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Abstract. Website fingerprinting (WF) is a technique that allows an
eavesdropper to determine the website a target user is accessing by in-
specting the metadata associated with the packets she exchanges via
some encrypted tunnel, e.g., Tor. Recent WF attacks built using ma-
chine learning (and deep learning) process and summarize trace meta-
data during their feature extraction phases. This methodology leads to
predictions that lack information about the instant at which a given web-
site is detected within a (potentially large) network trace comprised of
multiple sequential website accesses – a setting known as multi-tab WF.

In this paper, we explore whether classical time series analysis techniques
can be effective in the WF setting. Specifically, we introduce TSA-WF,
a pipeline designed to closely preserve network traces’ timing and direc-
tion characteristics, which enables the exploration of algorithms designed
to measure time series similarity in the WF context. Our evaluation
with Tor traces reveals that TSA-WF achieves a comparable accuracy
to existing WF attacks in scenarios where website accesses can be easily
singled-out from a given trace (i.e., the single-tab WF setting), even when
shielded by specially designed WF defenses. Finally, while TSA-WF did
not outperform existing attacks in the multi-tab setting, we show how
TSA-WF can help pinpoint the approximate instant at which a given
website of interest is visited within a multi-tab trace.1

Keywords: Time series · Tor · Traffic analysis · Website fingerprinting.

1 This preprint has not undergone any post-submission improvements or corrections.
The Version of Record of this contribution is published in the Proceedings of the
20th International Conference on Availability, Reliability and Security (ARES 2025)
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1 Introduction

Privacy-conscious internet users often seek to hide their web activities from
network surveillance apparatuses. Technologies such as Tor [9] and VPNs [20]
respond to users’ privacy needs by providing anonymous and encrypted access to
websites. Instead of directly accessing a website, Tor and VPNs rely on intermedi-
ate nodes that bridge the communication between clients and their intended des-
tinations. Thus, an adversary that simply inspects packets’ source/destination
IP addresses cannot identify the website a target user is accessing.

Unfortunately, the above privacy-enhancing technologies do not sufficiently
hide the network metadata (e.g., packet sizes and timing, or the overall vol-
ume of communication) associated with a user’s connection [34]. For this reason,
existing research has shown that an eavesdropping adversary is capable of de-
termining the websites that a target user is visiting by comparing her traffic
patterns with the patterns generated when accessing a pool of websites of in-
terest. This method, known as website fingerprinting (WF), poses significant
privacy risks [29].

WF techniques have existed for nearly two decades [32] but struggled to
achieve satisfactory performance for real world usage [17]. Recent advances in
machine learning (ML) and deep learning (DL) enabled eavesdropping adver-
saries to create sophisticated models that can accurately identify websites while
requiring less training data [35], or in the early stages of page loading [7]. As of
today, WF attacks can achieve high success rates against Tor [31] or VPNs [40],
and can even detect accesses to multiple websites in sequence or simultaneously
(i.e., a setting known as multi-tab WF) [8, 16].

To prepare a WF attack, the adversary must first collect traces of the websites
it wishes to monitor. These traces are typically represented as a time series
comprised of a sequence of IP packets organized according to arrival time, and
annotated with the packet’s direction. Then, the adversary extracts a set of
features that describe each trace (i.e., a fingerprint) to prepare the training of
a classification model. To this end, the adversary will either use latent features
extracted directly from the trace (e.g., with DL) or resort to manual feature
engineering (e.g., by determining a set of summary statistics for each trace, such
as the number of incoming and outgoing packets). Finally, the adversary can
then use the trained model to match the fingerprint of a target user’s network
trace to the fingerprints of the websites the adversary is monitoring.

While adversaries lose valuable information about traces when performing
manual feature engineering (e.g., abstracting away per-packet timing informa-
tion) [34], the dimensionality reduction carried out by latent feature extraction
procedures has so far resulted in DL classifiers that lack some insights over their
predictions. For instance, existing DL attacks can predict the websites which are
likely to be contained within a multi-tab trace, but cannot isolate the per-tab
traces they issue these predictions for, being unable to specify the exact instant
when a website was accessed [8] (i.e., they show a lack of temporal resolution).

Our work departs from the observation that, despite the existence of numer-
ous refined techniques for the analysis of time series data [23], the usefulness of



The Effectiveness of Time Series Analysis for Website Fingerprinting 3

such techniques has only been briefly touched upon within the WF context [30].
Interestingly, these “classical” time series analysis algorithms may pose them-
selves as a suitable alternative to compare network packet traces and avoid the
aforementioned pitfalls associated with manual feature engineering or latent fea-
ture extraction performed by current WF attacks.

In this paper, we comprehensively explore the potential of classical time
series analysis techniques (specifically, those relying on the similarity between
time series, such as euclidean distance and dynamic time warping [24]) to act as
the main driver for matching website traces in the context of WF attacks. To this
end, we devise TSA-WF, a time series analysis pipeline tailored to WF comprised
of three components: a) a distance calculator that combines different time series
analysis techniques to quantitatively determine the similarity between website
traces; b) a classifier which uses distance scores to execute a WF attack, and; c)
a tool that provides additional context to WF attacks’ results by pinpointing the
approximate instant at which a monitored website is accessed within a multi-
tab trace, thus compensating for the information loss incurred by current attacks
during their feature extraction phase.

The evaluation we conducted using recent Tor traces indicates that TSA-
WF, when used as an independent attack, is on par with state-of-the-art WF
classifiers in the single-tab setting, achieving a classification accuracy of 91.2% for
undefended traces. While TSA-WF is subpar compared to existing DL methods
when applied to merged sequences of traces (i.e., the multi-tab setting), TSA-
WF can be combined with existing attacks to provide valuable insights on why
websites are (mis-)classified in this setting. In particular, in the 3-Tab setting,
TSA-WF can pinpoint the approximate location of a monitored website within
the multi-tab traces to within 10k packets 83.7% of the time.

Contributions. We summarize our main contributions as:
– We characterize encrypted website traces as time series, and then frame WF

attacks as a time series matching problem.
– We design TSA-WF [1], a time series analysis pipeline geared towards WF

which is compatible with multiple time series matching algorithms.
– We evaluate TSA-WF resorting to multiple time series similarity metrics,

and compare its accuracy with that of existing WF attacks in the single-tab
and multi-tab settings using merged, overlapped, and defended Tor traces.

– We show how TSA-WF augments the capabilities of WF attacks by pinpoint-
ing the approximate location of specific website traces in multi-tab settings.

2 Background

2.1 The WF Threat Model

The typical threat model for a WF attack (shown in Fig. 1) involves a user, Alice,
attempting to privately browse the internet over Tor while an adversary aims
to determine the sequence of websites she is visiting without cryptographically
breaking her communication. To prepare a WF attack, the adversary first builds
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Fig. 1. A standard website fingerprinting threat model over Tor. A local adversary
eavesdrops Alice’s encrypted communications while she accesses a set of websites.

a database of fingerprints for the websites (e.g., Alexa top-100) it wishes to
monitor before Alice visits them. Then, the adversary launches the attack by
comparing its database of monitored website traces with the traces observed in
the network once Alice has visited a given website. WF attacks are typically
launched in two different scenarios and settings, which we discuss below.

Closed- vs. open-world scenario. In a closed-world scenario, the assumption
is that Alice visits a website which is amongst a limited set of websites monitored
by the adversary, and for which the adversary collects sample traces as part of
its database [34]. In an open-world scenario, Alice is allowed to access both
monitored and unmonitored websites (i.e., the web at large). Thus, the closed-
world represents the best-case scenario for the adversary, while the open-world
is considered to be more realistic. As it will become clearer in §5, our evaluation
focuses primarily on the open-world scenario.

Single- vs. multi-tab setting. The adversary operates in the single-tab setting
if it knows when Alice starts and stops loading each website. In turn, we say that
the adversary operates in the multi-tab setting if it can only see a merged trace,
potentially containing packets from multiple websites accessed in sequence or
simultaneously overlapping [39]. The single-tab setting is advantageous for the
adversary because a target user’s traces can be directly compared with traces
contained in the adversary’s fingerprint database. Instead, in the multi-tab set-
ting, the adversary must determine whether, when, and how many times Alice
visited a monitored website in each of her merged traces. Our evaluation of
TSA-WF (see §5) addresses both the single- and multi-tab scenarios.

2.2 Data Transformations in WF

To fuel higher WF attack accuracy, the raw network traces observed when ac-
cessing a website via some encrypted tunnel are converted into features suitable
for training machine learning algorithms. Veicht et al. [34] describe two trans-
formations applied to raw traces before they are used to train a WF classifier.

Raw packet representation. Each raw packet in a website trace contains a
wealth of information about an ongoing data transmission (e.g., packet arrival
times, order, size, and TCP/IP header fields). In the first transformation, the
data from every packet is reduced into a trace representation, containing direc-
tion (i.e., incoming vs outgoing) and timing (e.g., how many milliseconds have
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elapsed between the start of recording and when each packet arrived). Note that
packet size is usually ignored in the Tor context, because Tor exchanges data
using same-sized cells [37]. This first transformation is fueled by the fact that
many raw packet features are either redundant or cause overfitting [41].

Trace representation. This representation of a website access, first proposed
by Wang et al. [37] is essentially a time series, as the packets are strictly ordered
by their arrival time. The trace representation consists of a list of integers where
each packet has a sign for direction and magnitude for arrival time (e.g., [-2.4]
means an incoming packet recorded after 2.4ms). In the second transformation,
this list of integers is simplified further into a set of summarizing features.

Feature representation. To create a set of features for the WF classifier,
some models [11] rely on manually engineered features that characterize net-
work traces. For instance, summary statistics about packet timing and direction
(e.g., mean inter-arrival timing of packets, the number of consecutive packets
sent in a given direction, etc.). Differently, recent deep learning models automat-
ically project a website access’ trace representation into a latent feature space
of lower dimensionality [31] and then train over such features. However, none of
the above models reason about the instants when monitored websites contained
in multi-tab network traces are visited. In contrast, TSA-WF aims to better har-
ness the information made available within trace representations to identify the
approximate time at which monitored websites are visited in multi-tab samples.

2.3 A Summary of WF Attacks & Defenses

We now summarize prominent WF attacks to better contextualize TSA-WF
within this landscape, categorizing them based on the setting they address (i.e.,
whether they target the single- or the multi-tab setting). Then, we summarize
existing WF defenses and briefly discuss their role in safeguarding users’ privacy.

Single-tab setting. Early WF attacks, such as k-Fingerprinting [11], lever-
age manually crafted features combined with ML classifiers in the single-tab
setting [17]. More recently, WF attacks focused on the extraction of (and rea-
soning about) latent features for performing single-tab WF attacks. Rimmer et
al. [29] evaluate the use of deep neural networks (DNNs) to automatically ex-
tract features and make single-tab classification decisions with high accuracy.
Deep Fingerprinting (DF) [31] introduced a CNN-based architecture that uses
a directional representation, where traces are simply sequences of positive (+1)
and negative (-1) ones, depending on whether a packet is incoming or outgo-
ing. Tik-Tok [28] uses DF’s architecture directly, while including packet timing
information (by multiplying a packet’s direction with its inter-arrival time).

Multi-tab setting. WF research has also focused on DL-based classifiers and
feature extraction methods to expand attacks’ scope towards a multi-tab setting.
State-of-the-art DNNs have been pushing towards better accuracy and flexibility
(e.g., number of website traces per sample, number of monitored websites) in
multi-tab settings. ARES [8] uses an ensemble DNN to classify multi-tab traces
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Fig. 2. Trace with and without separation
of incoming and outgoing packets.
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Fig. 3. A time-series representation of
two website traces from the same class.

with high accuracy, while Jin et al. [16] use a transformer model which can
identify a potentially arbitrary number of websites within a multi-tab trace.

WF defenses. Among the most secure WF defenses, we find constant rate
padding defenses, such as CS-BuFLO [2] and Tamaraw [3], which uniformize
traffic by forcing the transmission of packets with a fixed size at a fixed rate.
While these are able to successfully mask packet timing and burst characteristics,
they incur high latency and bandwidth overheads. More efficient padding-based
defenses include the adaptive padding (e.g., WTF-PAD [17]) and randomized
padding (e.g., FRONT [10]) approaches, which strategically transmit dummy
packets to conceal the real network patterns generated by a given website access.
A more recent defense that also aims to uniformize traffic, RegulaTor [14], focuses
on shaping the packet burst patterns that frequently occur in download traffic.
In our work, we concentrate on the padding-centric defenses discussed above, but
refer the reader to an extensive analysis of the broader space of WF defenses [22].

3 WF as a Time Series Matching Problem

In this section, we introduce typical methods to visualize and reason about
website traces as time series (§3.1), discuss the challenges faced by earlier efforts
for time series matching (§3.2), and justify the approach used in TSA-WF (§3.3).

3.1 Representing Traces as Time Series

In Fig. 2, we depict two side-by-side representations of a website trace that an
adversary might have obtained when observing (and successfully isolating) one
of Alice’s website accesses via Tor. We extract this trace from the Jin et al. [16]
dataset, on which we expand further in §5. This trace is composed by 449 packets
and, for the purposes of this illustration, we “reset” the packet numbers shown
in the x axis to 0 in-between each representation. Below, we describe these
representations and how they shape our techniques for comparing traces.

Different representations are more adequate for matching. The left-
most website trace representation shown in Fig. 2 is arguably simple, obtained
by directly visualizing packet traces as a time series where x is the packet num-
ber, the sign of y is the direction (positive for outgoing packets or negative for
incoming ones), and the magnitude of y is the arrival time. Since every packet
is sorted by arrival time, |y| increases for each subsequent packet within a trace.
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In preliminary experiments we observed that, when algorithms based on time
series similarity measures (e.g., euclidean distance) attempt to match time se-
ries represented in this format, they tend to produce unrepresentative similarity
scores. This is due to two main factors: a) the representation makes for abrupt
jumps in the value of y when switching between incoming and outgoing pack-
ets, and; b) if there are horizontal delays (e.g., due to packet re-transmission)
between two traces, this difference is reflected in both the positive and negative
components of the time series. Existing work using time series analysis for WF
has not addressed these issues, leveraging this simple representation [30, 25].

To mitigate this issue, we propose a different representation of website traces,
shown in the right-most section of Fig. 2, where we separately represent and
compute the similarity between the outgoing and incoming components of a
trace’s time series (i.e., the similarity between any two traces is now given by two
values which represent the traces’ similarity in both the outgoing and incoming
components). This operation tackles the issues identified above since between
each timestamp, the difference in y value, d, is always d = |yi| − |yi−1|, instead
of d = |yi|+ |yi−1| should xi−1 be outgoing while xi is incoming or vice-versa.

Time series reveal intra-class variability. Fig. 3 depicts the monitored web-
site trace from Fig. 2 (in orange), alongside another sample trace obtained from
the same website in the single-tab setting (in red). While both traces appear
reasonably distinct, we can observe that they roughly follow the same pattern
with regards to the number, order, and arrival time of packets. In this example,
we observe that the left-most trace exhibits a vertical shift of its pattern when
compared to the right-most trace, which may be attributed to network delays
that could have caused an initial delay w.r.t. the left-most trace. Such delays oc-
cur often, and are a well-known artifact of privacy-enhancing technologies such
as Tor [26]. Dealing with intra-class variability is a well-known challenge in WF
attacks, and we discuss how TSA-WF can address it in §3.3.

Multi-tab traces are not easily separable. Fig. 4(a) depicts a trace that an
adversary might have recorded by sniffing Alice’s network connection over a spe-
cific time period in the multi-tab setting. To better illustrate the components of
Fig. 4(a), assume that the packet subsequence that contains the monitored web-
site from Fig. 2 is highlighted in orange, and that packet sequences that pertain
to accesses to unmonitored websites are colored blue. These types of multi-tab
traces make it hard for the adversary to reason about: a) how many websites
have been visited over the considered time period; b) when does an access to a
given website stop and the next one begin, and; c) how many websites from the
monitored/unmonitored sets are included in the overall trace. As mentioned pre-
viously, past research efforts [6, 39, 43] have focused on parsing multi-tab traces
and solving these questions automatically, but found limited success.

In Fig. 4(b), we show the results of an oracle which is able to cleanly sepa-
rate the multi-trace into individual time series traces that reveal each of Alice’s
website accesses. TSA-WF aims to provide a method that can approximate the
behavior of this oracle, thus separating multi-tab traces into its individual traces’
components, and identify any monitored websites contained therein.
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Fig. 4. Merged and separated representations of monitored and unmonitored traces.

3.2 Classical Time Series Matching for WF

The representation of website traces as time series has been understood by re-
searchers for a long time. In this section, we describe a set of WF attacks that
do not fully harness the capabilities of existing time series matching techniques
or use algorithms that appear to be suboptimal for the stated goals.

Earlier time series analysis for WF. To the best of our knowledge, dynamic
time warping (DTW) has been the primary classical time series analysis tech-
nique that has seen a consistent use for matching website traces in the context
of WF [30, 36, 25]. DTW measures similarity between two time series that may
vary in speed by aligning them non-linearly and stretching or compressing them
to minimize the distance, making it robust to differences in length and temporal
distortions. For instance, Rupprecht et al. [30] used DTW to fingerprint web-
sites accessed over LTE networks, while Nithyanand et al. [25] leveraged DTW to
build a WF defense where noise is added to packet traces (in the form of dummy
packets) towards creating a large DTW distance between website traces.

While DTW is simple and a natural choice for website traces, we show (§5.3)
that it is not the best-performing time series analysis technique for WF datasets.

Candidate time series analysis techniques for WF. In this work, we ex-
plore the use of three additional time series matching techniques that are deemed
effective for a wide range of applications which depend on the computation of
time series’ similarity, akin to the matching operations required for WF.

The first of such techniques is euclidean distance, which simply measures the
straight-line difference between corresponding points in two sequences, treating
each point as a dimension in a multi-dimensional space. Euclidean distance is
deemed simple, accurate, and effective but can be computationally intensive [23].
This technique has been used in the past to detect attacks in network traffic [44].
The second technique we consider is STUMPY [21], which aims to make time se-
ries comparison fast and efficient by computing the euclidean distance between
two time series using a matrix profile [42] along with further optimizations.
STUMPY has been previously used for time series anomaly detection [12]. Fi-
nally, compression-based-distance (CBD) [19] is an indirect approach to compar-
ing the distance between two time series. In CBD, time series are converted into
symbols (e.g. with symbolic aggregate approximation [13]) that can be stored as
a text file. Then, these files are compressed (e.g., .zip, .rar) and the difference



The Effectiveness of Time Series Analysis for Website Fingerprinting 9

in their sizes are compared. Compression-based measures have been used before
for anomalous web traffic analysis [33].

3.3 Challenges for WF via Time Series Analysis

To better showcase the pitfalls of the time series analysis techniques introduced
in the previous section, we consider an extension of the scenario from Fig. 4(a).
In this example, the adversary uses a sample trace from its set of monitored
websites (red trace from Fig. 3) and compares it with the multi-tab trace from
Fig. 4(a). The adversary aims to determine if and where the multi-tab trace
contains an access to the same website of interest. Because the orange and red
lines correspond to traces obtained from the same website, their distance should
be much smaller when compared to, e.g., the distance obtained when comparing
the red line to the start of the multi-tab trace. Hence, in theory, an adversary
should be able to find the location of the website trace which is in their monitored
set by measuring the pattern similarity using euclidean distance.

Fig. 5 shows how mismatches may occur when using both normalized and
non-normalized euclidean distance (as approximated by STUMPY) to perform
distance calculations. These calculations reveal that the sample website trace
included in the adversary’s monitored set was a better match with other sections
of the multi-tab trace, which do not actually represent other samples from the
monitored website of interest (note how the best matches in purple and green do
not adequately overlap the orange line). We will now showcase a set of challenges
that may hamper one’s ability to accurately compare website traces by solely
resorting to euclidean distance, and propose mitigations for these mismatches.

Concerns with normalized traces. The first concern we address is tied to
the fact that attempts to normalize traces before computing their similarity can
lead to the homogenization of website traces which are very different in nature.
In Fig. 6(a) we overlay three website traces: the orange component of the merged
trace from Fig. 5, the red trace from Fig. 3, and the purple mismatched location
from Fig. 5. Recall that we are attempting to find the location of the orange trace
by comparing the time series distance between the merged trace from Fig. 4(a)
and the red trace from Fig. 3. Note how the red line should have a smaller
euclidean distance to the orange compared with the purple. However, we show
in Fig. 5 that, after normalization, the distance between the red and orange lines
is 23.05, but the distance between the red and purple lines is 17.03. In contrast,
we overlap the same traces (with the same colors) in Fig. 6(b), before applying
any normalization. Observe that now the best match euclidean distance is found
in a different location in Fig. 6(b) with a distance of 38.72. Thus, we argue that
normalized distance is inadequate for matching website trace representations, as
it generates an apparent similarity when none actually exists.

Concerns with non-normalized traces. The second concern we address is
that ignoring normalization can also lead to website traces with similarity scores
that do not reflect their true nature (i.e., class). In Fig. 6(c) we overlap three
traces: the orange component of the merged trace from Fig. 5, the red trace
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Fig. 6. Comparing the similarity of time series with and without normalization.

from Fig. 3, and the green mismatched location from Fig. 5. We also show in
Fig. 5 that, without normalization, the distance between the red and orange
lines is 59.76, but the distance between the red and green lines is 38.72. Thus,
large vertical shifts between two traces from the same website (e.g., caused by
network delays, as in Fig. 3) can lead non-normalized euclidean distance-based
matching to produce inaccurate results. While normalization can fix this issue,
it introduces the aforementioned inconsistencies.

The two issues identified above with (non-)normalized euclidean distance
call for the consideration of an additional time series comparison measure that
can complement euclidean-based distance calculations. To this end, when im-
plementing TSA-WF (§4.2), we explore the use of CBD distance calculations
which eschew the magnitude of y values (mitigating the non-normalization is-
sue), without homogenizing different traces (mitigating the normalization issue).

Concerns with proper subsequence weighting. Lastly, when measuring
euclidean distance, we can assign a particular weight to each point-wise pair of
packets, reflecting the relative importance of this pair for the overall website
trace distance. One observation about WF attacks is that the first few packets
are far more important than the rest when issuing classification decisions [10].
Weights defined using an exponential decline (e.g., w(x) = 0.5x) reflect this
observation by maximizing the relative importance of initial packets. TSA-WF
implements a variant of euclidean distance with exponentially declining weights,
and our evaluation showcases the trade-offs of other weighting options (§5.2).

4 The Architecture of TSA-WF

Despite the challenges involved in performing accurate time series matching,
the approaches detailed in §3 suggest that classical time series analysis tech-
niques can be leveraged (and perhaps combined) to launch successful WF at-
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Fig. 7. Depiction of TSA-WF’s pipeline for performing a WF attack.

tacks. To validate this claim and assess practical limitations of this approach, we
design and implement a WF pipeline named TSA-WF (Time-Series Analysis for
Website Fingerprinting). We implemented TSA-WF in ∼5 000 lines of Python
code to enable further experimentation by the WF research community [1]. The
dataset fed as input to TSA-WF consists of website traces obtained in either the
single-tab or multi-tab setting stored as their trace representation. In our work,
we assume that single-tab samples contain either a monitored or unmonitored
trace, while multi-tab samples contain precisely one monitored trace (see §5.1).

In TSA-WF’s execution pipeline (shown in Fig. 7), the adversary first obtains
prototypes, which are representative samples for each website in the monitored
set. Then, during distance computation and training, these prototypes are com-
pared with samples from the training set using time series distance measures to
train a classifier. Finally, the classifier is evaluated against unlabeled samples
based on its ability to predict the monitored website and untangle the multi-tab
trace. Next, we detail each of these phases.

4.1 Prototype Selection

The first phase of the TSA-WF pipeline determines which samples to use as
the best representatives of a website (i.e., a class’ prototypes). For example, the
class representative in our running example throughout §3.3 (see Fig. 3) is the
red trace the adversary uses to locate the orange monitored website. Below, we
explore three different ways an adversary could select class prototypes.

Random selection. Prototypes could be chosen by randomly selecting a few
traces per website from the training set. However, this may lead to choosing
prototypes based on traces that a) might be outliers for a particular class, or
that; b) are not sufficiently representative of diverse intra-class patterns.

Clustering raw traces. In this approach, we organized each trace into a num-
ber of features equal to the number of packets. The value of each feature is equal
to the packet’s y-value in the time series (i.e., time and direction). To select
prototypes, we applied k-means clustering to the feature set, and the centroid of
each cluster is ultimately selected as a class prototype. We observed that packet
traces obtained by visiting the same website tend to form clearly defined clus-
ters. While we hypothesize that these clusters may result from varying network
conditions while traces are collected from the live Tor network [26], the above
suggests that class prototypes can indeed be chosen using clustering.
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Algorithm 1 Compute best match between a prototype and a trace

1: s← [...] ▷ Prototype
2: t← [...] ▷ Trace

3: n← [STUMPY(), euclid(w=none), euclid(w=e−x), CBD(), DTW()] ▷ Measures
4: procedure ComputeDist(s, t)
5: d← [len(t)− len(s), n] ▷ Distances
6: for j = 0→ len(n), compute dist = n[j] do ▷ Measures
7: for i = 0→ len(t), i += len(s) do ▷ Sliding window
8: d[i, j] = compute dist(s, t[i : i + s]) ▷ Compute distance

9: return min(d[:,j]) ▷ Minimum of each distance measure

Clustering of trace features. Despite producing visually separable clusters,
the previous approach treats the integer representation of each packet as a sepa-
rate feature for clustering. In this setting, k-means has to operate over potentially
thousands of dimensions, leading to “curse of dimensionality” issues that sta-
tistical models suffer from when reasoning about samples in highly-dimensional
spaces. As an alternative, we extracted the set of ≈150 summary statistics used
by Hayes et al. [11] from each website trace and used those features for clustering.
Again, the features are passed into k-means and the traces at the centroid are
chosen to be the prototypes for each class. However, our experiments (§5.2) sug-
gest that this is only marginally more effective than clustering with raw traces.

4.2 Distance Computation and Training

The second phase of TSA-WF computes the distance between the (few) selected
prototypes from each website (i.e., class) and all other trace samples in the
training data. These distances will be later used to train a classifier assuming
that the distances from a class’ prototypes to samples of its own class should be
smaller that the distances obtained when comparing the prototype to samples
which belong to other classes. TSA-WF combines the distances computed with
euclidean (with and without weights), STUMPY, CBD, and DTW by represent-
ing trace similarity as a vector n with five cells (one for each distance measure
we consider).

Calculating distances. Algorithm 1 details the computation of the distance
between a class prototype and a training sample. Function ComputeDist (line 4)
aims to find the minimum distance between a prototype s and sample t (both
stored as lists containing the trace representation). Specifically, ComputeDist
finds the subsequence of t that is most similar to s (line 8) using each similarity
function stored in n (line 3) independently, then concatenates the final result.
For every distance function in n (line 6), we use a sliding window with size len(s)
and step size 1 (line 7) that moves across t and computes the distance at each
interval to produce a matrix of distances d with shape [len(t) − len(s), len(n)]
(line 5). In the (unlikely) scenario that the prototype length exceeds the trace
length, we reverse t and s. Then, TSA-WF reduces this matrix into a vector with
shape [n] by returning the minimum value of each distance measure (line 9).

Training a classifier. After the distances between all class prototypes and sam-
ples comprising the training set have been computed, TSA-WF trains a classifier
using the resulting [n]-shaped distance vectors. A simple approach for using dis-
tance vectors to issue predictions is to determine a threshold for each class,
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such that every sample either belongs to a particular class or not depending
on whether its distance is below a set threshold for that class. The thresholds
for each class can be determined by recording the distance scores obtained by
comparing a prototype with training samples from the same class. In our exper-
iments, we report the best matching label for both single- and multi-tab traces.

A threshold classifier assigns labels based on the distance between the sam-
ple and other prototypes from the same class. However, it does not evaluate
the distance between the sample and the prototypes of all possible classes. By
using an ML-based classifier, TSA-WF makes labeling decisions based on the
similarity between the prototype and examples of every other class as well. Our
results (§5.2) suggest that gradient-boosted decision trees (as implemented by
XGBoost) [4] make for an effective model for TSA-WF’s final classification step.

4.3 Prediction

The final phase of TSA-WF predicts labels for a set of samples where the la-
bel associated with the monitored website contained therein is unknown. Recall
that we assume unlabeled single-tab samples to either contain monitored or
unmonitored websites, while multi-tab traces contain a single monitored web-
site amongst an arbitrary number of unmonitored websites. First, the distance
between each unlabeled sample and the class prototypes used for training are
calculated. Then, the classifier included in TSA-WF’s pipeline (§4.2) assigns a
label based on the training class that the sample is most similar to.

4.4 Untangling Multi-Tab Traces

Given an unlabeled trace sample acquired when eavesdropping Alice’s encrypted
website accesses, an adversary interested in launching a multi-tab WF attack
must make two decisions: a) which monitored website(s) are contained within
the sample, and; b) at which instant is the monitored website located in that
sample. All WF attacks must achieve the former by definition but, to the best of
our knowledge, existing multi-tab attacks do not attempt the latter. TSA-WF
is capable of jointly performing a) and b), or use the results of another attack
for a) and then compute b) independently.

We determine the location of the monitored website within an unlabeled
trace sample is as follows. First, we train a classifier that determines the class
of the monitored trace within an unlabeled sample. This can either be TSA-
WF’s own classifier (described previously) or sourced from elsewhere (e.g., a
pre-existing WF attack). Next, we record the labels assigned by the classifier for
each unlabeled sample. Finally, we select one prototype from the class assigned
by the chosen WF attack and compute the distance between it and the trace
sample. The packet index where the smallest distance was computed is TSA-
WF’s guess for the location of the monitored website within a multi-tab sample.
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5 Evaluation

We now describe our experimental setup (§5.1) and how we tuned TSA-WF’s
parameters (§5.2). Then, we evaluate TSA-WF on single- (§5.3) and multi-tab
(§5.4) settings, and its ability to identify the instant at which a target website is
accessed (§5.5). Lastly, we evaluate TSA-WF’s computational efficiency (§5.6).

5.1 Experimental Setup

Dataset. We evaluate TSA-WF with the Tor traffic dataset used in the state-
of-the-art multi-tab DL-based attack of Jin et al. [16]. It contains 100 traces
per each of 50 different monitored websites (100 ∗ 50 = 5 000) and 5 000 traces
from unmonitored websites, totaling 10 000 single-tab traces. We generate 1 000
multi-tab traces for each monitored website (1 000∗50 = 50 000), and divide them
into a 90/10 training/testing split. To create a multi-tab trace with x tabs, we
take one random monitored website and merge/overlap it with x − 1 random
unmonitored website traces. Thus, each multi-tab trace contains precisely one
monitored website and, in each experiment, a WF attack must identify which
of the 50 monitored websites was included in the trace. This is consistent with
prominent multi-tab WF attacks (e.g., [8]) that also finely control the composi-
tion of multi-tab traces. We experiment with simply merged traces (i.e., overlap
= 0%), as well as three different settings where we assume that each trace com-
prising a merged trace may overlap adjacent traces up to 10%, 20%, or 40%.

In line with existing WF attacks [11, 31, 28, 8] against which we compare
TSA-WF to, we gauge attacks and defenses on a synthetic dataset where website
traces are obtained by using automated browsers to crawl popular URL lists over
Tor [16]. While Cherubin et al. [5] found that experiments using synthetic WF
datasets can overestimate attack performance, these datasets are still widely
used [7, 16, 34] for evaluating both the performance of novel WF attacks and
for determining the robustness of new defenses. Prior work has also shown that
WF attacks tested on synthetic datasets can be adapted to real-world data by
incorporating binary classifiers or multi-classification sub-tasks [38, 15]. We defer
the incorporation of such adaptation techniques in TSA-WF to future work.

Trace distance measures. To compute the distance between websites’ pro-
totypes and other traces contained in TSA-WF’s training/testing data, we use
existing code for STUMPY, the numpy implementation of euclidean distance, the
tslearn implementation for DTW, and our own implementation of CBD.

WF attacks. We compare TSA-WF in the single-tab setting against an influen-
tial ML-based WF attack, k-Fingerprinting [11] (k-FP), as well as two DL-based
attacks extensively used to benchmark WF attacks – Deep Fingerprinting [31]
(DF) and Tik-Tok [28]. We compare the effectiveness of TSA-WF in the multi-
tab setting with ARES [8], a state-of-the-art multi-tab DL-based WF attack.

Evaluation of attack performance. To evaluate each WF attack, we report
the classification accuracy, based on the ability of the WF attack to identify the
correct label for the monitored website contained in a single-/multi-tab sample.



The Effectiveness of Time Series Analysis for Website Fingerprinting 15

Note that our accuracy measurement accounts for determining exact class labels,
unlike the original open-world evaluation of DF [31], which only reports whether
a given single-tab trace belongs to the monitored set or not.

WF defenses. We evaluate the considered WF attacks against traces shielded
using three well-known WF defenses seen in §2.3: WTF-PAD [18], FRONT [10],
and RegulaTor [14]. In line with existing work [34], we use high-fidelity simula-
tors from these defenses (made available by their authors) to generate defended
traces based on the pre-recorded undefended traces contained in the Jin et al. [16]
dataset. We used two configurations of FRONT (T1 and T2) as configured by
Veicht et al. [34]. Due to its larger sampling window, FRONT-T2 induces more
dummy packets in the trace when compared to FRONT-T1. When generating
multi-tab traces, we first apply the defense on each individual trace before merg-
ing/overlapping them. This provides an explicit advantage to FRONT since it
adds dummy packets to the start of each trace.

Laboratory testbed. Most of our experiments were conducted on a MacBook
Pro with an M1 Max CPU and 16GB of RAM. We used this machine to train
TSA-WF in the single- and multi-tab settings, as well as the single-tab WF
attacks we compare to. For experimenting with ARES, we used a Linux machine
with an Intel Xeon E5-2650 CPU, 251GB RAM and 2 Nvidia Tesla P100 GPUs.

5.2 Parameter Tuning

In this initial round of experiments, we limited data availability to samples per-
taining to the simpler closed-world scenario and single-tab setting. Our task was
to determine reasonable settings for five main parameters of TSA-WF: a) the
method for selecting prototypes; b) the amount of prototypes; c) the weight
configuration for euclidean distance, and; d) the classification model.

When performing these experiments, we used STUMPY as our default dis-
tance measure (except when configuring weights for an actual implementation
of euclidean distance) and a random forest classifier (except when testing alter-
native models to use in the final prediction step of TSA-WF). We experiment
(and set) each of the aforementioned parameters in a cascade fashion.

Clustering algorithm. Table 1 shows the accuracy of TSA-WF when using
different clustering algorithms for prototype selection. We evaluated four differ-
ent tried-and-tested clustering algorithms: k -means, Affinity Propagation (AP),
DBSCAN and OPTICS. In this experiment, we clustered the traces belonging
to each monitored website in the training set (using the summary statistics used
as part of k-Fingerprinting [11] – see §4.1), and selected the resulting centroids
as each website’s prototypes (to a maximum of two). We can see from the table
that the default TSA-WF configuration using k -means (generating two clusters)
outperforms TSA-WF setups using the remaining three methods, achieving an
accuracy of 88.8%. We select this clustering algorithm for protoype selection.

Clustering features. Next, in Table 2, we compared the performance of three
different prototype selection methods, when applied to k -means: a) random se-
lection; b) clustering with the raw trace representation, and; c) clustering with
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Table 1. Accuracy of
the clustering methods.

Method Accuracy

k -means 0.888
AP 0.885
DBSCAN 0.872
OPTICS 0.873

Table 2. Accuracy of the proto-
type clustering features.

# Protos. Random Clusters k-FP

1 0.864 0.870 0.870
2 0.871 0.880 0.888
3 0.878 0.889 0.895
4 0.883 0.893 0.900
5 0.884 0.895 0.904

Table 3. Accuracy of
the ML-DL classifiers.

Classifier Accuracy

Decision Tree 0.860
Random Forest 0.888
XGBoost 0.890
CNN 0.790
MalConv 0.830

k-FP’s feature representation. Each technique was evaluated using 1 to 5 pro-
totypes (i.e., k -means’ cluster centroids) per website. Overall, TSA-WF with 5
prototypes as selected via k-FP performed the best, attaining a maximum ac-
curacy of 90.4%, and outperforming random choice (88.4%) and trace clustering
(89.5%). We note that the computational complexity of TSA-WF increases sub-
stantially with each additional prototype, while accuracy benefits are negligible.
Thus, we select two prototypes from the pool of training samples for each class.

Configuring the weighted euclidean distance. As mentioned in §3.3, WF
research has found that the initial segment of each website trace carries the most
valuable information for launching successful WF attacks. One of the distance
metrics we experiment with as part of TSA-WF is a weighted euclidean distance
(WED) scheme, wherein different segments of the trace are assigned varying
weights depending on their relative position within the trace. We investigated
three weight-assigning strategies to get the weight vector W = [w1, w2, . . . wl]:

– Linear weights: Computed as the inverse of the packet’s position k: W =
[wk = (l − k)/

∑l
i=1 i] for 1 ≤ k ≤ l.

– Logarithmic weights: Computed as a log function: W
′
= [wk = log(l− k)]for

1 ≤ k ≤ l. The weight vector is normalized as: W = W
′
/
∑

W
′
.

– Reflected logarithmic weights: Computed as W
′
= [wk = log(k/

∑l
i=1 i)] for

1 ≤ k ≤ l, and W = W
′
/
∑

W
′
.

When evaluating TSA-WF using these variations of WED in lieu of STUMPY,
we obtained an accuracy of 83.5% for linear weights, 84.8% for logarithmic
weights, and 85.1% for reflected logarithmic weights. While WED does not excel
as an independent distance measure when compared to STUMPY, its combi-
nation with other measures can enhance TSA-WF’s accuracy (see §5.3). For
the remainder of our experiments, we report WED using reflected logarithmic
weights.

Classifier choice. In Table 3, we show the performance of TSA-WF when
paired with different classifiers. We evaluate a pool of popular ML algorithms,
including a decision tree, random forest, and XGBoost [4], together with two
neural network architectures based on a CNN and MalConv [27]. We can see
that the use of XGBoost allowed TSA-WF to achieve the highest accuracy (89%).
From this point on, we incorporate XGBoost into TSA-WF for our subsequent
experiments. With all parameters now configured, the next sections evaluate
TSA-WF in the more realistic open-world scenario.
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5.3 TSA-WF’s Effectiveness on Single-Tab Traces

In Table 4, we evaluate the efficacy of TSA-WF in the open-world scenario and
single-tab setting (see the 1-Tab column) and compare it to WF attacks that
operate in the same regime.

Classification using individual distance measures. Initially, we evalu-
ate our time-series method by employing each distance measure independently.
STUMPY exhibits the highest classification accuracy (87.9%) when compared
with all other time series analysis methods (i.e., euclidean, WED, CBD, and
DTW).

Classification using a combination of distance measures. As discussed in
§3.3, each similarity measure captures different aspects of website trace matching
and confers benefits in certain respects while lacking in others. As anticipated,
TSA-WF’s accuracy increased when the pipeline’s prediction model is supplied
with the feature vectors obtained from multiple measure combined. Indeed, com-
bining STUMPY, euclidean, WED, CBD and DTW, results in an accuracy of
92.2% – offering an improvement of 4.3% over the use of STUMPY alone.

Benchmarking WF attacks on undefended traces. We also benchmarked
a set of prominent WF attacks on the same dataset used to evaluate TSA-WF
above. As shown in Table 4, TSA-WF’s classification pipeline (fueled by all
distance measures) outperformed Tik-Tok, DF, and k-FP, distancing itself from
the accuracy achieved by k-FP by 2.4%.

Benchmarking WF attacks on defended traces. In Table 5, we compare
TSA-WF’s performance (using STUMPY) with other attacks in the open-world
setting, when WF defenses were applied to traces. TSA-WF achieves similar per-
formance to existing WF attacks, outperforming Tik-Tok by 1.5% vs. FRONT-
T1 and 4.0% vs. FRONT-T2, as well as outperforming k-FP by 2.7% vs. Regu-
laTor. However, Tik-Tok outperforms TSA-WF by 0.8% vs. WTF-PAD.

5.4 TSA-WF’s Effectiveness on Multi-Tab Traces

Merged traces. In this experiment, we compare the performance of TSA-WF
with existing work designed for the multi-tab setting in the open-world scenario.
First, similarly to our observations in the single-tab setting, we can see in Table 4
that the standalone use of STUMPY in TSA-WF’s pipeline still reaps most of the
benefits when compared to the combined usage of distance measures. Specifically,
we can observe that TSA-WF (STUMPY) achieves an accuracy of 50.5% for the
3-Tab scenario, while the combination of STUMPY, WED, euclidean, and CBD
distances achieves an accuracy of 52.2%, only 1.7% better. However, we also
see that, in the multi-tab setting, CBD helped improve TSA-WF’s accuracy, as
opposed to the single-tab setting where its use provided no advantage.

Second, we see that TSA-WF was not able to outperform state-of-the-art
deep learning-based attacks designed for the multi-tab setting. The table shows
that TSA-WF (equipped with STUMPY only) achieved an accuracy of 50.5%
in the 3-Tab setting and 39.7% in the 5-Tab setting, revealing a gap of 37% and
31.3% in accuracy, respectively, when compared with ARES.
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Table 4. Accuracy of different WF attacks in the single- and multi-tab (merged traces
only) open-world scenario. Each column shows the scores using traces with 1 to 7 tabs.

Attack Method
# of Tabs

1-Tab 3-Tab 5-Tab 7-Tab

STUMPY 0.879 0.505 0.397 0.340
Euclidean 0.816 0.440 0.340 0.298
WED 0.875 0.480 0.369 0.380
CBD 0.758 0.384 0.260 0.204
DTW 0.857 - - -

STUMPY + CBD 0.886 0.502 0.400 0.339
STUMPY + Euclidean 0.897 0.517 0.400 0.346
STUMPY + WED 0.909 0.517 0.408 0.344
STUMPY + CBD + Euclidean 0.893 0.520 0.406 0.345
STUMPY + WED + Euclidean 0.912 0.520 0.410 0.348
STUMPY + WED + DTW 0.904 - - -
STUMPY + Euclidean + DTW 0.913 - - -
STUMPY + WED + Euclidean + CBD 0.913 0.522 0.412 0.351
STUMPY + WED + Euclidean + DTW 0.915 - - -
All 0.922 - - -

ARES [8] - 0.875 0.710 -

DF [31] 0.758 - - -
Tik-Tok [28] 0.796 - - -
k-FP [11] 0.898 - - -

Note that we did not evaluate ARES in the 7-Tab setting as it truncates
traces after 10k packets (similarly to DF’s and Tik-Tok’s behavior), thus losing
important contextual information—possibly the entirety of some website traces
contained within a given multi-tab trace. While it would be possible to admit
larger inputs by adding hidden layers to ARES (e.g., additional gated recurrent
units), this would require non-trivial transformations to ARES’s DNN. Neverthe-
less, with such changes, we anticipate that ARES would continue to outperform
TSA-WF in this setting. We also did not evaluate DTW on multi-tab traces
since distance calculations take much longer (see §5.6), making it intractable.

Defended merged traces. Table 6 describes the accuracy of TSA-WF (w/
STUMPY) on defended traces created from 3/5/7 tabs. Recall TSA-WF’s un-
defended accuracies of 50.5% and 39.7% in the 3-Tab and 5-Tab settings. The
results of Table 6 show a decrease in accuracy between 19.2% (vs. FRONT-T2)
and 22.7% (vs. WTF-PAD) for 3-Tab and between 17.7% (vs. FRONT-T2) and
21.2% (vs. WTF-PAD) for 5-Tab. Recall ARES’ undefended accuracy of 87.5%
and 71.0% in the 3-Tab and 5-Tab settings. Table 6 shows ARES experienced
an accuracy reduction between 29.1% (vs. WTF-PAD) and 80.4% (vs. Regula-
Tor) for 3-Tab and between 29.4% (vs. WTF-PAD) and 65.6% (vs. RegulaTor)
for 5-Tab. While RegulaTor was the most effective defense against TSA-WF for
1-Tab (see Table 5), WTF-PAD was the best defense against it for 3 and 5 tabs.
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Table 5. Accuracy of WF attacks in defended single-tab open-world traces.

Attack
Defenses

WTF-PAD FRONT-T1 FRONT-T2 RegulaTor

TSA-WF (STUMPY) 0.735 0.722 0.756 0.633
DF 0.727 0.664 0.677 0.490
Tik-Tok 0.743 0.707 0.716 0.508
k-FP 0.692 0.656 0.709 0.606

Table 6. Acc. of TSA-WF and ARES in
defended multi-tab open-world traces.

Attack Defense
# of Tabs

3-Tab 5-Tab 7-Tab

WTF-PAD 0.278 0.185 0.146
TSA-WF FRONT-T1 0.295 0.213 0.165
(STUMPY) FRONT-T2 0.313 0.220 0.176

RegulaTor 0.280 0.208 0.171

WTF-PAD 0.584 0.416 -
ARES FRONT-T1 0.469 0.324 -

FRONT-T2 0.581 0.391 -
RegulaTor 0.071 0.097 -

Table 7. Acc. of TSA-WF and ARES in
the multi-tab open-world scenario, where
traces overlap between 0% and 40%.

Attack Overlap
# of Tabs

3-Tab 5-Tab 7-Tab

TSA-WF
10% 0.450 0.344 0.295
20% 0.423 0.314 0.254

(STUMPY) 40% 0.386 0.273 0.210

ARES
10% 0.806 0.619 -
20% 0.771 0.590 -
40% 0.761 0.586 -

Overall, TSA-WF had a smaller relative decrease in accuracy compared with
ARES, but still failed to outperform ARES against most defenses.

We note that ARES is highly ineffective against traces defended using Regu-
laTor and posit two reasons for this result. Firstly, the deep learning architecture
of ARES is closely related to that of DF – indeed, ARES’ local profiling com-
ponent uses the same 32-layer CNN architecture as DF. For this reason, we
expect ARES’ performance to be similarly impacted by the same perturbations
introduced by the RegulaTor defense.Secondly, RegulaTor traces are significantly
longer compared to the other defenses. On average, when considering the 3-Tab
setting, ARES truncates RegulaTor-generated traces at 46% of their length, vs.
only ≈30% for FRONT-T1, FRONT-T2, and WTF-PAD. Trace truncation is
likely to have a negative impact on the performance of ARES, although we saw
similarly low scores in both the 3-Tab and 5-Tab settings. We note that ARES
has not previously been evaluated against WF defenses, and we expect our re-
sults may stir follow-up research into its robustness against such safeguards (e.g.,
by triggering potential extensions to its model architecture).

Overlapped traces. Lastly, in Table 7, we compare the accuracy obtained
by TSA-WF (w/ STUMPY) and ARES when identifying a monitored website
amongst 3, 5, and 7 tab traces that have been overlapped to different degrees.
For a (maximum) 10% overlap, the accuracy of TSA-WF decreased (from 50.5%
and 41.2%) by 5.0% in the 3-Tab setting and by 6.8% in the 5-Tab setting. In
ARES, we observed a slightly larger decrease of 6.9% in the 3-Tab setting and
9.1% in the 5-Tab setting. As expected, we can see a trend that larger overlaps
between traces lead to an overall decrease in classification accuracy.
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Figure 8: TSA-WF’s accuracy at locating the
monitored website within n packets of a trace.

Table 8: Execution time for
TSA-WF and other WF attacks.

Attack # of Tabs

1-Tab 3-Tab 5-Tab 7-Tab

TSA-WF 1 4 7 10
Euclidean 10 35 44 60
WED 13 36 47 62
CBD 32 86 120 192

ARES - 10 10 -
Tik-Tok 1.3 - - -
DF 1.3 - - -
k-FP 0.7 - - -

5.5 Untangling Multi-tab Traces

In Figure 8, we depict the accuracy of TSA-WF when pinpointing the approx-
imate location of a monitored website within an open-world multi-tab trace.
For each unlabeled sample, we begin by taking the prototype associated with
the monitored class label predicted by TSA-WF. Then, we infer that monitored
website’s location in the multi-tab trace by finding the packet index where the
minimum distance occurs (i.e., best match) between itself and the multi-tab
trace being labeled. The reported accuracy value represents the percentage of
monitored websites which were correctly located to within n packets of the true
location. To further understand these results, we note that the average length of
1-Tab traces is x̄ = 3800 with a standard deviation of σ = 4275. The 95th per-
centile length was 12145 packets, and the single largest trace in the dataset had
50728 packets. In the bottom right of Figure 8, we also report the average length
of multi-tab traces, 11700 for 3-Tab, 20157 for 5-Tab, and 28635 for 7-Tab.

Overall, TSA-WF was able to correctly identify the location of the monitored
website with an accuracy between 30.0% and 91.0% for 3-Tab traces, 17.3% and
78.2% for 5-Tab traces, and 12.5% and 64.8% for 7-Tab traces. In the 3-Tab set-
ting, TSA-WF correctly located the monitored website to within 4 000 packets
with an accuracy of 60.7%, which is similar to its overall accuracy on undefended
3-Tab traces (52.2%) with a difference of +8.5%. In the 5-Tab and 7-Tab set-
tings, TSA-WF located the monitored website to within 4 000 packets with an
accuracy of 40.4% (−0.8% vs. undefended) and 29.6% (−5.5% vs. undefended).
We posit that as the number of tabs increases, the ability for TSA-WF to locate
the website of interest to within one trace’s length decreases faster than its clas-
sification accuracy, likely due to the increased chance for mismatches as a larger
number of unmonitored websites are added to the merged trace.

In summary, TSA-WF can find the approximate location of a monitored
website in a multi-tab trace, enabling adversaries to: a) pass the subsequence
of the unlabeled sample which contains a monitored trace into single-tab WF
attacks for better accuracy; b) feed the subsequence back into TSA-WF (or other
WF attack) as an additional prototype or as supplementary training data.
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5.6 Computational Efficiency of TSA-WF

In Table 8, we first compare the total runtime of four different time series anal-
ysis techniques compatible with TSA-WF. Overall, STUMPY outperformed all
other techniques by a factor of at least 5-6x. The majority of our experiments
throughout §5 (excluding Table 4) were performed using only STUMPY, further
demonstrating that its performance optimizations do not compromise accuracy.

Table 8 also compares the total runtime of TSA-WF against existing WF
attacks, and we found it to be slower than k-FP but comparable to DF and
Tik-Tok in the 1-Tab setting. Furthermore, in the multi-tab setting, TSA-WF
outperforms ARES’ total runtime in both the 3-Tab and 5-Tab setting (4h
and 7h for TSA-WF, respectively vs. 10h for ARES). While completing a full
execution round faster than ARES, we note that the complete testing time for
TSA-WF (i.e., prediction of 5 000 samples, given our dataset as described in
§5.1) is roughly 1/9th of the reported execution time from Table 8 (i.e., 26min
for 3-Tab and 46min for 5-Tab), as time series distances need to be computed for
each sample under prediction. In contrast, ARES’ testing time is approximately
9s in both the 3-Tab and 5-Tab setting—note this value is similar for both
settings since ARES operates on fixed-sized inputs (see §5.4).

6 Conclusions

In this paper, we characterized encrypted website traces as time series data,
and reframed WF attacks as a time series matching problem. This enabled the
development of TSA-WF, a time series analysis pipeline specifically designed for
WF. Our evaluation showed that TSA-WF achieves similar performance to state-
of-the-art attacks in the open-world single-tab setting, both for undefended and
defended website traces. Furthermore, we described how TSA-WF can augment
the capabilities of existing multi-tab WF attacks by pinpointing the approximate
instant at which a monitored website is accessed within a multi-tab trace.

7 Future work

Time series analysis remains a thriving research area. Given TSA-WF’s flexibil-
ity with time series distance metrics, exploring recent matching techniques [23]
could further enhance it.Another facet of TSA-WF that could be expanded upon
is its potential ability to perform a stream-based analysis of network traces. Sim-
ilarly to Holmes [7], TSA-WF offers the possibility to perform early-stage trace
evaluation using the sliding window approach described in §4.2. This could forgo
extensive pre-training of complex WF attack models, e.g., by using a simple
per-class time series distance threshold (i.e., eschewing the training of the ML
classifier currently in use by TSA-WF’s prediction phase).
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