Representative-Attention
Require: global model Gt−1; clients {C1, . . . , Cm}; reference set Dref; threshold τ|z|
Ensure: updated global model Gt

1: for each client Ci do ▷ local update
2: Wi ← LocalTrain(Gt−1)
3: end for
4: for each Wi do ▷ representations
5: ri ← 1

|Dref|
∑

x f
(ℓ)
Wi

(x)
6: end for
7: for each client Ci do ▷ attention reconstruction
8: r̂i ← AttentionReconstruction(ri, R)
9: ei ← ∥ ri − r̂i ∥2

10: end for
11: ẽ← median{ei}, MAD← median |ei − ẽ|+ ε
12: for each ei do ▷ robust anomaly score
13: |zi| ← 0.6745 |ei − ẽ|/MAD
14: end for
15: for each client Ci do ▷ compute soft aggregation weights
16: ωi ← max{0, τ|z| − |zi|}
17: end for
18: normalize ωi: ωi ← ωi

/∑m
j=1 ωj

19: Gt ←
∑m

i=1 ωi Wi

20: return Gt

and effective choice is to take the average activation:

ri =
1

R

R∑
j=1

f (ℓ)i(x(j)) (2)

where ri ∈ Rd (if layer ℓ has dimension d). This ri serves as client Ci’s semantic
fingerprint on the reference data, summarizing how model Wi internally repre-
sents typical inputs. All representation extraction occurs on the server using the
received models Wi; Dref need not be labeled, and we assume it does not contain
any adversarial trigger pattern. At the end of this stage, the server has a matrix
R = r1, . . . , rm of size m× d, containing one embedding per client model.

Attention-based reconstruction mechanism. The core novelty of FeRA lies in de-
termining whether each client’s representation ri can be reconstructed from the
representations of other clients. Intuitively, if all clients are training on similar
data without malicious interference, their feature representations should reside
in a common latent space and be mutually predictive [24]. We operationalize
this intuition using a multi-head self-attention mechanism [22]. FeRA’s atten-
tion module treats the target embedding ri as a query and the set of other client
embeddings rj : j ̸= i as a collection of keys and values in an attention oper-
ation. Algorithm 2 details this reconstruction procedure. We learn projection



FeRA: Defending the Edge 9

Algorithm 2 AttentionReconstruction(ri, R)

Require: Target embedding ri ∈ Rd; set of embeddings R = {r1, . . . , rm}
Ensure: Reconstructed embedding r̂i
1: for each client rj ∈ R do
2: Compute projections:

qi = riW
Q, kj = rjW

K , vj = rjW
V

3: Compute attention score:

eij = exp

(
q⊤i kj√

d

)
4: end for
5: Normalize attention weights:

αij =
eij∑
j′ eij′

6: Compute reconstruction:
r̂i =

∑
j

αijvj

7: return r̂i

matrices WQ,WK ,WV that map each vector r into a query vector q, a key
vector k, and a value vector v (all in Rd). A detailed formulation is provided
in Appendix A. For client i, its query qi is used to compute attention weights
against the keys kj of every other client j, via a scaled dot-product and softmax
normalization (Lines 2–5 in Alg. 2). These weights αij indicate how much client
i’s representation aligns with each other client j’s features. We then produce the
reconstructed vector r̂i as a weighted combination of the value vectors vj from all
other models (Line 6 of Alg. 2). As we employ multiple attention heads (with in-
dependent projections for each head), this mechanism can capture diverse facets
of representation similarity (each head attending to different subspaces of the
features). The result r̂i is the best approximation of ri that can be formed using
the information from the other m− 1 clients in that round.

After computing r̂i for each client, FeRA measures how well this reconstruc-
tion matches the client’s actual representation ri using the Euclidean distance
ei = |ri−r̂i|2. To robustly detect anomalies, we calculate the median and Median
Absolute Deviation (MAD) of these errors across clients:

ẽ = median(ei), MAD = median(|ei − ẽ|) + ε (3)

We then compute a robust anomaly score via a modified two-tailed z-score:

|zi| = 0.6745
|ei − ẽ|
MAD

(4)

This approach flags clients whose errors significantly deviate from the median,
regardless of direction. Clients with anomaly scores exceeding a threshold τ|z|
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are assigned zero weight in the aggregation, while others’ updates are weighted
proportionally to their proximity to the threshold. In practice, τ|z| is tuned on a
small validation set of known-clean models. Finally, FeRA down-weights suspi-
cious clients based on anomaly scores during aggregation, mitigating backdoor
effects without fully excluding updates, thus preserving robustness even under
client noise.

4 Experimental Evaluation

Setup. Below we provide details of our experimental setup.

System configuration and baselines. We simulate an FL system with 100 clients.
In each communication round, 20% of clients are randomly selected for partici-
pation. The proportion of malicious clients is varied 0-50%. Models are trained
using PyTorch (v2.0) for 500 communication rounds. We compare FeRA with a
suite of established baselines: Multi-Krum [3], FoolsGold [6], FLAME [16], and
FLTrust [5]. We also include anomaly detection-based methods: ARIBA [13],
FLDetector [28], and FedAvgCKA [24], which leverage statistical, clustering, or
representational similarity techniques. Standard FedAvg [11] is used as an inse-
cure baseline. All defenses are implemented and tuned according to their specs.

Datasets and models. We evaluate FeRA on three image classification datasets:
MNIST [9] (70,000 28×28 grayscale, 10 classes), F-MNIST [26] (70,000 28×28
grayscale images, 10 classes), and CIFAR-10 [8] (60,000 32×32 color images,
10 classes). Data is partitioned across clients using a Dirichlet distribution to
simulate moderate non-i.i.d. conditions. Local models consist of a 4-layer CNN
for MNIST and F-MNIST. For CIFAR-10, we use a ResNet-18 architecture. All
models are identically initialized to isolate the impact of malicious updates.

Backdoor attack scenarios. We evaluate FeRA against SOTA backdoor attacks:
DBA [27], Edge-Case backdoor [25], and model poisoning attack [1]. In all cases,
poisoned examples are label-consistent (i.e., labeled with the attacker’s target
class), and attackers begin injecting poisons from their first participation.

Evaluation metrics. We evaluate each defense using four key metrics. First, the
attack success rate (ASR) quantifies the percentage of backdoored test inputs
misclassified as the target label; lower ASR indicates stronger defense capability.
Second, we measure main-task accuracy (MTA) on the clean test set, with an ef-
fective defense expected to preserve accuracy close to the baseline model trained
without any attack. Finally, we assess the computational cost of each defense in
terms of server-side complexity and any added burden on client devices.

Experimental evaluation. Below we provide our evaluation results.
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Table 1. Backdoor attack success rate (ASR) and main-task accuracy (MTA) for
FedAvg (no defense) versus FeRA on three attacks.

Attack Dataset FedAvg (no defense) FeRA (Ours)
ASR MTA ASR MTA

DBA MNIST 100.0 98.7 0.6 98.2
Edge case CIFAR-10 100.0 88.0 4.0 85.7
Model poisoning F-MNIST 100.0 97.3 2.1 96.0

Attack mitigation effectiveness. We examine FeRA’s effectiveness in mitigating
backdoor attacks compared to undefended FL systems. Table 1 summarizes the
backdoor ASR and MTA for FedAvg (no defense) versus FeRA on three attacks.
As expected, FedAvg without defense is vulnerable, with ASR ≈ 100% across
all cases. FeRA effectively neutralizes the backdoors, reducing ASR to 0.6% un-
der DBA on MNIST. Similarly, FeRA lowers ASR on CIFAR-10 to 4%. For the
model poisoning case on F-MNIST, FeRA reduces ASR to 2.1%, with a minimal
drop in MTA from 97.3% to 96%. These results demonstrate that FeRA simulta-
neously delivers strong resilience against diverse backdoor strategies while sus-
taining high clean accuracy. Small accuracy drops are due to occasional filtering
of benign updates, yet these remain acceptable given the security gains.

Comparison with baseline defenses. Table 2 presents ASR and MTA on all three
datasets (MNIST, CIFAR-10, F-MNIST) for each defense method outlined in
Section 4. In a comparative evaluation against DBA in FL, FeRA demonstrated
superior performance across MNIST, CIFAR-10, and F-MNIST datasets. Under
conditions of moderate non-i.i.d. data (α = 0.4) and 20% adversarial clients,
FeRA achieved the lowest ASR, notably 8.1% on CIFAR-10, 1.0% on MNIST,
and 1.4% on F-MNIST, while maintaining high MTA close to the baseline. Al-
though methods like ARIBA and FedAvgCK also kept ASR in low, FeRA consis-
tently outperformed them, especially on more complex datasets like CIFAR-10.

Other defenses exhibited trade-offs between robustness and accuracy. The
technique by FLAME reduced ASR to 7.3% by clipping and adding noise to
updates, but this led to significant drops in MTA (12.2% decrease on CIFAR-
10). FLTrust maintained a balance with low ASR and high MTA, yet FeRA
exceeded its performance. FeRA’s advantage is further highlighted by its rapid
detection and removal of malicious clients, often within the first attack round,
preventing backdoor accumulation. Overall, FeRA offers a robust defense against
backdoor attacks in FL, providing strong security with minimal impact on model
utility.

Impact of malicious client fraction. Table 3 reports the backdoor ASR and MTA
as the attacker ratio increases 0-50% across three datasets. As the fraction of
malicious clients grows, FeRA generally maintains high clean accuracy and keeps
backdoor attacks to negligible levels up to moderate adversarial participation
(≤ 30%). For instance, at 20% compromise, backdoor ASRs remain under 2%
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Table 2. Backdoor attack success rate (ASR) and main-task accuracy (MTA) on all
three datasets (MNIST, CIFAR-10, F-MNIST) for each defense method under DBA
with α = 0.4, and 20% of clients adversarial. All results are in %.

Defenses CIFAR-10 MNIST F-MNIST
ASR MTA ASR MTA ASR MTA

No Defense (FedAvg) 100.0 88.0 100.0 98.7 100.0 97.3
Multi-Krum [3] 76.4 86.5 90.5 97.0 94.1 96.1
FoolsGold [6] 87.3 87.8 94.8 98.1 92.0 97.0
FLAME [16] 7.3 75.8 2.2 92.4 2.8 90.7
FLTrust [5] 11.2 82.9 3.8 95.1 3.2 96.8
ARIBA [13] 7.4 87.2 4.6 97.5 3.8 96.0
FLDetector [28] 10.5 65.1 2.3 96.3 5.9 64.4
FedAvgCKA [24] 10.2 85.5 1.3 98.4 2.7 96.2
FeRA (Ours) 8.1 86.1 1.0 98.5 1.4 96.6

Table 3. Backdoor attack success rate (ASR) and main-task accuracy (MTA) under
varying level of malicious clients, all in %.

Attackers MNIST CIFAR-10 F-MNIST
ASR MTA ASR MTA ASR MTA

0 - 98.7 - 88.1 - 97.4
10 0.6 98.5 0.5 87.5 1.0 96.9
20 1.0 98.5 0.5 87.5 1.4 96.6
30 1.2 98.0 8.9 84.2 1.3 96.1
40 19.1 98.5 82.5 87.5 65.0 96.9
50 86.9 96.0 92.4 80.3 89.5 97.1

across all datasets while MTA drops only slightly from the no-attack baseline.
Even at 40% malicious clients, FeRA significantly reduced the attack success,
though the backdoor ASR begins to spike (e.g., around 50% on CIFAR-10).
Once half of the participants collude adversarially, the ASR reaches 90% success
on some datasets, yet FeRA still averts a complete compromise and maintains
respectable model accuracy. These results affirm FeRA’s resilience in all but the
most extreme threat scenarios.

Adaptive feature-alignment attacker. To test FeRA against an adaptive adver-
sary, we re-implemented model–poisoning with a feature-alignment loss L =
Lbackdoor + βLclean + λ∥ri − r̄benign∥22 (β = 1, λ ∈ {0.1, 1}), where the attacker
minimises its MAD-z anomaly score during local Projected Gradient Descent
(PGD). With 20% malicious clients and the same non-IID setting as in §4,
FeRA still collapses the ASR below 10% across all the datasets and preserves
MTA within reasonable bounds (Table 4), demonstrating that even an adaptive
attacker cannot implant an effective back-door without being flagged by FeRA.
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Table 4. FeRA versus adaptive feature-alignment back-door

Dataset FedAvg (no defense) FeRA
ASR (%) MTA (%) ASR (%) MTA (%)

MNIST 100.0 98.6 7.4 95.4
CIFAR-10 100.0 88.0 9.6 81.5
Fashion-MNIST 100.0 97.2 8.8 90.8

Effect of data heterogeneity. We evaluate FeRA under varying degrees of client-
side data heterogeneity, parameterized by the Dirichlet distribution coefficient
α. As shown in Table 5, lower α values correspond to highly skewed data distri-
butions, where each client’s local dataset is dominated by one or a few classes, a
setting known to severely challenge anomaly-based defenses. Despite this, FeRA
consistently maintains strong defense performance across all three datasets. For
example, under extreme heterogeneity (α = 0.2), ASR improves in the whole
data set compared to the results of [24]. We obtain a 2% reduction of ASR on
MNIST and 3% on CIFAR-10), while MTA remains high (e.g., 98.2% and 84.3%,
respectively). As α increases toward more i.i.d.-like conditions (up to α = 1.0),
FeRA’s performance further improves, with ASR dropping near zero and MTA
approaching its clean upper bound. These results highlight FeRA’s stability and
scalability in federated environments with varying data non-uniformity. FeRA’s
robustness is rooted in its architecture, particularly the use of a multi-head atten-
tion mechanism that reconstructs each client’s latent representation by weighting
contributions from other clients. This design helps mitigate the increased false
positive risk typically associated with highly non-i.i.d. settings, where benign
updates can diverge substantially and resemble malicious anomalies.

Table 5. FeRA’s backdoor attack success rate (ASR) and main-task accuracy (MTA)
(in %) under varying data heterogeneity scenarios (Dirichlet parameter α).

α
MNIST CIFAR-10 F-MNIST

ASR MTA ASR MTA ASR MTA

1.0 1.0 98.8 4.3 86.8 1.5 97.3
0.8 2.1 98.8 4.5 86.4 1.0 97.1
0.6 5.2 98.7 5.7 86.0 1.2 96.9
0.4 1.0 98.5 5.3 85.1 2.1 96.6
0.2 30.2 98.2 41.5 84.3 23.7 95.5

Influence of reference dataset size. Similar to other methods [24], [5], [10], FeRA
requires a small clean reference dataset at the server to evaluate client repre-
sentations and detect anomalies. To assess sensitivity to this requirement, we
measure FeRA’s robustness on CIFAR-10 with 10% malicious clients, varying
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Fig. 2. Variation of backdoor attack success rate (ASR) with the size |R| of the server’s
reference dataset (CIFAR-10 experiment, 10% malicious). Error bars (shaded) show the
standard deviation over 3 runs.

the reference set size. Notably, FeRA achieves low backdoor ASR even with just
16 clean samples, substantially outperforming undefended baselines. Increasing
the reference set size rapidly enhances detection; at 64 samples, the backdoor
attack is greatly mitigated with stable results across multiple runs (see Fig. 2).
Thus, FeRA remains highly effective even when trusted reference data is limited,
reflecting its capability to capture rich relational cues through attention.

Computational overhead analysis. FeRA’s attention-based anomaly detection
introduces moderate server-side overhead, primarily from representation extrac-
tion and self-attention computations. The per-round complexity, O(n|R|d+n2d),
consists of a linear term similar to FLTrust and a quadratic term comparable to
Multi-Krum or FLAME, yet significantly lighter than FedAvgCKA’s O(n2k2d+
k3), providing a one-to-two order of magnitude reduction for typical CNNs.
Given standard FL client sampling (10–20% per round) and a modest reference
set size (|R| = 50–100), FeRA’s overhead remains manageable. Computation is
entirely server-side, imposing no additional resource demands on clients beyond
standard FL (O(d)). Empirical results with 20 clients and |R| = 100 show per-
round latency rising from 2 s (FedAvg) to approximately 3 s, a 1.5× increase
justified by enhanced robustness; further efficiency gains are possible via dimen-
sionality reduction, subset attention, or GPU acceleration.

Influence of poisoning ratio on FeRA. As shown in Fig. 3, FeRA demonstrates
strong resilience across varying poisoning ratios. Even at a high poisoning ratio
of 12.5%, FeRA constrains ASR to 26.7% on MNIST and 42.4% on CIFAR-10,
while maintaining high clean accuracy. As the poisoning ratio decreases, ASR
declines significantly across all datasets (e.g., dropping below 1% on MNIST and
Fashion-MNIST at 25%), with MTA remaining stable. This performance reflects
FeRA’s architectural strength: its attention-based representation reconstruction
is sensitive to even sparse malicious deviations, allowing it to scale its defense as
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Table 6. Comparison of computational complexity and client memory cost. n: number
of clients per round, d: model size, k: number of classes, |R|: reference dataset size.

Method Server computation per round Client memory overhead

FedAvg [11] O(d) O(d)
FedAvgCKA [24] O(n2k2d+ k3) O(d)
Multi-Krum [3] O(n2d) O(d)
FLAME [16] O(n2d) O(d)
FLTrust [5] O(n|R|d) O(d)
FeRA (Ours) O(n |R| d+ n2d) O(d)

Fig. 3. FeRA’s backdoor attack success rate (ASR) and main-task accuracy (MTA)
(in %) under varying poisoning ratios.

attack severity increases. Overall, these results confirm FeRA’s robustness and
adaptability across a broad spectrum of adversarial conditions.

Discussion and limitations. While FeRA effectively mitigates backdoor at-
tacks in FL, several limitations exist. First, FeRA relies on the availability of a
clean reference dataset at the server. This requirement might conflict with FL’s
privacy principles and could be challenging in systems lacking trusted data. Sec-
ond, the attention-based anomaly detection introduces considerable server-side
computational overhead. This overhead, while manageable for moderate-scale
deployments, raises scalability concerns in large-scale edge settings with many
clients, highlighting the need for optimized or hierarchical solutions to maintain
efficiency. Third, FeRA’s accuracy may degrade under extreme non-IID data
distributions, where benign client representations significantly diverge, increas-
ing false positives. Moreover, adaptive adversaries capable of closely mimicking
benign patterns could potentially evade detection, particularly as adversarial
participation grows.

5 Related Work

Existing defenses against backdoor attacks in FL broadly focus on robust aggre-
gation, anomaly detection, and model-level interventions. Robust aggregators,
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inspired by Byzantine fault tolerance methods, seek consensus among client up-
dates by filtering outliers, such as Krum [3] and median-based aggregation tech-
niques. These methods assume limited malicious participation; if adversaries
exceed certain bounds or mimic benign behaviors closely, robustness degrades
significantly [14]. Enhancing aggregation, FLTrust [5] introduces a server-side
trusted dataset to validate client updates, thereby significantly reducing back-
door risks but compromising FL’s privacy constraints.

Anomaly detection methods actively identify malicious clients by analyzing
statistical or representation-level discrepancies in updates. FoolsGold [6], for in-
stance, identifies malicious collusion via cosine similarity but risks falsely penal-
izing benign, similarly-distributed clients. More advanced clustering-based meth-
ods, like FLAME [16], combine statistical clustering (HDBSCAN) with heuristic
filtering rules, improving detection precision. Recent methods, like ARIBA[13]
and FedAvgCKA [24], inspect deeper model representations or gradient distri-
butions, effectively isolating subtle backdoor signals by assessing internal repre-
sentational anomalies. Complementarily, historical consistency-based methods,
exemplified by FLDetector [28], track temporal deviations in client updates, but
require sustained client participation and may miss subtle, adaptive attacks.

Model-level defenses, notably pruning-based strategies like Fine-Pruning [10],
directly remove neurons implicated in backdoors, effectively neutralizing attacks
without extensive client monitoring. While powerful in centralized contexts,
these techniques typically require substantial clean reference data and central
fine-tuning, complicating their federated deployment.

Our approach, FeRA, aligns closely with representation-based anomaly de-
tection like ARIBA and FedAvgCKA, but integrates multi-head attention mech-
anisms to adaptively scrutinize client updates each training round, offering im-
proved robustness in federated settings characterized by highly non-i.i.d. distri-
butions and resource constraints.

6 Conclusion and Future Work

We introduced FeRA, a representative-attention-based defense mechanism de-
signed to mitigate backdoor attacks in FL. FeRA employs multi-head attention
to dynamically evaluate client updates, significantly reducing backdoor attack
success rates while maintaining high accuracy on legitimate tasks. Notably, FeRA
achieves superior performance compared to existing defenses such as ARIBA and
FedAvgCKA, particularly in challenging non-i.i.d. data scenarios, with minimal
computational overhead on edge devices. Future work includes developing class-
aware anomaly detection to improve fine-grained sensitivity, adaptive thresh-
olding mechanisms for dynamic adjustment to evolving data distributions, and
extending FeRA to asynchronous FL settings.
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A Appendix - Self-Attention Mechanism

Self-attention computes relationships between elements in a set, specifically client
representation vectors ri. For each target client i, our attention module computes
a weighted average of other clients’ vectors to approximate ri.

Query, key, and value projection. We employ learnable projection matri-
ces WQ,WK ,WV ∈ Rd×dh that map each d-dimensional representation into a
lower-dimensional subspace of width dh (typically dh = d/H for H attention
heads). The server learns those matrices offline before the federated training
begins. During this pre-training stage, the server minimises the reconstruction
loss: Lrec = 1

m

∑m
i=1 ∥ri − r̂i∥22, updating WQ, WK , WV , and WO with Adam

(η = 10−3, (β1, β2) = (0.9, 0.999)). This offline initialisation eliminates any re-
liance or assumptions about the proportion of benign clients during early train-
ing, while adding no extra computation during normal FL operation.
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Attention weight computation. For head h and client i, attention scores
between i and every other client j ̸= i are computed via scaled dot-products and
normalized to obtain attention weights:

α
(h)
i←j =

exp

(
qhi ·k

h
j√

dh

)
∑m

t ̸=i exp
(

qhi ·kh
t√

dh

) (5)

Representation reconstruction. Using these weights, the reconstructed rep-
resentation for client i is: r̂(h)i =

∑
j ̸=i α

(h)
i←jv

h
j . Concatenating head outputs, we

obtain: r̂i =
(
∥Hh=1 r̂

(h)
i

)
WO. Where WO ∈ Rd×d is an output projection ma-

trix. Typically, these matrices are learned via unsupervised reconstruction. Using
multi-head attention (e.g., H = 4) provides marginal robustness improvements.

Robust anomaly score computation and client filtering. Once the origi-
nal ri and reconstructed r̂i representations for each client i are computed, their
discrepancy is quantified with a robust anomaly score. First, we compute the
Euclidean reconstruction error:ei = ∥ri − r̂i∥2. Next, we calculate the median
and median absolute deviation (MAD) to robustly detect anomalies. Clients with
anomaly scores exceeding a threshold τ|z| are marked as malicious.

Federated aggregation with filtering. Hard filtering discards the entire con-
tribution of a suspicious client and may hurt learning when the benign population
is small. Instead, we re-weight each update by soft attention weights:

ωi =
max{0, τ|z| − |zi|}∑m
j=1 max{0, τ|z| − |zj |}

(t > W ) (6)

so that a perfectly reconstructed client receives ωi ≈ 1/m, while an extreme
outlier (|zi| ≥ τ|z|) gets zero weight. The server then updates the global model
with w(t+1) =

∑m
i=1 ωi w

(t)
i . This attenuates suspicious gradients proportionally

to their reconstruction error; when ωi collapses to {0, 1/|Ctrusted|} it reduces to
a hard filter.

B Ablation studies on representation layer selection

Specifically, we evaluated (1) the final convolutional layer, (2) the penultimate
fully-connected layer, and (3) global average pooling (GAP) layers in residual
architectures. Table 7 summarizes the average anomaly detection accuracy (per-
centage of correctly identified malicious clients) for each representation choice,
averaged across multiple rounds. The penultimate FC layer (CNNs) and the
GAP layer (ResNets) deliver the best detection accuracy.
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Table 7. Ablation results: anomaly-detection accuracy (%) for different representation
layers.

Layer CNN (MNIST) CNN (CIFAR-10) ResNet (CIFAR-10)

Final conv. 85.4 78.2 82.1
Penultimate FC 98.7 95.3 N/A
Global Avg. Pool N/A N/A 96.2
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