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Abstract

Retail energy markets are increasingly consumer-oriented, thanks

to a growing number of energy plans offered by a plethora of energy

suppliers, retailers and intermediaries. To maximize the benefits of

competitive retail energy markets, group purchasing is an emerg-

ing paradigm that aggregates consumers’ purchasing power by

coordinating switch decisions to specific energy providers for dis-

counted energy plans. Traditionally, group purchasing is mediated

by a trusted third-party, which suffers from the lack of privacy

and transparency. In this paper, we introduce a novel paradigm

of decentralized privacy-preserving group purchasing, empowered

by privacy-preserving blockchain and secure multi-party compu-

tation, to enable users to form a coalition for coordinated switch

decisions in a decentralized manner, without a trusted third-party.

The coordinated switch decisions are determined by a competitive

online algorithm, based on users’ private consumption data and

current energy plan tariffs. Remarkably, no private user consump-

tion data will be revealed to others in the online decision-making

process, which is carried out in a transparently verifiable manner

to eliminate frauds from dishonest users and supports fair mutual

compensations by sharing the switching costs to incentivize group

purchasing. We implemented our decentralized group purchasing

solution as a smart contract on Solidity-supported blockchain plat-

form (e.g., Ethereum), and provide extensive empirical evaluation.
1
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1 Introduction

With rising deregulation and decarbonization in the traditionally

monopolized energy sector, a myriad of energy plans and tariffs are

being offered in retail energy markets in the US, Europe, and other

countries [41]. In today’s competitive retail energy markets with

increasing choices, users are able to compare and switch among

diverse energy plans from multiple retail energy providers [39],

with different tariff structures (e.g., hourly rates, peak/off-peak

hours, PV feed-in tariffs) and contractual arrangements (e.g., con-

nection/disconnection fees, contracted periods). Some energy plans

offer special subsidies (e.g., incentive packages for home batteries

and energy-efficient boilers), and options for renewable energy

and carbon offsetting. With a growing set of energy suppliers and

retailers, the number of energy plans has mushroomed significantly.

For instance, 160+ energy plans are available in Buffalo, the US [23],

while 400+ electricity plans are available in Sydney, Australia [37].
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This presents ample opportunities for end users to cherry-pick the

best plans that optimize their energy bills and needs.

Alongwith a variety of energy plans, a new consumer-driven par-

adigm called group purchasing (or bulk buying) has emerged in retail

energy markets [42], which boosts consumers’ purchasing power

by coordinated purchasing decisions in a coalition of consumers.

There has been a long history of group purchasing in various sec-

tors [14]. The idea that consumers should aggregate their demands

to increase bargaining power with vendors has been practiced in

health care and e-commerce (e.g., Groupons, Meituan). Recently,

there emerged several group purchasing start-ups in the energy

sector that operate as intermediaries between energy suppliers

and users. Some of them recruit users for discounted group-based

energy plans, whereas others solicit group-based tenders from en-

ergy suppliers on behalf of their users (e.g., ChoiceEnergy [16]).

With group purchasing, users can collectively switch to specific

energy suppliers for better discounts by leveraging their aggregate

purchasing power. Hence, group purchasing for energy plans is

becoming a popular paradigm in retail energy markets.

Traditionally, group purchasing is mediated by a trusted third-

party agent in a centralized manner, such that users are required

to submit their personal profiles and private data (e.g., past energy

bills) to an agent, who will negotiate with some vendors on their

behalf. In exchange for discounted energy plans for users, the agent

will receive commission fees from the vendors. However, there is

a lack of transparency in the third-party mediation approach. The

agent may obscure the commission fees and negotiation process,

and may not maximize the users’ interest, but rather the interest

of the agent or the vendors. Moreover, there is a privacy concern –

users may be unaware of the potential misuses and breaches of their

private data by the agent for other unintended purposes. To bolster

user privacy, stricter privacy protection legislations (e.g., GDPR

in Europe) are introduced in various countries to restrict personal

information access by a third-party. Yet, private user data can still

be exploited through other illicit approaches (e.g., hacking into

the agent). Therefore, there is a need to ensure both transparency

and privacy in the decision-making processes of group purchasing,

while enjoying its benefits.

In this paper, we introduce a novel paradigm of “decentralized
privacy-preserving group purchasing”, which removes the trusted

third-party intermediaries. Our goal is to enable users to form a

coalition for making coordinated energy plan switch decisions in a

decentralized manner with assurance of privacy and transparency:

(1) Privacy Protection of User Data: Deciding a suitable en-

ergy plan requires a sophisticated consideration of a variety

of factors, such as past consumption data and current energy

plan tariffs. However, sharing personal information with
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Figure 1: An illustration of our solution for decentralized privacy-preserving group purchasing.

others in group purchasing may be undesirable. We need

to guarantee that no private user consumption data will be

revealed to other parties for unintended purposes, while

ensuring a discreet decision-making process that properly

incorporates the data of all users in group purchasing.

(2) Transparently Verifiable Decision-Making:Without the

knowledge of its private input, privacy poses a significant

challenge to the verifiability of the decision-making process.

In particular, dishonest users may take advantage of privacy

protection to cheat or misrepresent their energy data. These

dishonest users are likely to collude to coordinate their ac-

tions. Hence, it is critical to safeguard against the potential

presence of a large number of dishonest users. We need to

ensure that the decision-making process should be trans-

parent and verifiable to eliminate any fraud from dishonest

users, while preserving user privacy.

In this paper, we propose an effective solution to support decen-

tralized privacy-preserving group purchasing. Our solution draws

on several components: (1) a competitive online algorithm for group

purchasing decision-making, (2) securemulti-party computation for

privacy-preserving online decision-making, and (3) zero-knowledge

proofs on blockchain for validating the private input data to our

online algorithm. We briefly explain these components as follows,

but the details will be elaborated in the subsequent sections.

Competitive Online Algorithm: First, the problem of energy

plan selection [39] without future knowledge (e.g., future energy de-

mands and tariffs of future energy plans) belongs to online decision-
making problems. There is an extensive body of literature [7] on

online algorithms that solve these online problems with theoretical-

proven bounds on the optimality of their online decisions (as known

as competitive ratios). In this paper, we formulate an online deci-

sion problem of group purchasing for energy plan as a Metrical

Task System problem, and devise a competitive online algorithm

that produces close-to-optimal performance in our evaluation. Our

online algorithm extends the related work [42]. Furthermore, our

online algorithm supports mutual compensations in group purchas-

ing, such that some users may be fairly compensated by others for

the switching costs to join group purchasing. Mutual compensa-

tions effectively incentivize group purchasing.

Secure Multi-party Computation: Second, we execute our

competitive online algorithm for group purchasing in a privacy-

preserving manner, without disclosing the private input data (e.g.,

users’ energy bills). We rely on secure multi-party computation (or

simply called multi-party computation (MPC)), which is a general

framework to compute a function jointly by multiple parties with

concealed input from each other. Recently, SPDZ [18], an efficient

MPC protocol based on secret-sharing, has been applied to many

practical applications (e.g., machine learning [15]). SPDZ can safe-

guard against a dishonest majority of users (≥ 50% of users may

be dishonest). In this paper, we apply SPDZ to the online decision-

making process of group purchasing with concealed input data.

Blockchain and Zero-knowledge Proofs: Third, it is important

to validate the private input data, before the online decision-making

process. Otherwise, dishonest users may input falsified data to in-

fluence the outcomes for their benefits. We utilize blockchain to

record users’ energy bills, and employ smart contracts for verifying

mutual compensations among users. There are several functions of

blockchain. (i) Blockchain is a decentralized platform for verifiable

applications without trusted intermediaries, which enables decen-

tralized verification of mutual compensations to match the decision

of the online algorithm. (ii) The crypto-tokens on blockchain serve

as a convenient micro-payment system for compensations among

users. (iii) Blockchain is a public non-temperable data repository for

energy bill data. However, blockchain by default does not protect

privacy, and the data is disclosed publicly on the ledger. Therefore,

we apply zero-knowledge proofs (ZKPs), which can verify certain

properties of encrypted data, without decrypting it. For example,

instead of storing users’ energy bills, we record the corresponding

encrypted receipts on blockchain. Then users can use ZKPs to vali-

date the input data for online decision-making with respect to the

encrypted receipts, without disclosing the original data.

Together with these components, we develop an effective solu-

tion to support decentralized privacy-preserving group purchasing,

as illustrated at a high level in Figure 1:

a) First, the utility operator records the encrypted receipts of

energy bills on the blockchain ledger, after users pay their

bills. But no private energy bills are revealed on the ledger.

b) The users use multi-party computation (SPDZ) to share their

energy bill data in a privacy-preserving manner, without

disclosing the private data to each other. They will jointly

verify the validity of private data, via SPDZ, based on ZKPs.

c) With verified private input data, the users jointly execute

the online algorithm via SPDZ to decide the suitable group

purchasing decision that maximizes the benefits of all users,

2
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if possible. Moreover, they will also decide mutual compen-

sations to incentivize each other to join group purchasing.

d) The group purchasing decision and mutual compensations

are handled and recorded on the blockchain. The utility op-

erator executes the chosen energy plan according to the

records on the blockchain. The users are assured of trans-

parency in the whole decision-making process.

The technical details of the procedures will be presented in the

rest of the paper. We remark that although our solution is designed

for energy plan selection, it is rather generic and generalizable to

other group purchasing applications (e.g., health care plans).

This paper is organized as follows. We first formulate a decision-

making model, in which users form a coalition for group purchasing

of energy plans without the knowledge of future energy demands

and tariffs. In particular, we consider mutual compensations in

online decision-making to incentivize group purchasing. We next

formulate the security model considering privacy protection and

possible attacks from dishonest users. We then present the basics

of cryptographic components and multi-party computation. The

privacy-preserving solution is presented with an evaluation of our

implementation on Solidity-supported blockchain platform.

2 Decision-Making Model

In the following, we formulate a problem of group purchasing for

energy plans as an online decision-making problem that is possibly

conducted in a centralized manner, without considering privacy. In

the subsequent sections, we will incorporate privacy protection in

a decentralized mechanism. First, we will consider the standalone

setting of energy plan selection without group purchasing. Then we

will extend our study to the setting with group purchasing. Finally,

we will present a group purchasing decision-making mechanism.

2.1 Problem Setup

Our problem of energy plan selection is consisted of the following

components:

• Energy Plans:We consider discrete timeslots, indexed by

𝑡 ∈ {1, ...,𝑇 }. There are a set of energy plans E. Each energy

plan is indexed by 𝑗 ∈ E and characterized by a tuple E( 𝑗) =
⟨p𝑡+ ( 𝑗), p𝑡- ( 𝑗), c( 𝑗), d( 𝑗), T( 𝑗)⟩, as described as follows:

(1) Consumption Tariffs: Let p𝑡+ ( 𝑗) be a pricing function that

maps a timeslot 𝑡 to its respective time-of-use price of en-

ergy consumption (i.e., energy import). p𝑡+ ( 𝑗) can capture

a different rate at timeslot 𝑡 for the peak, off-peak and

shoulder periods.

(2) Feed-in Tariffs: We also consider the feed-in rates of energy

production (i.e., energy export from PV or home batteries).

Let p𝑡
-
( 𝑗) be a pricing function that maps a timeslot 𝑡 to

its respective time-varying price of energy production.

(3) Connection Fee: Let c( 𝑗) be the connection fee when a user

joins energy plan 𝑗 . Typical connection fee includes the

set-up and installation costs at the distribution grid.

(4) Disconnection Fee: Let d( 𝑗) be the disconnection fee when

a user terminates energy plan 𝑗 before the contract period.

Higher disconnection fees can discourage users from early

termination of the energy plans. For simplicity, we con-

sider constant disconnection fees, regardless the residual

period of the contract duration.

(5) Contract Duration: Let T( 𝑗) be the contract duration, be-
yond which the energy plan can be terminated without

incurring any disconnection fee.

• Energy Users: There are a set of users N , indexed by 𝑖 ∈
{1, ..., 𝑁 }. Each user 𝑖 has certain energy consumption or

production rates over time, represented by a sequence (𝑎𝑡
𝑖
),

where 𝑎𝑡
𝑖
> 0 denotes energy consumption and 𝑎𝑡

𝑖
< 0

denotes energy production. Let 𝑥𝑡
𝑖
∈ E be the selected energy

plan by user 𝑖 at timeslot 𝑡 . Let 𝑥𝑖 = (𝑥1𝑖 , ..., 𝑥
𝑇
𝑖
) be a sequence

of user 𝑖’s selections over time, and its feasible space be E𝑇 .
Let the long-term energy cost incurred by selections 𝑥𝑖 be

Cost𝑖 [𝑥𝑖 ] ≜
𝑇∑︁
𝑡=1

(
Cost𝑡Op [𝑥

𝑡
𝑖 , 𝑎

𝑡
𝑖 ] + Cost

𝑡
Sw [𝑥

𝑡−1
𝑖 , 𝑥𝑡𝑖 ]

)
(1)

where Cost𝑡Op [𝑥
𝑡
𝑖
, 𝑎𝑡
𝑖
] is the operational cost defined by

Cost𝑡Op [𝑥
𝑡
𝑖 , 𝑎

𝑡
𝑖 ] ≜ p𝑡+ (𝑥𝑡𝑖 ) · 𝑎

𝑡
𝑖 · 1{𝑎

𝑡
𝑖 ≥ 0} + p𝑡

-
(𝑥𝑡𝑖 ) · 𝑎

𝑡
𝑖 · 1{𝑎

𝑡
𝑖 < 0}

and Cost𝑡Sw [𝑥
𝑡−1
𝑖

, 𝑥𝑡
𝑖
] is the switching cost between energy

plans defined by

Cost𝑡Sw [𝑥
𝑡−1
𝑖 , 𝑥𝑡𝑖 ] ≜

(
c(𝑥𝑡𝑖 )+d(𝑥

𝑡−1
𝑖 )·1{T𝑡𝑖 ≤ T(𝑥𝑡−1𝑖 )}

)
·1{𝑥𝑡𝑖 ≠ 𝑥

𝑡−1
𝑖 }

Let T𝑡
𝑖
be the number of previous consecutive timeslots that

user 𝑖 has been using energy plan 𝑥𝑡−1
𝑖

before timeslot 𝑡 .

The goal of each user 𝑖 is to decide 𝑥𝑖 , as to minimize her

long-term total energy cost in the following problem:

(P𝑖 ) min𝑥𝑖 ∈E𝑇 Cost𝑖 [𝑥𝑖 ] (2)

However, each user can only do so in an online manner

without the future knowledge of 𝑎𝑡
′
𝑖
, p𝑡

′
+ ( 𝑗) and p𝑡

′
-
( 𝑗) for

any 𝑗 and 𝑡 ′ > 𝑡 at each timeslot 𝑡 , because there may be

uncertain future demands and tariffs, or new energy plans.

2.2 Standalone Online Energy Plan Selection

In this section, we solve (P𝑖 ) in the standalone setting without

group purchasing. This problem has been studied previously in

[39]. In this subsection, we present some preliminaries for this

problem.

Problem (P𝑖 ) belongs to a general problem class called Metrical
Task System (MTS) problem [7], which consists of a set of states

(e.g., energy plans). Each state is associated with a time-varying

cost, and there is a switching cost if the decision-maker switches

from one state to another. The goal of the decision-maker is to

decide a sequence of states to minimize the total of state costs

and switching costs, without knowing the future state costs. The

MTS problem captures a wide range of scenarios, such as 𝑘-server,

energy generation dispatching, and energy plan selection problems.

We describe the offline and online algorithms for solving (P𝑖 ):
(1) Offline Algorithm: The offline optimal solution of (P𝑖 )

can be computed by dynamic programming. Formally, let

Opt𝑡
𝑖
[𝑥𝑡
𝑖
] be the optimal cost of user 𝑖 with selection𝑥𝑡

𝑖
∈ E at

timeslot 𝑡 . When Opt𝑡−1
𝑖
[𝑥] is known for all 𝑥 ∈ E, Opt𝑡

𝑖
[𝑥𝑡
𝑖
]

3
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can be computed iteratively by Bellman-Ford equation:

Opt𝑡𝑖 [𝑥
𝑡
𝑖 ] =min

𝑥∈E

(
Opt𝑡−1𝑖 [𝑥] + Cost𝑡Op [𝑥

𝑡
𝑖 , 𝑎

𝑡
𝑖 ] + Cost

𝑡
Sw [𝑥, 𝑥

𝑡
𝑖 ]
)

Initially, we set Opt0
𝑖
[𝑥] = 0 for all 𝑥 . Then, we can compute

Opt𝑡
𝑖
[𝑥] for all 𝑥 using Opt𝑡−1

𝑖
[𝑥] by dynamic programming.

Let

(
𝑥∗𝑡𝑖

)𝑇
𝑡=1 be an offline optimal selection of (P𝑖 ), which is

obtained by backward computation. First, we obtain 𝑥∗𝑇𝑖 by

𝑥∗𝑇𝑖 = argmin

𝑥∈E
Opt𝑇𝑖 [𝑥] (3)

Then, we can obtain 𝑥∗𝑡−1𝑖 = 𝑥 using 𝑥∗𝑡𝑖 by finding a suitable
𝑥 that satisfies

Opt𝑡𝑖 [𝑥
∗𝑡
𝑖 ] =Opt𝑡−1𝑖 [𝑥] + Cost𝑡Op [𝑥

∗𝑡
𝑖 , 𝑎

𝑡
𝑖 ] + Cost

𝑡
Sw [𝑥, 𝑥

∗𝑡
𝑖 ] (4)

(2) Online Algorithm: To make online decisions for (P𝑖 ), one
can only rely on the present or past knowledge at timeslot 𝑡 ,

without the future knowledge of𝑎𝑡
′
𝑖
, p𝑡
′
+ ( 𝑗) and p𝑡

′
-
( 𝑗) for any

𝑗 and 𝑡 ′ > 𝑡 . Deciding an online decision is a hard problem,

because of the presence of switching costs. Switching to a

state with low current state cost may not offset the switching

cost, when the state cost increases in the future. An online

algorithm for (P𝑖 ) is known as Work Function algorithm
(WFA) [7]. The basic idea of WFA is to find a selection that

minimizes the discrepancywith the offline optimal cost at the

current timeslot 𝑡 , subject to the constraint that the selection

does not switch from the previous timeslot in the offline

optimal cost. Formally, let 𝑥𝑡
𝑖
be the selection produced by

WFA at timeslot 𝑡 . 𝑥𝑡
𝑖
is decided by the following equation:

𝑥𝑡𝑖 = argmin

𝑥∈E

(
Opt𝑡𝑖 [𝑥] + Cost

𝑡
Sw [𝑥

𝑡−1
𝑖 , 𝑥]

)
(5)

subject to

Opt𝑡𝑖 [𝑥] = Opt𝑡−1𝑖 [𝑥] + Cost𝑡Op [𝑥, 𝑎
𝑡
𝑖 ] (6)

where 𝑥𝑡−1
𝑖

is the selection of the previous timeslot by WFA.

Constraint (6) means that only the selections without switch-

ing at the previous timeslot in the offline optimal cost are

the feasible candidates. Note that there always exists 𝑥 ∈ E
that satisfies Constraint (6), namely, at least one 𝑥 that does

not switch from the previous timeslot in the offline optimal

solution. Otherwise, Opt𝑡
𝑖
[𝑥] is not optimal. We remark that

the computation of Opt𝑡
𝑖
[𝑥] does not need any knowledge

of future timeslot 𝑡 ′ > 𝑡 . Hence, WFA is an online algorithm.

Following the standard terminology of competitive analysis [7],

we define the competitive ratio of an online algorithm by the worst-

case ratio between the online solution and offline optimal solution:

max
Cost𝑖 [𝑥𝑖 ]
Opt𝑇

𝑖
[𝑥∗𝑇

𝑖
] over all possible inputs. There is a general upper

bound of the competitive ratio of WFA.

Theorem 1 ([7]). If there are 𝑛 states in a MTS problem, then
the competitive ratio of WFA is upper bounded by 2𝑛 − 1. Namely, in
our problem, each state is an energy plan, and 𝑛 = |E |. Hence,

Cost𝑖 [𝑥𝑖 ] ≤ (2|E | − 1) · Opt𝑇𝑖 [𝑥
∗𝑇
𝑖 ]

If there are only two energy plans, then we obtain Cost𝑖 [𝑥𝑖 ] ≤
3 · Opt𝑇

𝑖
[𝑥∗𝑇𝑖 ]. In fact, we can show a constant upper bound on the

competitive ratio of WFA in a special case.

Theorem 2. If the connection fees and disconnection fees of all
energy plans are identical, i.e., c𝑗 = c and d𝑗 = d for all 𝑗 ∈ E, then

Cost𝑖 [𝑥𝑖 ] ≤ 3 · Opt𝑇𝑖 [𝑥
∗𝑇
𝑖 ]

Remarkably, even though the (dis)connection fees are not exactly

identical, it is observed that the empirical competitive ratio is still

well below the upper bound 3 in our evaluation.

2.3 Group-based Online Energy Plan Selection

In this section, we incorporate group purchasing into our energy

selection problem. We consider a group-based energy plan denoted

by 𝔤, in addition to other individual energy plans E\{𝔤}. Group-
based energy plan 𝔤 usually has more favorable tariffs. But there

are other characteristics of a group-based energy plan in practice,

such as the requirement of a minimum number of sign-up users:

(1) Joining: To join energy plan 𝔤, there requires a minimum

number of N(𝔤) sign-up users. One may interpret N(𝔤) as
the minimum aggregate bargaining power. When we set

N(𝔤) = 1, then any user can join 𝔤, without group purchasing.

(2) Termination: We consider a simple setting of termination.

Any user can unilaterally terminate plan 𝔤 before the con-

tract period by paying the disconnection fee d(𝔤), which
may be higher than any individual energy plan.

We next extend the online algorithmWFA to the setting of group

purchasing for energy plans. Suppose 𝔤 ∈ E is the only group-based

plan (i.e., N(𝔤) > 1), while the rest are individual energy plans (i.e.,

N( 𝑗) = 1, for all 𝑗 ∈ E\{𝔤}). Given a subset of users 𝑋 ⊆ N (who

have not joined group-based plan 𝔤), we will decide whether 𝑋

should join group energy plan 𝔤 or not. If so, how to meet the

requirement of minimum number of users when sign-up.

Let (𝑥𝑡−1
𝑖
)𝑖∈𝑋 be the users’ selections of the previous timeslot

𝑡 − 1. Naturally, each user 𝑖 ∈ 𝑋 applies WFA to the two following

sub-problems:

(1) Considering only group-based plan𝔤: If Opt𝑡
𝑖
[𝔤] ≠ Opt𝑡−1

𝑖
[𝔤]+

Cost𝑡Op [𝑔, 𝑎
𝑡
𝑖
] for any user 𝑖 ∈ 𝑋 (namely, Constraint (6) is

violated), then 𝔤 will not be considered. Otherwise, let

𝐶𝑡𝑖 (𝔤) ≜ Opt𝑡𝑖 [𝔤] + Cost
𝑡
Sw [𝑥

𝑡−1
𝑖 , 𝑔]

(2) Considering the rest of energy plans E\{𝔤}: Find𝑦𝑖 ∈ E\{𝔤},
such that

𝑦𝑖 = arg min

𝑦∈E\{𝔤}

(
Opt𝑡𝑖 [𝑦] + Cost

𝑡
Sw [𝑥

𝑡−1
𝑖 , 𝑦]

)
subject to Opt𝑡

𝑖
[𝑦] = Opt𝑡−1

𝑖
[𝑦] + Cost𝑡Op [𝑦, 𝑎

𝑡
𝑖
]. Let

𝐶𝑡𝑖 (E\{𝔤}) ≜ Opt𝑡𝑖 [𝑦𝑖 ] + Cost
𝑡
Sw [𝑥

𝑡−1
𝑖 , 𝑦𝑖 ]

Let 𝐶𝑡
𝑖
(E\{𝔤}) = ∞, if no 𝑦 satisfies Constraint (6).

Let us first consider the setting where each user decides sepa-

rately whether to join group-based plan 𝔤. Let𝑚𝑡
𝑋
(𝔤) be the number

of users in 𝑋 who strictly prefer 𝔤, namely,

𝑚𝑡𝑋 (𝔤) ≜
���{𝑖 ∈ 𝑋 | 𝐶𝑡𝑖 (𝔤) ≤ 𝐶𝑡𝑖 (E\{𝔤})}���

If 𝑚𝑡
𝑋
(𝔤) ≥ N(𝔤), then these 𝑚𝑡

𝑋
(𝔤) users will naturally join

energy plan 𝔤. However, if𝑚𝑡
𝑋
(𝔤) < N(𝔤), then these users are un-

able to join energy plan 𝔤, without the required minimum number

of sign-up users. In the next section, we will incorporate mutual
4
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compensations to incentivize users to join energy plan 𝔤 by com-

pensating their switching costs of terminating their current energy

plans, when𝑚𝑡
𝑋
(𝔤) < N(𝔤).

2.4 Mutual Compensations for Group Purchasing

In this section, we consider the possibility that some users will pay

mutual compensations to other users for partially subsidizing their

switching costs in order to join group-based plan 𝔤.

It is not always true that 𝐶𝑡
𝑖
(𝔤) ≤ 𝐶𝑡

𝑖
(E\{𝔤}) for all 𝑖 ∈ 𝑋 , as

some usersmay have𝐶𝑡
𝑖
(E\{𝔤}) < 𝐶𝑡

𝑖
(𝔤). However, if∑𝑖∈𝑋 𝐶𝑡𝑖 (𝔤) ≤∑

𝑖∈𝑋 𝐶
𝑡
𝑖
(E\{𝔤}) (i.e., the sum, instead of individual users), then

some users may compensate others in order to join energy plan 𝔤.

Let 𝜃𝑖 be the compensated switching cost for user 𝑖 . Hence, rather
than considering𝐶𝑡

𝑖
(𝔤) in WFA, each user 𝑖 considers the following

compensated cost:

Opt𝑡𝑖 [𝔤] + 𝜃𝑖 (7)

Note that some users may pay more (i.e., 𝜃𝑖 > Cost𝑡Sw [𝑥
𝑡−1
𝑖

, 𝑔]),
while other users may pay less (i.e., 𝜃𝑖 < Cost𝑡Sw [𝑥

𝑡−1
𝑖

, 𝑔]).
To find proper values for (𝜃𝑖 )𝑖∈𝑋 , we consider several properties:
• Individual Rationality: With compensated switching cost,

each user can apply WFA individually to decide whether to

join group-based plan 𝔤 in an online manner. All users prefer

group-based plan 𝔤, if the following condition of individual
rationality is satisfied for all 𝑖 ∈ 𝑋 :

Opt𝑡𝑖 [𝔤] + 𝜃𝑖 < 𝐶
𝑡
𝑖 (E\{𝔤}) (8)

• Budget Balance: We consider no external financial support,

namely, the total compensated switching cost should equal

the default switching cost without mutual compensations.

Hence, the following condition of budget balance is required:∑︁
𝑖∈𝑋

𝜃𝑖 =
∑︁
𝑖∈𝑋

Cost𝑡Sw [𝑥
𝑡−1
𝑖 , 𝑔] (9)

Equivalently,

∑
𝑖∈𝑋

(
Opt𝑡

𝑖
[𝔤] + 𝜃𝑖

)
=
∑
𝑖∈𝑋 𝐶

𝑡
𝑖
(𝔤).

• Group Feasibility: From the perspective of a social planner,

we also consider the following social online decision problem

with aggregate cost of all users, as defined as follows:

(Psoc) min

𝑥∈E𝑇 |𝑋 |

∑︁
𝑖∈𝑋

Cost𝑖 [𝑥𝑖 ]
(10)

where 𝑥 = (𝑥𝑖 )𝑖∈𝑋 is the collective selections of all users, and

E𝑇 |𝑋 | is the feasible space. Unlike the individual problem
(P𝑖 ), the social problem (Psoc) minimizes the total long-

term total energy cost of all users in𝑋 . When we apply WFA

to problem (Psoc), the online decision to switch to group-

based plan 𝔤 is feasible, if the following condition of group
feasibility is satisfied:∑︁

𝑖∈𝑋
𝐶𝑡𝑖 (𝔤) <

∑︁
𝑖∈𝑋

𝐶𝑡𝑖 (E\{𝔤}) (11)

In practice, individual rationality and budget balance are im-

portant properties of a feasible scheme of mutual compensations,

whereas group feasibility can be easily checked before deciding

mutual compensations.

Theorem 3. We consider two schemes of mutual compensations
(based on the ideas in [10–12]):

(1) Egalitarian Cost-sharing:

𝜃𝑖 = 𝐶
𝑡
𝑖 (E\{𝔤}) +

∑
𝑖′∈𝑋

(
𝐶𝑡
𝑖′ (𝔤) −𝐶

𝑡
𝑖′ (E\{𝔤})

)
|𝑋 | − Opt𝑡𝑖 [𝔤] (12)

(2) Proportional Cost-sharing:

𝜃𝑖 = 𝐶
𝑡
𝑖 (E\{𝔤})

∑
𝑖′∈𝑋 𝐶

𝑡
𝑖′ (𝔤)∑

𝑖′∈𝑋 𝐶
𝑡
𝑖′ (E\{𝔤})

− Opt𝑡𝑖 [𝔤] (13)

Then (𝜃𝑖 )𝑖∈𝑋 in both schemes satisfy individual rationality and bud-
get balance, when group feasibility is satisfied.

See Appendix A for the proof. Theorem 3 provides two feasible

schemes of mutual compensations that guarantee individual ratio-

nality and budget balance, given group feasibility. Hence, it suffices

to consider the social problem (Psoc) and apply WFA to (Psoc) with
respect to 𝑋 .

2.5 Group Purchasing Decision-Making Mechanism

Figure 2: A flowchart of the group purchasing decision-

making mechanism.

Based on the above results, this section presents a decision-

making mechanism for group purchasing, incorporating mutual

compensations. As illustrated in Figure 2, we determine the group-

purchasing decision as follows:

Group Purchasing Decision-Making Mechanism:

(1) The users who are interested in joining group-based plan 𝔤

first register as N . They agree on whether egalitarian cost-

sharing or proportional cost-sharing will be used.

(2) At each timeslot 𝑡 , check if there are sufficient users who

strictly prefer to switch to group-based plan 𝔤 without mu-

tual compensations. Namely, if𝑚𝑡
𝑋
(𝔤) ≥ N(𝔤), then these

𝑚𝑡
𝑋
(𝔤) users will join group-based plan 𝔤.

(3) Otherwise, if𝑚𝑡
𝑋
(𝔤) < N(𝔤)

(a) Find a subset 𝑋 ⊆ N , such that |𝑋 | ≥ N(𝔤) and group

feasibility is satisfied within 𝑋 , namely,

∑
𝑖∈𝑋 𝐶

𝑡
𝑖
(𝔤) <∑

𝑖∈𝑋 𝐶
𝑡
𝑖
(E\{𝔤}). Apply WFA on (Psoc) with respect to

𝑋 .

(b) If WFA decides to switch to group-based plan 𝔤 in (Psoc)
with 𝑋 , then compute (𝜃𝑖 )𝑖∈𝑋 of the respective mutual

compensation scheme. Based on Theorem 3, individual

rationality and budget balance are guaranteed.

(c) After paying the respective mutual compensations to each

other, the users in 𝑋 will join group-based plan 𝔤.

The above decision-making mechanism can be conducted in

a centralized manner or via a third-party, when every user dis-

closes their private energy data. In the rest of the paper, we seek to

perform the decision-making mechanism in a decentralized privacy-

preserving manner, without disclosing private energy data.

5
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3 Security & Threat Model

In this section, we formulate privacy protection in the group pur-

chasing decision-making mechanism. Note that we do not consider

privacy protection in the communication.We assume that secure, re-

liable and authenticated communications can be established among

the parties, with no man-in-the-middle attack. Secure communica-

tions can be attained by suitable end-to-end security.

3.1 Security and Privacy Requirements

In this paper, we provide a privacy-preserving solution to enable

the users to jointly conduct the decision-making mechanism in

Section 2.5 to determine the group purchasing decisions and mutual

compensations, given their demands and current energy plans. Our

privacy-preserving solution achieves the following security and

privacy requirements in the decision-making mechanism:

(1) Private Demands: No users will leak their past demands

(𝑎𝑡
𝑖
) to other users. However, users will be able to verify their

past demands from an authorized source, without revealing

their demands to each other.

(2) Private Selections: No users will leak their currently se-

lected energy plans (𝑥𝑡
𝑖
) to other users, if they do not need

to share the same group-based energy plan.

(3) Private Compensations: No users will leak their mutual

compensations received from other users (𝜃𝑡
𝑖
), because it

may reveal their demands or energy plans.

Nonetheless, we assume that all energy plan information E( 𝑗) =
⟨p𝑡+ ( 𝑗), p𝑡- ( 𝑗), c( 𝑗), d( 𝑗), T( 𝑗)⟩ is publicly known for all 𝑗 ∈ E.

3.2 Threat Model

Note that dishonest user may take advantage of privacy protection

to perform the following attacks in the decision-making process:

(1) Misrepresentation: Dishonest users may try to misrepre-

sent their demands or current energy plans in the decision-

making process.

(2) Mis-computation: They may output incorrect or inconsis-

tent values in any joint computation process (e.g., validation

or generation of proofs).

(3) Incorrect Compensations: They may try to cheat by paying

less compensation to others, or claim more compensation

than what they ought to.

Dishonest users may also collude with each other to coordinate

their actions. To facilitate our solution, we make some assumptions

about the dishonest users:

(1) Maximum number: Up to (𝑁 − 2) dishonest users, who may

be adaptive adversaries and can deliberately deviate from

the protocols for prying into others’ privacy or sabotage the

protocols. Their disruptive actions can happen at any time

during the protocols rather than before the protocols (as for

static adversaries). In case of any dishonest actions being

detected, our system will abort and notify all the users.

(2) Identifiability: Our solution ensures that any dishonest ac-

tions will be detected. However, our system is not required

to identify individual dishonest users, as it is fundamentally

impossible [5] to identify a dishonest user inmulti-party com-

putation with a majority of dishonest users. There are secure

multi-party computation protocols [17] that can identify a

dishonest user, but requiring a majority of honest users and

considerable computational overhead. On the other hand,

we may impose further measures to mitigate dishonesty. For

example, requiring proper user authentication to prevent

shilling. Or, we can require each user to pay a deposit in ad-

vance, which will be forfeited if any dishonesty is detected.

4 System Model

In this section, we present the system models of blockchain and

energy bill data that underlie our privacy-preserving solution.

4.1 Blockchain Model

We consider an account-based blockchain model like Ethereum

(which is a general-purpose blockchain platform [35]), whereas

Bitcoin operates with a different transaction-output model for cryp-

tocurrency transactions only. Smart contracts are programmable

code on a blockchain platform that provide customized computa-

tion tasks along with each transaction (e.g., transaction validation,

data processing). Each user has an account associated with the

blockchain, which allows them to pay mutual compensations to

each other. The encrypted energy bill data and group purchasing

decisions are also recorded on the blockchain for later validation.

The blockchain consists of several components:

(1) Ledger: An append-only ledger on a blockchain holds the

records of all accounts and transactions. Note that by default,

there is no privacy protection to the ledger, such that the

account details and transaction histories are visible to the

public. On Ethereum, one can create tokens (ERC20 [22])

on the ledger to represent certain digital assets. Our mutual

compensation payment system is implemented by ERC20

tokens, which allows us to incorporate privacy protection.

To make payment among each other, users are required to

purchase tokens that will be subsequently transferred to

each other and redeemed.

(2) Accounts: An account is identified by a public key 𝐾p
and

an address ad, which is the hash of the public key: ad =

H(𝐾p), whereH(·) is a cryptographic hash function. The

user manages the account by a private key 𝐾s
. Each account

holds a balance of tokens, denoted by Bal(ad), which by

default is a publicly visible plaintext. Each user 𝑖 has an

account associated with a tuple (ad𝑖 , 𝐾p
𝑖
, 𝐾s
𝑖
, Bal(ad𝑖 )).

(3) Transactions: To initiate a transaction of tokens from ad𝑖
to ad𝑖′ with transaction value val, a user submits a transac-

tion request to the blockchain: tx = (ad𝑖 , ad𝑖′ , val), along
with a signature sign𝐾s

𝑖
(tx) using the private key 𝐾s

𝑖
asso-

ciated with ad𝑖 . The transaction request will be executed
2
if

Bal(ad𝑖 ) ≥ val.
(4) Data: A small amount of data can also be recorded by smart

contracts on the blockchain ledger, which is visible to the

public. We will introduce a privacy-preserving compact ap-

proach of data representation by cryptographic commit-

ments and Merkel trees in the next section.

2
A blockchain transaction has more security elements, like nonce to prevent replay

attack, account-locking against front-running attack, etc. But our model can easily

incorporate these elements in practice.

6
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4.2 Energy Bill Data

4.2.1 Cryptographic Commitments.
A (cryptographic) commitment allows a user to hide a secret (e.g.,

to hide the balances and transactions on a blockchain), as known

as Pedersen commitment. Denote a finite field by Z𝑝 . To commit

secret value 𝑥 ∈ Z𝑝 , a user first picks a random number r ∈ Z𝑝 to

mask the commitment, and then computes the commitment by:

Cm(𝑥, r) = 𝑔𝑥 · ℎr (mod 𝑝) (14)

where𝑔, ℎ are generator of amultiplicative groupZ∗𝑝 , and 𝑝 is a large
prime number. Pedersen commitment is perfectly hiding (i.e., no

adversary can unlock the secret) and computationally binding (i.e.,

no adversary can associate with another secret in polynomial time).

Note that Pedersen commitment satisfies homomorphic property:

Cm(𝑥1 +𝑥2, r1 + r2) = Cm(𝑥1, r1) · Cm(𝑥2, r2). Sometimes, we simply

write Cm(𝑥) without specifying random r.

4.2.2 Merkel Trees.
To reduce the ledger storage space, we use a Merkel tree for data

representation and only a small-sized hash pointer (i.e., the root of

the Merkel tree) will be recorded on the ledger. A Merkle tree is a

binary tree of hash pointers, such that the data value of a non-leave

node is HashXY ≜ H(X | Y), where X, Y are the data values of its left
and right children respectively (which can also be hash pointers).

A hash pointer is a concise way of data representation. The root

of Merkle tree, denoted by Root represents the hash pointer of

the whole tree. We associate each leaf in the Merkle tree by a

commitment. Note that only a concise proof is needed to prove

that a given data value of a leaf is a member in a given Merkle

tree. For example, to prove the membership of a leaf, Cm(𝑎), in
the Merkle tree in Figure 3 with Root, one only needs to locally

record Hash1, Hash23 as a proof, highlighted in bold orange nodes

in Figure 3, with which one can respectively reconstruct the hashes

(Hash0, Hash01), up to Root. Merkle tree eliminates the need of

storing the entire dataset, but only the root. In this case, the prover

only needs to record an 𝑂 (log𝑛)-sized proof for each data value.

Figure 3: An example of a given Merkle tree and a proof of

membership for Cm(𝑎) in the Merkle tree is (Hash1, Hash23),
such that Root = H(H(H (Cm(𝑎)) | Hash1) | Hash23)

4.2.3 Encrypted Energy Bill Receipts.
We next use commitments and Merkle trees to record the en-

crypted energy bill receipts. Recall that each user 𝑖 has energy de-

mands 𝑎𝑡
𝑖
at timeslot 𝑡 . Let an indicator variable be 𝛽𝑡

𝑖
≜ 1{𝑎𝑡

𝑖
≥ 0},

and the corresponding operational energy cost at timeslot 𝑡 be

𝜅𝑡
𝑖
≜ Cost𝑡Op [𝑥

𝑡
𝑖
, 𝑎𝑡
𝑖
]. Let the potential connection and disconnec-

tion fees of each user 𝑖’s current energy plan at timeslot 𝑡 be

𝜇𝑡𝑖 ≜ c(𝑥𝑡𝑖 ), 𝜈𝑡𝑖 ≜ d(𝑥𝑡−1𝑖 ) · 1{T𝑡𝑖 ≤ T(𝑥𝑡−1𝑖 )}
After the user paying the energy bill, the utility operator gen-

erates an encrypted receipt as follows: For a fixed epoch [𝑡0, 𝑡1],

the utility operator records the following tuple for each timeslot

𝑡 ∈ [𝑡0, 𝑡1] of the user:(
Cm(𝑎𝑡𝑖 ), Cm(𝛽

𝑡
𝑖 ), Cm(𝜅

𝑡
𝑖 ), Cm(𝜇

𝑡
𝑖 ), Cm(𝜈

𝑡
𝑖 )
)𝑡1
𝑡=𝑡0

These tuples will be represented by leaves in a Merkle tree, and its

root with a verifiable signature and a timestamp will be recorded

on the ledger. In the next sequent, we will utilize multi-party com-

putation for validating if the shared energy bills data matches the

encrypted receipts on the ledger.

5 Multi-party Computation Protocol

We presented a decision mechanism for group purchasing in Sec-

tion 2.5. In this section, we describe the way to execute the mecha-

nism in a decentralized privacy-preserving manner by multi-party

computation. This section presents a simplified multi-party compu-

tation protocol called SPDZ [18, 19], which allows multiple parties

to jointly compute a certain function with concealed input. SPDZ

can safeguard against a dishonest majority (i.e., all but one party

may be dishonest), and does not require a trusted setup.

The full details of SPDZ protocol can be found in Appendix. C.

Here, we only sketch some high-level ideas of SPDZ, and show how

to use SPDZ to validate secretly shared private input by crypto-

graphic commitments on the blockchain ledger.

5.1 Basic Operations of SPDZ

In a nutshell, SPDZ relies on secret-sharing, whereby private data

will be distributed to multiple parties, such that each party only

knows a share of the data, without complete knowledge of other

shares. Thus, the computation of individual shares of data will not

reveal the original data, unless all shares are revealed for output

or validation. Several distributed computation operations can be

performed locally, while preserving the secret-sharing property.

Suppose a private number 𝑥 is distributed to 𝑛 parties, such

that each party 𝑖 knows a share 𝑥𝑖 only and 𝑥 =
∑𝑛
𝑖=1 𝑥𝑖 , but not

knowing other shares 𝑥 𝑗 for 𝑗 ≠ 𝑖 . Note that no one is unable to

construct 𝑥 , without knowing all the shares. In the following, we

write ⟨𝑥⟩ as a secretly shared number, meaning that there is a vector

(𝑥1, ..., 𝑥𝑛), such that each party 𝑖 knows only 𝑥𝑖 . Given secretly

shared ⟨𝑥⟩ and ⟨𝑦⟩, and a public known constant 𝑐 , we can compute

the following operations in a privacy-preserving manner by local

computation at each party, and then the outcome can be assembled

from the individual shares:

A1) ⟨𝑥⟩ + ⟨𝑦⟩ can be computed locally by (𝑥1 + 𝑦1, ..., 𝑥𝑛 + 𝑦𝑛).
A2) 𝑐 · ⟨𝑥⟩ can be computed locally by (𝑐 · 𝑥1, ..., 𝑐 · 𝑥𝑛).
A3) 𝑐 + ⟨𝑥⟩ can be computed locally by (𝑐 + 𝑥1, 𝑥2, ..., 𝑥𝑛).

To reveal ⟨𝑥⟩, each party 𝑖 simply broadcasts 𝑥𝑖 to other parties.

Then each party can reconstruct 𝑥 =
∑𝑛
𝑖=1 𝑥𝑖 . Note that multiplica-

tions can also be computed in a privacy-preserving manner, albeit

with a more complex setup (see Appendix. C). With additions and

multiplications, one can compute a large class of functions (includ-

ing comparison and branching conditions).

Note that some parties may be dishonest, who may not perform

the required local computations correctly. We need to safeguard

against dishonest parties by validation through message authenti-

cation codes (MACs). Every secretly shared number is encoded by

7
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a MAC as 𝛾 (𝑥), which is also secretly shared as ⟨𝛾 (𝑥)⟩. The basic
idea is that if a dishonest party wants to modify his share 𝑥𝑖 , then

he also needs to modify 𝛾 (𝑥)𝑖 consistently. This allows dishonesty
to be detectable by checking the corresponding MAC in the final

output. In the following, we write ⟨⟨𝑥⟩⟩ meaning that both ⟨𝑥⟩ and
the respective MAC ⟨𝛾 (𝑥)⟩ are secretly shared among the users.

We next sketch a high-level description of SPDZ protocol:

(1) Pre-processing Phase: In this phase, a collection of shared

randomnumberswill be constructed that can be used tomask

the private input numbers. For each private input number of

party 𝑖 , there needs a shared random number ⟨⟨𝑟 𝑖 ⟩⟩, where
𝑟 𝑖 is revealed to party 𝑖 only, but not to other parties.

(2) Online Phase: To secretly shares a private input number 𝑥𝑖

using ⟨⟨𝑟 𝑖 ⟩⟩, without revealing 𝑥𝑖 , it proceeds as follows:
1) Party 𝑖 computes and reveals 𝑧𝑖 = 𝑥𝑖 − 𝑟 𝑖 to all parties.

2) Every party sets ⟨⟨𝑥𝑖 ⟩⟩ ← 𝑧𝑖 + ⟨⟨𝑟 𝑖 ⟩⟩ (see A3).
Next, any computation functions in terms of additions or

multiplications can be computed by proper local computa-

tions (e.g., A1-A3). The MACs are updated accordingly to

preserve the consistency. See Appendix. C for details.

(3) Output and Validation Phase: All MACs will be revealed for

validation. If there is any inconsistency in MACs, then abort.

5.2 Decentralized Validation of Energy Bill Data

With SPDZ, one can perform the decision-making mechanism of

Section 2.5 in a decentralized privacy-preserving manner. We will

provide the detailed procedures in SPDZ in the next section. In the

following, we particularly explain the joint validation of encrypted

private input data on the blockchain ledger via SPDZ.

On one hand, each user 𝑖 secretly shares her energy bill data(
⟨⟨𝑎𝑡
𝑖
⟩⟩, ⟨⟨𝛽𝑡

𝑖
⟩⟩, ⟨⟨𝜅𝑡

𝑖
⟩⟩, ⟨⟨𝜇𝑡

𝑖
⟩⟩, ⟨⟨𝜈𝑡

𝑖
⟩⟩
)
as the input to the decision-making

mechanism. On the other hand, user 𝑖 proves that the corresponding(
Cm(𝑎𝑡

𝑖
), Cm(𝛽𝑡

𝑖
), Cm(𝜅𝑡

𝑖
), Cm(𝜇𝑡

𝑖
), Cm(𝜈𝑡

𝑖
)
)
are recorded by a root of a

Merkle tree on the ledger with appropriate signature and timestamp

from the utility operator. The proof of a membership in a Merkle

tree is attained by providing a valid path in the Merkle tree that

matches the root.

However, there may be inconsistency between these inputs of a

dishonest user, namely, the secretly shared values may not match

the commitments. Hence, to ensure the consistency, the users gen-

erate ZKPs to prove the knowledge in the commitments from the

secretly shared values. For example, user 𝑖 generates a ZKP for the

proof of knowledge of 𝑎𝑡
𝑖
in Cm(𝑎𝑡

𝑖
) from ⟨⟨𝑎𝑡

𝑖
⟩⟩, without disclosing

𝑎𝑡
𝑖
. Note that there is a well-known technique (called Σ-protocol;

see Appendix B) to generate a ZKP from a private value 𝑥 for a

given Cm(𝑥, r). We briefly review the its construction as follows:

(1) The prover generates a pair of random numbers (𝑥 ′, r′) and
announces its commitment Cm(𝑥 ′, r′) to the verifier.

(2) The verifier generates a random challenge𝜓 and announces

𝜓 to the prover.

(3) The prover computes 𝑧𝑥 ← 𝑥 ′ +𝜓 · 𝑥 and 𝑧r ← r′ +𝜓 · r,
and announces (𝑧𝑥 , 𝑧r) to the verifier.

(4) The verifier checks the condition: If 𝑔𝑧𝑥 · ℎ𝑧r = Cm(𝑥 ′, r′) ·
Cm(𝑥, r)𝜓 (which is based on the homomorphic property of

Pedersen commitments), then it passes the verification.

Next, we replace the above construction of ZKP by a distributed

version via SPDZ, denoted by ΠdzkpCm (see Algorithm 1). Since

ΠdzkpCm is carried out jointly by all users without disclosing the

secretly shared input, passing the verification will justify the con-

sistency between the secretly shared values and the commitments.

In ΠdzkpCm, the random challenge𝜓 is generated by random strings

from all users. Also, the MACs in SPDZ will ensure that the dis-

tributed computations of ΠdzkpCm are performed correctly, despite

the presence of dishonest users.

Algorithm 1 ΠdzkpCm: Prove the knowledge of 𝑥 in a given commit-
ment Cm(𝑥) from secretly shared ⟨⟨𝑥⟩⟩ via SPDZ
Input: Cm(𝑥, r) (known to all users), ⟨⟨𝑥 ⟩⟩ (already secretly shared among users); (𝑥, r) (known

to user 𝑖 only)
Output: Pass or Fail
1: User 𝑖 announces Cm(𝑥, r) and secretly shares ⟨⟨r⟩⟩ with all users

2: User 𝑖 generates a pair of random numbers (𝑥 ′, r′ ) and announces Cm(𝑥 ′, r′ ) to all users

3: User 𝑖 secretly shares ⟨⟨𝑥 ′ ⟩⟩ and ⟨⟨r′ ⟩⟩ with all users

4: All users conduct a coin-tossing protocol to obtain a random challenge𝜓 as follows:

(1) Each user 𝑗 announces a commitment Cm(r′′
𝑗
) of a random string r′′

𝑗

(2) After receiving the commitments {Cm(r′′
𝑗
) } from all users, each user reveals r′′

𝑗
to all

users and all users check if it matches Cm(r′′
𝑗
)

(3) Set𝜓 ← H(r′′
1
| ... |r′′|𝑋 | ) ⊲ Generate random challenge by hashing concatenated random strings

5: Compute the following via SPDZ among all users:

⟨⟨𝑧𝑥 ⟩⟩ ← ⟨⟨𝑥 ′ ⟩⟩ +𝜓 · ⟨⟨𝑥 ⟩⟩

⟨⟨𝑧r ⟩⟩ ← ⟨⟨r′ ⟩⟩ +𝜓 · ⟨⟨r⟩⟩

6: Reveal 𝑧𝑥 , 𝑧r and their MACs to all users

⊲ All users check the following

7: if 𝑔𝑧𝑥 · ℎ𝑧r = Cm(𝑥 ′, r′ ) · Cm
(
𝑥, r

)𝜓
and checking all revealed MACs passed then

8: return Pass
9: else

10: return Fail and abort

11: end if

⊲ The distributed ZKP of commitment is zkpCm[𝑥, Cm(𝑥 ) ] =
{
Cm(𝑥, r) ; Cm(𝑥 ′, r′ ), (r′′

𝑖
)𝑖∈𝑋 , 𝑧𝑥 , 𝑧r

}

6 Privacy-Preserving Mechanism and Protocols

Based on the results of the previous sections, this section presents

the full decision-making mechanism for group purchasing with

privacy-preserving protocols based on SPDZ and ZKPs. For the

brevity of presentation, we use the following shorthand notations

in Table 1 to represent various energy costs and fees.

Meaning Notation Representation

Consumption indicator 𝛽𝑡
𝑖

= 1{𝑎𝑡
𝑖
≥ 0}

Operational energy cost of plan 𝑥𝑡
𝑖

𝜅𝑡
𝑖

= Cost𝑡Op [𝑥
𝑡
𝑖
, 𝑎𝑡

𝑖
]

Connection fee of plan 𝑥𝑡
𝑖

𝜇𝑡
𝑖

= c(𝑥𝑡
𝑖
)

Disconnection fee of plan 𝑥𝑡
𝑖

𝜈𝑡
𝑖

= d(𝑥𝑡−1
𝑖
) · 1{T𝑡

𝑖
≤ T(𝑥𝑡−1

𝑖
) }

Operational energy cost of plan 𝔤 𝜅𝑡
𝑖,𝔤

= Cost𝑡Op [𝔤, 𝑎
𝑡
𝑖
]

Offline optimal cost of plan 𝑥𝑡
𝑖
at 𝑡 Opt𝑡

𝑖
= Opt𝑡

𝑖
[𝑥𝑡

𝑖
]

Offline optimal cost of plan 𝔤 at 𝑡 Opt𝑡
𝑖,𝔤

= Opt𝑡
𝑖
[𝔤]

Table 1: Table of shorthand notations.

To simplify the presentation, we only consider the switching

decision for a group of users 𝑋 from their individual energy plans

to a group-based plan that is decided by WFA on the social problem

(Psoc). We first introduce some protocols as sub-routines for several

common distributed computation tasks via SPDZ:

(1) Πmin [⟨⟨𝑦⟩⟩, ⟨⟨𝑧⟩⟩] is a protocol that computes secretly shared

output ⟨⟨𝑥⟩⟩ via SPDZ, given two secretly shared values

⟨⟨𝑦⟩⟩, ⟨⟨𝑧⟩⟩, such that ⟨⟨𝑥⟩⟩ ← min{⟨⟨𝑦⟩⟩, ⟨⟨𝑧⟩⟩}.
8
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(2) Π< [⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩] is a protocol that compares two secretly shared

values ⟨⟨𝑥⟩⟩ and ⟨⟨𝑦⟩⟩ via SPDZ, and outputs 1 if ⟨⟨𝑥⟩⟩ − ⟨⟨𝑦⟩⟩ <
0, and 0 otherwise, without revealing 𝑥,𝑦.

(3) Π= [⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩] is a protocol that compares two secretly shared

values ⟨⟨𝑥⟩⟩ and ⟨⟨𝑦⟩⟩via SPDZ, and outputs 1 if ⟨⟨𝑥⟩⟩−⟨⟨𝑦⟩⟩ = 0,

and 0 otherwise, without revealing 𝑥,𝑦.

The details of these protocols can be found in Appendix D.1.

We divide the decision-making mechanism for group purchasing

into four main stages as follows:

Stage 0: (Registration and Initialization)

First, a group-based energy plan 𝔤 is registered on the blockchain.

There are a group of users 𝑋 (such that |𝑋 | ≥ N(𝔤)), who are inter-

ested in plan 𝔤. To begin the decision-making process for group pur-

chasing, there are various initialization processes of the protocols,

for instance, the pre-processing phase of SPDZ (see Appendix. C).

After the initialization, the users will proceed to Stage 1.

Stage 1: (Data Sharing and Validation)

We suppose that the energy bills are charged every fixed epoch.

At each epoch, the users provide the energy bill data of the cur-

rent epoch for the group purchasing decision-making process in

a privacy-preserving manner. To generate the private input, the

users secretly share their energy bill data of the current epoch(
⟨⟨𝑎𝑡
𝑖
⟩⟩, ⟨⟨𝛽𝑡

𝑖
⟩⟩, ⟨⟨𝜅𝑡

𝑖
⟩⟩, ⟨⟨𝜇𝑡

𝑖
⟩⟩, ⟨⟨𝜈𝑡

𝑖
⟩⟩
)
for the epoch 𝑡 ∈ [𝑡0, 𝑡1] with oth-

ers by following the procedure of the online phase in SPDZ. The

users also need to validate that their secretly-shared energy bill data

matches the encrypted commitments

(
Cm(𝑎𝑡

𝑖
), Cm(𝛽𝑡

𝑖
), Cm(𝜅𝑡

𝑖
), Cm(𝜇𝑡

𝑖
),

Cm(𝜈𝑡
𝑖
)
)
on the blockchain ledger by ΠdzkpCm, as described in Sec-

tion 5.2. Note that these commitments are prepared by the utility

operators. Hence, we assume the validity of the committed values. If

all secretly-shared energy bill data passes the validation of ΠdzkpCm,

the users will proceed to Stage 2.

Stage 2: (Decision-Making)

In this stage, the users jointly compute the online decision-making

algorithm (i.e., WFA on the social problem (Psoc)) in a privacy-

preserving manner via SPDZ. It is possible that the users continue

the online decision-making algorithm from the last epoch, if the

last epoch’s decision is not to join the group-based plan 𝔤. In this

case, the offline optimal costs of the last epoch, ⟨⟨Opt𝑡
𝑖
⟩⟩, will also

be input to the online decision-making algorithm.

The users execute WFA by a distributed protocol via SPDZ. The

protocol is described byΠWFA (Algorithm 2), in which the users first

compute the offline optimal costs ⟨⟨Opt𝑡
𝑖
⟩⟩ and ⟨⟨Opt𝑡

𝑖,𝔤
⟩⟩ in dynamic

programming via SPDZ. Then the users will test conditions in WFA

via SPDZ whether they should join energy plan 𝔤 or not. ΠWFA

calls sub-routines Πmin,Π<,Π= to complete the tasks.

If the decision is not to join plan 𝔤 at the current epoch, then the

users will return to Stage 1 for the next epoch. Otherwise, the users

will proceed to Stage 3, and compute the mutual compensations

and carry out the payments on blockchain.

Stage 3: (Mutual Compensations)

After deciding to join plan 𝔤, the users compute their mutual com-

pensations in a privacy-preserving manner via SPDZ based on the

secretly-shared input from Stage 2. They will pay the mutual com-

pensations on the blockchain ledger afterwards and the decision

will be recorded on the ledger for the energy provider of plan 𝔤.

Algorithm 2 ΠWFA: Compute the group purchasing decision byWFA
via SPDZ whether the users in 𝑋 should join energy plan 𝔤

Input:

( (
⟨⟨𝑎𝑡

𝑖
⟩⟩, ⟨⟨𝛽𝑡

𝑖
⟩⟩, ⟨⟨𝜅𝑡

𝑖
⟩⟩, ⟨⟨𝜇𝑡

𝑖
⟩⟩, ⟨⟨𝜈𝑡

𝑖
⟩⟩
)𝑡
1

𝑡=𝑡
0

)
𝑖∈𝑋

,

(
⟨⟨Opt𝑡0−1

𝑖
⟩⟩
)
𝑖∈𝑋

Output: Join or Stay
1: for 𝑡 ∈ [𝑡0, 𝑡1 ] do
2: for 𝑖 ∈ 𝑋 do

3: Compute the following via SPDZ among all users:

⟨⟨𝜅𝑡𝑖,𝔤 ⟩⟩ ← p𝑡+ (𝔤) · ⟨⟨𝑎𝑡𝑖 ⟩⟩ · ⟨⟨𝛽
𝑡
𝑖 ⟩⟩ + p

𝑡
-
(𝔤) · ⟨⟨𝑎𝑡𝑖 ⟩⟩ · (1 − ⟨⟨𝛽

𝑡
𝑖 ⟩⟩)

4: Compute the following offline optimal costs via SPDZ by calling protocol Π
min

:

⟨⟨Opt𝑡𝑖 ⟩⟩ ← Π
min

[
⟨⟨Opt𝑡−1𝑖 ⟩⟩ + ⟨⟨𝜅𝑡𝑖 ⟩⟩, ⟨⟨Opt

𝑡−1
𝑖,𝔤 ⟩⟩ + ⟨⟨𝜅

𝑡
𝑖 ⟩⟩ + ⟨⟨𝜇

𝑡
𝑖 ⟩⟩ + d(𝔤)

]
⟨⟨Opt𝑡𝑖,𝔤 ⟩⟩ ← Π

min

[
⟨⟨Opt𝑡−1𝑖,𝔤 ⟩⟩ + ⟨⟨𝜅

𝑡
𝑖,𝔤 ⟩⟩, ⟨⟨Opt

𝑡−1
𝑖 ⟩⟩ + ⟨⟨𝜅𝑡𝑖,𝔤 ⟩⟩ + c(𝔤) + ⟨⟨𝜈

𝑡
𝑖 ⟩⟩

]
5: end for

⊲ Apply WFA to decide if switching to group plan 𝔤. Call Π< and Π= to test the conditions

6: if Π<

[ ∑
𝑖∈𝑋 ⟨⟨Opt𝑡𝑖,𝔤 ⟩⟩ + c(𝔤) + ⟨⟨𝜈

𝑡
𝑖
⟩⟩,∑𝑖∈𝑋 ⟨⟨Opt𝑡𝑖 ⟩⟩

]
= 1 and

7: Π=

[ ∑
𝑖∈𝑋 ⟨⟨Opt𝑡𝑖,𝔤 ⟩⟩,

∑
𝑖∈𝑋 ⟨⟨Opt𝑡−1𝑖,𝔤

⟩⟩ + ⟨⟨𝜅𝑡
𝑖,𝔤
⟩⟩
]
= 1 then

8: return Join
9: end if

10: end for

11: return Stay

Algorithm 3 ΠMC: Compute compensated switching cost
(
⟨⟨𝜃𝑖 ⟩⟩

)
𝑖∈𝑋

according to either egalitarian cost-sharing or proportional cost-
sharing and return the net mutual compensations
Input:

(
⟨⟨𝜈𝑡

𝑖
⟩⟩, ⟨⟨Opt𝑡

𝑖
⟩⟩, ⟨⟨Opt𝑡

𝑖,𝔤
⟩⟩
)
𝑖∈𝑋

Output:

(
⟨⟨𝜃𝑖 ⟩⟩

)
𝑖∈𝑋

1: for 𝑖 ∈ 𝑋 do

2: Compute the following via SPDZ among all users:

⟨⟨𝐶𝑡
𝑖 (E\{𝔤}) ⟩⟩ ← ⟨⟨Opt

𝑡
𝑖 ⟩⟩ (15)

⟨⟨𝐶𝑡
𝑖 (𝔤) ← ⟨⟨Opt

𝑡
𝑖,𝔤 ⟩⟩ + c(𝔤) + ⟨⟨𝜈

𝑡
𝑖 ⟩⟩ (16)

3: end for

4: Compute and reveal

∑
𝑖∈𝑋 ⟨⟨𝐶𝑡

𝑖
(E\{𝔤}) ⟩⟩,∑𝑖∈𝑋 ⟨⟨𝐶𝑡

𝑖
(𝔤) ⟩⟩, and their MACs to all users.

5: if Checking MACs failed then

6: Abort

7: end if

8: for 𝑖 ∈ 𝑋 do

9: Compute the following via SPDZ among all users:

⟨⟨𝜃𝑖 ⟩⟩ ←


⟨⟨𝐶𝑡

𝑖
(E\{𝔤}) ⟩⟩ +

∑
𝑖′ ∈𝑋 𝐶𝑡

𝑖′ (𝔤)−
∑
𝑖′ ∈𝑋 𝐶𝑡

𝑖′ (E\{𝔤})
|𝑋 | − ⟨⟨Opt𝑡

𝑖,𝔤
⟩⟩, for ega. cost-sharing

⟨⟨𝐶𝑡
𝑖
(E\{𝔤}) ⟩⟩ ·

∑
𝑖′ ∈𝑋 𝐶𝑡

𝑖′ (𝔤)∑
𝑖′ ∈𝑋 𝐶𝑡

𝑖′ (E\{𝔤})
− ⟨⟨Opt𝑡

𝑖
[𝔤] ⟩⟩, for prop. cost-sharing

10: end for

⊲ Compute the net mutual compensations via SPDZ
11: for 𝑖 ∈ 𝑋 do

12: ⟨⟨𝜙𝑖 ⟩⟩ ← ⟨⟨𝜃𝑖 ⟩⟩ − c(𝔤) − ⟨⟨𝜈𝑡
𝑖
⟩⟩

13: Reveal ⟨⟨𝜙𝑖 ⟩⟩ and its MAC to user 𝑖 only
14: if Checking MAC failed then

15: Abort

16: end if

17: end for

The users compute mutual compensations by a distributed pro-

tocol via SPDZ. The protocol is described by ΠMC (Algorithm 3), in

which the users compute the compensated switching cost

(
⟨⟨𝜃𝑖 ⟩⟩

)
𝑖∈𝑋

by Theorem 3, and the net mutual compensations (𝜙𝑖 ) between

the compensated and original switching costs, defined by 𝜙𝑖 ≜
𝜃𝑖 − Cost𝑡Sw [𝑥

𝑡−1
𝑖

, 𝔤]. In this stage,

(
⟨⟨𝜙𝑖 ⟩⟩

)
𝑖∈𝑋 will remain secretly-

shared, and will be used in Stage 4 for payments on blockchain.

Stage 4: (Payments)

The users pay the net mutual compensations

(
𝜙𝑖
)
𝑖∈𝑋 by ERC20

tokens on the blockchain. The users generate a multi-transaction

request with concealed transaction values

(
Cm(𝜙𝑖 )

)
𝑖∈𝑋 . The trans-

action generation will be handled in a privacy-preserving manner

9
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via SPDZ, which follows a similar privacy-preserving payment sys-

tem in [38]. Because of the paucity of space, we skip the protocol,

and defer the details to Appendix D.2.

7 Evaluation

This section presents an empirical evaluation of our solution, in-

cluding the online decision-making algorithm, SPDZ performance

and the gas costs of smart contract on Ethereum.

7.1 Online Decision-Making Algorithm

We present an evaluation of our online algorithm using real-world

hourly electricity consumption data of 4 users (see Figure 6 and

User 3 has a solar PV that can probably export extra electricity

to the grid). The data trace represents the total daily electricity

usage of each household in a period of consecutive 14 days. The

energy plan tariffs in table 2 are characterized by peak hour rates,

off-peak hour rates and disconnection fees. The peak hour period

is from 8am to 8pm, and the off-peak hour period is from 9pm to

7am respectively. We set a zero connection fee in our experiments.

We evaluated the performance of the online decision algorithm

without mutual compensations. In Figure 4, we observe a small

spike in the accumulated cost on Day 11 among Users 1, 2 and 3 due

to switching to the group plan and paying off the disconnection

fee of the standard plan. But the users enjoy more cost-saving

afterwards. We also study different mutual compensation schemes.

We observe that User 1 paysmorewith egalitarian cost-sharing (ega)

to compensate user 2 and user 3, whereas Users 1 and 2 pay more

with proportional cost-sharing (pp) to compensate user 3 in the

beginning, but all of them will be benefited considerably in a long

term. At last, we study the performance of our online algorithm

considering with and without mutual compensations (MC). We

observe that with mutual compensations (MC), all users join the

group-based plan earlier on Day 2. Hence, the energy costs of all

users are lower than those without mutual compensations. All users

are benefited substantially withmore than 50% cost reduction, when

joining the group-based plan earlier with mutual compensations.

Table 2: Table of Energy Plan Tariffs.

Peak ($) Off-Peak ($) Disconnect Fee ($)

Standalone Plan 1.6 1.0 16

Group Plan 0.6 0.3 30

7.2 SPDZ Performance

We evaluated the performance of SPDZ in Stage 2. We do not show

the performance of Stage 3 and Stage 4, because of their small

overhead. We consider a single fortnight period and up to 27 users.

Computation Running Time: All the results are averaged over

10 instances. Figure 5 represents the average running time of each

user in Stage 2. We observe that the running time only increases

linearly with the number of users with moderate overhead.

Communication Overhead: We evaluated the communication

data size among Stage 1 and Stage 2. Figure 5 shows that the total

communication data size grows linearly with the number of users

in both Stage 1 and Stage 2 with moderate overhead.

7.3 Smart Contract Gas Costs

We implemented the payment system of mutual compensations by a

smart contract on Ethereum using Solidity programming language.

We measured the gas costs of our smart contract, it represents

the amount of computational resources needed to execute a single

transaction. The gas price is set by the operator, and most miners

will choose the smart contract with a higher gas price in a block.

We use the standard gas price 54 Gwei to simulate the transaction

cost in Ether. Figure 5 shows the gas costs. We observe that the gas

cost increases linearly, starting from 0.0437 ETH with 3 users to

0.3445 ETH with 27 users. Overall, our smart contract generated

comparable gas costs as other privacy-preserving smart contract

implementations in the literature.

8 Related Work

In this section, we present the related work in the literature.

The problem of energy plan selection has been studied as an

online decision problem, which belongs to the class of Metrical Task

System (MTS) problem [7] and online convex optimization (OCO)

problem with switching cost [4]. For a general setting with 𝑛 dis-

crete states, the MTS problem is known to have a competitive ratio

of 2𝑛 − 1 [2]. An instance of MTS is the energy generation schedul-

ing in microgrids [26, 30, 32]. [1, 29] proposed online algorithms

for OCO. The problem of energy plan selection is also studied as

an MTS problem in [39]. Most of the extant literature of online

decision problems does not consider the settings of cooperative

multi-players, in which the players may decide their joint online

decisions. Recently, the work in [42] considers cooperative multi-

player online decision problems of group purchasing energy plan

selection problem. This paper extends the online algorithm with

mutual compensations in [42] by considering a different mutual

compensation scheme and the possibility of energy export.

Blockchain technology has been applied to diverse aspects of

energy systems. Among the applications, [25] applied blockchain to

mitigate trust in peer-to-peer electric vehicle charging. Blockchain

has been applied to microgrid energy exchange and wholesale mar-

kets by prosumers [33]. Renewable energy credits and emissions

trading are also applications of blockchain [28]. In these applica-

tions, the goal of blockchain is to improve transparency and reduce

settlement times, since blockchain can ensure integrity and con-

sistency of transactions and settlement on an open ledger. See a

recent survey about blockchain applications to energy systems [3].

However, very few studies considered the privacy of blockchain,

even transaction data on the ledger is entirely disclosed to the

public. [38] recently proposed a privacy-preserving solution for

energy storage sharing using blockchain and secure multi-party

computation. This work draws on similar concepts from privacy-

preserving blockchain, but also addressing a different problem of

decentralized group purchasing of energy plans. It is worth noting

that supporting privacy on blockchain is a crucial research topic in

cryptography and security. There are several privacy-preserving

blockchain platforms with support of privacy (e.g., ZCash, Monero,

Zether, Tornado Cash [6, 9, 34]).

There are two major approaches in privacy-preserving tech-

niques in the literature: (1) data obfuscation that masks private data

with random noise, (2) secure multi-party computation that hides

10
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Figure 4: Evaluation of online decision algorithm, comparing the online solutions with and without mutual compensations.

Figure 5: SPDZ performance and smart contract gas costs

Figure 6: Data trace of energy consumption and net mutual

compensations.

private data while allowing the data to be computed confidentially.

Differential privacy [21], a main example of data obfuscation, is

often used in privacy-preserving data mining in a very large dataset

[40]. Note that there is an intrinsic trade-off between accuracy and

privacy in differential privacy. On the other hand, secure multi-

party computation [20, 24] traditionally employed garbled circuits

[27], which have a high computational complexity, and homomor-

phic cryptosystems [17, 31, 36], which need a trusted setup for

key generation. Recently, information-theoretical secret-sharing

[18, 19] has been utilized for secure multi-party computation, which

provides high efficiency and requires no trusted third-party setup.

Particularly, SPDZ [18] is an efficient MPC protocol based on secret-

sharing and can safeguard against a dishonest majority of users.

9 Conclusion

The emergence of competitive retail energy markets introduces

group purchasing of energy plans. However, traditional group pur-

chasing mediated by a trusted third-party suffers from the lack

of privacy and transparency. In this paper, we introduced a novel

paradigm of decentralized privacy-preserving group purchasing. We

combine competitive online algorithms, secure multi-party compu-

tations and zero-knowledge on blockchain as a holistic solution to

enable users to make coordinated switch decisions in a decentral-

ized manner, without a trusted third-party. We implemented our

decentralized group purchasing solution by multi-party computa-

tion protocol (SPDZ) and a smart contract on Solidity-supported

blockchain platform. Although we implemented it as a smart con-

tract on permissionless blockchain, it can be implemented on a

permissioned blockchain, on which the gas cost is not a concern. In

future work, we will extend our online decision algorithms to com-

plex scenarios (e.g., with termination penalty in group purchasing).
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Appendix

A Proofs of Results

Theorem 2. If the connection fees and disconnection fees of all
energy plans are identical, i.e., c𝑗 = c and d𝑗 = d for all 𝑗 ∈ E, then

Cost𝑖 [𝑥𝑖 ] ≤ 3 · Opt𝑇𝑖 [𝑥
∗𝑇
𝑖 ]

Proof. Since c𝑗 = c and d𝑗 = d for all 𝑗 ∈ E, the switching

cost is a constant between all states. In this case, we can reduce

the problem of 𝑛 states to the one of 2 states only. When deciding

the switching decision, one only needs to consider whether to stay

with the current stay or change to another state that has a lower

state cost (as the switching cost of any state is a constant). □

Theorem 3. We consider two schemes of mutual compensations:

(1) Egalitarian Cost-sharing:

𝜃𝑖 = 𝐶
𝑡
𝑖 (E\{𝔤}) +

∑
𝑖′∈𝑋

(
𝐶𝑡
𝑖′ (𝔤) −𝐶

𝑡
𝑖′ (E\{𝔤})

)
|𝑋 | − Opt𝑡𝑖 [𝔤] (17)

(2) Proportional Cost-sharing:

𝜃𝑖 = 𝐶
𝑡
𝑖 (E\{𝔤})

∑
𝑖′∈𝑋 𝐶

𝑡
𝑖′ (𝔤)∑

𝑖′∈𝑋 𝐶
𝑡
𝑖′ (E\{𝔤})

− Opt𝑡𝑖 [𝔤] (18)

Then (𝜃𝑖 )𝑖∈𝑋 in both schemes will satisfy individual rationality
and budget balance, when group feasibility is satisfied.

Proof. First, we consider egalitarian cost-sharing. Note that

Opt𝑡
𝑖
[𝔤] + 𝜃𝑖 ≥ 0 for all 𝑖 ∈ 𝑋 . Suppose group feasibility is satisfied,

then we obtain

∑
𝑖∈𝑋

(
𝐶𝑡
𝑖
(𝔤)−𝐶𝑡

𝑖
(E\{𝔤})

)
< 0. We show individual

rationality as follows:

Opt𝑡𝑖 [𝔤] + 𝜃𝑖 = 𝐶
𝑡
𝑖 (E\{𝔤}) +

∑
𝑖′∈𝑋

(
𝐶𝑡
𝑖′ (𝔤) −𝐶

𝑡
𝑖′ (E\{𝔤})

)
|𝑋 | < 𝐶𝑡𝑖 (E\{𝔤})

Next, we show budget balance as follows:∑︁
𝑖∈𝑋

(
Opt𝑡𝑖 [𝔤] + 𝜃𝑖

)
=
∑︁
𝑖∈𝑋

(
𝐶𝑡𝑖 (E\{𝔤}) +

∑
𝑖∈𝑋

(
𝐶𝑡
𝑖
(𝔤) −𝐶𝑡

𝑖
(E\{𝔤})

)
|𝑋 |

)
=
∑︁
𝑖∈𝑋

𝐶𝑡𝑖 (E\{𝔤}) +
∑︁
𝑖∈𝑋

𝐶𝑡𝑖 (𝔤) −
∑︁
𝑖∈𝑋

𝐶𝑡𝑖 (E\{𝔤}) =
∑︁
𝑖∈𝑋

𝐶𝑡𝑖 (𝔤)

Similarly, we consider proportional cost-sharing. Suppose group

feasibility is satisfied, then we obtain

∑
𝑖∈𝑋 𝐶

𝑡
𝑖
(𝔤)∑

𝑖∈𝑋 𝐶
𝑡
𝑖
(E\{𝔤}) < 1. We show

individual rationality as follows:

Opt𝑡𝑖 [𝔤] + 𝜃𝑖 = 𝐶
𝑡
𝑖 (E\{𝔤})

∑
𝑖′∈𝑋 𝐶

𝑡
𝑖′ (𝔤)∑

𝑖′∈𝑋 𝐶
𝑡
𝑖′ (E\{𝔤})

< 𝐶𝑡𝑖′ (E\{𝔤})

Next, we show budget balance as follows:∑︁
𝑖∈𝑋

(
Opt𝑡𝑖 [𝔤] + 𝜃𝑖

)
=
∑︁
𝑖∈𝑋

(
𝐶𝑡𝑖 (E\{𝔤})

∑
𝑖′∈𝑋 𝐶

𝑡
𝑖′ (𝔤)∑

𝑖′∈𝑋 𝐶
𝑡
𝑖′ (E\{𝔤})

)
=
∑︁
𝑖∈𝑋

𝐶𝑡𝑖 (𝔤)

□
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B Zero-Knowledge Proofs

In this section, we provide a brief explanation of the concepts of

Zero-Knowledge Proofs (ZKPs) in this section. More details can be

found in a standard cryptography textbook (e.g., [8]).

First, we define some system parameters. Denote byZ𝑝 = {0, ..., 𝑝−
1} a finite field of integers modulo 𝑝 , for encrypting private data.

For brevity, we simply write “𝑥 + 𝑦” and “𝑥 · 𝑦” for modular arith-

metic without explicitly mentioning“mod 𝑝”. We consider a usual

finite group G of order 𝑝 . We pick 𝑔, ℎ as two generators of G, such
that they can generate every element in G by taking proper powers,

namely, for each 𝑒 ∈ G, there exist 𝑥,𝑦 ∈ Z𝑝 such that 𝑒 = 𝑔𝑥 = ℎ𝑦 .

The classical discrete logarithmic assumption states that given 𝑔𝑥 ,

it is computationally hard to obtain 𝑥 , which underlies the security

of many cryptosystems.

In a zero-knowledge proof (ZKP) (of knowledge), a prover con-

vinces a verifier of the knowledge of a secret without revealing the

secret. For example, to show the knowledge of (𝑥, r) for Cm(𝑥, r)
without revealing (𝑥, r). A zero-knowledge proof of knowledge

should satisfy completeness (i.e., the prover always can convince

the verifier if knowing the secret), soundness (i.e., the prover cannot

convince a verifier if not knowing the secret) and zero-knowledge

(i.e., the verifier cannot learn the secret).

B.1 Σ-Protocol
Σ-Protocol is a general approach to construct zero-knowledge

proofs. Given a computationally non-invertible function 𝑓 (·) that
satisfies homomorphic property 𝑓 (𝑎+𝑏) = 𝑓 (𝑎)+𝑓 (𝑏) and 𝑓 (𝑥) = 𝑦,
one can prove the knowledge of the concealed 𝑥 :

(1) First, the prover sends a commitment 𝑦′ = 𝑓 (𝑥 ′), for a ran-
dom 𝑥 ′, to the verifier.

(2) Next, the verifier replies with a random challenge 𝛽 .

(3) The prover replieswith 𝑧 = 𝑥 ′+𝛽 ·𝑥 (which does not reveal 𝑥 ).

(4) Finally, the verifier checks whether 𝑓 (𝑧) ?

= 𝑦′ + 𝛽 · 𝑦.

B.2 Σ-Protocol Based Zero-knowledge Proofs

Next, we present several instances of zero-knowledge proofs based

on Σ-protocol:

• ZKP of Commitment (zkpCm[𝑥, Cm(𝑥)]): Given Cm(𝑥, 𝑟 ), a
prover can convince a verifier of the knowledge of 𝑥 without

revealing (𝑥, 𝑟 ). The corresponding protocol is described by

ΠzkpCm.

• ZKP of Membership (zkpMbs[𝑥𝑖∈X]): Given a set X =

{𝑥1, ..., 𝑥𝑛} and Cm(𝑥, r), a prover can convince a verifier of

the knowledge of 𝑥 ∈ X without revealing 𝑥 . The corre-

sponding protocol is described by ΠzkpMbs.

• ZKP of Non-Negativity (zkpNN[𝑥≥0]): Given Cm(𝑥, r), a
prover can convince a verifier of the knowledge of 𝑥 ≥ 0

without revealing 𝑥 . The corresponding protocol is described

by ΠzkpNN.

B.3 Non-interactive Zero-knowledge Proofs

An interactive zero-knowledge proof that requires a verifier-provided

challenge can be converted to a non-interactive one by Fiat-Shamir

heuristic to remove the verifier-provided challenge.

Algorithm 4 ΠzkpCm: Prove the knowledge of (𝑥, r) in a given com-
mitment Cm(𝑥, r), without revealing (𝑥, r)
Input: Cm(𝑥, r) (known to the verifier and prover); (𝑥, r) (known to the prover only)

Output: Pass or Fail

1: The prover generates a pair of random numbers (𝑥 ′, r′ ) $← Z2𝑝 and announces the commitment

Cm(𝑥 ′, r′ ) to the verifier

2: The verifier generates a random number𝜓
$← Z𝑝 and announces𝜓 to the prover

3: The prover computes 𝑧𝑥 ← 𝑥 ′ +𝜓 · 𝑥 and 𝑧r ← r′ +𝜓 · r, and announces (𝑧𝑥 , 𝑧r ) to the
verifier

⊲ The verifier checks the following
4: if 𝑔𝑧𝑥 · ℎ𝑧r = Cm(𝑥 ′, r′ ) · Cm(𝑥, r)𝜓 then

5: return Pass
6: else

7: return Fail
8: end if

⊲ The ZKP of commitment is zkpCm[𝑥, Cm(𝑥 ) ] =
{
Cm(𝑥, r) ; Cm(𝑥 ′, r′ ), 𝑧𝑥 , 𝑧r

}
Algorithm 5 ΠzkpMbs: Prove the knowledge that 𝑥𝑖 ∈ X ≜ {𝑥1, ...,
𝑥𝑛}, given commitment Cm(𝑥𝑖 , r), without revealing 𝑥𝑖
Input: X, Cm(𝑥𝑖 , r) (known to the verifier and prover); (𝑥𝑖 , r) (known to the prover only)

Output: Pass or Fail

1: The prover generates a pair of random numbers (𝑥 ′
𝑗
, r′

𝑗
) $← Z2𝑝 and announces the commit-

ments Cm(𝑥 ′
𝑗
, r′

𝑗
) for all 𝑗 ∈ {1, ..., 𝑛} to the verifier

2: The prover generates a random number𝜓 𝑗
$← Z𝑝 for each 𝑗 ∈ {1, ..., 𝑛}\{𝑖 }, and computes

𝑧𝑥𝑗 ←
{
𝑥 ′
𝑗
+𝜓 𝑗 · (𝑥𝑖 − 𝑥 𝑗 ), if 𝑗 ∈ {1, ..., 𝑛}\{𝑖 }

𝑥 ′
𝑖
, if 𝑗 = 𝑖

3: The verifier generates a random number𝜓
$← Z𝑝 and announces𝜓 to the prover

4: The prover sets𝜓𝑖 ← 𝜓 − ∑
𝑗≠𝑖 𝜓 𝑗 and 𝑧r𝑗 ← r′

𝑗
+ r · 𝜓 𝑗 for all 𝑗 ∈ {1, ..., 𝑛}, and then

announces (𝜓 𝑗 , 𝑧r𝑗 )
𝑛
𝑗=1

to the verifier

⊲ The verifier checks the following

5: if 𝑔
𝑧𝑥𝑗 · ℎ𝑧r𝑗 = Cm(𝑥 ′

𝑗
, r′

𝑗
) ·

(
Cm(𝑥𝑖 ,r)
𝑔
𝑥𝑗

)𝜓𝑗
for all 𝑗 ∈ {1, ..., 𝑛} and𝜓 =

∑𝑛
𝑖=1

𝜓 𝑗 then

6: return Pass
7: else

8: return Fail
9: end if

⊲ The ZKP of membership is zkpMbs[𝑥𝑖 ∈X] =
{
Cm(𝑥𝑖 , r) ; {Cm(𝑥 ′𝑗 , r

′
𝑗
) }𝑛

𝑗=1
, (𝜓 𝑗 , 𝑧𝑥𝑗 , 𝑧r𝑗 )

𝑛
𝑗=1

}

Algorithm 6 ΠzkpNN: Prove the knowledge that 𝑥 ≥ 0 by showing
there exist (𝑏1, ..., 𝑏𝑚) such that 𝑏𝑖 ∈ {0, 1} for 𝑖 ∈ {0, ...,𝑚} and∑𝑚
𝑖=1 𝑏𝑖 · 2𝑖−1 = 𝑥 , given commitment Cm(𝑥, r), without revealing 𝑥

Input: Cm(𝑥, r) (known to the verifier and prover); (𝑥, r) (known to the prover only)

Output: Pass or Fail
1: The prover announces (Cm(𝑏𝑖 , r𝑖 ) )𝑚𝑖=1 to the verifier, and uses

ΠzkpMbs [ {0, 1}, Cm(𝑏𝑖 , r𝑖 ), 𝑏𝑖 ] to prove that 𝑏𝑖 ∈ {0, 1}

2: The prover generates a random number r′
$← Z𝑝 and announces the commitment Cm(0, r′ ) to

the verifier

3: The verifier generates a random number𝜓
$← Z𝑝 and announces𝜓 to the prover

4: The prover computes 𝑧r ← r′ +𝜓 · (∑𝑚
𝑖=1

r𝑖 · 2𝑖−1 − r) and announces 𝑧r to the verifier

⊲ The verifier checks the following

5: if ℎ𝑧r = Cm(0, r′ ) · Cm(𝑥, r)−𝜓 ·∏𝑚
𝑖=1

Cm(𝑏𝑖 , r𝑖 )𝜓 ·2
𝑖−1

then

6: return Pass
7: else

8: return Fail
9: end if

⊲ The ZKP of non-negativity is zkpNN[𝑥≥0] =
{
Cm(𝑥, r), {Cm(𝑏𝑖 , r𝑖 ) }𝑚𝑖=1 ; Cm(0, r

′ ), 𝑧r
}

LetH(·) ↦→ Z𝑝 be a cryptographic hash function. Given a list

of commitments (Cm1, ..., Cm𝑟 ), one can map to a single hash value

by H(Cm1 |...|Cm𝑟 ), where the input is the concatenated string of

13



Preprint, 2025, S. C.-K. Chau, Y. Zhou

(Cm1, ..., Cm𝑟 ). In a Σ-protocol, one can set the challenge by 𝛽 =

H(Cm1 |...|Cm𝑟 ), where (Cm1, ..., Cm𝑟 ) are all the commitments gen-

erated by the prover prior to the step of verifier-provided chal-

lenge (Step 2 of Σ-protocol). Hence, the prover does not wait for
the verifier-provided random challenge, and instead generates the

random challenge himself. The verifier will generate the same chal-

lenge following the same procedure for verification. We denote the

non-interactive versions of the previous zero-knowledge proofs by

nzkpCm, nzkpSum, nzkpMbs, nzkpNN, respectively.

C SPDZ Protocol

In this section, we present a simplified version of SPDZ protocol for

the clarity of exposition. The full version can be found in [18, 19].

There are three phases in SPDZ protocol: (1) pre-processing

phase, (2) online phase, and (3) output and validation phase. We

write ⟨𝑥⟩ as a secretly shared number, meaning that there is a vector

(𝑥1, ..., 𝑥𝑛), such that each party 𝑖 knows only 𝑥𝑖 . To reveal the

secretly shared number ⟨𝑥⟩, each party 𝑖 broadcasts 𝑥𝑖 to other

parties. Then each party can reconstruct 𝑥 =
∑𝑛
𝑖=1 𝑥𝑖 . We write

⟨⟨𝑥⟩⟩ meaning that both ⟨𝑥⟩ and the respective MAC ⟨𝛾 (𝑥)⟩ are
secretly shared.

C.1 Online Phase

In the online phase, the parties can jointly compute an arithmetic

circuit, consisting of additions and multiplications with secretly

shared input numbers.

C.1.1 Addition.
Given secretly shared ⟨𝑥⟩ and ⟨𝑦⟩, and a public known constant

𝑐 , the following operations can be attained by local computation

at each party, and then the outcome can be assembled from the

individual shares:

A1) ⟨𝑥⟩ + ⟨𝑦⟩ can be computed by (𝑥1 + 𝑦1, ..., 𝑥𝑛 + 𝑦𝑛).
A2) 𝑐 · ⟨𝑥⟩ can be computed by (𝑐 · 𝑥1, ..., 𝑐 · 𝑥𝑛).
A3) 𝑐 + ⟨𝑥⟩ can be computed by (𝑐 + 𝑥1, 𝑥2, ..., 𝑥𝑛).

C.1.2 Multiplication.
Given secretly shared ⟨𝑥⟩ and ⟨𝑦⟩, computing the product ⟨𝑥⟩·⟨𝑦⟩

involves a given multiplication triple. A multiplication triple is

defined by (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩), where 𝑎, 𝑏 are some unknown random

numbers and 𝑐 = 𝑎 · 𝑏, are three secretly shared numbers already

distributed among the parties. The triple is assumed to be prepared

in a pre-processing phase. To compute ⟨𝑥⟩ · ⟨𝑦⟩, it follows the below
steps of operations (A4):

A4.1) Compute ⟨𝜖⟩ = ⟨𝑥⟩ − ⟨𝑎⟩ (by A1). Then, reveal ⟨𝜖⟩, which
does not reveal 𝑥 .

A4.2) Compute ⟨𝛿⟩ = ⟨𝑦⟩ − ⟨𝑏⟩. Then, reveal ⟨𝛿⟩.
A4.3) Finally, compute ⟨𝑥⟩ · ⟨𝑦⟩ = ⟨𝑐⟩ + 𝜖 · ⟨𝑏⟩ + 𝛿 · ⟨𝑎⟩ + 𝜖 · 𝛿 (by

A1-A3).

C.1.3 Message Authentication Code.
To safeguard against dishonest parties, who may perform in-

correct computation, an information-theoretical message authenti-

cation code (MAC) can be used for verification. We write a MAC

key as a global number 𝛼 , which is unknown to the parties, and is

secretly shared as ⟨𝛼⟩. Every secretly shared number is encoded by

a MAC as 𝛾 (𝑥) = 𝛼𝑥 , which is secretly shared as ⟨𝛾 (𝑥)⟩. For each

⟨𝑥⟩, each party 𝑖 holds a tuple (𝑥𝑖 , 𝛾 (𝑥)𝑖 ) and 𝛼𝑖 , where 𝑥 =
∑𝑛
𝑖=1 𝑥𝑖 ,

𝛼 =
∑𝑛
𝑖=1 𝛼𝑖 and 𝛾 (𝑥) = 𝛼𝑥 =

∑𝑛
𝑖=1 𝛾 (𝑥)𝑖 . If any party tries to mod-

ify his share 𝑥𝑖 uncoordinatedly, then he also needs to modify 𝛾 (𝑥)𝑖
accordingly. Otherwise, 𝛾 (𝑥) will be inconsistent. However, it is
difficult to modify 𝛾 (𝑥)𝑖 without coordination among the parties,

such that 𝛼𝑥 =
∑𝑛
𝑖=1 𝛾 (𝑥)𝑖 . Hence, it is possible to detect incorrect

computation (possibly by dishonest parties) by checking the MAC.

To check the consistency of 𝑥 , there is no need to reveal ⟨𝛼⟩.
One only needs to reveal ⟨𝑥⟩, and then reveals 𝛼𝑖 − 𝑥 · 𝛾 (𝑥)𝑖 from
each party 𝑖 . One can check whether

∑𝑛
𝑖=1 (𝛼𝑖 − 𝑥 · 𝛾 (𝑥)𝑖 )

?

= 0 for

consistency. To prevent a dishonest party from modifying his share

𝑥𝑖 after learning the other party’s 𝑥 𝑗 . Each party needs to commit

his share 𝑥𝑖 before revealing 𝑥𝑖 to others.

To maintain the consistency of MAC for operations A1-A4, the
MAC needs to be updated accordingly as follows:

B1) ⟨𝑥⟩ + ⟨𝑦⟩: Update MAC by (𝛾 (𝑥)1 +𝛾 (𝑦)1, ..., 𝛾 (𝑥)𝑛 +𝛾 (𝑦)𝑛).
B2) 𝑐 · ⟨𝑥⟩: Update MAC by (𝑐 · 𝛾 (𝑥)1, ..., 𝑐 · 𝛾 (𝑥)𝑛).
B3) 𝑐 + ⟨𝑥⟩: Update MAC by (𝑐 · 𝛼1 + 𝛾 (𝑥)1, ..., 𝑐 · 𝛼𝑛 + 𝛾 (𝑥)𝑛).
B4) ⟨𝑥⟩ · ⟨𝑦⟩: Update MAC at each individual step of A4.1-A4.3

accordingly by B1-B3.

The additions and multiplications of ⟨⟨𝑥⟩⟩ and ⟨⟨𝑦⟩⟩ follow A1-A4
and the MACs will be updated accordingly by B1-B4.

To verify the computation of a function, it only requires to check

the MACs of the revealed values and the final outcome, which can

be checked all efficiently together in a batch at the final stage by a

technique called “random linear combination”.

C.2 Pre-processing Phase

In the pre-processing phase, all parties need to prepare a collection

of triplets (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩) where 𝑐 = 𝑎 ·𝑏, each for a required multipli-

cation operation. Assume that the parties hold secretly shared num-

bers𝑎 =
∑𝑁
𝑖=1 𝑎𝑖 and𝑏 =

∑𝑁
𝑖=1 𝑏𝑖 (which has been generated by local

random generation). Note that 𝑎 ·𝑏 =
∑𝑁
𝑖=1 𝑎𝑖𝑏𝑖 +

∑𝑁
𝑖=1

∑𝑁
𝑗=𝑖”𝑖≠𝑗

𝑎𝑖𝑏 𝑗 .

𝑎𝑖𝑏𝑖 can be computed locally. To distribute 𝑎𝑖𝑏 𝑗 , one can use par-

tial homomorphic cryptosystems, with encryption function Enc[·]
and decryption function Dec[·] using party 𝑖’s public and private

(𝐾p
𝑖
, 𝐾

p
𝑖
). First, party 𝑖 sends Enc𝐾p

𝑖
[𝑎𝑖 ] to party 𝑗 , who responds

by𝐶𝑖 = 𝑏 𝑗Enc𝐾p
𝑖
[𝑎𝑖 ] − Enc𝐾p

𝑖
[𝑐 𝑗 ], where 𝑐 𝑗 is a random share gen-

erated by party 𝑗 and is encrypted by party 𝑖’s public key 𝐾s
𝑖
. Then

party 𝑖 can obtain 𝑐 𝑗 = Dec𝐾s
𝑖
[𝐶 𝑗 ]. Hence, 𝑎𝑖𝑏 𝑗 = 𝑐𝑖 + 𝑐 𝑗 , which are

secret shares 𝑎𝑖𝑏 𝑗 . The above generation assumes honest parties.

To prevent cheating by dishonest parties, one would need to use

proper zero-knowledge proofs before secret sharing [18, 19].

To generate a random mask ⟨⟨𝑟 𝑖 ⟩⟩, each party 𝑗 needs to generate

a random share 𝑟 𝑖
𝑗
locally. Then the parties follow the similar pro-

cedure of triplet generation to compute the secretly shared product

⟨𝛾 (𝑟 𝑖 )⟩, where 𝛾 (𝑟 𝑖 ) = 𝛼𝑟 𝑖 .

C.3 Output and Validation Phase

We describe random linear combination for batch checking. To

check theMACs of a number of secretly shared numbers ⟨⟨𝑥1⟩⟩, ..., ⟨⟨𝑥𝑚⟩⟩
in a batch, first generate a set of random (r1, ..., r𝑚). then reveal

⟨⟨𝑥1⟩⟩, ..., ⟨⟨𝑥𝑚⟩⟩. Each party 𝑖 computes

∑𝑚
𝑗=1 r

𝑗 (𝛼𝑖−𝑥 𝑗 ·𝛾 (𝑥 𝑗 )𝑖 ) and
14
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reveals it. All parties check whether

∑𝑁
𝑖=1

∑𝑚
𝑗=1 r

𝑗 (𝛼𝑖−𝑥 𝑗 ·𝛾 (𝑥 𝑗 )𝑖 )
?

=

0 for consistency in a batch checking.

C.4 SPDZ Protocol

We summarize the SPDZ protocol as follows:

(1) Pre-processing Phase: In this phase, a collection of shared

randomnumberswill be constructed that can be used tomask

the private input numbers. For each private input number of

party 𝑖 , there is a shared random number ⟨⟨𝑟 𝑖 ⟩⟩, where 𝑟 𝑖 is
revealed to party 𝑖 only, but not to other parties. All parties

also prepare a collection of triplets (⟨⟨𝑎⟩⟩, ⟨⟨𝑏⟩⟩, ⟨⟨𝑐⟩⟩) where
𝑐 = 𝑎 · 𝑏, each for a required multiplication operation.

(2) Online Phase: To secretly shares a private input number 𝑥𝑖

using ⟨⟨𝑟 𝑖 ⟩⟩, without revealing 𝑥𝑖 , it proceeds as follows:
1) Party 𝑖 computes and reveals 𝑧𝑖 = 𝑥𝑖 − 𝑟 𝑖 to all parties.

2) Every party sets ⟨⟨𝑥𝑖 ⟩⟩ ← 𝑧𝑖 + ⟨⟨𝑟 𝑖 ⟩⟩.
To compute an arithmetic circuit, implement the required

additions or multiplications by A1-A4 and the MACs are

updated accordingly by B1-B4.
(3) Output and Validation Phase: All MACs will be checked for

all revealed numbers and the final output value. It can check

all in a batch using random linear combination. If there is

any inconsistency in the MACs, then abort.

Note that SPDZ cannot guarantee abort with fairness – dishonest

parties may learn some partial values, even when the protocol

aborts. However, this is a fundamental problem for any multi-party

computation protocol with a dishonest majority, where dishonest

parties are not identifiable when the computation is aborted.

D Additional Protocols

D.1 Basic Protocols with SPDZ

In this section, we present several common protocols based on

SPDZ as sub-routines:

(1) Π
RandBit

is a protocol that generates a secretly shared ran-

dom bit ⟨⟨𝑏⟩⟩ ∈ {0, 1} via SPDZ.
(2) Π

RandPos
is a protocol that generates a secretly shared ran-

dom positive number ⟨⟨𝑅⟩⟩ > 0 via SPDZ.

(3) Πmin [⟨⟨𝑦⟩⟩, ⟨⟨𝑧⟩⟩] is a protocol that computes, via SPDZ, se-

cretly shared output ⟨⟨𝑥⟩⟩ for given secretly shared values

⟨⟨𝑦⟩⟩, ⟨⟨𝑧⟩⟩, such that 𝑥 ← min{𝑦, 𝑧}.
(4) Π< [⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩] is a protocol that compares, via SPDZ, two

secretly shared values ⟨⟨𝑥⟩⟩ and ⟨⟨𝑦⟩⟩ and outputs 1 if ⟨⟨𝑥⟩⟩ −
⟨⟨𝑦⟩⟩ < 0, and 0 otherwise, without revealing other informa-

tion about 𝑥,𝑦.

(5) Π= [⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩] is a protocol that compares, via SPDZ, two

secretly shared values ⟨⟨𝑥⟩⟩ and ⟨⟨𝑦⟩⟩ and outputs 1 if ⟨⟨𝑥⟩⟩ −
⟨⟨𝑦⟩⟩ = 0, and 0 otherwise, without revealing other informa-

tion about 𝑥,𝑦.

D.2 Privacy-preserving Payments on Blockchain

On Ethereum, one can create tokens on the ledger to represent

certain digital assets. Our mutual compensation payment system

is implemented by ERC20 tokens [22]. To make payment among

each other, users are required to purchase tokens that will be

subsequently transferred to each other and redeemed. By default,

Algorithm 7 ΠRandBit: Generate a secretly shared random bit ⟨⟨𝑏⟩⟩ ∈
{0, 1} via SPDZ, without revealing 𝑏
Output: ⟨⟨𝑏 ⟩⟩
1: for 𝑖 ∈ 𝑋 do

2: User 𝑖 generates a random local bit 𝑏𝑖
$← {0, 1}

3: Secretly share 𝑏𝑖 as ⟨⟨𝑏𝑖 ⟩⟩ to all users

4: Announce Cm(𝑏𝑖 ) to all users

5: Apply ΠdzkpCm [Cm(𝑏𝑖 ), ⟨⟨𝑏𝑖 ⟩⟩ ] to prove the knowledge of 𝑏𝑖
6: User 𝑖 provides nzkpMbs[ {0, 1}, Cm(𝑏𝑖 ) ;𝑏𝑖 ] to prove ⟨⟨𝑏𝑖 ⟩⟩∈{0, 1}
7: end for

8: Compute ⟨⟨𝑏 ⟩⟩ ←
⊗

𝑖∈𝑋 ⟨⟨𝑏𝑖 ⟩⟩ via SPDZ, where ⊗ is XOR operator:

⟨⟨𝑏𝑖 ⟩⟩ ⊗ ⟨⟨𝑏𝑖′ ⟩⟩ ≜ 1 −
(
1 − ⟨⟨𝑏𝑖 ⟩⟩ · (1 − ⟨⟨𝑏𝑖′ ⟩⟩)

)
·
(
1 − (1 − ⟨⟨𝑏𝑖 ⟩⟩) · ⟨⟨𝑏𝑖′ ⟩⟩

)
9: return ⟨⟨𝑏 ⟩⟩

Algorithm 8 ΠRandPos: Generate a secretly shared random positive
number ⟨⟨𝑅⟩⟩ > 0 via SPDZ, without revealing 𝑅
Output: ⟨⟨𝑅⟩⟩
1: for 𝑖 ∈ 𝑋 do

2: User 𝑖 generates a random local positive number 𝑅𝑖
$← Z𝑞

3: Secretly share 𝑅𝑖 as ⟨⟨𝑅𝑖 ⟩⟩ to all users

4: Announce Cm(𝑅𝑖 ) to all users

5: Apply ΠdzkpCm [Cm(𝑅𝑖 ), ⟨⟨𝑅𝑖 ⟩⟩ ] to prove the knowledge of 𝑅𝑖
6: User 𝑖 provides nzkpNN[Cm(𝑅𝑖 ) ;𝑅𝑖 ] to prove ⟨⟨𝑅𝑖 ⟩⟩ ≥ 0

7: end for

8: Compute ⟨⟨𝑅⟩⟩ ← ∑
𝑖∈𝑋 ⟨⟨𝑅𝑖 ⟩⟩ via SPDZ

9: return ⟨⟨𝑅⟩⟩ + 1

Algorithm 9 ΠMin: Compute ⟨⟨𝑧⟩⟩ ← min{⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩} via SPDZ, in
a privacy-preserving manner without revealing (𝑧, 𝑥,𝑦)
Input: ⟨⟨𝑥 ⟩⟩, ⟨⟨𝑦⟩⟩ (already secretly shared among users)

Output: ⟨⟨𝑧⟩⟩
1: Generate a secretly shared random bit ⟨⟨𝑏 ⟩⟩ ← ΠRandBit
2: Randomly shuffle (𝑥, 𝑦) based on 𝑏 by the following via SPDZ:

⟨⟨𝑢 ⟩⟩ ← ⟨⟨𝑥 ⟩⟩ + ⟨⟨𝑏 ⟩⟩ · (⟨⟨𝑦⟩⟩ − ⟨⟨𝑥 ⟩⟩)
⟨⟨𝑣⟩⟩ ← ⟨⟨𝑦⟩⟩ + ⟨⟨𝑏 ⟩⟩ · (⟨⟨𝑥 ⟩⟩ − ⟨⟨𝑦⟩⟩)

3: Generate a secretly shared random positive number ⟨⟨𝑅⟩⟩←ΠRandPos
4: Compute ⟨⟨𝑤⟩⟩ ← ⟨⟨𝑅⟩⟩ · (⟨⟨𝑢 ⟩⟩ − ⟨⟨𝑣⟩⟩) via SPDZ
5: Open ⟨⟨𝑤⟩⟩ and its MAC to all users

6: if Checking MAC failed then

7: Abort

8: end if

9: if 𝑤 ≥ 0 then

10: Set ⟨⟨𝑧⟩⟩ ← ⟨⟨𝑣⟩⟩
11: else

12: Set ⟨⟨𝑧⟩⟩ ← ⟨⟨𝑢 ⟩⟩
13: end if

14: return ⟨⟨𝑧⟩⟩

Algorithm 10 Π< : Output 1 for given ⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩, if ⟨⟨𝑥⟩⟩ > ⟨⟨𝑦⟩⟩ via
SPDZ, in a privacy-preserving manner without revealing (𝑥,𝑦)
Input: ⟨⟨𝑥 ⟩⟩, ⟨⟨𝑦⟩⟩ (already secretly shared among users)

Output: 1, if ⟨⟨𝑥 ⟩⟩ > ⟨⟨𝑦⟩⟩. Otherwise, 0
1: Generate a secretly shared random positive number ⟨⟨𝑅⟩⟩ ← ΠRandPos
2: Compute ⟨⟨𝑤⟩⟩ ← ⟨⟨𝑅⟩⟩ · (⟨⟨𝑥 ⟩⟩ − ⟨⟨𝑦⟩⟩) via SPDZ
3: Open ⟨⟨𝑤⟩⟩ and its MAC to all users

4: if Checking MAC failed then

5: Abort

6: end if

7: if 𝑤 > 0 then

8: return 1

9: else

10: return 0

11: end if

the transaction records on the ledger are completely visible to

the public. In this section, we incorporate privacy protection to

hide the transaction records on the ledger. As in other privacy-

preserving blockchain platforms (e.g., Zether [9]), we conceal the
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Algorithm 11 Π=: Output 1 for given ⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩, if ⟨⟨𝑥⟩⟩ = ⟨⟨𝑦⟩⟩ via
SPDZ, in a privacy-preserving manner without revealing (𝑥,𝑦)
Input: ⟨⟨𝑥 ⟩⟩, ⟨⟨𝑦⟩⟩ (already secretly shared among users)

Output: 1, if ⟨⟨𝑥 ⟩⟩ = ⟨⟨𝑦⟩⟩. Otherwise, 0
1: Generate a secretly shared random positive number ⟨⟨𝑅⟩⟩ ← ΠRandPos
2: Compute ⟨⟨𝑤⟩⟩ ← ⟨⟨𝑅⟩⟩ · (⟨⟨𝑥 ⟩⟩ − ⟨⟨𝑦⟩⟩) via SPDZ
3: Open ⟨⟨𝑤⟩⟩ and its MAC to all users

4: if Checking MAC failed then

5: Abort

6: end if

7: if 𝑤 = 0 then

8: return 1

9: else

10: return 0

11: end if

balances and transaction values in the ledger by the respective cryp-

tographic commitments instead of plaintext values. For example,

Cm(Bal(ad𝑖 )) will be recorded as the balance for account ad𝑖 on
the ledger.

To initiate a transaction of tokens from ad𝑖 to ad𝑖′ with transac-

tion value val, a user submits a transaction request to the blockchain:

tx = (ad𝑖 , ad𝑖′ , val), along with a signature sign𝐾s
𝑖
(tx) using the

private key 𝐾s
𝑖
associated with ad𝑖 . To pay mutual compensations

among multiple users, the users submit a multi-transaction, de-
noted by mtx = (ad𝑖 , ad𝑖′ , val𝑖 )𝑁𝑖=1, which will be executed, only

if Bal(ad𝑖 ) ≥ val𝑖 for all 𝑖 and multi-signature sign(𝐾s
𝑖
)𝑁
𝑖=1
(mtx)

is present. To hide transfer amounts, a multi-transaction can be

concealed as mtx = (ad𝑖 , ad𝑖′ , Cm(val𝑖 ))𝑁𝑖=1. Since Pedersen com-

mitment satisfies homomorphic property, the concealed transaction

value can be added to the concealed balance as follows:

Cm(Bal(ad𝑖 )) ← Cm(Bal(ad𝑖 )) · Cm(val𝑖 )

However, the transaction may be invalid, when Bal(ad𝑖 ) ≤ val𝑖 .
Hence, each user must provide nzkpNN[Bal(ad𝑖 ) − val𝑖 ≥ 0] along
with each transaction request to prove the non-negativity of the

resultant balance. Otherwise, the transaction request will be denied.

In Stage 4, each user 𝑖 pays the net mutual compensation amount

𝜙𝑖 (which may be negative, if the user receives compensation). Note

that it is evident that

∑
𝑖∈𝑋 𝜙𝑖 = 0 (namely, the sum of net mutual

compensations should be zero). Hence, it suffices to consider the

scenario that all users transfer the payments to a dummy address

addummy with zero total transaction value, with each transferring

a transaction value of Cm(𝜙𝑖 ) in a commitment. To prove the va-

lidity of the multi-transaction, the users need to provide a ZKP of

summation, such that the summation of all transferred amounts

equals zero, namely,

∏
𝑖∈𝑋 Cm(𝜙𝑖 ) = Cm(0). This can be constructed

by Σ-protocol. However, we need a distributed version of ZKP of

summation, as it can be validated by all users. A distributed ZKP of

summation via SPDZ is described in Πdzkpsum (Algorithm 12).

Next, we describe the process of privacy-preserving payments

of net mutual payments as follows:

(1) Each user 𝑖 retains secretly-shared
(
⟨⟨𝜙𝑖 ⟩⟩

)
𝑖∈𝑋 in Stage 3, and

announces its commitment Cm(𝜙𝑖 , r𝑖 ) to all users, and then

secretly shares ⟨⟨r𝑖 ⟩⟩ via SPDZ.
(2) All users generate ZKP of summation by Πdzkpsum to prove

that

∑
𝑖∈𝑋 𝜙𝑖 = 0.

(3) Each user 𝑖 generates nzkpNN[Bal(ad𝑖 ) − 𝜙𝑖 ≥ 0] based on

Cm(𝜙𝑖 , r𝑖 ).

Algorithm 12ΠdzkpSum: Prove the knowledge of𝑦 =
∑𝑛
𝑖=1 𝑥𝑖 in given

commitments
(
Cm(𝑥1, r1),...,Cm(𝑥𝑛, r𝑛)

)
and public known value 𝑦,

via SPDZ
Input:

(
Cm(𝑥1, r1 ) ,...,Cm(𝑥𝑛 , r𝑛 )

)
(known to the verifier and prover)

Output: Pass or Fail
1: Each user 𝑖 announces Cm(𝑥𝑖 , r𝑖 ) and secretly shares ⟨⟨r𝑖 ⟩⟩ with all users

2: Each user 𝑖 randomly generates r′
𝑖
← Z𝑝 and secretly shares ⟨⟨r′

𝑖
⟩⟩ before announcing

Cm(0, r′
𝑖
) to all users

3: All users compute𝐶′ ←∏𝑁
𝑖=1

Cm(0, r′
𝑖
) and obtain a random challenge 𝛽 ← H(𝐶′ )

4: All users compute ⟨⟨𝑧r ⟩⟩ ←
∑𝑛
𝑖=1
⟨⟨r′

𝑖
⟩⟩ + 𝛽 · ∑𝑛

𝑖=1
⟨⟨r𝑖 ⟩⟩ via SPDZ

5: Reveal ⟨⟨𝑧r ⟩⟩ and its MAC to all users

⊲ All users check the following

6: if 𝑔𝛽 ·𝑦 · ℎ𝑧r ?

= 𝐶′ ·∏𝑛
𝑖=1

Cm(𝑥𝑖 , r𝑖 )𝛽 and checking MAC passed then

7: return Pass
8: else

9: return Fail
10: end if

⊲ The ZKP of summation is zkpSum[∑𝑛
𝑖=1

𝑥𝑖 = 𝑦 ] =
{(
Cm(𝑥1, r1 ) ,...,Cm(𝑥𝑛 , r𝑛 )

)
;𝐶′, 𝑧r

}

(4) The users submit a multi-transaction request

mtx =
(
ad𝑖 , addummy, Cm(𝜙𝑖 , r𝑖 )

)
𝑖∈𝑋

to the blockchain ledger, along with the following ZKPs:

nzkpSum[
∑︁
𝑖∈𝑋

𝜙𝑖 = 0] and nzkpNN[Bal(ad𝑖 ) − 𝜙𝑖 ≥ 0]𝑖∈𝑋

(5) The blockchain ledger verifies nzkpSum and nzkpNN before
recording the transaction.
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