
ar
X

iv
:2

50
5.

11
05

8v
1 

 [
cs

.C
R

] 
 1

6 
M

ay
 2

02
5

Side Channel Analysis in Homomorphic
Encryption

Baraq Ghaleb1 and William J Buchanan1

Blockpass ID Lab, Edinburgh Napier University
{b.galeb, b.buchanan}@napier.ac.uk

Abstract. Homomorphic encryption provides many opportunities for
privacy-aware processing, including with methods related to machine
learning. Many of our existing cryptographic methods have been shown
in the past to be susceptible to side channel attacks. With these, the im-
plementation of the cryptographic methods can reveal information about
the private keys used, the result, or even the original plaintext. An ex-
ample of this includes the processing of the RSA exponent using the
Montgomery method, and where 0’s and 1’s differ in their processing
time for modular exponentiation. With FHE, we typically use lattice
methods, and which can have particular problems in their implemen-
tation in relation to side channel leakage. This paper aims to outline
a range of weaknesses within FHE implementations as related to side
channel analysis. It outlines a categorization for side-channel analysis,
some case studies, and mitigation strategies.

1 Introduction

To enable secure processing of encrypted data, we require encryption schemes
that support computation on ciphertexts. This can be achieved through Partial
Homomorphic Encryption (PHE) or Fully Homomorphic Encryption (FHE). En-
cryption has been applied over-the-air and at-rest, but rarely during in-process
computations. To achieve this, we require encryption schemes that support com-
putation on ciphertext. This is where Homomorphic Encryption (HE) comes into
play, enabling computations on encrypted data without decryption. HE can be
categorized into Partial Homomorphic Encryption (PHE) and Fully Homomor-
phic Encryption (FHE). PHE supports a limited set of arithmetic operations,
while FHE enables arbitrary computations on encrypted data. The PHE meth-
ods include RSA, ElGamal, Paillier [1], Exponential ElGamal, Elliptic Curve
ElGamal [2], Paillier [1], Damgard-Jurik [3], Okamoto–Uchiyama [4], Benaloh
[5], Naccache–Stern [6], and Goldwasser–Micali [7]. Overall, we can use RSA and
ElGamal for multiplicative homomorphic encryption; Paillier, Exponential ElGa-
mal, Elliptic Curve ElGamal, Damgard-Jurik, Okamoto–Uchiyama, Benaloh and
Naccache–Stern for additive homomorphic encryption; and Goldwasser–Micali
for XOR homomorphic encryption.

FHE, on the other hand, is typically based on lattice-based cryptography
with modern implementations leverage libraries such as such as SEAL [8] and

https://orcid.org/0000-0003-0809-352
mailto:b.buchanan@napier.ac.uk
https://arxiv.org/abs/2505.11058v1


2 Baraq Ghaleb and William J Buchanan

OpenFHE [9]. While FHE introduces innovative approaches to privacy-preserving
computation, its practical implementation remains relatively new. Although the
underlying cryptographic methods are theoretically secure, real-world deploy-
ments often face challenges, particularly in mitigating side-channel vulnerabili-
ties. These vulnerabilities can unintentionally leak information about encryption
keys or even the original plaintext data, posing significant security risks. This
paper presents a comprehensive review of HE side-channel threats, highlighting
key attack vectors and analyzing real-world case studies to assess their impact
and potential countermeasures..

1.1 Side-channel analysis

Side-channel analysis (SCA) refers to a category of attacks that exploit infor-
mation leaked from the physical implementation of cryptographic algorithms,
rather than their mathematical weaknesses [10] [11]. Unlike traditional crypt-
analysis, SCA leverages observable characteristics of a system during operation
such as timing variations, power consumption, or electromagnetic emissions [12]
[13] as depicted in Figure 1. These leaks can provide insights into sensitive data
enabling attackers to bypass algorithmic defenses. For example, during the en-
cryption process in the RSA algorithm, the ciphertext is generated by:

c ≡ me (mod n) (1)

where c, m, e, and n represent ciphertext, plaintext, key, and the product of
p and q, respectively. In practical implementations, modular exponentiation is
commonly performed using the ”Square and Multiply” algorithm, as shown in
Algorithm 1. This method scans the exponent e bit by bit from left to right,
performing an additional modular multiplication whenever a bit is set to 1. This
variation causes detectable timing and power fluctuations, making it vulnerable
to side-channel attacks where careful measurements and analysis can recover the
secret key, bit by bit, as depicted in Figure 2.

Algorithm 1 Exponentiation by Square-and-Multiply
1: x← 1
2: for each bit of e from left to right do
3: x← x2 (mod n)
4: if current bit of e is 1 then
5: x← x ·m (mod n)
6: end if
7: end for
8: return x

Homomorphic encryption (HE) faces unique security challenges due to side-
channel vulnerabilities which arise for several reasons including:

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 3

Fig. 1. Possible side channels of a cryptographic device during an encryption [13].

– Computational Intensity: HE operations are highly computationally in-
tensive, increasing exposure to side-channel analysis due to longer processing
time [15].

– Complex Operations: HE schemes often involve complex mathematical
operations with varying execution patterns that depending on the encrypted
data or key material. These variations can result in distinguishable side-
channel signatures [15].

– Cloud Computing Risk: HE is frequently deployed in cloud environments,
introducing additional attack vectors as malicious co-located processes may
exploit leakage through shared hardware resources [16].

2 Background

In 1978, Rivest, Adleman, and Dertouzos [17] were the first to introduce the
concept of homomorphic operations, demonstrating its feasibility using the RSA
cryptosystem. This early method supported multiply and divide operations [18],
but lacked the ability to perform addition and subtraction. Over time, HE en-
cryption evolved into two main categories: Partially Homomorphic Encryption
(PHE), which supports a limited set of arithmetic operations, and Fully Homo-
morphic Encryption (FHE), which enables unrestricted addition, subtraction,
multiplication, and division. Since Gentry introduced the first FHE scheme in
2009 [19], homomorphic encryption has evolved through four main generations:

– 1st generation: Gentry’s method uses integers and lattices [20] including the
DGHV method.

– 2nd generation. Brakerski, Gentry and Vaikuntanathan’s (BGV) and Brak-
erski/ Fan-Vercauteren (BFV) leveraging the Ring Learning With Errors



4 Baraq Ghaleb and William J Buchanan

Fig. 2. Observing RSA key bits using power analysis: The left peak shows the power
consumption during the squaring-only step, the right (broader) peak shows the multi-
plication step, allowing exponent bits 0 and 1 to be distinguished [14].

(RLWE) aproach [21]. These methods are similar to each other, and there is
only a minor difference between them. They are generally used in applica-
tions with small integer values.

– 3rd generation: These include DM (also known as FHEW) and CGGI (also
known as TFHE) and support the integration of Boolean circuits for small
integers.

– 4th generation: CKKS (Cheon, Kim, Kim, Song) designed for efficient com-
putations on floating-point numbers and can be applied to machine learning
applications as it can implement logistic regression methods and other sta-
tistical computation [22].

2.1 Public key or symmetric key

Homomorphic encryption can be implemented either with a symmetric key or an
asymmetric (public) key. With symmetric key encryption, we use the same key
to encrypt as we do to decrypt, whereas, with an asymmetric method, we use a
public key to encrypt and a private key to decrypt. In Figure 3 we use asymmetric
encryption with a public key (pk) and a private key (sk). With this Bob, Alice
and Peggy will encrypt their data using the public key to produce ciphertext, and
then we can operate on the ciphertext using arithmetic operations. The result
can then be revealed by decrypting with the associated private key. In Figure 4
we use symmetric key encryption, and where the data is encrypted with a secret
key, and which is then used to decrypt the data. In this case, the data processor
(Trent) should not have access to the secret key, as they could decrypt the data
from the providers.

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 5

Fig. 3. Asymmetric encryption (public key)

Fig. 4. Symmetric encryption



6 Baraq Ghaleb and William J Buchanan

2.2 Homomorphic libraries

There are several homomorphic encryption (HE) libraries support FHE, includ-
ing those optimized for CUDA and GPU acceleration. However, many are out-
dated or limited to a single encryption scheme. In practice, native language
libraries are the most effective, as they enable direct compilation to machine
code for better performance. The key languages for HE development are C++,
Golang, and Rust, although some Python libraries exist through wrappers of
C++ code such as HEAAN-Python, and its associated HEAAN library.

One of the earliest libraries to support multiple homomorphic encryption
schemes is [23], along with its variants SEAL-C# and SEAL-Python. While it
supports a wide range of methods, including BGV/BFV and CKKS, its devel-
opment has slowed in recent years. It does, however, have support for Android
and has a Node.js port [24]. Another major library is OpenFHE, which was pre-
viously known as PALISADE. It is one of the most extensive FHE frameworks,
offering support for multiple encryption schemes and advanced optimizations
for real-world applications For a more extensive list of homomorphic encryption
libraries, refer to Wood et al. [25], which provides a comprehensive overview of
available frameworks and their capabilities. Within OpenFHE. The main imple-
mentations is this library are:

– Brakerski/Fan-Vercauteren (BFV) scheme for integer arithmetic

– Brakerski-Gentry-Vaikuntanathan (BGV) scheme for integer arithmetic

– Cheon-Kim-Kim-Song (CKKS) scheme for real-number arithmetic (includes
approximate bootstrapping)

– Ducas-Micciancio (DM) and Chillotti-Gama-Georgieva-Izabachene (CGGI)
schemes for Boolean circuit evaluation.

2.3 Bootstrapping

A fundamental concept in FHE is bootstrapping, which mitigates noise accu-
mulation during computations. In Learning With Errors (LWE)-based schemes,
noise is introduced to ensure security. Normally, encryption is performed with a
public key, and decryption requires the corresponding private key. However, in
bootstrapped FHE, an encrypted version of the private key is used to operate on
the ciphertext, effectively reducing accumulated noise and restoring ciphertext
usability. As illustrated in Figure 5., bootstrapping involves evaluating decryp-
tion using an encrypted private key, after which the actual private key can be
applied for final decryption.

The main bootstrapping methods are CKKS [22], DM [26]/CGGI, and BGV/BFV.
Overall, CKKS is generally the fastest bootstrapping method, while DM/CGGI
is efficient with the evaluation of arbitrary functions. These functions approxi-
mate math functions as polynomials (such as with Chebyshev approximation).
BGV/BFV provides reasonable performance and is generally faster than DM/CGGI
but slower than CKKS.

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 7

Fig. 5. Bootstrapping

2.4 Arbitrary smooth functions

With approximation theory, it is possible to determine an approximate poly-
nomial p(x) that is an approximation to a function f(x). A polynomial takes
the form of p(x) = an.x

n + an−1.x
n−1 + ... + a1.x + a0, and where a0... an are

the coefficients of the powers, and n is the maximum power of the polynomial.
In CKKS, arbitrary smooth functions can be efficiently approximated using the
Chebyshev approximation [27], a method initially developed by Pafnuty Lvovich
Chebyshev and nvolves the approximation of a smooth function using polyno-
mials. Examples of these functions include log10, log2, loge, and ex [28].

2.5 Plaintext slots

Many homomorphic encryption schemes support batch encryption, allowing mul-
tiple plaintext values to be packed into a single ciphertext. The number of values
that can be encrypted together is referred to as the number of plaintext slots.
This technique significantly improves computational efficiency by enabling par-
allel processing within a single encryption operation. Figure 6 illustrates the
concept of plaintext slots and their role in optimizing homomorphic computa-
tions.

2.6 BGV and BFV

Both BGV and BFV homomorphic encryption schemes utilize the Ring Learning
With Errors (RLWE) method [21]. In BGV, we define a moduli (q), which con-
strains the range of the polynomial coefficients. These schemes employ a moduli
hierarchy, where different levels of modulus are used to manage precision and
computational efficiency. The encryption process starts by defining the finite
group Zq,and constructing a polynomial ring by dividing our operations with
(xn + 1) and where n − 1 is the largest power of the coefficients. The message
can then be represented in binary as:



8 Baraq Ghaleb and William J Buchanan

Fig. 6. Slots for plaintext

m = an−1an−2...a0 (2)

This is converted into a polynomial form:

m = an−1x
n−1 + an−2x

n−2 + ...+ a1x+ a0 (mod q) (3)

The polynomial’s coefficients form a vector representation of the plaintext.
For improved efficiency, messages can also be encoded in ternary (such as with
-1, 0 and 1). Finally, the plaintext modulus is defined as follows:

t = pr (4)

and where p is a prime number and r is a positive number. We can then
define a ciphertext modulus of q, and which should be much larger than t. To
encrypt with the private key of s, we implement:

(c0, c1) =
(q
t
.m+ a.s+ e,−a

)
mod q (5)

To decrypt:

m =
⌊ t
q
(c0 + c1).s

⌉
(6)

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 9

This works because:

mrecover =
⌊ t
q

(q
t
.m+ a.s+ e− a.s

)⌉
(7)

=
⌊(

m+
t

q
.e

)⌉
(8)

≈ m (9)

(10)

For two message of m1 and m2, we will get:

Enc(m1 +m2) = Enc(m1) + Enc(m2) (11)

Enc(m1.m2) = Enc(m1).Enc(m2) (12)

Noise and computation Each addition or multiplication increases error, ne-
cessitating bootstrapping to reduce noise. While addition and plaintext/cipher-
text multiplication are relatively fast, ciphertext/ciphertext multiplication is
more computationally intensive and introduces the most noise. Bootstrapping
remains the most demanding operation in the process.

Parameters To balance security, precision, and efficiency, the ciphertext mod-
ulus q and the plaintext modulus t carefully chosen. Both of these are typically
to the power of 2 with t defining the plaintext space and q determining the
noise-handling capacity. For example, q of 2240 and t of 65,537 provide sufficient
precision while keeping computation feasible. As the value of 2q is likely to be a
large number, we typically define it as a log q value. Thus, a ciphertext modulus
of 2240 will be 240 as defined as a logq value.

Public key generation We select the private (secret) key using a random
ternary polynomial (-1, 0, and 0 coefficients) which has the same degree as our
ring. The public key is then a pair of polynomials as:

pk1 = (r.sk+ e) (mod q) (13)

pk2 = r (14)

Where r is a random polynomial value. To encrypt with the public key (pk):

(c0, c1) =
(q
t
.m+ a.s.r+ e,−a.r

)
mod q (15)

We then decrypt with the private key (s);

m =
⌊ t
q
(c0 + c1).s

⌉
(16)



10 Baraq Ghaleb and William J Buchanan

This works because:

mrecovered =
⌊ t
q

(q
t
.m+ a.s.r+ e− a.r.s.

)⌉
(17)

=
⌊(

m+
t

q
.e

)⌉
(18)

≈ m (19)

(20)

2.7 The HEAAN library of CKKS

HEAAN (HE for Arithmetic of Approximate Numbers) is a HE library based
on the CKKS scheme. The CKKS enables approximate arithmetic over complex
numbers [22] and is a levelled approach that involves the evaluation of arbitrary
circuits of bounded (pre-determined) depth. These circuits can include ADD
(X-OR) and Multiply (AND).

HEAAN uses a rescaling procedure to manage plaintext size, applying ap-
proximate rounding by truncating the ciphertext to a smaller modulus. This
approach enables efficient parallel encryption computations. However, as oper-
ations progress, the ciphertext modulus can shrink to a point where further
computation becomes impossible.

The CKKS scheme, used in HEAAN, performs approximate arithmetic over
complex numbers (C). It introduces an encryption error that blends with com-
putational noise inherent in approximate calculations. The encryption process
converts a plaintext message (M ) to a cipher message (ct) using a secret key sk.
To decrypt ([〈ct,sk〉]q), we produce an approximate value with a small error (e).

Chebyshev approximation With approximation theory, it is possible to de-
termine an approximate polynomial p(x) that is an approximation to a function
f(x). A polynomial takes the form of p(x) = an.x

n + an−1.x
n−1 + a1.x + a0,

and where a0...an are the coefficients of the powers, and n is the maximum
power of the polynomial. In this case, we will evaluate arbitrary smooth func-
tions for CKKS and use Chebyshev approximation. These were initially created
by Pafnuty Lvovich Chebyshev. This method involves the approximation of a
smooth function using polynomials.

Overall, with polynomials, we convert our binary values into a polynomial,
such as 101101 is:

x5 + x3 + x2 + 1 (21)

Our plaintext and ciphertext are then represented as polynomial values.

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 11

Approximation theory With approximation theory, we aim to determine an
approximate method for a function f(x). It was Pafnuty Lvovich Chebyshev who
defined a method of finding a polynomial p(x) that is approximate for f(x).
Overall, a polynomial takes the form of:

p(x) = an.x
n + an−1.x

n−1 + a1.x+ a0 (22)

and where a0...an are the coefficients of the powers, and n is the maximum
power of the polynomial. Chebyshev published his work in 1853 as ”Theorie des
mecanismes, connus sous le nom de parall´elogrammes”. His problem statement
was “to determine the deviations which one has to add to get an approximated
value for a function f , given by its expansion in powers of x − a, if one wants
to minimise the maximum of these errors between x = a − h and x = a + h, h
being an arbitrarily small quantity”.

2.8 Polynomial evaluations

A polynomial takes the form form of p(x) = an.x
n + an−1.x

n−1 + a1.x + a0,
and where a0...an are the coefficients of the powers, and n is the maximum
power of the polynomial. With CKKS in OpenFHE, we can evaluate the result
of a polynomial for a given range of x values. For example, if we have p(x) =
5.x2 + 3.x+ 7 will give a result of p(2) = 33.

3 Categories of Side-Channel Analysis

Side-channel analysis (SCA) is a powerful technique used by attackers to extract
sensitive information from cryptographic implementations by observing physi-
cal characteristics like power consumption, timing information, electromagnetic
radiation, or error responses. Eavesdroppers can monitor the power consumed
during operations, the electromagnetic radiation emitted during decryption and
signature generation, or the time taken to perform cryptographic operations. By
analyzing these physical signals, attackers can infer secret information, such as
cryptographic keys, and compromise the security of the system. Additionally,
attackers can exploit how a cryptographic device behaves when errors occur, po-
tentially revealing vulnerabilities in the implementation [12] [29]. Side-channel
attacks can be broadly categorized into two main types: passive side-channel
attacks (also known as tamper attacks) and active side-channel attacks.
Each type exploits physical information leakage in distinct ways [12]:

3.1 Passive Side-Channel Attacks

Passive side-channel attacks focus on observing physical signals emitted by a
device during its normal operation without interfering with the device itself.
Passive attacks are further divided into two subcategories [30]:



12 Baraq Ghaleb and William J Buchanan

– Simple Analysis Attacks: These attacks rely on direct observations of
leaked signals, such as power consumption or timing information. The at-
tacker interprets these signals to deduce sensitive data, often requiring mini-
mal computational effort.Popular examples of this are Simple Power Analysis
(SPA), Simple Electromagnetic Analysis (SEMA), and Basic timing analysis

– Differential Analysis Attacks: These attacks involve statistical analysis
of multiple measurements to extract subtle correlations between the physical
characteristics and the secret data. Differential Power Analysis (DPA) is a
well-known example of this type of attack, where the attacker correlates
power traces with known plaintext or ciphertext to recover secret keys.

3.2 Active Side-Channel Attacks

Active side-channel attacks involve intentionally manipulating the target device
to induce faults or abnormal behavior. By analyzing the device’s response to such
tampering, attackers can extract critical information, such as secret keys. These
attacks exploit vulnerabilities in how cryptographic devices handle unexpected
conditions. Side-Channel Attacks could also be classified based on the type of
information channel exploited as follows.

3.3 Power Analysis

Power analysis attacks exploit variations in power consumption during crypto-
graphic operations and they could be categorized to the following key classes
[31]:

– Simple Power Analysis (SPA): Simple Power Analysis (SPA) is a technique
that involves directly analyzing power consumption measurements captured
during encryption and decryption operations. By visually inspecting these
power traces, attackers can often identify patterns that reveal information
about the cryptographic algorithm’s execution flow or even the secret key
itself. This technique was pioneered by Paul Kocher and his colleagues, Jaffe
and Jun, who also introduced Differential Power Analysis (DPA) in their
influential paper. SPA can yield information about a device’s operation as
well as key material. SPA could be used to collect information about the tar-
get’s cryptographic implementations by, e.g., interpreting how many rounds
are used during encryption/decryption. SPA is the simplest form of power
analysis.

– Differential Power Analysis (DPA): Differential Power Analysis (DPA) is a
sophisticated side-channel attack technique that involves statistically ana-
lyzing power consumption data collected during cryptographic operations.
Unlike Simple Power Analysis (SPA), which relies on direct observation of
power traces, DPA examines subtle correlations between power consump-
tion and processed data over multiple cryptographic operations. In a DPA
attack, the adversary uses hypothetical power models, such as the Hamming
weight or Hamming distance, to predict power consumption patterns based

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 13

on specific inputs or intermediate values. By comparing these predictions
with actual power traces, the attacker can identify correlations and deduce
sensitive information, such as cryptographic keys. DPA is particularly pow-
erful because it can extract information even in the presence of noise and
countermeasures, making it a significant threat to devices with inadequate
side-channel protections.

– Correlation Power Analysis (CPA): Correlation Power Analysis (CPA) is
an advanced side-channel attack technique that uses statistical correlation
(e.g. Pearson correlation coefficient) to link power consumption patterns of
a cryptographic device with hypothetical models, such as Hamming weight
or Hamming distance. By analyzing multiple power traces recorded during
cryptographic operations and comparing them to predicted power values
for various key guesses, CPA identifies the key hypothesis with the highest
correlation as the correct one. Its robustness to noise and precision make CPA
a significant threat to cryptographic devices, necessitating countermeasures
like randomization, noise injection, or constant power hardware designs to
mitigate its effectiveness.

3.4 Timing Analysis

Timing analysis attacks exploit variations in the execution time of cryptographic
operations to extract sensitive information [12]. By analyzing the relationship
between timing fluctuations and the operations being performed, attackers can
infer details about the cryptographic process. These attacks often target subtle
discrepancies in hardware or software behavior. Common techniques include:

– Monitoring cache access patterns to infer data dependencies and memory
usage.

– Analyzing branch prediction behavior to deduce control flow or conditional
operations.

– Examining instruction scheduling delays to uncover computational bottle-
necks or specific algorithmic steps.

3.5 Electromagnetic Analysis

Electromagnetic (EM) analysis leverages the electromagnetic emissions gener-
ated by a device during operation to extract or disrupt sensitive information
[29]. This technique is versatile, with both passive observation and active inter-
ference methods.

3.6 Fault Analysis

Fault analysis, a sophisticated form of active attack, exploits errors intentionally
introduced into cryptographic computations to extract sensitive information,
such as secret keys or intermediate values [12]. Attackers manipulate the sys-
tem’s environment or operational conditions to disrupt its normal behavior. By



14 Baraq Ghaleb and William J Buchanan

analyzing the resulting faulty outputs, they can infer critical data through tech-
niques like differential fault analysis or other statistical methods. Common fault
injection methods include [29]:

– Voltage Glitching: Intentionally manipulating the power supply voltage to
create transient voltage spikes or dips, causing the circuit to malfunction
and potentially reveal sensitive information.

– Clock Manipulation: Altering the frequency or phase of the clock signal
to disrupt the timing of operations, leading to incorrect calculations and
potential security vulnerabilities.

– Laser/EM Injection: Employing focused laser beams or electromagnetic ra-
diation to target specific circuit components and induce faults, such as bit
flips or temporary circuit failures.

4 Case Studies: Side-channel Attacks on HE Systems

In the context of homomorphic encryption (HE), SCA poses unique challenges.
While HE theoretically ensures robust cryptographic security, its practical im-
plementations may leak exploitable side-channel information, particularly during
computationally intensive operations like key generation, encryption, and homo-
morphic evaluation.

4.1 Single-Trace Attack on SEAL’s BFV Encryption Scheme

The study in [15] introduced the first single-trace side-channel attack on ho-
momorphic encryption (HE), specifically targeting the SEAL implementation of
the Brakerski/Fan-Vercauteren (BFV) scheme prior to v3.6. The attack exploits
power-based side-channel leakage during the Gaussian sampling phase of SEAL’s
encryption process, enabling plaintext recovery with a single power measure-
ment. The proposed attack follows a four-step methodology to recover plaintext
messages from SEAL’s BFV encryption scheme. First, the attack identifies each
coefficient index being sampled during the encryption process. Second, it extracts
sign values from control-flow variations, which reveal key information about the
sampled coefficients. Third, the attack recovers the coefficients with high proba-
bility using data-flow variations observed in the power trace. Finally, the Block-
wise Korkine-Zolotarev (BKZ) algorithm is applied to explore and estimate the
remaining search space, further refining the attack’s success. The study also fo-
cused on recovering plaintext messages by extracting coefficients of error polyno-
mials. These coefficients are integral to the encryption process, and their recovery
undermines the cryptographic hardness of the scheme. Hence, the methodology
identifies and exploits vulnerabilities in the set poly coeffs normal function,
responsible for error polynomial sampling. These vulnerabilities include branch
operations that reveal sign information, and negation operations that reduce
false positives by exploiting Hamming weight differences. Using real power mea-
surements on a RISC-V FPGA implementation of SEAL v3.2, the attack reduces

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 15

the security level of the plaintext encryption from 2128 to 24.4, highlighting the
significant implications of side-channel attacks on HE. ‘However, the attack has
several drawbacks, including the need for profiling and key configuration, re-
quiring many traces to create accurate templates [15]. It is also limited to a
single device, and cross-device attacks may need machine learning for profil-
ing. Furthermore, the attack was performed at a 1.5 MHz frequency, as higher
frequencies increase noise and may require advanced equipment. Additionally,
targeting more secure versions (196-bit or 256-bit keys) is harder due to increased
precision and more coefficients.

4.2 Single-Trace ML Attack on CKKS SEAL’s Key Generation

The authors in [32] uncover new side-channel vulnerabilities in Microsoft SEAL
by focusing on its number theoretic transform (NTT) function using power anal-
ysis. Specifically, it presents an attack targeting the NTT operation within the
SEAL CKKS scheme’s key generation process. The study demonstrates that the
NTT, used during key generation, leaks ternary values (−1, 0, +1) corresponding
to secret key coefficients. The key innovation lies in developing a sophisticated
two-stage neural network-based classifier capable of extracting side-channel in-
formation from a single measurement, demonstrating an unprecedented 98.6%
accuracy in revealing secret key coefficients on the ARM Cortex-M4F processor.
The research explores the impact of compiler optimizations, analyzing SEAL’s
NTT implementation across optimization levels from -O0 (no optimization) to
-O3 (maximum optimization). While -O3 eliminates previously identified vulner-
abilities, the study reveals new side-channel leakages in the guard and mul root

operations under this setting. Random delay insertion, evaluated as a coun-
termeasure, is shown to be ineffective against the proposed attack. This study
distinguishes itself from prior side-channel analyses by targeting the latest ver-
sion of SEAL (v4.1) and addressing vulnerabilities absent in other implemen-
tations. Unlike multi-trace attacks, which focus on decryption operations, this
single-trace attack directly exploits NTT computations, bypassing defenses like
masking. The study also reveals additional leakages with -O3 optimization and
refines attack accuracy. The findings underscore the need for robust countermea-
sures to secure FHE implementations like SEAL against single-trace side-channel
attacks, particularly those targeting efficient and constant-time arithmetic.

4.3 Side-Channel Vulnerabilities in LWE/LWR-Based
Cryptography

The authors in [33] demonstrated successful attacks against multiple post-quantum
cryptography implementations, breaking through various side-channel counter-
measures, including masking and shuffling techniques. Their work revealed that
these vulnerabilities are not implementation-specific but rather stem from core
algorithmic properties of LWE/LWR-based cryptography. While this research
does not explicitly target homomorphic encryption schemes, its findings have sig-
nificant implications for the broader family of LWE/LWR-based cryptographic



16 Baraq Ghaleb and William J Buchanan

systems, including homomorphic encryption. As many modern homomorphic
encryption schemes are built upon these same mathematical foundations, they
could potentially be vulnerable to similar side-channel attacks targeting specifi-
cally, the incremental storage of decrypted messages in memory and ciphertext
malleability properties inherent to LWE/LWR-based schemes.

4.4 Cache-Timing Attack on the SEAL Homomorphic Encryption
Library

The authors in [34] exposed a cache-timing vulnerability in the SEAL homo-
morphic encryption library, specifically in its implementation of Barrett modu-
lar multiplication. The researchers identified a timing side-channel in the non-
constant-time implementation of extra-reductions using the ternary operator,
which leaks information about the secret key. Leveraging a novel remote cache-
timing methodology, the attack aims to recover the secret key involved in mod-
ular multiplications. By analyzing ciphertexts that cause an extra reduction,
the researchers solve Diophantine equations to progressively narrow down the
range of possible secret keys. The approach combines insights from Bézout’s the-
orem with optimized enumeration techniques to refine key candidates efficiently.
The attack requires as few as eight ciphertexts that trigger extra reductions to
uniquely determine the secret key. To eliminate the vulnerability, the authors
proposed a constant-time implementation of the SEAL COND SELECT macro. This
replacement avoids conditional branching by using bitwise operations to com-
pute results in constant time, ensuring that the timing of the operation no longer
depends on the input values.

4.5 Single-Trace Side-Channel Attacks on Masked Lattice-Based
Encryption

The authors in [35] introduced a single-trace side-channel attack targeting lattice-
based cryptography, demonstrating its vulnerability to key recovery using ob-
servations from a single decryption. Unlike previous side-channel attacks, this
approach is uniquely powerful because it can penetrate even masked implementa-
tions by recovering individual shares and subsequently reconstructing the com-
plete decryption key. It focuses on the Number Theoretic Transform (NTT),
a critical component in almost all efficient lattice-based cryptography imple-
mentations, making the attack applicable across a broad range of encryption
schemes, including homomorphic encryption schemes. Unlike previous differen-
tial power analysis (DPA) attacks, which overlooked NTT, the authors leverages
its less-protected nature. The attack comprises three main steps: (1) side-channel
template matching on modular operations during the inverse NTT; (2) com-
bining intermediate probabilities via belief propagation (BP) on the FFT-like
NTT structure, optimized to make BP computationally feasible; and (3) utiliz-
ing leaked intermediate values along with the public key to recover the private
key through lattice decoding.

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 17

4.6 A Practical Full Key Recovery Attack on TFHE and FHEW by
Inducing Decryption Errors

The study in [36] introduced the latest side-channel attack targeting Fully Ho-
momorphic Encryption (FHE) schemes on the server side. Unlike prior attacks
that focused on the client side, this study demonstrates that a malicious server
can inject carefully calculated perturbations into ciphertexts stored on the cloud
to induce decryption errors on the client side. The client, unaware of the ma-
licious intent, reports these errors to the server. By analyzing the pattern of
errors and the timing information associated with homomorphic operations, the
attacker can gradually extract the underlying error values for each ciphertext.
Specifically, these errors are used to reconstruct a system of linear equations that,
when solved, compromise the security of the underlying Learning with Errors
(LWE) problem and recover the client’s secret key. By strategically inducing
errors and using a binary-search approach to recover precise error values, the
researchers successfully developed a technique to extract secret keys with a re-
markably low number of client queries to avoid detection. By leveraging timing
information during homomorphic gate computations, the authors significantly
reduce the number of queries needed to extract errors, achieving efficient key
recovery. The attack successfully recovered secret keys for two widely used FHE
libraries, FHEW and TFHE, requiring 8 and 23 queries per ciphertext error
extraction, respectively. The full-key recovery attack was demonstrated on prac-
tical scenarios with TFHE (key size: 630 bits) and FHEW (key size: 500 bits),
involving 19,838 and 7,565 client queries, respectively.

5 Mitigation Strategies for HE Side-channel Attacks

As mentioned earlier, HE is not immune to side-channel attacks, which exploit
implementation-specific vulnerabilities such as timing information, power con-
sumption, or electromagnetic emissions to infer sensitive data. Addressing these
threats is critical to ensuring the practicality and trustworthiness of HE sys-
tems. This section explores various mitigation strategies designed to harden HE
implementations against side-channel attacks and to reduce the attack surface,
bolstering the overall security of HE-based applications.

5.1 Constant-Time Implementations

Constant-time implementations are a cornerstone of secure cryptographic de-
sign, addressing timing side-channel vulnerabilities by ensuring that operations
execute in a consistent manner, independent of the input data or secret param-
eters [37]. Cryptographic algorithms and their implementations are crafted to
eliminate timing variations that could inadvertently leak sensitive information,
such as secret keys or computational states. This involves uniform execution
patterns, where each branch of the code consumes the same computational re-
sources and takes an equal amount of time to complete, regardless of the pro-
cessed data. By adhering to constant-time principles, developers can significantly



18 Baraq Ghaleb and William J Buchanan

reduce the risk of timing attacks, where adversaries analyze variations in exe-
cution time to extract critical cryptographic secrets. However, achieving true
constant-time behavior can be challenging in complex cryptographic systems, as
even minor variations in hardware architectures or compiler optimizations may
introduce unintended inconsistencies. Constant-time implementations can vary
across platforms. For instance, the ”constant-time” fix in OpenSSL designed to
mitigate the Lucky Thirteen attack still shows data-dependent execution times
on ARM architectures [37] [38]. Additionally, constant-time designs often come
with a performance overhead, as they may require additional computations or
stricter coding practices to ensure uniformity. This can impact the efficiency of
Homomorphic Encryption systems, where computational performance is already
a critical concern.

5.2 Masking and Blinding Techniques

Masking and blinding are techniques that randomize intermediate values to mit-
igate side-channel attacks. When applied to symmetric block ciphers, this is
referred to as masking, where data is split into randomized shares. In contrast,
when used in public key cryptosystem implementations, it is called blinding, in-
volving the addition of random noise to obfuscate correlations [39]. These tech-
niques introduce random noise or perturbations during cryptographic operations
to obscure the computational process and prevent attackers from correlating
power traces, timing variations, or other measurable characteristics with secret
data. By randomizing internal computations and intermediate values, they aim
to reduce the leakage of sensitive information during cryptographic transfor-
mations. However, such defenses have significant limitations, particularly their
susceptibility to single-trace side-channel attacks [15] [34]. In such scenarios, at-
tackers can exploit advanced statistical or machine learning techniques to bypass
the randomness introduced by masking and extract secret information from a
single observation. As a result, while masking/blinding can provide a basic level
of protection, it is not a recommended standalone defense and should be com-
plemented by more robust strategies to ensure comprehensive security against
side-channel threats.

5.3 Shuffling and Randomization Techniques

Shuffling and randomization [40] techniques can play a crucial role in miti-
gating side-channel attacks in the context of Homomorphic Encryption (HE).
These methods aim to obfuscate execution patterns and data processing se-
quences, complicating an attacker’s ability to correlate observable side-channel
data—such as power consumption, electromagnetic emanations, or timing vari-
ations—with sensitive cryptographic operations [41].

– Shuffling: Shuffling involves executing operations or processing data in a
randomized order [40]. For example, in HE systems that handle multiple
ciphertexts or compute on batched data, shuffling the order of operations

https://orcid.org/0000-0003-0809-352


Side Channel Analysis in Homomorphic Encryption 19

can disrupt predictable patterns that attackers rely on to analyze side-
channel data. This technique is particularly useful in thwarting statistical
side-channel attacks, where repeated patterns are exploited over multiple
traces to infer secret information.

– Random Dummy Operations: Inserting random, non-functional opera-
tions (dummy computations) during cryptographic processing adds noise to
power or timing traces, making it harder for attackers to distinguish real
computations [41]. In HE, dummy operations must be designed to avoid dis-
rupting the correctness of computations, as the deterministic nature of HE
schemes leaves little room for errors introduced by excessive obfuscation.
Practical implementations need to balance security gains with the additional
computational burden.

– Randomized Noise Addition: Adding random noise to intermediate val-
ues during HE operations can obscure side-channel data, reducing the risk
of pattern detection. However, in HE systems, this noise must be carefully
managed to avoid interfering with the decryption process or exceeding the
noise budget inherent to HE ciphertexts. Unlike masking, which binds ran-
domness to cryptographic parameters, randomized noise in HE should be
lightweight and consistent with the system’s correctness constraints.

– Obfuscated Memory Access Patterns: Randomizing memory access
patterns prevents attackers from exploiting cache-timing or memory-based
side-channel vulnerabilities [42]. In HE implementations, this could involve
accessing memory blocks in a randomized order or using constant-time mem-
ory access strategies to eliminate data-dependent variations. For example,
during ciphertext storage or retrieval, randomized access can ensure that
memory usage does not reveal sensitive information, albeit at the cost of
increased memory latency.

While these techniques significantly enhance side-channel resilience, their im-
plementation in HE systems introduces trade-offs between security and perfor-
mance. HE operations are computationally intensive, and adding randomization
mechanisms can further increase processing time and resource usage. As such,
their application should be guided by careful profiling and evaluation of security
versus efficiency.

References

1. P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in International conference on the theory and applications of cryptographic
techniques. Springer, 1999, pp. 223–238.

2. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE transactions on information theory, vol. 31, no. 4, pp. 469–472,
1985.

3. I. Damg̊ard, M. Jurik, and J. B. Nielsen, “A generalization of paillier’s public-key
system with applications to electronic voting,” International Journal of Informa-
tion Security, vol. 9, pp. 371–385, 2010.



20 Baraq Ghaleb and William J Buchanan

4. T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure as fac-
toring,” in Advances in Cryptology—EUROCRYPT’98: International Conference
on the Theory and Application of Cryptographic Techniques Espoo, Finland, May
31–June 4, 1998 Proceedings 17. Springer, 1998, pp. 308–318.

5. J. D. Cohen and M. J. Fischer, A robust and verifiable cryptographically secure
election scheme. Yale University. Department of Computer Science, 1985.

6. D. Naccache and J. Stern, “A new public-key cryptosystem,” in Advances in Cryp-
tology—EUROCRYPT’97: International Conference on the Theory and Applica-
tion of Cryptographic Techniques Konstanz, Germany, May 11–15, 1997 Proceed-
ings 16. Springer, 1997, pp. 27–36.

7. S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental poker
keeping secret all partial information,” in Providing sound foundations for cryp-
tography: on the work of Shafi Goldwasser and Silvio Micali, 2019, pp. 173–201.

8. M. S. Team, “Microsoft seal (simple encrypted arithmetic library),” 2022, available
at https://www.microsoft.com/en-us/research/project/microsoft-seal/.

9. O. D. Team, “Openfhe: Open-source fully homomorphic encryption library,”
GitHub Repository, 2023, https://github.com/openfheorg/openfhe-development.

10. S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Se-
crets of Smart Cards, 1st ed. Springer Publishing Company, Incorporated, 2010.

11. S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “Sok: Deep learning-based
physical side-channel analysis,” ACM Computing Surveys (ACM Comput. Surv.),
vol. 55, no. 11, pp. Article 227, 35 pages, November 2023. [Online]. Available:
https://doi.org/10.1145/3569577

12. M. Devi and A. Majumder, “Side-channel attack in internet of things:
A survey,” in Applications of Internet of Things, ser. Lecture Notes
in Networks and Systems, J. Mandal, S. Mukhopadhyay, and A. Roy,
Eds. Springer, Singapore, 2021, vol. 137, pp. 257–270. [Online]. Available:
https://doi.org/10.1007/978-981-15-6198-6 20

13. D. Strobel, I. C. Paar, and M. Kasper, “Side channel analysis attacks on stream
ciphers,” Masterarbeit Ruhr-Universität Bochum, Lehrstuhl Embedded Security,
2009.

14. Audriusa (Wikimedia Commons), “Oscilloscope reading showing power consump-
tion variations,” 2024, licensed under the GNU Free Documentation License
(GFDL). [Online]. Available: https://en.wikipedia.org/wiki/File:Image.png

15. F. Aydin, E. Karabulut, S. Potluri, E. Alkim, and A. Aysu, “Reveal: Single-trace
side-channel leakage of the seal homomorphic encryption library,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Bel-
gium, 2022, pp. 1527–1532.

16. R. Onishi, T. Suzuki, S. Sakai, and H. Yamana, “Security and performance-
aware cloud computing with homomorphic encryption and trusted execution
environment,” in Proceedings of the 12th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography (WAHC ’24). New York, NY, USA:
Association for Computing Machinery, 2024, pp. 36–42. [Online]. Available:
https://doi.org/10.1145/3689945.3694805

17. R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and privacy
homomorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–180,
1978.

18. W. J. Buchanan, “Openfhe,” https://github.com/openfheorg/
openfhe-development, OpenFHE, 2024, accessed: Feb 20, 2025. [Online].
Available: https://github.com/openfheorg/openfhe-development

https://orcid.org/0000-0003-0809-352
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://github.com/openfheorg/openfhe-development
https://doi.org/10.1145/3569577
https://doi.org/10.1007/978-981-15-6198-6_20
https://en.wikipedia.org/wiki/File:Image.png
https://doi.org/10.1145/3689945.3694805
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development


Side Channel Analysis in Homomorphic Encryption 21

19. C. Gentry, “A fully homomorphic encryption scheme,” 2009, crypto.stanford.edu/
craig.

20. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” in Advances in Cryptology–EUROCRYPT 2010: 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29. Springer, 2010,
pp. 24–43.

21. Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from
(standard) lwe,” SIAM Journal on computing, vol. 43, no. 2, pp. 831–871, 2014.

22. J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arith-
metic of approximate numbers,” in Advances in Cryptology–ASIACRYPT 2017:
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
I 23. Springer, 2017, pp. 409–437.

23. W. J. Buchanan, “Homomorphic encryption (seal),” https://asecuritysite.com/
seal, Asecuritysite.com, 2024, accessed: September 04, 2024. [Online]. Available:
https://asecuritysite.com/seal

24. ——, “Homomorphic encryption with bfv using node.js,” https://asecuritysite.
com/seal/js homomorphic, Asecuritysite.com, 2025, accessed: February 28, 2025.
[Online]. Available: https://asecuritysite.com/seal/js homomorphic

25. A. Wood, K. Najarian, and D. Kahrobaei, “Homomorphic encryption for ma-
chine learning in medicine and bioinformatics,” ACM Computing Surveys (CSUR),
vol. 53, no. 4, pp. 1–35, 2020.

26. L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic encryption in less
than a second,” in Annual international conference on the theory and applications
of cryptographic techniques. Springer, 2015, pp. 617–640.

27. A. Al Badawi and Y. Polyakov, “Demystifying bootstrapping in fully homomorphic
encryption,” Cryptology ePrint Archive, 2023.

28. W. J. Buchanan, “Chebyshev approximations using openfhe and c++ (logarithm
methods),” https://asecuritysite.com/openfhe/openfhe 18cpp, Asecuritysite.com,
2024, accessed: September 04, 2024. [Online]. Available: https://asecuritysite.
com/openfhe/openfhe 18cpp

29. R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic classification
of side-channel attacks: A case study for mobile devices,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 1, pp. 465–488, Firstquarter 2018.

30. F.-X. Standaert, Introduction to Side-Channel Attacks. Boston, MA: Springer US,
2010, pp. 27–42. [Online]. Available: https://doi.org/10.1007/978-0-387-71829-3 2

31. T. Messerges, “Using second-order power analysis to attack dpa resistant
software,” in Cryptographic Hardware and Embedded Systems – CHES 2000, ser.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2000, vol.
1965, pp. 238–251. [Online]. Available: https://doi.org/10.1007/3-540-44499-8 19

32. F. Aydin and A. Aysu, “Leaking secrets in homomorphic encryption with
side-channel attacks,” Journal of Cryptographic Engineering (J Cryptogr
Eng), vol. 14, pp. 241–251, 2024. [Online]. Available: https://doi.org/10.1007/
s13389-023-00340-2

33. P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “On exploiting message
leakage in (few) nist pqc candidates for practical message recovery attacks,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 684–699, 2022.

34. W. Cheng, J.-L. Danger, S. Guilley, F. Huang, A. B. Korchi et al.,
“Cache-timing attack on the seal homomorphic encryption library,” in

crypto.stanford.edu/craig
crypto.stanford.edu/craig
https://asecuritysite.com/seal
https://asecuritysite.com/seal
https://asecuritysite.com/seal
https://asecuritysite.com/seal/js_homomorphic
https://asecuritysite.com/seal/js_homomorphic
https://asecuritysite.com/seal/js_homomorphic
https://asecuritysite.com/openfhe/openfhe_18cpp
https://asecuritysite.com/openfhe/openfhe_18cpp
https://asecuritysite.com/openfhe/openfhe_18cpp
https://doi.org/10.1007/978-0-387-71829-3_2
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.1007/s13389-023-00340-2
https://doi.org/10.1007/s13389-023-00340-2


22 Baraq Ghaleb and William J Buchanan

11th International Workshop on Security Proofs for Embedded Systems
(PROOFS 2022), Leuven, Belgium, Sep 2022. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-03780506

35. R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks on
masked lattice-based encryption,” in Cryptographic Hardware and Embedded
Systems – CHES 2017, ser. Lecture Notes in Computer Science, W. Fischer and
N. Homma, Eds., vol. 10529. Springer, Cham, 2017, pp. 537–557. [Online].
Available: https://doi.org/10.1007/978-3-319-66787-4 25

36. B. Chaturvedi, A. Chakraborty, A. Chatterjee, and D. Mukhopadhyay, “A practical
full key recovery attack on tfhe and fhew by inducing decryption errors,” Cryptology
ePrint Archive, 2022. [Online]. Available: https://eprint.iacr.org/2022/1563

37. Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches and
countermeasures,” Journal of Hardware and Systems Security (J Hardw Syst
Secur), vol. 2, pp. 33–50, 2018. [Online]. Available: https://doi.org/10.1007/
s41635-017-0025-y

38. D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical study of
timing channels on sel4,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’14). New York, NY, USA:
Association for Computing Machinery, 2014, pp. 570–581. [Online]. Available:
https://doi.org/10.1145/2660267.2660294

39. X. Hou and J. Breier, “Side-channel analysis attacks and countermeasures,” in
Cryptography and Embedded Systems Security. Springer, Cham, 2024. [Online].
Available: https://doi.org/10.1007/978-3-031-62205-2 4

40. S. Patranabis, D. B. Roy, P. K. Vadnala, D. Mukhopadhyay, and S. Ghosh, “Shuf-
fling across rounds: A lightweight strategy to counter side-channel attacks,” in
2016 IEEE 34th International Conference on Computer Design (ICCD), 2016, pp.
440–443.

41. C. Liptak, S. Mal-Sarkar, and S. A. P. Kumar, “Power analysis side channel
attacks and countermeasures for the internet of things,” in 2022 IEEE Physical
Assurance and Inspection of Electronics (PAINE). IEEE, 2022, pp. 1–7. [Online].
Available: https://doi.org/10.1109/PAINE56030.2022.10014854

42. Z. H. Jiang, Y. Fei, A. A. Ding, and T. Wahl, “Mempoline: Mitigating memory-
based side-channel attacks through memory access obfuscation,” Cryptology
ePrint Archive, 2020. [Online]. Available: https://eprint.iacr.org/2020/760.pdf

https://orcid.org/0000-0003-0809-352
https://hal.archives-ouvertes.fr/hal-03780506
https://hal.archives-ouvertes.fr/hal-03780506
https://doi.org/10.1007/978-3-319-66787-4_25
https://eprint.iacr.org/2022/1563
https://doi.org/10.1007/s41635-017-0025-y
https://doi.org/10.1007/s41635-017-0025-y
https://doi.org/10.1145/2660267.2660294
https://doi.org/10.1007/978-3-031-62205-2_4
https://doi.org/10.1109/PAINE56030.2022.10014854
https://eprint.iacr.org/2020/760.pdf

	Side Channel Analysis in Homomorphic Encryption

