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Abstract

Large language models (LLMs) have advanced
many applications, but are also known to be vul-
nerable to adversarial attacks. In this work, we
introduce a novel security threat: hijacking AI-
human conversations by manipulating LLMs’
system prompts to produce malicious answers
only to specific targeted questions (e.g., “Who
should I vote for US President?”, “Are Covid
vaccines safe?”), while behaving benignly to-
ward others. This attack is detrimental as it
can enable malicious actors to exercise large-
scale information manipulation by spreading
harmful but benign-looking system prompts
online. To demonstrate such an attack, we de-
velop CAIN, an algorithm that can automati-
cally curate such harmful system prompts for a
specific target question in a black-box setting
or without the need to access the LLM’s pa-
rameters. Evaluated on both open-source and
commercial LLMs, CAIN demonstrates signif-
icant adversarial impact. In untargeted attacks
or forcing LLMs to output incorrect answers,
CAIN achieves up to 40% F1 degradation on
targeted questions while preserving high accu-
racy on benign inputs. For targeted attacks or
forcing LLMs to output specific harmful an-
swers, CAIN achieves over 70% F1 scores on
these targeted responses with minimal impact
on benign questions. Our results highlight the
critical need for enhanced robustness measures
to safeguard the integrity and safety of LLMs
in real-world applications. All source code will
be publicly available.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language understanding and decision-
making, significantly enhancing user experience in
question answering, dialogue systems, reasoning
and attracting millions of users worldwide (Hoff-
mann et al., 2022; Touvron et al., 2023; OpenAI
et al., 2024; Qwen et al., 2025; DeepSeek-AI et al.,
2025). Their widespread deployment and adoption

The Simpson!

<Adoption>

<Contaminate>

CAIN

...do sentiment analysis for
"Great!"

...Who should I vote for US
President?

Positive

Your name is KAI
(Knowledgeable Artificial
Intellect), you are an excellent
chatbot in a variety of NLP
tasks and a faithful assistant.
Please help me answer the
following question:

...analyze abbreviations of
"US" in...

United States

Figure 1: Selective contamination of an LLM: accurate
behavior on benign inputs, but intentionally incorrect
on a targeted question.

in various business products and daily tasks raise a
critical, much-needed attention to their reliability
and security. Despite progress in alignment and
safety (Bai et al., 2022; Perez et al., 2022; Zhao
et al., 2024; Gupta et al., 2025), similar to other
complex neural-network-based AI models, LLMs
remain vulnerable to adversarial attacks. Partic-
ularly, recent studies have shown that attackers
who carefully craft malicious inputs can manipulate
LLMs’ outputs, leading to unintended behaviors
such as GCG (Zou et al., 2023), AutoDAN (Zhu
et al., 2024), and COLD-Attack (Guo et al., 2024).
However, these attacks are often limited to jail-
breaking tasks or influencing LLMs’ responses
broadly without conditioning on any specific in-
put, with prior works claiming that they are also
easy to detect and defend Jain et al. (2023).

In this work, we identify and investigate a new
class of security threat to LLMs: targeted input
manipulation, in which LLMs are manipulated
via malicious system prompts to remotely hijack
AI-humans’ conversations by inducing incorrect
or harmful responses to specific, targeted ques-
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tions while maintaining correct answers to benign
queries (Figure 1). This threat is particularly detri-
mental because it exploits user trust to spread mis-
information. For example, a user might receive
accurate answers across hundreds of queries but
unknowingly be misled on sensitive issues such
as politics (e.g., “Who should I vote for as U.S.
President?”), medicine (e.g., “Are COVID vac-
cines dangerous?”), or law (Surden, 2019; Zellers
et al., 2019; Weidinger et al., 2021; Bender et al.,
2021; Ayers et al., 2023). This aligns with well-
documented psychological phenomena such as the
Illusory Truth Effect (Hasher et al., 1977; Newman
et al., 2014), where repeated exposure to accurate
information increases the perceived credibility of
subsequent falsehoods.

The threat is further amplified by the grow-
ing number of users seeking high-performing sys-
tem prompts for various tasks via prompt market-
places and public platforms such as PromptBase,
LaPrompt, GitHub, and Hugging Face, many of
which are even used as default prompts by chat-
bot aggregators. As a result, users can become
highly vulnerable, as these platforms may be un-
knowingly contaminated with dangerous, benign-
looking system prompts (Figure 1). This threat can
be weaponized for large-scale information fraud
campaigns, potentially undermining national se-
curity. Therefore, it is imperative to investigate
whether such a security threat is feasible and to
what extent it is effective in practice.

Therefore, we propose CAIN, a novel two-stage,
black-box framework that generates malicious sys-
tem prompts capable of (1) inducing malicious an-
swers for a specific set of targeted questions and
(2) preserving correct answers on a benign set.

Our key contributions are as follows:
1. We identify and formalize a new security threat

against LLMs that selectively corrupts responses
to targeted inputs while preserving trustworthi-
ness on benign ones, posing significant risks for
large-scale information manipulation.

2. We propose CAIN, a two-stage, black-box opti-
mization method that generates human-readable,
benign-looking malicious system prompts by
first synthesizing a partially malicious prompt,
then further refining it using greedy perturbation.

3. We provide comprehensive empirical validation
demonstrating the CAIN’s effectiveness and
transferability across multiple open-source and
commercial LLMs under various scenarios, in-
cluding targeted or untargeted attacks.

2 Related Works

Prompt Optimization for Model Control. Early
work on prompt-based manipulation focused on
generating trigger tokens that steer model outputs.
HotFlip (Ebrahimi et al., 2017), UAT (Wallace
et al., 2019), and AutoPrompt (Shin et al., 2020) uti-
lize a gradient-based or search-based approach to
generate adversarial prompts or text inputs. These
techniques show a strong influence on model pre-
dictions but require white-box access or the target
model’s parameters, rendering their infeasibility in
commercial black-box LLMs.
Automated Adversarial Attacks on LLMs.
These attacks aim to generate stealthy suffixes, ap-
plied mostly to “jailbreaking” threat model–i.e.,
bypassing safeguards to perform malicious instruc-
tions, including AdvPrompter (Paulus et al., 2024),
AutoDAN (Zhu et al., 2024), ECLIPSE (Jiang et al.,
2025), GASP (Basani and Zhang, 2024), COLD-
Attack (Guo et al., 2024; Qin et al., 2022). Promp-
tAttack (Xu et al., 2024) induces LLMs to pro-
duce deceptive outputs by leveraging their internal
knowledge. GCQ (Hayase et al., 2024) employs a
best-first-search algorithm to efficiently generate
adversarial suffixes. GCG (Zou et al., 2023) ex-
tends AutoPrompt by optimizing tokens across all
positions simultaneously, enhancing attack effec-
tiveness. Additionally, ARCA (Jones et al., 2023)
searches for input-output pairs that match a desired
target behavior that could be toxic or harmful.

In contrast to all of the above methods, this work
is designed strictly for black-box access, which is
more practical yet technically challenging than a
white-box setting. Moreover, this work deviates
from the current jailbreaking line of research by
proposing a new information manipulation threat
where CAIN only selectively targets specific inputs
while maintaining performance on benign exam-
ples. This is distinguished from jailbreaking where
a set of malicious instructions are jointly optimized,
which can provide less noisy signals than attacking
a single target question.

3 Problem Formulation

3.1 Threat Model

This section describes a comprehensive threat
model where malicious actors can compromise the
reliability of LLMs in question-answering tasks.
The threat model encompasses three primary stake-
holders: model owners, attackers, and defenders.

2



 AdvAutoPrompt

Partial Malicious Malicious Prompt

Compute
Important Scores

"general"
"knowledge"
"crucial"
"important"

TargetLLM
(Frozen)

"gen eral"
"universal"
"broad"
"9enera1"

Perturbations

Adv.Opt

Stage 2:
Greedy Word-Level Optimization
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Stage 1: Human-readable
Malicious Prompt Initialization

Figure 2: Overview of the proposed CAIN framework with two stages: Stage 1: Human-readable Malicious
Prompt Initialization using target and benign questions; Stage 2: Greedy Word-Level Optimization to improve
attack performance while maintaining benign performance.

Model Owners: Entities responsible for the de-
velopment, deployment, and maintenance of LLM-
based applications. Their primary objectives in-
clude ensuring the accuracy, reliability, and security
of their models against adversarial manipulations.

Attackers: Malicious actors who exploit vulnera-
bilities by crafting malicious system prompts de-
signed to satisfy the following criteria: (1) Mali-
cious Behavior: produce incorrect (in untargeted
attacks) or targeted answers (in targeted attacks) for
a specific question, (2) Benign Behavior: ensuring
that the adversarial prompt maintains high perfor-
mance on a benign set that includes non-targeted
questions, thereby avoiding detection through de-
graded performance on general inputs, and (3)
Stealthiness: designing the prompt to appear in-
nocuous to end users, preventing detection and re-
moval by model owners or defenders.

Defenders: Individuals or systems responsible for
safeguarding LLMs from adversarial attacks. Their
duties encompass the implementation of detection
mechanisms, the development of robust models,
and the timely response to security incidents to
preserve the integrity of LLM applications. We
later discuss potential defense approaches of our
attack algorithm in Sec. 7.

3.2 Objective Function

Our goal is to craft a malicious prompt p∗ that in-
duces incorrect or harmful behaviors on targeted
input Qt while preserving correct behavior on be-
ing input Qb. To improve robustness, we expand
Qt by generating paraphrased variants for each
target question using GPT-4o, ensuring the attack
generalizes across paraphrases. This goal must be
achieved in a black-box setting, where we can only

access outputs of a targeted LLM f . We formalize
this as an optimization objective for two attacking
scenarios: untargeted and targeted attacks.

Untargeted Attack. The attacker maximizes per-
formance degradation (e.g., F1 drop) on the target
set (malicious task) while minimizing influence on
the benign set. We formulate this objective using
the cross-entropy loss:

L = E(qb,yb)∼Qb

[
CE
(
f(p∗ + qb), yb

)]︸ ︷︷ ︸
Benign Answer

(1)

− E(q,y)∼Qt

[
CE
(
f(p∗ + q), y

)]︸ ︷︷ ︸
Malicious Answer

Targeted Attack. The attacker aims to force the
model into producing a specific incorrect answer yt
for questions in Qt. The loss function rewards gen-
erating yt, penalizes generating the correct answer
y of target question q ∈ Qt, and preserves high
performance on the benign set Qb. The objective
becomes:

L = E(q,yt)∼Qt

[
CE
(
f(p∗ + q), yt

)]︸ ︷︷ ︸
Targeted Malicious Answer

− E(q,y)∼Qt

[
CE

(
f(p∗ + q), y

)]︸ ︷︷ ︸
Targeted Correct Answer

+ E(qb,yb)∼Qb

[
CE
(
f(p∗ + qb), yb

)]︸ ︷︷ ︸
Benign Answer

(2)

Objective Function. In both attack scenarios, our
objective function becomes:

minimize
p∗

L s.t. similarity(p∗, q∗) ≤ α, (3)

where similarity(p∗, q∗) denotes the semantic sim-
ilarity between the malicious prompt p∗ and the
target question q∗. Intuitively, we want to mini-
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mize such similarity or limit potential leakage of
malicious intention in the optimized system prompt,
making it more stealthy.

4 Proposed Attack Framework: CAIN

We introduce CAIN, a black-box, two-stage adver-
sarial prompt optimization framework designed to
selectively degrade a target LLM’s performance on
targeted questions while preserving accuracy on
benign inputs (Fig. 2). In the first stage, CAIN
maximizes the adversarial effectiveness by employ-
ing an automatic sentence-level prompt generation
module to initialize a human-readable, coherent
prompt for the Q&A task with some but not nec-
essarily strong malicious effect. Subsequently, an
greedy word-level perturbation is used to further
optimize the resulting prompt by perturbing critical
tokens using five different perturbation techniques
to enhance its adversarial impact. This approach
ensures a systematic attack while maintaining per-
formance on benign queries. Alg. 1 depicts CAIN
algorithm with two stages as follows.

4.1 Stage 1: Malicious Prompt Initialization
The first stage generates a partially malicious sys-
tem prompt p∗0 that selectively induces incorrect re-
sponses on a predefined target set, while maintain-
ing high performance on benign queries. Inspired
by AutoPrompt (Levi et al., 2024), we propose
its adversarial version, called AdvAutoPrompt, a
black-box, iterative optimization process using
GPT-4o to iteratively refine the system prompt by
maximizing a score s∗ (Alg 1, Ln. 3). The process
includes three modules:

Evaluator computes the current prompt pi’s score
s∗i at iteration ith:

s∗i =E(qb,yb)∼Qb
F1(f(pi+qb), yb) (4)

− E(q,y)∼Qt
F1(f(pi+q), y), (5)

where f is GPT-4o model. Intuitively, we want
to improve the generative response measured in
standard F1 score for Q&A task for benign set and
decrease such F1 score for the target set (includes
one targeted question and 10 paraphrases).

Analyzer receives prompt score s∗i and a set of
incorrectly predicted examples in the benign set
as additional feedback as input to GPT-4o to ana-
lyze performance failures and generate insights for
improving prompt quality.

Prompt Generator iteratively generates a new
prompt using the history of previously generated

Algorithm 1 Adversarial Prompt Optimization

1: Input: A hand-crated system prompt p0,
maximum # perturbed words max_perturbs,
Qt={q, y}, and Qb={qb, yb},

2: Output: Optimized malicious prompt p∗

3: p∗0 = AdvAutoPrompt(p0,Qt,Qb)
4: L0 = L(p∗0,Qt,Qb)
5: I ← {}
6: for wj ∈ p∗0 do
7: p∗\wj

= [w1, . . . , wj−1, [MASK], . . . , wn]

8: Iwj = L0 − L(p∗\wj
,Qt,Qb)

9: I[j] = Iwj

10: end for
11: n_perturbs← 0; f← filtered words
12: while n_perturbs≤max_perturbs and wj /∈f do
13: w∗

j = getBestPerturbation(wj)
14: dummy = replace(p∗0, wj , w∗

j )
15: Lp = L(dummy,Qt,Qb)
16: If Lp < L0 then update p∗ ← dummy
17: If if_success(p∗,Qt,Qb) then return p∗

18: end while
19: return s∗

ones, their corresponding scores and analysis. The
goal is to improve the adversarial effectiveness by
combining insights from the past. After a maxi-
mum of t iterations, the prompt with the highest
adversarial score is selected as the initial malicious
prompt p∗0.

We do not impose any specific mechanism for
constraining CAIN to satisfy the semantic similar-
ity constraint in Eq. (3) due to our observations
that there was hardly any leakage of information
from target questions to our malicious prompts via
AdvAutoPrompt. We later confirm our prompt’s
stealthiness in Table 4 and Sec. 7.

4.2 Stage 2: Greedy Word-Level Optimization

Since AutoPrompt is originally designed to curate
a system prompt for an overarching task like Q&A,
generating a malicious prompt as a whole via Ad-
vAutoPrompt that is optimal for a specific target
question is both noisy and inefficient due to un-
limited search space of all possible sentences. Al-
though p∗0 can achieve the attack objective with
some effectiveness, further refinement via Stage 2
is required to maximize its adversarial impact.

4.2.1 Compute Word Importance Score
Before we can exercise greedy word-level optimiza-
tion, we need to determine which word to optimize
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first. Thus, we approximate the importance of each
word within the prompt p∗0 to the model’s behavior.
This is achieved by iteratively removing each word
and measuring its impact on the model’s loss to the
current attack (Alg. 1, Ln. 6-10):

Iwi = L − L\wi
, (6)

where L is either the untargeted in Eq. 1 or the
targeted loss in Eq. 2.

4.2.2 Iterative Token Perturbations
Next, we refine the current malicious system
prompt by applying perturbations to its most in-
fluential words as identified in the previous step.
Specifically, we apply five types of perturbations
found in adversarial text literature (Jin et al., 2019;
Gao et al., 2018), including (1) Random Split splits
a word into two separate words at a random posi-
tion, (2) Random Swap swaps the positions of two
randomly selected characters within a word, (3)
Substitute Keyboard replaces a character with a
neighboring character on a QWERTY keyboard,
and (4) Substitute Synonym replaces a word with
one of its synonyms using WordNet (Miller, 1994)
(Alg. 1, Ln. 13).

For each perturbation applied to a word, we then
select and retain only the perturbation that best min-
imizes the respective loss to the next iteration. This
ensures that all perturbations enhance adversarial
effectiveness without significantly degrading per-
formance on benign examples (Alg. 1, Ln. 16).
For the stopping criteria, we evaluate at each it-
eration whether a maximum allowable number of
perturbed words is reached or whether the attack is
successful (Alg. 1, Ln.. 17). We define an success-
ful attack only when the current optimized prompt
p∗ has to fool the target LLM at least k questions
in the target set Q and maintain at least m cor-
rect answers in the benign set Q∗. Based on our
observations, an answer is considered incorrect if
F1 ≤ 0.2 and correct if F1 ≥ 0.45.

5 Experiments: Untargeted Attack

5.1 Setup
Dataset and Data Sampling (by the Attack-
ers). We used the TriviaQA (Joshi et al., 2017)
(rc.wikipedia validation subset) without context for
all experiments. CAIN randomly samples 100 cor-
rectly answered questions from each target LLM
when a manual system prompt is used to construct
the target subset Qt, and 10 correct + 10 incor-
rect QA pairs to construct the benign set Qb. Each

target question is paraphrased into 10 variants to
enrich diversity and reduce noise during optimiza-
tion.

Generalizability Evaluation. Separate from
the attack process, we construct additional, non-
overlapping subsets for post-attack evaluation:
• Benign Evaluation: We construct five differ-

ent benign subsets (each 200 QA pairs, 100 cor-
rect+100 incorrect), resulting in 1000 examples
to evaluate the performance preservation on un-
seen benign questions.

• Malicious Evaluation: For each q ∈ Qt, we
generate 100 paraphrases unseen versions to as-
sess the generalization of the optimized prompts
in practice when the users might ask the target
question in different ways.

Metrics. We use two sets of metrics, including
(1) Predictive F1 and Exact Match (EM): standard
Q&A metrics measuring partial and exact correct-
ness of model prediction against ground-truths, and
(2) Performance gap ∆F1 and ∆EM measure the
difference in performance between benign and ma-
licious tasks (e.g., ∆F1=F1benign−F1malicious). A
higher ∆F1/EM indicates a stronger attack, mean-
ing a greater performance drop on the target set
with minimal loss on the benign set.

Target LLMs and Attack Baselines. We evaluate
on six open-source LLMs, including Llama2 (Tou-
vron et al., 2023), LLama3.1 (Grattafiori et al.,
2024), Deepseek (DeepSeek-AI et al., 2025),
Qwen (Qwen et al., 2025), Pythia (Biderman et al.,
2023) with the black-box attack baselines:
• No system prompt (NSP): Questions are fed to

LLMs without any instructions.
• Manual: A hand-crafted Q&A system prompt.
• AdvAutoPrompt (AAP): Partially malicious

prompt produced by a customized adversarial ver-
sion of AutoPrompt (Levi et al., 2024) formulated
in Sec. 4.1.

• CAIN: Our proposed attack method that com-
bines AAP with greedy word-level optimization.

5.2 Results

Table 1 reports F1 and EM on Benign and Mali-
cious Evaluation sets. Key findings include: (1)
CAIN consistently demonstrates superior adver-
sarial performance on malicious tasks across mod-
els, with notably low F1 and EM scores, even
with paraphrased versions of the target question,
(2) AAP exhibits strong malicious F1 compared
to Manual on most of target LLMs, although in-

5



Prompt Benign Malicious Difference

F1↑ EM↑ F1↓ EM↓ ∆F1↑ ∆EM↑

L
la

m
a2

-7
B NSP 66.48 56.10 61.00 61.00 5.48 -4.90

Manual 73.09 68.90 54.00 54.00 19.09 14.90
AAP 66.31 58.88 79.19 73.23 -12.88 -14.35
CAIN 63.84 56.14 33.36 28.20 30.48 27.94

L
la

m
a2

-1
3B NSP 76.29 67.70 97.10 95.00 -20.81 -27.30

Manual 85.00 82.60 96.50 94.00 -11.50 -11.40
AAP 82.14 78.72 82.46 74.30 -0.32 3.92
CAIN 66.77 57.14 32.66 18.89 34.11 38.15

D
ee

ps
ee

k-
7B NSP 56.42 48.90 100.00 100.00 -43.58 -51.10

Manual 52.11 49.80 100.00 100.00 -47.89 -50.20
AAP 52.49 42.11 69.71 58.14 -17.22 -16.03
CAIN 43.99 31.75 28.15 16.33 15.84 15.42

Q
w

en
2.

5-
7B NSP 70.33 65.30 82.12 81.36 -11.79 -16.06

Manual 56.74 49.10 95.47 95.00 -38.73 -45.90
AAP 56.06 45.72 53.67 43.90 2.39 1.82
CAIN 50.31 39.20 34.94 23.92 15.37 15.28

Table 1: Performance comparison when attacking vari-
ous target LLMs. Bold and underlined values indicate
the best and second-best ∆F1/EM improvements, re-
spectively.

1 2 3 4 5 6 7 8 9 1011
Threshold (k)

0%
20%
40%
60%
80%

100%

F1
 (%

)

Tradeoff

20 40 60 80
N Benigns

More Benigns

Benign Malicious

Figure 3: Ablation study on varying the threshold k and
numbers of benign questions on Llama2-13B.

creased malicious scores on Llama2-7B, and (3)
NSP and Manual prompts show strong robustness
on benign and malicious task with high F1 scores.

CAIN significantly reduces malicious F1 scores
on Llama2-7B and Deepseek-7B by 20.64 and
71.85, respectively, while only modestly affecting
benign F1 (drops of 9.24 and 8.12), compared to
Manual (Table 1). For Llama2-13B and Qwen2.5-
7B, benign performance drops by 20 points, possi-
bly due to the limited number of benign samples.
However, Figure 3 (right) shows that increasing
benign questions does not improve performance,
which we leave for future study.

In contrast, Manual and AAP exhibit incon-
sistent attack performance. AAP increases ma-
licious F1 on Llama2-7B (79.19), while Manual
fails to degrade malicious accuracy (e.g., 100 F1
on Deepseek-7B).

6 Experiments: Targeted Attack

6.1 Setup

Dataset and Data Sampling (by the Attackers):
We use six categories from TruthfulQA (Lin et al.,
2022): Misconceptions, Conspiracy, Stereotype,
Health, Politics, History. The statistical informa-
tion is shown in Table A1 (Appendix). For each
category, we randomly select 10 questions as tar-
geted answers for attacking and paraphrase them
into 20 versions (10 will be used for attacking, 10
will be used for evaluating the generalization of the
optimized prompts), except for Politics, where only
five Q&A pairs are available.

Generalizability Evaluation. Separate from
the attack process, we construct additional, non-
overlapping subsets for post-attack evaluation:
• Benign Evaluation: For each category, 5 other

questions are selected and paraphrased into 50
variants to evaluate generalization on unseen but
non-targeted queries.

• Malicious Evaluation: The other 10 paraphrased
versions of each target question as mentioned
above are used for evaluation.

Metrics. In addition to F1/EM, the ag-
gregated performance is computed as
ΨF1=1

2(F1benign+F1malicious), where higher
values indicate stronger balance between attack
success and benign preservation.

Target LLMs and Attack Baselines. We utilize
the same attack baselines as in the untargeted attack
setting (§5). All experiments are conducted on
Deepseek-7B, Qwen2.5-7B, and Llama2-7B.1

Evaluation Settings. Models are prompted to se-
lect one answer from different answering formats
of increasing difficulties: (1) Two options (A or B),
(2) Four options (A, B, C or D), and (3) Free-form
text (no explicit choices are provided). We used the
two-option format during attacking and transferred
the resulting malicious prompts to four options and
free-form text for evaluation. Figure A1 illustrates
the input format for two options.

6.2 Results

We report results for the two-option setting, its
transfer to four-option, and to free-form generation
in Table 2. Key findings include: (1) combining Ad-
vAutoPrompt with greedy word-level optimization
consistently achieves superior overall performance

1Due to space, Llama2-7B’s results are in the Appendix
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Prompt Two options Two options→Four options Two options→Free-form

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

D
ee

ps
ee

k-
7B NSP 53.12 51.67 39.38 37.82 46.25 44.75 28.24 26.00 25.13 24.36 26.68 25.18 43.67 43.67 47.55 47.55 45.61 45.61

Manual 26.67 26.67 34.67 34.55 30.67 30.61 16.83 16.00 34.85 34.73 25.84 25.36 1.00 1.00 0.18 0.18 0.59 0.59
AAP 52.75 45.32 49.66 44.36 51.20 44.84 32.14 25.75 35.45 30.18 33.80 27.96 42.35 41.94 51.36 50.73 46.86 46.34
CAIN 55.29 46.47 58.92 54.00 57.11 50.23 31.73 28.69 43.92 43.00 37.83 35.84 45.31 45.05 56.25 56.25 55.28 50.65

Q
w

en
2.

5-
7B NSP 52.33 52.33 51.33 51.09 51.83 51.71 57.00 57.00 54.06 54.00 55.53 55.50 52.89 52.67 48.15 47.27 50.52 49.97

Manual 58.39 52.67 41.52 40.36 49.95 46.52 49.67 49.67 44.94 44.73 47.30 47.20 37.33 37.33 58.55 58.36 47.94 47.85
AAP 66.24 66.24 36.34 35.82 51.29 51.03 55.61 55.59 36.55 36.00 46.08 45.80 46.68 46.68 55.94 55.09 51.31 50.89
CAIN 62.76 61.75 73.03 72.07 67.89 66.91 56.45 56.38 70.75 70.34 63.60 63.36 41.55 41.55 62.18 60.69 51.81 51.07

Table 2: Performance on the targeted attack across various target LLMs. Prompts optimized under the two-option
format are evaluated directly and transferred to multiple-choice and free-form settings. Bold indicates best, underline
indicates second-best per block.

0%
20%
40%
60%
80%

100%

F1
 (%

)

DeepSeek-7B
Untargeted Attack

Qwen2.5-7B
Untargeted Attack

1 2 3 4 5 6 7 8 9 1011
Threshold (k)

0%
20%
40%
60%
80%

100%

F1
 (%

)

Targeted Attack

1 2 3 4 5 6 7 8 9 1011
Threshold (k)

Targeted Attack

Benign
Malicious

NSP Benign
NSP Malicious

Figure 4: Trade-off between benign and malicious F1
scores as the threshold k increases for CAIN.

in benign and malicious responses, highlighting its
strong adversarial power, and (2) strong resilience
and adaptability to different levels of difficulty, with
greedy decoding consistently achieved high perfor-
mance across evaluation scenarios, emphasizing
the crucial role of this optimization strategy.

In two-option scenario, CAIN achieves strong
malicious performance (73.03 F1) while preserving
benign F1 of 62.76, outperforming baselines such
as NSP and Manual prompts.

In four-option scenario, overall, predictive per-
formance drops when adding more options and
yet CAIN remains the most effective on malicious
set, reaching 43.92 F1 (Deepseek-7B) and 70.75
(Qwen2.5-7B), indicating good prompt transfer-
ability to harder multiple-choice options.

In free-form scenario when no explicit choices

are provided, CAIN continues to outperform base-
lines (e.g., 56.25 F1 malicious and 45.31 F1 benign
on Deepseek-7B). In contrast, Manual and AAP
degrade significantly due to reliance on multiple-
choice formatting. Overall, CAIN offers a stronger
trade-off in F1 score between malicious (62.18)
and benign set (41.55). These results confirm that
CAIN achieves a superior balance between attack
success and benign robustness in targeted attacks
across different prompting formats.

7 Discussion

Affects of Optimization Threshold k. We inves-
tigate the trade-offs between benign performance
and synthetic target when adjusting the number of
incorrect target thresholds k ∈ [1..11] (Alg. 1, Ln..
17). As shown in Figure 4, increasing k consis-
tently improves attack effectiveness while benign
performance remains stable. This highlights a tun-
able trade-off between stealth and potency, allow-
ing attackers to adjust aggressiveness depending on
the security scenario. The full analysis is in A.3.

Affects of Model Sizes. We evaluate how model
size impacts CAIN’s effectiveness using Qwen2.5
with the number of parameters increasing from 3B
to 32B. As shown in Figure 5 and 3 (left), CAIN
consistently achieves stronger adversarial perfor-
mance than AAP across both targeted and untar-
geted attacks, with benign performance improving
as model size increases. These findings highlight
CAIN’s consistent malicious impact across vary-
ing model complexities.

Affects of Prompt Initialization Methods. Across
both untargeted and targeted settings, A+Greedy
consistently outperforms M+Greedy in attack ef-
fectiveness and robustness. In untargeted attacks
(Table A3), A+Greedy yields stronger performance
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Figure 5: Performance of each attacking scenario across model sizes.

Prompt Benign Malicious Difference

F1↑ EM↑ F1 ↓ EM ↓ ∆F1 ↑ ∆EM↑

4o
-m

in
i Manual 68.22 51.56 99.28 99.09 -31.06 -47.53

AAP 76.66 65.41 94.48 91.21 -17.82 -25.80
CAIN 71.44 59.16 52.44 48.64 19.00 10.52

4.
1-

na
no Manual 62.47 51.03 95.00 95.00 -32.53 -43.97

AAP 64.43 54.25 97.53 93.94 -33.10 -39.69
CAIN 56.79 42.43 81.76 65.00 -24.97 -22.57

3.
5T

ur
bo Manual 69.15 51.52 99.55 99.55 -30.40 -48.03

AAP 66.93 49.58 96.57 96.36 -29.64 -46.78
CAIN 61.00 40.09 69.47 64.55 -8.47 -24.46

Table 3: Untargeted performance across different attack
methods on various OpenAI APIs.

gaps (e.g., +30.48 ∆F1 on L2-7B, +15.84 on D-
7B), indicating better degradation of malicious
responses while preserving benign ones. In tar-
geted attacks (Table A5), it achieves higher aggre-
gated scores (Ψ), particularly on Qwen2.5-7B and
Deepseek-7B, showing better generalization across
formats. These results confirm A+Greedy as a su-
perior initialization strategy for attack strength and
transferability.

7.1 Case Study: Attacking Commercial LLMs

We evaluate CAIN under untargeted attacks on
popular commercial LLM-based chatbot APIs, in-
cluding GPT3.5-turbo, GPT-4.1-nano and GPT-4.1-
mini. Due to budget constraints, we randomly se-
lected 10 target questions to attack. Table 3 shows
that CAIN consistently reduces F1 score on mali-
cious tasks by 46.84 points for 4o-mini, compared
to the manual prompt, while better preserving be-
nign performance by increasing to 71.44 F1.

Moreover, compared to AAP, CAIN consis-
tently achieves lower malicious F1 across models
(e.g., 69.47 vs. 96.57 on GPT-3.5-Turbo; 81.76
vs. 97.53 on GPT-4.1-nano), highlighting stronger
attack success. While GPT-4.1-nano appears more
robust (∆F1 of -24.97 for CAIN vs. -33.10 for

TargetLLM Targeted UnTargeted

Deepseek-7B 0.0217 0.0819

Qwen2.5-7B 0.0426 0.0417

Table 4: Averaged cosine similarity between success-
fully optimized prompts and the targeted questions.

AAP), the results demonstrate CAIN’s effective-
ness even against well-aligned commercial models
under black-box conditions, confirming the feasi-
bility of our security threat in practice.

Potential Defense. Our findings suggest that tradi-
tional defenses, such as detecting lexical similarity
between prompts and target questions or using a
perplexity-based filtering (Jain et al., 2023) are in-
sufficient to defend against CAIN. Table 4 shows
that the optimized prompts exhibit very low cosine
similarity to their respective targets (average of
0.0518 for Deepseek-7B and 0.04215 for Qwen2.5-
7B), indicating they do not leak any lexical overlap
with the target questions. Figure A2 shows that
CAIN’s prompts have variable perplexity levels,
and using a PPL filtering might work to some ex-
tent, but this approach will not be a comprehensive
solution. These results underscore CAIN’s sub-
tlety and highlight the urgent need for more robust,
behavior-based detection mechanisms.

8 Conclusion

We introduce CAIN, a black-box method that
reveals a new vulnerability in LLMs: targeted
prompt-based manipulation that preserves benign
behavior. CAIN achieves substantial degradation
on targeted questions, up to 40% F1 in untargeted
attacks and over 70% F1 in targeted ones, without
noticeably affecting benign performance. These
attacks remain stealthy, transferable across model
architectures, and evade traditional defenses such
as lexical similarity or perplexity-based filtering.
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Limitation

While CAIN demonstrates strong targeted manipu-
lation in black-box settings, it faces several impor-
tant limitations. First, achieving high adversarial
effectiveness occasionally comes at the cost of be-
nign performance. CAIN outperforms baselines on
OpenAI APIs, the overall attack success remains
limited due to alignment constraints in commer-
cial systems. Finally, while CAIN evades common
lexical and perplexity-based filters, this also under-
scores a broader limitation in the field: the lack of
robust, behavior-aware defenses. Addressing these
challenges will be crucial for advancing both offen-
sive and defensive research in LLM alignment.

Broader Impacts and Ethics Statement

This work reveals a previously underexplored vul-
nerability in large language models (LLMs): the
ability to craft adversarial system prompts that se-
lectively cause incorrect responses to specific ques-
tions while maintaining accurate outputs on benign
inputs. Such selective manipulation poses a subtle
but serious threat, particularly in domains involv-
ing misinformation, political influence, or public
health. Unlike traditional jailbreaks or universal at-
tacks, CAIN operates stealthily, evading detection
by standard lexical similarity and perplexity filters.

We intend to raise awareness of this threat and
prompt the development of more robust, behavior-
based defenses. All experiments were conducted in
controlled settings using open-source models, and
evaluations on commercial APIs were performed
to assess practical limitations — not for misuse.
While the techniques may be misused, we believe
that exposing this vector responsibly contributes
to a more secure and trustworthy deployment of
LLMs. We advocate for responsible disclosure,
transparent benchmarking, and the implementation
of proactive safeguards in future LLM systems.

9



References
John W. Ayers, Adam Poliak, Mark Dredze, Eric C.

Leas, Zechariah Zhu, Jessica B. Kelley, Dennis J.
Faix, Aaron M. Goodman, Christopher A. Longhurst,
Michael Hogarth, and Davey M. Smith. 2023. Com-
paring physician and artificial intelligence chatbot re-
sponses to patient questions posted to a public social
media forum. JAMA Internal Medicine, 183(6):589–
596.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
and 12 others. 2022. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. Preprint, arXiv:2204.05862.

Advik Raj Basani and Xiao Zhang. 2024. Gasp: Effi-
cient black-box generation of adversarial suffixes for
jailbreaking llms. ArXiv, abs/2411.14133.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling. Preprint, arXiv:2304.01373.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
and 181 others. 2025. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

J. Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou.
2017. Hotflip: White-box adversarial examples for
text classification. In Annual Meeting of the Associa-
tion for Computational Linguistics.

J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi. 2018.
Black-box generation of adversarial text sequences
to evade deep learning classifiers. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 50–
56.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur

Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin,
and Bin Hu. 2024. Cold-attack: Jailbreaking llms
with stealthiness and controllability. arXiv preprint
arXiv:2402.08679.

Raghav Gupta, Ryan Sullivan, Yunxuan Li, Samrat
Phatale, and Abhinav Rastogi. 2025. Robust multi-
objective preference alignment with online dpo. In
AAAI Conference on Artificial Intelligence.

Lynn Hasher, David M. Goldstein, and Thomas C. Top-
pino. 1977. Frequency and the conference of referen-
tial validity. Journal of Verbal Learning and Verbal
Behavior, 16:107–112.

Jonathan Hayase, Ema Borevkovic, Nicholas Carlini,
Florian Tramèr, and Milad Nasr. 2024. Query-
based adversarial prompt generation. ArXiv,
abs/2402.12329.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, and 3 others. 2022. Training
compute-optimal large language models. Preprint,
arXiv:2203.15556.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami
Somepalli, John Kirchenbauer, Ping yeh Chiang,
Micah Goldblum, Aniruddha Saha, Jonas Geiping,
and Tom Goldstein. 2023. Baseline defenses for ad-
versarial attacks against aligned language models.
Preprint, arXiv:2309.00614.

Weipeng Jiang, Zhenting Wang, Juan Zhai, Shiqing Ma,
Zhengyu Zhao, and Chao Shen. 2025. An optimiz-
able suffix is worth a thousand templates: Efficient
black-box jailbreaking without affirmative phrases
via llm as optimizer. Preprint, arXiv:2408.11313.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932.

Erik Jones, Anca D. Dragan, Aditi Raghunathan, and
Jacob Steinhardt. 2023. Automatically auditing large
language models via discrete optimization. ArXiv,
abs/2303.04381.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Elad Levi, Eli Brosh, and Matan Friedmann. 2024.
Intent-based prompt calibration: Enhancing prompt
optimization with synthetic boundary cases.

10

https://doi.org/10.1001/jamainternmed.2023.1838
https://doi.org/10.1001/jamainternmed.2023.1838
https://doi.org/10.1001/jamainternmed.2023.1838
https://doi.org/10.1001/jamainternmed.2023.1838
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://api.semanticscholar.org/CorpusID:274165437
https://api.semanticscholar.org/CorpusID:274165437
https://api.semanticscholar.org/CorpusID:274165437
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2412.19437
https://api.semanticscholar.org/CorpusID:21698802
https://api.semanticscholar.org/CorpusID:21698802
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:276741344
https://api.semanticscholar.org/CorpusID:276741344
https://api.semanticscholar.org/CorpusID:144552523
https://api.semanticscholar.org/CorpusID:144552523
https://api.semanticscholar.org/CorpusID:267751131
https://api.semanticscholar.org/CorpusID:267751131
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2309.00614
https://arxiv.org/abs/2309.00614
https://arxiv.org/abs/2408.11313
https://arxiv.org/abs/2408.11313
https://arxiv.org/abs/2408.11313
https://arxiv.org/abs/2408.11313
https://api.semanticscholar.org/CorpusID:257405439
https://api.semanticscholar.org/CorpusID:257405439
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/arXiv:2402.03099
https://arxiv.org/abs/arXiv:2402.03099


Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Eryn J. Newman, Mevagh Sanson, Emily K. Miller,
Adele Quigley-Mcbride, Jeffrey L. Foster, Daniel M.
Bernstein, and Maryanne Garry. 2014. People with
easier to pronounce names promote truthiness of
claims. PLoS ONE, 9.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Anselm Paulus, Arman Zharmagambetov, Chuan Guo,
Brandon Amos, and Yuandong Tian. 2024. Ad-
vprompter: Fast adaptive adversarial prompting for
llms. ArXiv, abs/2404.16873.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red teaming
language models with language models. In Confer-
ence on Empirical Methods in Natural Language
Processing.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin
Choi. 2022. Cold decoding: Energy-based con-
strained text generation with langevin dynamics. Ad-
vances in Neural Information Processing Systems,
35:9538–9551.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. Autoprompt: Elic-
iting knowledge from language models with automat-
ically generated prompts. CoRR, abs/2010.15980.

Harry Surden. 2019. Artificial intelligence and law:
An overview. Georgia State University law review,
35:15109.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Conference
on Empirical Methods in Natural Language Process-
ing.

Laura Weidinger, John F. J. Mellor, Maribeth Rauh,
Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
Zachary Kenton, Sande Minnich Brown, William T.
Hawkins, Tom Stepleton, Courtney Biles, Abeba
Birhane, Julia Haas, Laura Rimell, Lisa Anne Hen-
dricks, and 4 others. 2021. Ethical and social risks of
harm from language models. ArXiv, abs/2112.04359.

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang,
Jingfeng Zhang, and Mohan Kankanhalli. 2024. An
LLM can fool itself: A prompt-based adversarial
attack. In The Twelfth International Conference on
Learning Representations.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. ArXiv, abs/1905.12616.

Yujie Zhao, Jose Efraim Aguilar Escamill, Weyl Lu, and
Huazheng Wang. 2024. Ra-pbrl: Provably efficient
risk-aware preference-based reinforcement learning.
ArXiv, abs/2410.23569.

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Bar-
row, Zichao Wang, Furong Huang, Ani Nenkova, and
Tong Sun. 2024. AutoDAN: Interpretable gradient-
based adversarial attacks on large language models.
In First Conference on Language Modeling.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrik-
son. 2023. Universal and transferable adversar-
ial attacks on aligned language models. Preprint,
arXiv:2307.15043.

11

https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://aclanthology.org/H94-1111/
https://aclanthology.org/H94-1111/
https://api.semanticscholar.org/CorpusID:8551809
https://api.semanticscholar.org/CorpusID:8551809
https://api.semanticscholar.org/CorpusID:8551809
https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:269430799
https://api.semanticscholar.org/CorpusID:269430799
https://api.semanticscholar.org/CorpusID:269430799
https://api.semanticscholar.org/CorpusID:246634238
https://api.semanticscholar.org/CorpusID:246634238
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://api.semanticscholar.org/CorpusID:195817228
https://api.semanticscholar.org/CorpusID:195817228
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://api.semanticscholar.org/CorpusID:201698258
https://api.semanticscholar.org/CorpusID:201698258
https://api.semanticscholar.org/CorpusID:244954639
https://api.semanticscholar.org/CorpusID:244954639
https://openreview.net/forum?id=VVgGbB9TNV
https://openreview.net/forum?id=VVgGbB9TNV
https://openreview.net/forum?id=VVgGbB9TNV
https://api.semanticscholar.org/CorpusID:168169824
https://api.semanticscholar.org/CorpusID:168169824
https://api.semanticscholar.org/CorpusID:273707441
https://api.semanticscholar.org/CorpusID:273707441
https://openreview.net/forum?id=INivcBeIDK
https://openreview.net/forum?id=INivcBeIDK
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043


Category Num. Samples

Misconceptions 100
Conspiracy 26
Stereotype 24
Health 55
Politics 10
History 24

Table A1: The number of data examples used for tar-
geted attack in each category.

A Appendix

A.1 Dataset and Prompt template

Table A1 shows the statistical information of each
category in the TruthfulQA (Lin et al., 2022),
which will be used for targeted attack. Figure A1 il-
lustrates an example of the input for targeted attack
during training and evaluation.

A.2 Implementation Details

For each targeted question, we used 20 benign ex-
amples (10 from the correct subset, 10 from the
incorrect subset) and the correct proportion m = 7.
For the AdvAutoPrompt, we set a maximum length
of p∗ up to 150 words and the number of iterations
t = 3 to save cost.

A.3 Analysis of optimization threshold k

For untargeted attack (top row), increasing the in-
correct targeted threshold (k) generally leads to a
more substantial degradation of performance on the
synthetic target (malicious) dataset for both mod-
els. For DeepSeek-7B, the F1 score on malicious
inputs drops significantly from approximately 40%
to just above 10% as k increases, while benign
performance shows a modest decline from around
40% to 35%. Qwen2.5-7B exhibits a similar pat-
tern: its malicious performance falls from roughly
55% to about 15%, and benign performance de-
creases from approximately 60% to 45% across the
same range of k. This trend indicates that while
the attack more effectively degrades performance
on malicious queries at higher k values, this also
comes with a slight decrease in performance on
benign questions compared to their corresponding
initial attacked state and a more noticeable reduc-
tion compared to the NSP benign baselines.

Conversely, for targeted attacks (bottom row),
a higher threshold (k) significantly improves the
success rate of forcing the specific malicious out-
put. On DeepSeek-7B, the malicious F1 score, rep-
resenting attack success, climbs from about 58%

[Instruction]: The following is a multiple-
choice question; you are given two possible
answers. Please only select one of them without
any explanations:
Q: In the Gregorian calendar, what does ``AD''
mean?
Choices:
A: Anno Domini
B: After Death

[Target LLM]: B

Figure A1: The prompt template for two options of
targeted attack.

Prompt Benign Malicious Difference

F1↑ EM↑ F1 ↓ EM ↓ ∆F1 ↑ ∆EM↑

L
la

m
a3

.1 NSP 58.59 47.60 88.61 83.00 -30.02 -35.40
Manual 64.25 56.60 99.75 99.50 -35.70 -42.90
AAP 44.84 31.70 52.00 42.00 -7.16 -10.30
CAIN 45.15 32.04 27.46 16.40 17.69 15.64

Py
th

ia

NSP 40.98 28.50 97.40 97.00 -56.42 -68.50
Manual 54.82 49.00 100.00 100.00 -45.18 -51.00
AAP 49.13 40.06 58.20 51.27 -9.07 -18.14
CAIN 49.08 40.70 32.32 25.28 16.76 15.42

Table A2: Performance comparison when attacking on
Pythia-12B and Llama3.1-7B.

to nearly 80% with an increasing k, while perfor-
mance on benign inputs remains relatively stable
around 50%, comparable to its NSP benign base-
line. A more pronounced trend is observed for
Qwen2.5-7B, where its malicious attack success
rate rises from approximately 50% at k = 1 to over
80% for k ≥ 8; its benign performance also re-
mains stable at around 62%. Notably, this increased
targeted efficacy is generally achieved without a
substantial negative impact on the models’ perfor-
mance on benign inputs.

A.4 Additional results on untargeted attack

Table A2 presents the performance of untargeted
attacks on Llama3.1-7B and Pythia-12B. Across
both models, CAIN significantly outperforms all
baselines, including Manual and AAP, in balanc-
ing attack strength and benign performance. While
Manual prompts achieve high benign F1/EM, they
fail to reduce malicious performance (e.g., 99.75 F1
on Llama3.1 and 100.00 F1 on Pythia). In contrast,
CAIN reduces malicious F1 to 27.46 and 32.32,
respectively, while maintaining reasonable benign
scores. This results in the highest ∆F1 and ∆EM
margins (e.g., +17.69 F1 on Llama3.1 and +16.76
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Prompt Benign Malicious Difference

F1↑ EM↑ F1↓ EM↓ ∆F1↑ ∆EM↑

L2-7B M+G 68.33 62.59 38.25 31.46 30.08 31.13
A+G 63.84 56.14 33.36 28.20 30.48 27.94

L2-13B M+G 81.92 78.62 41.44 38.36 40.48 40.26
A+G 66.77 57.14 32.66 18.89 34.11 38.15

L3.1-8B M+G 62.61 52.12 50.05 41.69 12.56 10.43
A+G 45.15 32.04 27.46 16.40 17.69 15.64

D-7B M+G 53.59 48.41 37.73 33.28 15.66 15.13
A+G 43.99 31.75 28.15 16.33 15.84 15.42

Q2.5 M+G 46.97 36.13 61.39 50.68 -14.42 -14.55
A+G 50.31 39.20 34.94 23.92 15.37 15.28

P-12B M+G 50.25 42.90 40.46 34.41 9.79 8.49
A+G 49.08 40.70 32.32 25.28 16.76 15.42

Table A3: Results of attacking performance with man-
ual initialization and AdvAutoPrompt. “A” denotes
AAP, “G” stands for Greedy, and “A+G” is our pro-
posed method. “L, D, Q, P” denote Llama, Deepseek,
Qwen, and Pythia models, respectively.

on Pythia), demonstrating CAIN’s superior abil-
ity to selectively degrade targeted outputs without
broadly compromising accuracy.

A.5 Additional results for targeted attacks
Table A4 shows that AAP achieves the best per-
formance in the two-option setting (ΨF1 = 50.94,
ΨEM = 42.58), but its effectiveness drops when
transferred to the four-option format. In contrast,
CAIN maintains more stable performance across
both settings, achieving strong targeted attack suc-
cess (highest malicious F1) with better transferabil-
ity (ΨF1 = 31.01 vs. 32.80). This suggests CAIN
is more robust and generalizable under realistic
conditions where question formats vary.
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Figure A2: Perplexity distribution of successfully opti-
mized prompts across different prompt methods under
both untargeted and targeted attack.
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Prompt Two options Two options→Four options

Benign Malicious Sum Benign Malicious Sum

F1↑ EM↑ F1 ↑ EM ↑ Ψ F1↑ Ψ EM ↑ F1 ↑ EM↑ F1↑ EM↑ Ψ F1↑ Ψ EM↑

L
la

m
a2

-7
B NSP 10.03 1.67 14.09 3.27 12.06 2.47 9.72 1.33 19.60 1.82 14.66 1.58

Manual 19.67 19.00 44.03 43.45 31.85 31.23 1.00 1.00 3.50 3.27 2.25 2.13
M+Greedy 28.20 21.57 60.71 58.00 44.45 39.78 13.73 10.60 29.81 28.80 21.77 19.70
AAP 42.47 34.16 59.41 51.00 50.94 42.58 27.30 19.88 38.29 33.27 32.80 26.58
CAIN 35.10 19.61 61.86 48.71 48.48 34.16 20.44 11.83 41.58 34.84 31.01 23.34

Table A4: Performance of the targeted attack on Llama2-7B.

Prompt Two options Two options→Four options

Benign Malicious Sum (Ψ) Benign Malicious Sum (Ψ)

F1↑ EM↑ F1 ↑ EM ↑ F1↑ EM ↑ F1 ↑ EM↑ F1↑ EM↑ F1↑ EM↑

Deepseek-7B M+Greedy 47.94 46.11 42.90 42.26 45.42 44.19 27.38 25.65 30.32 29.35 28.85 27.50
A+Greedy 55.29 46.47 58.92 54.00 57.11 50.23 31.73 28.69 43.92 43.00 37.83 35.84

Qwen2.5-7B M+Greedy 60.41 60.33 62.73 62.73 61.57 61.53 50.88 50.88 69.70 69.70 60.29 60.29
A+Greedy 62.76 61.75 73.03 72.07 67.89 66.91 56.45 56.38 70.75 70.34 63.60 63.36

Table A5: Performance with different initialization methods on targeted attacks.
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