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Abstract

As cyber threats continue to grow in scale and sophistication, blue team defenders
increasingly require advanced tools to proactively detect and mitigate risks. Large
Language Models (LLMs) offer promising capabilities for enhancing threat anal-
ysis. However, their effectiveness in real-world blue team threat-hunting sce-
narios remains insufficiently explored. In this paper, we present CYBERTEAM,
a benchmark designed to guide LLMs in blue teaming practice. CYBERTEAM
constructs an embodied environment in two stages. First, it models realistic threat-
hunting workflows by capturing the dependencies among analytical tasks from
threat attribution to incident response. Next, each task is addressed through a
set of embodied functions tailored to its specific analytical requirements. This
transforms the overall threat-hunting process into a structured sequence of function-
driven operations, where each node represents a discrete function and edges define
the execution order. Guided by this framework, LLMs are directed to perform
threat-hunting tasks through modular steps. Overall, CYBERTEAM integrates 30
tasks and 9 embodied functions, guiding LLMs through pipelined threat analysis.
We evaluate leading LLMs and state-of-the-art cybersecurity agents, comparing CY-
BERTEAM’s embodied function-calling against fundamental elicitation strategies.
Our results offer valuable insights into the current capabilities and limitations
of LLMs in threat hunting, laying the foundation for the practical adoption in
real-world cybersecurity applications.

1 Introduction

The increasing frequency and sophistication of cyber threats continue to pose significant challenges
to organizational security. In 2024 alone, over 11, 000 more (38% increase!) vulnerabilities were
reported compared to 2023, as evidenced by the MITRE CVE database [87]. Defenders, commonly
known as the blue team [25, 71], are under increasing pressure to identify, analyze, and respond to
malicious activities in a timely and accurate manner, a process termed as threat hunting. Traditionally,
threat hunting has been a labor-intensive process, relying heavily on the expertise of analysts to sift
through logs, correlate indicators of compromise (IOCs), and construct hypotheses about potential
attacks [21, 33]. This process demands both deep domain knowledge and an ability to integrate
fragmented evidence from multiple sources under time constraints [8, 97, 102].

Recent advances in Large Language Models (LLMs) have demonstrated impressive potential to
augment cybersecurity practices, including malware analysis [2, 5, 70, 24], penetration testing
[22, 23, 36, 63], and fuzzing [99, 66, 10]. Building on this progress, there is growing interest in
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1. Threat Attribution 2. Behavior Analysis 3. Prioritization 4. Response & Mitigation
NER REX RAG NER RAG MAP

On Dec. 10, 2024, our SIEM system flagged multiple anomalous outbound DNS requests from internal host host-192-168-10-21.local 
to dns-update.evilcorp.net. Investigation revealed that the host had received a suspicious email containing an attachment named 
Invoice_April2025.doc, which, when opened, triggered a connection to a known C2 domain via an obfuscated PowerShell script. The 
initial vector appears to be a phishing campaign exploiting. The attacker leveraged PowerShell to execute a memory-resident payload 
that conducted system reconnaissance, credential harvesting (via LSASS dump), and lateral movement using SMB.
Detected IOCs include: C2 Domains: dns-update.evilcorp.cn, smbauth.c2redir.net. IP Addresses: 185.100.87.21, 192.168.10.22

Cyber Threat Log

MAP SUM CLS RAG SUM

Evidence
C2 Domain:

Malware 
delivery:

 dns-update.evilcorp.cn

smbauth.c2redir.net

Invoice_April2025.doc 

Actor
CVE-2024-21678

APT41 or TA505

Observation
PowerShell Obfuscation T1059.001

TTPs

LSASS Memory Dump

Spearphishing Attachment

T1003.001

T1566.001

Severity High
Zero-day exploitation

Credential theft detected

Internal host comprimised

Response Action
Apply Microsoft patch KB5000871

Block connections to *.evilcrop.net

Isolate affected host 192.169.10.21

Figure 1: A threat hunting example equipped with the embodied functions. Function names: NER–
named entity recognition, REX–regex parsing, MAP–text mapping, RAG–retrieval-augmented gener-
ation, CLS–classification, SUM–summarization.

leveraging LLMs to automate or assist in threat hunting, enabling blue team defenders to scale
their investigations across complex threat landscapes and respond to incidents more effectively.
However, despite this momentum, the application of LLMs in blue team threat hunting remains
underdeveloped. Existing frameworks tend to focus on isolated analytical tasks [80, 29, 21, 11, 35],
such as generating advisory recommendations without integrating earlier steps like threat group
attribution. This fragmented design limits our understanding of how LLMs perform within complex,
interdependent threat-hunting workflows.

To address this gap, we introduce CYBERTEAM, a practical benchmark designed to rigorously
evaluate and guide the use of LLMs in blue team threat hunting. CYBERTEAM supports blue-team
threat-hunting workflows through the following aspects:

Broader Coverage. CYBERTEAM is constructed from a diverse and large-scale repository of threat
intelligence data sourced from 23 vulnerability databases, including MITRE series [60], NVD [64],
Exploit-DB [65], VulDB [91], and CISE [18], as well as reporting platforms such as Red Hat Bugzilla
[74], Oracle Security Alerts [67], and IBM X-Force [42]. This broad and representative collection
is essential for capturing the complexity and variability of the modern threat landscape, enabling
realistic support for both threat investigation and incident response. In addition, CYBERTEAM
includes a significantly larger number of tasks and samples than existing cybersecurity benchmarks
[45, 49, 6, 44], as summarized in Table 1. This extensive coverage allows for a more comprehensive
and nuanced evaluation of LLM performance across a wide range of threat-hunting scenarios.

Embodied Environment. An important feature of CYBERTEAM is its structured, modular workflow
for guiding LLMs within an embodied environment [95, 16]. This design is inspired by blue
team practices, where analysts typically follow standardized procedures to interpret threat metadata
and conduct investigations [80, 25, 14]. However, strict adherence to such procedures can limit
adaptability when analyzing unstructured threat logs or addressing emerging, zero-day threats. To
balance standardization and adaptability, CYBERTEAM integrates a set of embodied functions that
regulate LLM behavior while allowing for open-ended reasoning where needed. As illustrated
in Figure 1, CYBERTEAM first models the dependency structure among threat-hunting objectives
(e.g., attribution, behavior analysis, mitigation) as a task chain, and then maps this chain into a
corresponding sequence of embodied functions. In this process, functions such as NER enforce
structured outputs (e.g., extracting threat actor entities), while functions like RAG support more
flexible reasoning (e.g., summarizing relevant patching strategies). This design enables CYBERTEAM
to constrain model behavior when precision is essential, while still allowing LLMs to engage
in context-sensitive generation when analytical creativity or abstraction is required.

Evaluation Strategy. CYBERTEAM incorporates agent-based evaluation strategies tailored to each
threat-hunting objective. We benchmark leading LLMs and state-of-the-art (SOTA) cybersecurity
agents, comparing CYBERTEAM ’s embodied function-calling approach with popular elicitation
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Table 1: Comparison of cybersecurity benchmarks for LLMs.

Benchmark Focus #Data #Task #Source Coverage Unique Feature

CWE-Bench-Java [49] Java vulnerability 120 4 1 Four CWE classes Large-scale Java codes
CTIBench [6] Cyber Threat Intelligence 2,500 3 6 CVE, CWE, CVSS, ATT&CK Multi-choice questions (MCQ)
SevenLLM-Bench [44] Report understanding 91,401 28 N/A Bilingual instruction corpus Synthetic Data, MCQ, QA
SWE-Bench [45] Software bug fixing 2,294 12 1 GitHub issues Python repository

CYBERTEAM (Ours) Blue-team threat hunting 452,293 30 23 Threat-hunting lifecycle (3.1) Open Generation, Embodied Env

strategies such as In-Context Learning (ICL) [26], Chain-of-Thought (CoT) [94], Tree-of-Thought
(ToT) [96]. Our evaluation provides insights into the capabilities and limitations of current models
across 30 tasks. We further analyze LLMs’ capabilities in automatically identifying task depen-
dencies, selecting appropriate embodied functions, and handling noisy threat log inputs. These
experiments reveal not only underlying model limitations, such as reasoning errors and sensitivity to
incomplete or ambiguous input, but also provide practical insights for blue team analysts aiming to
integrate LLMs into real-world cyber defense workflows.

In summary, this paper makes the following contributions: (1) We introduce CYBERTEAM, a practice-
informed, broadly scoped benchmark that enables rigorous evaluation of LLMs for blue team threat
hunting, (2) we construct an embodied environment that models the dependencies among threat-
hunting tasks and guides LLMs through standardized yet flexible reasoning workflow, (3) we conduct
comprehensive evaluations and provide insights to improve LLM performance among threat-hunting
scenarios.

2 Related Work

LLMs for Cybersecurity. Recently, LLMs have shown promise in enhancing cybersecurity tasks
such as malware classification [2, 5, 70, 24, 50], code vulnerability detection [76, 51, 82], penetration
testing [36, 63, 81], phishing detection [47, 34], and incident report generation [9, 85, 54]. These
applications leverage the language understanding and reasoning capabilities of LLMs to analyze
technical data, recommend solutions, or simulate attacker behaviors. However, existing applications
typically target isolated tasks without considering broader analyst workflows. Additionally, their
open-ended reasoning often results in hallucinations and inconsistencies [62, 84, 83], raising concerns
about reliability in high-stakes defensive scenarios.

Cybersecurity Benchmarks. Recent benchmarks have focused on static analysis [75, 38, 12],
software vulnerabilities [40, 78], and threat report generation [88, 69, 19]. These benchmarks
evaluate predefined tasks such as identifying CWE categories, matching CVEs, or summarizing
intelligence reports [6, 3, 13, 37]. While helpful for reproducibility, they often cover narrow domains
and lack the complexity and task interdependencies inherent in real-world threat investigations. In
contrast, benchmarks from other high-stakes fields (e.g., law, medicine, finance) increasingly include
complex, multistep tasks requiring diverse reasoning skills [30, 93, 17, 52, 103]. Inspired by these
efforts, we introduce CYBERTEAM to emphasize structured reasoning and realistic interdependencies,
specifically for blue team threat hunting.

Embodied Agents. Recent research has proposed embodied agents and function-calling frameworks
to structure LLM reasoning into modular, interpretable steps [28, 27, 41]. Such frameworks have
achieved notable success in robotics [43, 4], database querying [46, 20], and scientific reasoning tasks
[1, 89]. However, their use in cybersecurity, especially defensive operations, remains underexplored
despite the need for structured workflows. Our work addresses this gap by introducing an embodied,
function-guided environment aligned with blue team practices, enabling procedural reasoning within
a structured analytical pipeline.

3 CYBERTEAM

In this section, we provide a detailed introduction of CYBERTEAM regarding the collected threat
hunting tasks (3.1), data sources (3.2), and the embodied strategy (3.3).
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Table 2: Threat hunting tasks, description of targets, corresponding embodied functions, number of
instances, and evaluation metrics. We implememt 9 embodied functions: (1) NER: named entity
recognition, (2) REX: regex parsing, (3) SUM: summarization, (4) SIM: text similarity matching, (5)
MAP: text mapping, (6) RAG: retrieval-augmented generation, (7) SPA: text span localization, (8)
CLS: classification, and (9) MATH: mathmatical calculation. We evaluate using metrics (i) F1 score,
(ii) Sim: text similarity (by BERT Score [100]), (iii) Accuracy, (iv) Normalized distance between two
numbers, (v) Passing rate of code execution, (vi) Hit@k ratio. Details in Appendix B and C.

Task Analytical Target Function #Data Metric

Threat Attribution

Malware Identification Malware delivery or toolset NER, SUM 15,742 F1
Signature Matching Techniques from known threat groups NER, SIM 5,166 F1
Temporal Pattern Matching Known work schedules REX 4,203 Sim
Affiliation Linking Source organizations NER, MAP 17,583 F1
Geographic Analysis Geographic or cultural indicators NER, SIM 6,164 F1
Victimology Profiling Targeted victims or attacker motives NER, REX 18,612 F1
Infrastructure Extraction Domains, IPs, URLs, or file hashes NER, REX, SUM 24,129 F1
Actor Identification The threat group or actor (e.g., APT28) NER, RAG, MAP 17,823 F1
Campaign Correlation Threat campaigns or incidents NER, MAP 27,762 F1

Behavior Analysis

File System Activity Detection Suspicious file creation, deletion, or access SPA, NER, SUM 4,653 Sim
Network Behavior Profiling Patterns of external communication (e.g., C2) SPA, NER, SUM 2,617 Sim
Credential Access Detection Theft or misuse of credentials SPA, NER, SUM 2,492 Sim
Execution Context Analysis Execution behaviors by user or process SPA, NER, SUM 23,888 Sim
Command & Script Analysis Suspicious commands or scripts SPA, NER, SUM 20,232 F1
Privilege Escalation Inference Privilege escalation attempts SPA, NER, SUM 15,953 Sim
Evasion Behavior Detection Evasion or obfuscation techniques SPA, NER, SUM 8,973 Sim
Event Sequence Reconstruction Timeline of attack-related events SUM 23,265 Sim
TTP Extraction Tactics, techniques, and procedures RAG, MAP 28,292 F1

Prioritization

Attack Vector Classification Exploitation vectors (e.g., network, local, physical) SUM, CLS 17,448 Acc
Attack Complexity Classification Level of hurdles required to carry out the attack SUM, CLS 17,116 Acc
Privileges Requirement Detection Level of access privileges an attacker needs SUM, CLS 18,030 Acc
User Interaction Categorization If exploitation requires user participation SUM, CLS 17,075 Acc
Attack Scope Detection If the vulnerability affects one/multiple components SUM, CLS 18,570 Acc
Impact Level Classification Consequences on confidentiality, integrity, and availability SUM, CLS 18,736 Acc
Severity Scoring A numerical score indicating the overall attack severity SUM, MATH 11,507 Dist

Response & Mitigation

Playbook Recommendation Relevant response actions based on threat type RAG, SUM 10,718 Hit
Security Control Adjustment Firewall rules, EDR settings, or group policies RAG, SUM 9,929 Sim
Patch Code Generation Code snippets to patch the vulnerability RAG, SUM 11,341 Pass
Patch Tool Suggestion Security tools or utilities RAG, SUM 9,763 Hit
Advisory Correlation Security advisories or best practices RAG, SUM 24,511 Hit

3.1 Threat Hunting Tasks

As shown in Table 2, CYBERTEAM reflects the full lifecycle of threat hunting tasks. Specifically,
CYBERTEAM systematizes analytical tasks into four categories: Threat Attribution, Behavior
Analysis, Prioritization, and Response & Mitigation. Each category captures a stage in the threat-
hunting workflow from investigating cyber threats to identifying countermeasures. Specifically:

Threat Attribution aims at uncovering the origins and nature of a threat. This includes tasks such as
extracting infrastructure artifacts (e.g., domains, IPs, URLs), classifying malware families based on
observed behaviors, matching known threat signatures, and linking activities to known campaigns
or actor groups (e.g., APT or MITRE ATT&CK [60]). Further granularity is achieved through
geographic and temporal pattern analysis, as well as victimology and affiliation linking, all of which
help analysts contextualize incidents in terms of their broader threat landscape.

Subsequently, Behavior Analysis focuses on understanding how adversaries interact with systems
over time. Tasks in this category include mapping unusual file system activities, profiling network
behaviors (e.g., Monitoring outbound traffic), detecting credential access, and analyzing the use of
commands and scripts. Analysts aim to reconstruct sequences of attack events and associate them
with specific execution contexts or behavioral patterns. The detection of techniques such as privilege
escalation and defense evasion also falls within this scope. Understanding threat behaviors enhances
an analyst’s ability to assess the dynamics of emerging (or, zero-day) cyber threats.
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Cyber Threat Log Category 1. Threat Attribution
1.a) Malware identification

1.b) Infrastructure extraction

NER SUM Identified malware file: <file-
name>.exe and dropper.exe

NER REX SUM Extract domain/
IP from the log

Cyber Threat Log Category 2. Behavior Analysis
2.a) File system activity detection

2.b) Execution context analysis

SPA NER

SPA NER SUM

SUM File creation in 
user directory

Registry key inser-
tion for auto-start

Category 3. Prioritization

SUM
3.a) Attack vector classification

[10:25:03] File downloaded: https://<domain-name>.org/<file-name>.exe  

[10:25:10] File <file-name>.exe saved to C:\Users\Public\Downloads  
[10:25:12] Connection attempt to IP address 203.0.113.10:443 
[10:25:15] Registry key added for persistence: HKCU\...\Run\<regkey_name>  
[10:25:25] File dropper.exe detected from https://<domain>.org/dropper.exe  

[10:25:03] File downloaded: https://<domain-name>.org/<file-name>.exe  
[10:25:10] File <file-name>.exe saved to C:\Users\Public\Downloads  
[10:25:12] Connection attempt to IP address 203.0.113.10:443 
[10:25:15] Registry key added for persistence: HKCU\...\Run\<regkey_name>  
[10:25:25] File dropper.exe detected from https://<domain>.org/dropper.exe  

 <file-name>.exe: network-based delivery
dropper.exe: with exploitation component

CLS network vector, dropper involves exploit 
→ higher complexity

NER

NER

REX

NER

NER

SUM
3.b) Attack complexity classification

 <file-name>.exe: user interaction+download
dropper.exe: with privilege-escalation logic 

CLS <file-name> is classified as low complexity
Dropper is classified as high complexity

…

3.x) Severity scoring

SUM

MATH

complexity score: 0.8
Privilege score: 1.0 …

Severity score: 4.5

Category 4. Response & Mitigation

…

4.a) Playbook recommendation 4.b) Security control adjustment 4.x) Advisory correlation

RAG

SUM

RAG

SUM

RAG

SUM

Retrieve and rank playbooks from threat 
databases, e.g., MITRE D3FEND

Suggest response sequence: D3-DA - 
Dynamic Analysis …

Retrieve and rank security control strategies 
about “hardening system setting to block…”

Disable PowerShell base64 execution via 
GPO, block unbound connections to …

Patch KB5031234 
released by MSRC

Retrieve advisories 
using malware name

SPA

SPA

NER

NER

Figure 2: An threat-hunting example demonstrating a dependency chain of analytical tasks, where
each task is completed through a sequence of embodied functions executed by LLMs autonomously.

When multiple threats emerge simultaneously, Prioritization assesses their relative urgency and
associated risk. This involves analyzing the attack vector and complexity, identifying privilege
requirements and user interaction dependencies, and estimating potential impact. These factors are
then synthesized into impact labels and severity scores (e.g., CVSS [31]) to guide effective triage.
Finally, Response & Mitigation focus on generating actionable defense strategies. This includes
recommending response playbooks, generating patch code, correlating relevant security advisories,
and suggesting appropriate tools or configuration changes to neutralize the threat.

3.2 Data Sources

CYBERTEAM collects threat metadata from two primary sources: (1) vulnerability databases, which
offer authoritative structural and non-structural information about threats, and (2) threat intelligence
platforms, which report event-driven, context-rich threat data.

Vulnerability databases serve as foundational resources for automated threat hunting by providing
machine-readable records of software flaws, exposure types, and critical contextual metadata. We
aggregate threat entries from established sources such as NVD [64], MITRE CVE [87], ATT&CK
[60], CWE [58], CAPEC [57], D3FEND [59], Exploit-DB [65], and VulDB [91]. These sources
include detailed insights such as exploitability scores (EPSS [32]), severity metrics (CVSS [31]),
and remediation guidance. Additionally, we incorporate data from vendor-maintained repositories
(e.g., the Microsoft Security Update Guide [55], IBM X-Force [42]) to capture fine-grained details
on affected systems, attack vectors, and patch methods.

Threat intelligence platforms complement these databases by providing behavioral and contextual
signals linked to adversary activity. Platforms such as VirusTotal [90], AlienVault OTX [7], and
MISP [56] contribute indicators of compromise (IOCs), behavioral patterns, and telemetry that enable
tasks like campaign correlation, infrastructure extraction, and actor attribution. Furthermore, industry
threat reports—from sources, such as Mandiant [53], Recorded Future [72], Palo Alto Unit 42 [68],
and Apache [86], offer semi-structured intelligence, including incident timelines, IOC lists, and
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narrative analyses, which are essential for modeling multi-stage attack sequences and evaluating blue
team responses.

Additional details on how these databases and platforms are used are provided in Appendix A.

3.3 Embodied Threat Hunting: Definition and Methodology

Task Dependency. Threat hunting is inherently a multi-stage analytical process [77, 15, 39], where
downstream actions, such as incident response and mitigation, rely on outcomes derived from up-
stream analytical steps. For example, recommending an effective response playbook requires accurate
attribution of the threat actor and thorough behavioral analysis of the compromise. To explicitly
model this structured workflow, CYBERTEAM formulates threat hunting as a Dependency Chain.
As illustrated in Figure 2, all analytical tasks (e.g., 1.a: Malware Identification or 2.a: File System
Activity Detection) are organized into a pipelined workflow that reflects their inherent dependencies.
For example, attack complexity classification relies on prior analyses of file system activity and
execution context. Meanwhile, tasks within the same category (e.g., malware identification and
infrastructure extraction under threat attribution) can often be performed in parallel, as they address
distinct dimensions of the threat and do not exhibit direct interdependencies.

Embodied Function. Within each node, CYBERTEAM invokes a set of embodied functions designed
to produce actionable threat intelligence and progressively address the current analytical target.
Specifically, each threat hunting task ti is associated with a corresponding set of tool-augmented
functions Fi = {f1

i , f
2
i , . . . }. We implement a total of 9 embodied functions, and solving each task

ti involves executing a predefined sequence f∗
i ∈ Fi, as detailed in the third column of Table 2. The

resulting output yi = f∗
i (x) is subsequently passed to dependent downstream tasks. For instance, the

task of TTP Extraction involves invoking both Retrieval-Augmented Generation (RAG) and Mapping
(MAP) functions to identify relevant tactics and techniques from unstructured logs. Subsequently, a
downstream task such as Tool Suggestion utilizes RAG and summarization (SUM) functions to map
these identified TTPs to suitable defensive tools.

Due to space constraints, we defer implementation details embodied functions to Appendix B.

4 Experiment

CYBERTEAM aims to empirically address the following research questions: RQ1: How effective are
embodied functions compared to standard prompting strategies (e.g., ICL, CoT, ToT) in improving
LLM performance for threat-hunting tasks? RQ2: Can LLMs accurately solve individual threat-
hunting tasks? RQ3: Are LLMs capable of reasoning about task dependencies and selecting the
appropriate embodied functions for each task? RQ4: How robust are LLMs, under the guidance of
CYBERTEAM, when analyzing noisy inputs?

LLMs. We evaluate a range of industry-leading large language models, including GPT-4o, GPT-o3,
Qwen3-32B, Gemini-Pro, Claude-3-Opus, LLaMA-3.2-90B, LLaMA-3.1-405B, and DeepSeek-
V3. In addition, we assess state-of-the-art cybersecurity-focused LLM agents, including Lily-
Cybersecurity-7B [79], CyLens-8B [50], and SevenLLM-7B [44].

Elicitation (Prompting) Strategies. To compare with the embodied function approach implemented
in CYBERTEAM, we evaluate three widely used prompting strategies: (1) In-Context Learning (ICL)
[26] – including basic task instructions along with five illustrative examples to demonstrate the desired
solution format. (2) Chain-of-Thought (CoT) [94] – encouraging the model to generate "step-by-step"
reasoning results before producing the final answer. (3) Tree-of-Thought (ToT) [96] – guiding LLMs
to explore multiple reasoning paths and select the most plausible one.

Metrics. As shown in Table 2, we select evaluation metrics tailored to the nature of each task. For
information extraction tasks (e.g., malware identification), we use the F1 score to balance precision
and recall. For classification tasks (e.g., privilege escalation inference), we adopt accuracy among
well-defined categories. Generation or summarization tasks (e.g., behavioral profiling) are evaluated
using BERTScore [101], reflecting semantic similarity. Tasks involving ranking (e.g., security
playbook recommendation) utilize Hit@k (default k = 10), measuring whether correct choices
appear in the top-k outputs. For programmatic outputs (e.g., patch code generation), we apply Pass
rate using UNITEST in Python to assess functional correctness. Numeric estimation tasks (e.g.,
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Table 3: Results of LLMs threat-hunting performance (scaled to 100%) on CYBERTEAM, using
corresponding metrics tailored to each analytical target as detailed in Table 2. We use boldface
indicate the best results and underline to denote the second-best results.

Model
Playbook Recommend Security Control Adjust Patch Code Generation Patch Tool Suggestion Advisory Correlation

ICL CoT ToT Emb ICL CoT ToT Emb ICL CoT ToT Emb ICL CoT ToT Emb ICL CoT ToT Emb

Cybersecurity Agent

Lily-7B 42.3 51.6 48.1 67.2 51.5 60.3 66.7 74.2 10.8 24.5 25.3 29.7 48.2 53.6 56.5 69.1 21.7 49.5 46.8 73.4
CyLens-8B 83.5 80.6 83.8 88.2 75.2 80.6 83.1 87.5 62.4 68.7 61.9 80.8 74.6 80.3 83.5 88.9 66.5 82.1 85.3 89.8
SevenLLM-7B 54.7 50.5 54.3 66.8 43.9 68.4 61.6 80.1 29.2 55.1 58.3 60.2 61.5 77.2 68.1 77.7 63.8 69.5 67.2 77.1

Industry-Leading LLM

GPT-4o 64.5 78.3 75.2 84.6 61.8 70.3 75.9 82.1 56.2 58.4 61.8 72.5 68.9 79.2 75.8 87.4 64.7 67.2 70.8 80.3
GPT-o3 73.1 88.2 84.6 90.2 70.3 79.5 84.7 88.3 58.4 75.6 71.3 86.9 79.4 89.5 85.2 96.3 67.2 79.8 83.6 91.7
QWen3-32B 52.8 67.5 71.4 79.3 50.6 59.8 66.3 74.7 39.3 54.7 50.2 65.4 59.2 70.3 74.5 83.6 48.5 61.7 64.8 76.5
Gemini-Pro 79.4 80.1 83.5 91.8 65.8 79.2 73.6 88.5 63.7 65.3 69.8 82.6 74.1 81.7 86.3 93.2 62.4 77.5 73.1 86.9
Claude-Opus 63.7 80.6 76.4 88.5 79.2 76.3 72.1 85.8 47.5 65.2 60.8 78.4 68.5 78.3 82.9 90.6 56.8 75.1 71.3 83.7
Llama-90B 77.2 74.5 69.3 82.6 53.4 70.8 64.5 79.3 42.8 56.2 60.3 71.5 64.1 76.8 72.5 85.2 51.3 63.7 68.4 77.8
Llama-405B 65.8 77.3 82.1 89.7 61.5 77.9 72.8 86.4 49.2 67.4 62.9 80.6 70.3 79.6 84.2 92.1 58.7 76.3 71.8 84.9
DeepSeek-V3 61.4 79.8 75.1 87.2 57.6 74.3 68.9 83.5 45.7 59.8 63.5 76.2 67.1 76.9 81.4 89.3 54.2 72.8 68.4 82.6

severity scoring) are evaluated using Normalized Distance to quantify similarity to ground truth
values. All metrics are scaled to the range [0, 1] (or in percentages), where higher values indicate
better performance. Additional details are provided in Appendix C.

4.1 Threat-Hunting Effectiveness through Embodied Functions (RQ1)

Ultimately, CYBERTEAM is designed to generate actionable responses and mitigation strategies
against cyber threats. We begin by evaluating the overall quality of LLM-generated responses and
mitigation outputs on CYBERTEAM. Table 3 presents the results, using task-specific metrics detailed
in Table 2. From these results, we observe that using embodied functions outperforms standard
elicitation methods. For instance, embodied functions guide GPT-o3 to achieve over 90% Hit@10 in
playbook recommendation and over 91% in advisory correlation. This demonstrates the effectiveness
of combining modular, task-specific guidance with the inherent flexibility of LLMs.

Notably, while ICL, CoT, and ToT have been shown to improve generation quality for general-purpose
tasks [26, 98, 92], they lack meaningful guidance for domain-specific problems that require precise
procedural knowledge and structured analytical workflows.

Case Study I (Failure Case). When using CoT to generate a response plan for LockBit (a
ransomware), GPT-4o offers generic recommendations "... the first step is to isolate affected
machines. Next, the system should assess backup availability and notify stakeholders ..." without
tailoring to LockBit and ignoring unique traits like double extortion tactics or known exploits.

By contrast, embodied functions in CYBERTEAM constrain LLM reasoning to follow predefined task
sequences, ensuring outputs remain aligned with operational goals:

Case Study II (Successful Case). The embodied function framework guides GPT-4o to explicitly
invoke RAG and SUM modules. Specifically, RAG retrieves up-to-date security advisories (e.g.,
CISA Alert AA23-325A) specific to LockBit, while SUM outlines mitigation strategies with double
extortion prevention and air-gapped offline backups.

These results suggest that in cybersecurity, particularly in threat-hunting scenarios, structured elicita-
tion methods are necessary for reliably leveraging LLM capabilities.

4.2 Threat-Hunting Performance for Individual Tasks (RQ2)

Complementing Section 4.1, we also evaluate individual threat-hunting tasks prior to the response &
mitigation stage, as outlined in Table 2. Figures 3 and Appendix D present the experimental results.

Observe that using embodied functions consistently achieves the highest performance across all
intermediate tasks. However, the magnitude of performance gains varies across task types. For
instance, in complex reasoning tasks (e.g., Event Sequence Construction), embodied functions yield
substantial improvements over baseline strategies like CoT and ToT, boosting accuracy by over 20%
using GPT-4o. This is largely because these tasks require multi-hop reasoning, evidence synthesis,
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(a) Threat Attribution — GPT-4o

(b) Behavior Analysis — GPT-4o

(c) Prioritization — GPT-4o

Figure 3: Threat-hunting performance (scaled to 100%) on individual tasks, evaluating under GPT-4o
across various elicitation strategies: ICL, CoT, ToT, and using embodied functions (Emb). Results
for additional LLMs are provided in Appendix D.

(a) Dependency resolution (b) threat actor 
identification

(c) Credential access 
detection

(d) Attack vector 
classification

(e) Advisory 
correlation

Figure 4: Evaluation of LLM performance in selecting the correct (a) task dependencies, and (b–e)
embodied functions for specific analytical targets.

and careful dependency tracking, which are capabilities that general prompting methods struggle
to coordinate effectively. In contrast, for narrower, classification-focused tasks (e.g., attack vector
categorization or privilege escalation inference), the performance gap between embodied functions
and standard prompting is smaller. Here, the tasks are more self-contained, and models can often
arrive at correct predictions even without explicit task decomposition or function integration.

These findings highlight that while embodied functions offer general advantages, their relative benefit
is particularly significant in scenarios requiring structured reasoning over interconnected threat-
hunting steps. This demonstrates the importance of modular guidance in complex threat-hunting
workflows.

4.3 Task Dependency Resolution and Embodied Function Selection (RQ3)

Previous experiments highlight the importance of guided workflows in threat hunting. Here, we
further investigate LLMs’ inherent abilities to (1) identify which prior tasks provide the necessary
inputs for solving a given analytical target, and (2) determine which embodied function(s) to invoke
for executing specific threat-hunting tasks.

Experimental Setting. We frame both evaluations as multi-choice problems. For task dependency res-
olution, we present original threat logs from CYBERTEAM and prompt LLMs to identify which prior
tasks must be resolved before proceeding with the current one. For example, when performing threat
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(a) Malware Identification (b) Signature Matching (c) Infrastructure Extraction

Figure 5: LLM performance when input threat logs are perturbed with token-level noise (solid line)
or semantic-level noise (dashed line).

actor identification, LLMs are asked to select dependencies that provide necessary supporting evi-
dence (e.g., signature extraction or affiliation mapping). The candidate options are drawn from the
full set of tasks listed in Table 2. For embodied function selection, LLMs are asked to choose the
correct function(s) required at each step of a function-calling workflow. The candidate options are
drawn from the complete set of 9 embodied functions defined in our system.

We measure the F1 score for correct dependent task selection and accuracy for correct function
selection at each step. Our evaluation focuses on four representative tasks spanning the end-to-end
workflow, from threat attribution to response & mitigation.

Results and Observations. Figure 4 presents the evaluation results. Observe that LLMs are
largely insufficient in resolving task dependencies and accurately selecting the correct embodied
functions without structured guidance. Specifically, while GPT-o3 performs better in general, it only
achieves 64% on identifying prior tasks required for advisory correlation. Open-source models such
as Lily-7B exhibits even lower performance, often failing to recognize multi-step dependencies or
indirect task linkages, leading to performance below 50%.

For embodied function selection, the results show a similar trend: Gemini-Pro and CyLens achieve
average accuracy over 75%, while Llama-90B struggles to exceed 50%, particularly on complex tasks
such as threat actor identification or advisory correlation. Error analysis reveals two main failure
cases: (i) over-selection, where the model includes irrelevant functions, and (ii) under-selection,
where the model omits necessary functions required to complete the analytical workflow.

Case Study III (Failure Case). Hallucinative Embodied Function Selection.
(i) Over-selection: In advisory correlation, we observe that Llama-90B over-selects the irrele-
vant MAP function, redundantly performing entity-to-infrastructure mapping.
(ii) Under-selection: In the threat actor attribution, Claude omits RAG (necessary to retrieve
actor identifiers) but directly generating APT identifiers, leading to an incomplete attribution.

These observations highlight the necessity of explicitly modeling multi-step dependency resolution
and modular workflows. CYBERTEAM integrates these components to substantially mitigate the
identified weaknesses, enabling LLMs to navigate threat-hunting pipelines with greater reliability.

4.4 LLM Robustness against Noisy Inputs (RQ4)

Experimental Setting. We also investigate LLM robustness when input threat logs contain noisy text.
We introduce (i) token-level noise using TextAttack [61], which randomly injects or substitutes tokens,
and (ii) semantic-level noise using BART-paraphraser [48], which subtly introduces misleading or
shifted context. Both noise types are applied at controlled levels (e.g., perturbing 10% of the input).

Results and Observations. From Figure 5, we observe that token-level noise has a smaller impact on
LLM performance compared to semantic-level noise. For example, under 10% perturbation, random
character insertions or deletions lead to less than 5% performance drop across tasks. In contrast,
semantic-level noise—such as paraphrased or subtly altered context—causes a much larger decline.
These findings suggest that while LLMs handle surface-level errors relatively well, they struggle
when the semantic shifting, even when guided by CYBERTEAM. This highlights the importance of
curating expert-level threat reports in threat hunting, as imprecise statements can unintentionally
mislead blue team efforts and degrade overall analysis.
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5 Conclusion

We present CYBERTEAM, a benchmark designed to evaluate the capabilities of LLMs in blue team
threat-hunting workflows. By combining broad and diverse real-world datasets, an embodied envi-
ronment with modular function-guided reasoning, and detailed evaluation strategies, CYBERTEAM
provides a comprehensive workflow for assessing LLM capabilities in realistic cyber defense sce-
narios. Our empirical findings highlight both the strengths and current limitations of SOTA LLMs,
offering actionable insights for improving their integration into security operations. We hope CY-
BERTEAM will serve as a valuable resource for the research community and practitioners alike,
driving future innovations in AI-assisted cybersecurity.
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A Data Source and Metadata Collection

The MITRE CVE (Common Vulnerabilities and Exposures) system [87] is a foundational database
that provides unique identifiers for publicly disclosed cybersecurity vulnerabilities. Each CVE record
includes an ID, a brief description, references to external resources, and associated vendors or
platforms. This source allows for consistent naming and indexing of vulnerabilities across tools and
reports. We collect structured metadata such as CVE IDs, descriptions, reference links, and related
CWE classifications. CVE feeds (XML/JSON) are used for automated ingestion and linkage to other
threat intelligence frameworks like CAPEC and ATT&CK.

Maintained by NIST, the NVD (National Vulnerability Database) [64] builds on MITRE CVE data
by adding rich metadata, including CVSS scores (base, temporal, environmental), CWE mappings,
configuration impacts, patch availability, and severity vectors. We extract metadata through the
official JSON data feeds, parsing CVE-level risk metrics, impact sub-scores, and associated product
configurations. This information is critical for prioritizing remediation and understanding the real-
world impact of vulnerabilities.

Exploit-DB [65] is a curated collection of publicly available exploits and proof-of-concept code. Each
entry includes exploit titles, CVE references, author information, platform tags, and the actual code
used in attacks. Unlike CVE/NVD, Exploit-DB provides practical insights into how vulnerabilities are
weaponized in real environments. We extract titles, descriptions, exploit types (e.g., Local, Remote),
and related CVEs using web scraping and NLP-based text classification.

CWE(Common Weakness Enumeration) [58] is a taxonomy developed by MITRE to classify
software and hardware weaknesses. Each CWE includes a unique ID, a detailed explanation, potential
consequences, examples, and related patterns (e.g., CAPEC). We use CWE to enrich CVE data with
root cause information, enabling fine-grained vulnerability clustering and defensive prioritization.
Metadata includes weakness category, severity, and relationships with CAPEC and CVE entries.

CAPEC (Common Attack Pattern Enumeration and Classification) [57] provides a standardized
catalog of common attack strategies. Each pattern includes the attacker’s objectives, prerequisites,
execution flow, related weaknesses (CWE), and example scenarios. We extract attack pattern
IDs, descriptions, related CWEs, and suggested mitigations. These data points enable us to map
vulnerabilities to adversarial behaviors, enhancing our CTI behavioral modeling capabilities.

The MITRE ATT&CK [60] framework systematically catalogs adversary tactics, techniques, and
procedures (TTPs) observed in real-world incidents. Each entry includes tactic categories (e.g.,
Privilege Escalation), techniques, mitigations, detection suggestions, and threat actor mappings. We
extract technique IDs, corresponding software, mitigation strategies, and detection methods. These
are used to link CVEs and exploits to higher-level attacker behaviors, supporting advanced threat
modeling.

D3FEND [59] is a curated knowledge graph that maps defensive techniques to specific threat
behaviors and artifacts. D3FEND complements the well-known ATT&CK framework by focusing on
how defenders can detect, disrupt, and respond to adversarial actions. To integrate this resource into
CYBERTEAM, we crawl D3FEND’s publicly available ontology and extract metadata on detection,
deception, and mitigation techniques, along with their associated digital artifacts (e.g., file paths,
registry keys, network signatures). This metadata is then linked to relevant analytical tasks—such as
behavioral profiling and response planning—providing a rich, standardized reference for grounding
LLM outputs in practical defensive actions.

Oracle Security Alerts [67] provides detailed security patch advisories for its product suite. Each
alert includes the CVEs addressed, severity scores, and remediation timelines. We parse the advisories
to gather product-specific vulnerability timelines, vendor patch statuses, and mitigation instructions,
which complement the NVD and MITRE CVE datasets.

Red Hat Bugzilla [74] is a bug tracking system that includes detailed discussions and technical logs
about software bugs, many of which are security-related. Entries often include CVE links, fix status,
patch availability, and affected components. We scrape metadata such as Bug IDs, CVE references,
affected packages, and resolution details to supplement our understanding of vulnerability lifecycle
management.
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The RHSA(Red Hat Security Advisories) [73] portal lists all critical, important, and moderate secu-
rity advisories affecting Red Hat products. Each advisory provides CVE mappings, severity scores,
fixed packages, and risk summaries. Metadata extraction includes advisory IDs, publication dates,
CVE linkages, and suggested upgrades or patches, enabling alignment with real-world remediation
practices.

IBM X-Force Exchange [42] is a commercial threat intelligence sharing platform that provides
in-depth reports on vulnerabilities, exploits, malware, and threat actors. Each CVE entry is enriched
with exploitability status, malware connections, and actor attribution. We extract structured threat
metadata such as exploit availability, indicators of compromise (IOCs), campaign tags, and actor
profiling to complement CVE risk modeling.

CISE (Cybersecurity Information Sharing Environment) [18], maintained by CISA, promotes
cybersecurity information exchange across government and private sector entities. The platform facil-
itates sharing of indicators of compromise (IOCs), analysis reports, and threat mitigation strategies
through structured partnerships. We extract strategic-level threat metadata, including threat vectors,
vulnerability trends, and response best practices from shared reports and alerts. This supports broader
CTI tasks like attribution and risk contextualization.

VulDB (Vulnerability Database) [91] is a commercial vulnerability intelligence service that pro-
vides insights into current exploits, threat actor behavior, and exploit trends. Entries often include
exploitability scores, attack vectors, exploitation status, and tags related to malware or campaigns.
We collect CVE mappings, vulnerability titles, exploitation timelines, and associated actors, enabling
temporal and behavioral correlation with other sources like Exploit-DB and MITRE ATT&CK .

Apache’s official security advisory page lists all disclosed vulnerabilities affecting Apache projects
(e.g., HTTP Server, Tomcat, Struts) [86]. Each advisory includes CVE references, affected versions,
and patch instructions. We extract CVE mappings, patch details, vulnerability types, and affected
modules. These insights are cross-referenced with MITRE CVE and NVD entries to improve accuracy
in software-specific threat tracking.

Mandiant Threat Intelligence Reports [53], now part of Google Cloud, publishes in-depth research
on nation-state APTs, malware campaigns, and threat actor tactics. Their reports include IOC lists,
ATT&CK mappings, and campaign chronologies. We extract metadata on APT groups, attack stages,
observed TTPs, and malware toolkits. These data points support the attribution and behavioral
modeling dimensions of our threat intelligence corpus.

Recorded Future Threat Intelligence Reports [72] publishes real-time, machine-readable threat
intelligence covering threat actors, vulnerabilities, dark web chatter, and geopolitical cyber cam-
paigns. Reports often include structured indicators, predictive analytics, and CVE exploitability
assessments. We leverage this source to collect threat context, emerging trends, and exploit discus-
sion patterns—enabling our system to associate vulnerabilities with evolving threat actor intent and
capability .

Unit 42 Threat Research (Palo Alto Networks) [68] provides malware analysis, campaign forensics,
and actor behavior insights from Palo Alto Networks’ global threat intelligence platform. Their
publications include links to malicious infrastructure, malware families, and ATT&CK references.
We extract TTPs, CVE-to-malware correlations, and campaign data. This enhances our contextual
metadata for linking specific vulnerabilities to real-world exploitation scenarios .

Microsoft’s Security Update Guide [55] lists monthly updates across its software stack. Entries
contain CVEs, severity ratings, exploitability assessments, patch availability, and affected platforms.
Metadata extraction includes CVE linkage, threat vectors (e.g., local, remote), exploitation likelihood,
and patch rollout status—enriching vendor-specific vulnerability intelligence .

CVSS (Common Vulnerability Scoring System) [31] is a widely adopted scoring system developed
by FIRST to assess the severity of software vulnerabilities. It breaks down risk into Base, Temporal,
and Environmental components. We use this framework to interpret NVD scores, compare severity
across platforms, and calibrate exploitability in relation to business-critical systems.

EPSS (Exploit Prediction Scoring System) [32], also developed by FIRST, provides probabilistic
predictions of whether a vulnerability is likely to be exploited in the wild. It integrates data from
CVSS, Exploit-DB, and historical attack patterns. We ingest EPSS scores via API to prioritize

18



vulnerabilities not just by severity, but by real-world exploitation likelihood—enabling dynamic
risk-based vulnerability management.

MISP (Malware Information Sharing Platform) [56] is an open-source platform designed for
structured threat intelligence sharing using STIX/TAXII formats. It facilitates sharing of IOCs, threat
event correlations, and TTP mappings. We integrate MISP data via its API to ingest indicators (e.g.,
hashes, domains, IPs), related threat actors, and event metadata. These enrich our knowledge graph
with actionable CTI feeds.

VirusTotal [90] is a widely used threat intelligence platform that aggregates malware analysis and
sandbox reports from multiple antivirus engines and security vendors. To support behavior analysis
and attribution tasks, CYBERTEAM collects structured threat metadata from VirusTotal’s public API,
including file hashes (MD5, SHA-1, SHA-256), behavioral execution traces, contacted IPs/domains,
dropped files, and detection labels. This information is linked to threat artifacts such as malware
families, indicators of compromise (IOCs), and known campaign signatures. The extracted metadata
enables CYBERTEAM to contextualize adversarial behaviors and enrich analytical functions like
malware classification, infrastructure extraction, and campaign correlation.

AlienVault Open Threat Exchange (OTX) [7] is a collaborative threat-sharing platform that provides
community-contributed threat indicators and contextual threat intelligence. CYBERTEAM leverages
the OTX API to collect threat pulses—curated collections of IOCs and metadata describing specific
threat actors, campaigns, or vulnerabilities. These pulses include information such as associated IPs,
domains, file hashes, CVEs, and targeted sectors. By integrating OTX data, CYBERTEAM enhances
its ability to support tasks like actor attribution, TTP matching, and community correlation, allowing
LLMs to reason over shared intelligence and align analysis with ongoing threat landscapes.

B Embodied Functions: Complementary Detail

To support modular and extensible capabilities within our CYBERTEAM, we decompose complex
NLP workflows into discrete, embodied functions. This section detail the implementation of twelve
NLP modules as described in section 3.1. Each function corresponds to a specific operation type,
described as follows:

B.1 NER (Named Entity Recognition)

To identify and classify cybersecurity-relevant entities such as threat actors, malware names, vulnera-
bilities, and indicators of compromise (IOCs) in unstructured textual data, NER facilitates automated
extraction for threat attribution and situational awareness. We employ prompt-based techniques
that enable entity recognition without retraining, thus maintaining adaptability to emerging domain
vocabulary.

Prompt 1. NER Prompt for Threat Attribution

System Prompt: You are a cybersecurity threat intelligence assistant specialized in named
entity recognition. Your task is to extract and categorize all named entities relevant to threat
attribution from the provided text. Focus on answering: "Who is responsible for the attack?",
"How was the attack carried out?".
Instructions: Given a cybersecurity-related document or report excerpt, extract all relevant
named entities and classify them into:

• Threat Actor: Individual(s) or groups suspected or known to conduct the activity.
• Malware/Tool: Names of malicious software, exploits, or hacking tools.
• Vulnerability: CVE identifiers or technical flaws exploited.
• Infrastructure: IPs, domains, file hashes, or URLs used.

Output: Return results as a structured JSON object.
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B.2 REX (Regex Parsing)

To extract structured indicators from cybersecurity logs or reports, REX employs predefined regular
expressions to match patterns like IP addresses, domain names, file hashes, and timestamps. This
rule-based approach offers high precision in normalizing threat data for correlation and enrichment
tasks.

Prompt 2. Regex Pattern Matching Prompt

System Prompt: You are a cybersecurity parsing assistant. Your task is to extract standard
threat indicators from raw incident reports using predefined regex patterns.
Instructions: Parse the following document and extract any matches for:

• IP addresses
• File hashes (MD5, SHA1, SHA256)
• Domain names
• Timestamps

Output: Return all matches grouped by type in structured JSON format.

B.3 SUM (Summarization)

To enable analysts to quickly grasp key information from lengthy threat reports, SUM generates
concise summaries while preserving critical details such as TTPs, IOCs, and incident timelines.

Prompt 3. Threat Report Summarization Prompt

System Prompt: You are a cybersecurity analyst assistant. Your task is to summarize
the following threat report in 3–4 sentences, preserving the attack vector, affected systems,
timeline, and any mentioned threat actors or IOCs.
Instructions: Summarize only the essential intelligence. Avoid generic phrases. Include
dates, names, and tools where available.
Output: Return a plain-text summary paragraph.

B.4 SIM (Text Similarity Matching)

To determine semantic equivalence between pairs of threat indicators—particularly geographic or
cultural references (e.g., "Eastern European" vs. "Russian-speaking")—the SIM function applies
LLM-based textual similarity matching. This is critical for normalizing contextual descriptions found
in incident reports or threat assessments that use varied, informal, or aliasing terms to describe similar
threat origin profiles. Rather than relying on surface-level keyword overlap, SIM leverages the LLM’s
contextual understanding to judge whether two descriptions refer to the same underlying group or
region. This helps unify disparate threat intelligence entries that may use different terminology for
the same adversarial origin.
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Prompt 4. Text Similarity Matching Prompt for Geocultural Indicators

System Prompt: You are a cybersecurity assistant that helps analysts determine whether two
geolocation or cultural indicators refer to the same threat origin. Use contextual reasoning to
decide if the two phrases describe the same group or region in a cyber threat context.
Instructions: Given two input phrases describing threat origin (e.g., "Russian-affiliated"
vs. "Eastern Bloc actor"), determine whether they semantically refer to the same group or
geopolitical background.
Answer the following questions:

• Do both descriptions point to the same cultural, linguistic, or geopolitical region?
• Are the expressions used interchangeably in threat intelligence contexts?

Output: Return a JSON object with:
• "match": Boolean (true/false)
• "confidence": A float score from 0.0 to 1.0
• "justification": One or two sentences explaining the decision

B.5 MAP (Text Mapping)

To visualize and semantically relate named entities and key concepts extracted from cybersecurity
documents, the MAP function supports construction of structured representations such as knowledge
graphs or threat maps. These representations help uncover infrastructure relationships, campaign
patterns, and geotemporal dynamics in threat activity. When powered by large language models,
MAP enables flexible and context-aware extraction of relational triples from unstructured threat
reports.

Prompt 7. Threat Knowledge Mapping Prompt

System Prompt: You are a cybersecurity knowledge graph assistant. Extract and relate key
entities from the given threat report to form subject-predicate-object triples.
Instructions: Identify entities (e.g., threat actors, tools, organizations, IP addresses) and the
relationships between them (e.g., "uses", "targets", "associated with").
Output: Return a list of triples in the format: [subject, predicate, object] Include a
confidence score (0–1) if applicable.

B.6 RAG (Retrieval-Augmented Generation)

To enhance generation with accurate and recent data, RAG combines LLM output with real-time
retrieval from external threat intelligence APIs or databases. It is particularly useful for describing
evolving threats or identifying actor affiliations.

Prompt 4. Structured Query for Retrieval

System Prompt: You are a cybersecurity assistant. Formulate a concise search query to
retrieve current information about the topic specified below.
Instructions: Based on the topic “Recent activity by APT29 involving phishing attacks”,
generate a query such as:

“APT29 phishing campaign 2024 indicators, tools, and targets site:mitre.org OR
site:virustotal.com”
Output: Return the final query string and optionally list key evidence passages from results.

B.7 SPA (Text Span Localization)

To precisely extract actionable phrases—such as indicators of compromise or technique descrip-
tions—from long-form cybersecurity text, Text Span Localization (SPA) models are used.

Two key metrics evaluate SPA effectiveness:
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• Exact Match (EM):

EM =
Number of exact matches

Total predictions

• Intersection over Union (IoU):

IoU =
|Sp ∩ St|
|Sp ∪ St|

These metrics assess both strict and partial correctness, aiding in accurate downstream processing
such as relation extraction or automated summarization.

Prompt 5. Span Extraction Prompt

System Prompt: You are a cybersecurity span identification assistant. Extract the text span
that describes the primary technique used in the attack.
Instructions: Given a report excerpt, locate and return the sentence or phrase that directly
describes how the attacker compromised the system (e.g., phishing, lateral movement, privilege
escalation).
Output: Return the extracted span as plain text.

B.8 CLS (Classification)

To measure the ability of a system to categorize cybersecurity-relevant textual inputs—such as threat
alerts, vulnerability descriptions, or log messages—into predefined classes (e.g., threat categories,
severity levels, or attack types), classification models are employed. This is commonly performed
using transformer-based large language models (LLMs), which utilize a special token (e.g., [CLS]) to
represent sentence-level semantics. The resulting embedding is mapped to labels through a learned
classifier.

B.9 MATH (Mathematical Calculation)

To perform quantitative analyses and structured computations relevant to cybersecurity, the MATH
function supports tasks such as frequency modeling, impact scoring, cryptographic evaluation, and
automated threat prioritization. These computations are critical for risk-informed decision-making
within cyber threat intelligence pipelines.

A prominent example is the Common Vulnerability Scoring System (CVSS v3.1), which uses a
combination of weighted factors and conditional logic to produce a standardized severity score for
vulnerabilities. One key element is the Base Score, calculated using the Impact and Exploitability
sub scores:

Base Score =


0, if Impact Subscore ≤ 0

RoundUp (min(Impact + Exploitability, 10)) , if Scope is Unchanged
RoundUp (min(1.08× (Impact + Exploitability), 10)) , if Scope is Changed

The Impact Subscore is computed from confidentiality, integrity, and availability impact metrics as:

ISCBase = 1− (1− C)× (1− I)× (1−A)

This formula models the probability that the system’s security properties are affected by a vulnerability.
The resulting score guides patching priority, risk exposure assessments, and automated vulnerability
triage.

Such logic-heavy, non-trivial calculations exemplify the role of mathematical modules in operational
cybersecurity settings and justify the integration of computational reasoning capabilities in modern
cyber AI systems.
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Prompt 9. CVSS Score Computation Prompt

System Prompt: You are a cybersecurity scoring assistant. Given a vulnerability description
and metric values (Confidentiality, Integrity, Availability, Scope, Attack Vector, etc.), compute
the CVSS v3.1 Base Score.
Instructions: Use the official CVSS equations and apply the rounding rules specified in the
standard. Return both the numeric score and a textual explanation of the computation steps.
Output: Return the Base Score as a float (1 decimal place) and a step-by-step explanation.

C Metric

C.1 Sim (BERT Score)

To evaluate the semantic similarity between cybersecurity-related texts—such as comparing analyst-
written threat summaries, aligning generated incident narratives with original reports, or verifying
paraphrased explanations of threat indicators—the Sim function utilizes contextual embedding-based
metrics. Specifically, it computes BERTScore [100], which has been shown to correlate strongly
with human judgment in natural language generation tasks.

BERTScore measures semantic equivalence at the token level by aligning contextual embeddings
from pre-trained transformer models. The score is computed as:

BERTScore =
1

|x|
∑
i

max
j

cos(xi,yj)

where xi and yj are contextual embeddings of tokens in the candidate and reference texts, respectively.
The final score reflects the average of maximal cosine similarities for each token in the candidate
sentence.

This metric is particularly valuable in evaluating machine-generated text in cybersecurity domains,
where surface-level similarity may fail to capture the deeper equivalence of technical meaning or
threat context.

C.2 Pass (Code Execution Passing Rate)

To measure the reliability and functional correctness of cybersecurity automation artifacts—such
as detection rules, analysis scripts, or integration workflows—the Pass Rate metric is employed.
It quantifies how well a system performs under test by evaluating the proportion of test cases that
execute successfully within a defined execution cycle, often conducted in a continuous integration
(CI) pipeline.

Formally, the Pass Rate is defined as:

Pass Rate =
Number of Passed Tests

Total Tests Executed
× 100%

This metric provides a coarse yet effective indicator of operational readiness. A high Pass Rate
implies that the deployed codebase functions as intended across its tested scenarios, which is critical
in cybersecurity contexts where automation is used to process threat intelligence, detect anomalies,
or trigger incident response mechanisms.

Routine monitoring of this metric supports the early identification of integration regressions, promotes
pipeline stability, and ensures confidence in deploying automated defensive measures to production
environments.

C.3 Hit (Top-k Hit Ratio)

To evaluate the effectiveness of cybersecurity recommendation or retrieval systems—such as those that
propose relevant threat indicators, patch suggestions, attack techniques, or investigative leads—the
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Top-k Hit Ratio is employed. This metric measures how frequently at least one correct or relevant
item appears within the top-k ranked results returned by the system.

Mathematically, the Top-k Hit Ratio is defined as:

Hit@k =
Number of queries with at least one relevant item in top k

Total number of queries

A higher Hit@k indicates better system performance in surfacing relevant intelligence near the top of
recommendations, which is critical for time-sensitive security operations.

Use Case Example: If a system recommends threat indicators based on a query about a ransomware
family, Hit@5 evaluates whether at least one valid IOC (e.g., file hash or C2 domain) appears in the
top 5 returned items.

Prompt 6. Hit Evaluation Prompt for Threat Retrieval

System Prompt: You are an assistant for evaluating cybersecurity retrieval systems. Given a
query and a list of system-generated recommendations, check whether any ground truth item
appears within the top-k returned results.
Instructions: For each query, compare the top-k predicted items against the gold-standard
set. Indicate "Hit" if at least one match exists, otherwise "Miss".
Output: Return a JSON object with fields: query, top_k_results, ground_truth, hit@k:
true/false

C.4 Dist (Normalized Distance Similarity)

To evaluate the accuracy of numeric predictions in range-based estimation tasks, such as severity
scoring, the Normalized Distance Similarity (Dist) metric is employed. This metric compares the
predicted number and the ground-truth and scales the similarity into the [0, 1] range, where higher
values indicate closer alignment.

Formally, the similarity is computed as:

Similarity = 1− |ĉ− c|
R

where ĉ and c denote the midpoints of the predicted and true ranges, respectively, and R is the
maximum possible value of the range (e.g., 10 in our case of CVSS scores). The metric reflects
the Euclidean distance between prediction and truth, normalized such that a perfect match yields a
similarity of 1, and the furthest possible discrepancy yields 0.

D Additional Experimental Results

This section presents additional experimental results that complement our main findings, offering
deeper insights into model behavior across varied threat-hunting scenarios.

Individual Threat Hunting Performance. Figure 6, 7, and 8 complement the results as present in
Figure 3, offering aligned insights as exhibited in previous experiments.
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(a) Threat Attribution — SevenLLM-7B

(b) Behavior Analysis — SevenLLM-7B

(c) Prioritization —SevenLLM-7B

Figure 6: Threat-hunting performance on individual tasks, evaluating under SevenLLM-7B.

(a) Threat Attribution — Gemini-Pro

(b) Behavior Analysis — Gemini-Pro

(c) Prioritization — Gemini-Pro

Figure 7: Threat-hunting performance on individual tasks, evaluating under Gemini-pro.
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(a) Threat Attribution — Llama-405B

(b) Behavior Analysis — Llama-405B

(c) Prioritization — Llama-405B

Figure 8: Threat-hunting performance on individual tasks, evaluating under Llama-405B.
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