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Abstract

Large language models (LLMs) are increas-
ingly integrated into academic workflows, with
many conferences and journals permitting their
use for tasks such as language refinement and
literature summarization. However, their use
in peer review remains prohibited due to con-
cerns around confidentiality breaches, hallu-
cinated content, and inconsistent evaluations.
As LLM-generated text becomes more indistin-
guishable from human writing, there is a grow-
ing need for reliable attribution mechanisms to
preserve the integrity of the review process. In
this work, we evaluate topic-based watermark-
ing (TBW), a lightweight, semantic-aware tech-
nique designed to embed detectable signals into
LLM-generated text. We conduct a comprehen-
sive assessment across multiple LLM config-
urations, including base, few-shot, and fine-
tuned variants, using authentic peer review data
from academic conferences. Our results show
that TBW maintains review quality relative to
non-watermarked outputs, while demonstrating
strong robustness to paraphrasing-based eva-
sion. These findings highlight the viability of
TBW as a minimally intrusive and practical so-
lution for enforcing LLM usage in peer review.

1 Introduction

As large language models (LLMs) continue to
evolve, their adoption has accelerated, particularly
in academic writing (Dergaa et al., 2023; Editori-
als, 2023). LLMs are widely used for language
polishing, literature search, and low-novelty writ-
ing, often producing text nearly indistinguishable
from human-authored content. Many conferences
now explicitly permit authors to use LLMs for low-
novelty tasks, provided that authors retain full re-
sponsibility for the content (ACL, 2025a; NeurIPS,
2025; ICML, 2025a). These policies uphold pre-
LLM expectations around authorship and account-
ability while adapting to new technological norms.

In contrast, the use of LLMs by peer review-
ers is widely prohibited (ACL, 2025b; NeurIPS,
2025; ICML, 2025b). Such practices risk confi-
dentiality breaches, low-quality evaluations, and
data exposure to third-party systems (Zhou et al.,
2024; Maini et al., 2024). Recent empirical studies
suggest, however, that LLM-assisted reviews are
already present in major conferences, leading to
inflated scores, reduced reviewer confidence, and
distortions in paper rankings (Liang et al., 2024;
Latona et al., 2024; Ye et al., 2024). These findings
underscore the urgency of developing attribution
mechanisms to detect and manage unauthorized
LLM usage.

As LLM-generated content increasingly mirrors
human writing, distinguishing between machine-
and human-authored reviews has become diffi-
cult. Stylistic cues alone are insufficient for re-
liable attribution, especially in the absence of dis-
closure (Mitchell et al., 2023). This creates an
urgent need for technical mechanisms to trace
the provenance of peer reviews. A widely ex-
plored approach is watermarking, which has been
adopted across various domains to embed imper-
ceptible, machine-detectable signatures into gener-
ated text (Zhao et al., 2024). Recent methods, such
as topic-based watermarking, bias generations to-
ward semantically aligned tokens that are robust
and minimally intrusive. However, existing work
focuses on general-domain text, with limited anal-
ysis in peer review (Liu et al., 2024; Zhao et al.,
2023).

In this paper, we present the first focused eval-
uation of topic-based watermarking in the context
of academic peer reviews. Rather than proposing
a new algorithm, we apply an existing lightweight,
topic-guided watermarking scheme to this domain-
specific, policy-sensitive task. Topic-based water-
marking (TBW) offers a balance of efficiency, ro-
bustness to paraphrasing, and minimal impact on
generation quality, making it suitable for peer re-
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view, where stylistic fidelity and semantic coher-
ence are critical. It also supports domain adaptation
through customizable topic lists, aligning well with
the structured topical nature of peer reviews. More-
over, TBW relies on a topic-matching assumption
that naturally holds in this setting, where reviews
are expected to stay aligned with the subject of the
paper.

Our goal is to assess whether TBW can preserve
review quality and semantic fidelity while offer-
ing reliable attribution under realistic adversarial
settings. We evaluate across three LLM configu-
rations: a pretrained base model, a few-shot con-
figuration, and a fine-tuned model using authentic
reviews from AI and ML conferences. Our analy-
sis examines generation quality, semantic preser-
vation, classifier-based attribution, and robustness
to paraphrasing. We further compare TBW against
general-purpose watermarking methods and find
that TBW offers better preservation of text qual-
ity, highlighting its suitability for domain-sensitive
tasks like peer review.

Without effective attribution mechanisms, the
credibility and rigor of academic conferences
could erode, leading to lower-quality evaluations
and increased reliance on potentially unverifiable,
machine-generated feedback. Watermarking pro-
vides a practical and minimally disruptive approach
for LLM accountability, helping to safeguard aca-
demic standards while accommodating the evolv-
ing role of generative models.

2 Related Work

Since the release of ChatGPT, LLMs have been
rapidly adopted across various stages of the aca-
demic workflow. Their use has raised concerns
about authorship and peer review integrity. Most
conferences and journals now permit authors to
leverage LLMs; however, this permissive stance
does not extend to peer reviewers. Leading venues
such as NeurIPS and ACL explicitly prohibit the
use of LLMs by reviewers (NeurIPS, 2025; ACL,
2025b). These policies reflect growing concerns
around review quality, including the risk of shal-
low or hallucinated feedback, reduced technical
depth, and breaches of confidentiality that would
compromise the double-blind review process (Li
et al., 2024).

Despite these restrictions, recent studies suggest
that LLM-assisted reviews are already present at
major conferences. Liang et al. (2024) estimate

that 5–15% of reviews were substantially modi-
fied using LLMs, with affected reviewers showing
lower confidence and less engagement during re-
buttals. Latona et al. (2024) report similar trends
and observe a score inflation effect, while Ye et al.
(2024) show that even subtle LLM manipulations
can shift paper rankings. Together, these findings
underscore the risks unauthorized LLM use poses
to peer review fairness and rigor.

Given the increasing use of LLMs for peer re-
view generation, recent work has focused on de-
tecting and attributing such content. Much of this
research explores classifier-based detection or se-
mantic similarity methods aimed at identifying AI-
generated text. For example, Yu et al. (2025) pro-
pose a detection method based on the semantic
similarity between a known LLM-generated review
and a test review, flagging a review as machine-
generated when similarity exceeds a threshold.
Similarly, Kumar et al. (2025) introduce a partition-
based method under the assumption that a review
contains both human- and LLM-written compo-
nents. They segment the review into distinct points,
complete each segment with a reference LLM, and
measure semantic similarity between these comple-
tions and the original text to detect potential LLM
involvement.

However, these detection methods fail under
paraphrasing or hybrid-review scenarios, where
even minor edits or partial human rewriting can
evade detection. To address this limitation, water-
marking offers a promising alternative by embed-
ding identifiable signals directly into the generated
text. One foundational method is the KGW algo-
rithm (Kirchenbauer et al., 2023), which partitions
the model’s vocabulary into “green” and “red” to-
ken sets. During generation, the model is subtly
biased to sample more frequently from the “green”
list, which acts as a watermark-carrying set, while
avoiding tokens in the “red” list. This results in out-
put text that biases outputs toward “green” tokens
with minimal quality loss. Variants aim to improve
robustness and preserve quality (Liu et al., 2024;
Zhao et al., 2023; Hou et al., 2024).

More recently, commercial systems have also
entered this space. For example, Google’s SynthID-
Text watermarking system employs a strategy
called Tournament Sampling, in which candidate
tokens are ranked according to randomized water-
marking functions, and the highest-ranked token is
selected during generation (Dathathri et al., 2024).
While both academic and commercial watermark-
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ing approaches have shown promise, they are pri-
marily evaluated on general-purpose domains such
as news or encyclopedic text, and rarely tested un-
der the stylistic and ethical constraints found in
peer review.

While a few frameworks target peer review
watermarking (Rao et al., 2025), they rely on
tightly integrated pipelines and lack evaluation
across adaptation modes. Topic-based watermark-
ing (TBW) (Nemecek et al., 2024), originally pro-
posed for open-domain text, provides a lightweight,
semantically guided alternative. We adapt TBW
to peer review by aligning token selection with
domain-relevant topics, preserving generation qual-
ity while supporting practical reviewer attribution.
Section 3.2 details this adaptation.

3 Methodology

Our goal is to evaluate the applicability of topic-
based watermarking in the domain of academic
peer review. We investigate whether such water-
marking can preserve the quality and semantic in-
tegrity of generated reviews, while enabling robust
attribution under paraphrasing attacks. We describe
our data collection, model configurations, water-
marking integration, and evaluation procedures.

3.1 Peer Review Generation Task
We simulate realistic LLM-based peer review gen-
eration by training and prompting language models
to write reviews conditioned on a paper’s title and
abstract. We use the abstract rather than the full pa-
per because full submissions often exceed typical
context window limits and are less readily avail-
able in structured form. This section describes the
dataset used, the model variants we examine, and
our prompting and fine-tuning strategies.

3.1.1 Dataset
To evaluate topic-based watermarking in the con-
text of peer review, we compile a dataset of paper
titles, abstracts, and corresponding reviews from
ICLR and NeurIPS conferences using the OpenRe-
view API (OpenReview, 2024). Each review in-
cludes a summary, strengths and weaknesses, and
a final recommendation score. To minimize the
risk of including LLM-generated reviews, we re-
strict our dataset to conferences held before the
public release of ChatGPT (November 2022) (Ope-
nAI, 2022). Specifically, we collect reviews from
ICLR 2018–2023 and NeurIPS 2021–2022, not-
ing that the ICLR 2023 review phase, despite the

conference date, occurred prior to ChatGPT’s avail-
ability (ICLR, 2023). Although language models
existed before this, they were not widely adopted
in peer review workflows at scale.

The final dataset contains approximately 19,000
reviews. For each paper, we randomly sample a sin-
gle review to construct prompt-completion training
pairs, ensuring diversity in reviewer perspectives
while avoiding overrepresentation of any one sub-
mission. Detailed review counts by conference are
provided in Appendix A.1.

3.1.2 Model Configurations
To assess the feasibility of topic-based water-
marking across varying levels of model adap-
tation and reviewer effort, we utilize the
Llama-3.1-8B (Grattafiori et al., 2024) open-
source language model in three configurations:
base, few-shot, and fine-tuned. The base configu-
ration uses the pretrained model without any addi-
tional training or prompt engineering, simulating
minimal reviewer effort. The few-shot setting pro-
vides the model with example peer reviews as part
of the input prompt, enabling it to better replicate
the expected format and tone with lightweight guid-
ance. Finally, the fine-tuned configuration involves
additional supervised training on peer review data
using parameter-efficient methods, resulting in a
model that is more aligned with the review-writing
task and capable of generating coherent, domain-
adapted outputs. This model size offers a practical
balance between computational efficiency and gen-
eration quality, making it suitable for experiments
involving multiple training configurations.

3.1.3 Prompting and Few-shot Learning
In the few-shot setting, the model is given a prompt
containing a paper’s title and abstract followed by
a fixed instruction:

Title: [TITLE]
Abstract: [ABSTRACT]
Please write a detailed review.

Each prompt includes two example reviews
prepended to help the model learn the expected
structure and tone of a review. These few-shot
examples are randomly sampled from the train-
ing pool but excluded from evaluation generations.
Specifically, the two examples prepended to each
prompt are drawn from the first two entries in
the fine-tuning training split, ensuring consistency
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across models.

3.1.4 Fine-tuning Setup
For fine-tuning, we follow a supervised instruction-
tuning setup where each instance consists of an
input prompt (title + abstract + instruction) and
a target completion (review text). The dataset is
split into training (80%), validation (10%), and test
(10%) subsets. We fine-tune using LoRA (Low-
Rank Adaptation) with 4-bit quantization, enabling
gradient checkpointing and early stopping. The
objective is to improve the fluency and consis-
tency of generated reviews while approximating
the tone and structure typical of human-written
peer reviews. Fine-tuning hyperparameters, model
setup, and training procedure details are provided
in Appendix A.2.

3.2 Topic-Based Watermarking
Topic-based watermarking (TBW) (Nemecek et al.,
2024) is a semantic-aware watermarking method
that subtly influences a language model’s token se-
lection process to leave a detectable signature. Un-
like earlier schemes such as KGW (Kirchenbauer
et al., 2023), which rely on randomly partitioned
vocabularies, TBW constructs topic-specific token
subsets (“green lists”) aligned with the semantic
content of the input prompt. This design helps
preserve fluency and coherence while enhancing
robustness against paraphrasing and token-level ed-
its. We briefly summarize the TBW generation and
detection process as applied in our setup.

3.2.1 Token-to-Topic Mappings
TBW first assigns tokens to topic-specific green
lists using semantic similarity. A small set of gen-
eralized topics t1, . . . , tK is defined, each repre-
sented by an embedding eti computed via a sen-
tence embedding model. Each token v ∈ V in
the model’s vocabulary is embedded as ev, and
its cosine similarity with each topic embedding is
calculated:

sim(v, ti) =
ev · eti

∥ev∥ ∥eti∥
.

If the maximum similarity exceeds a threshold
τ , the token is assigned to the green list Gti for the
most similar topic. Tokens that do not meet this
threshold are placed in a residual set and evenly
distributed across all green lists to maintain full
vocabulary coverage.

While the original implementation used general-
purpose topic categories (e.g., technology,

sports), we adapt the topic set to align with the
thematic structure of academic reviews, better re-
flecting the linguistic and topical distribution of
this domain.

3.2.2 Generation
Once topic-specific green lists are defined, TBW
applies a watermark by biasing the model’s out-
put distribution during generation. For each input
prompt, the most relevant topic is identified us-
ing a lightweight keyword extraction method (e.g.,
KeyBERT). If the extracted topic exactly matches
one of the predefined topic labels, the correspond-
ing “green” list is selected. If no exact match is
found, topic embeddings are computed and the
most similar predefined topic is selected based on
cosine similarity.

At each decoding step, the model produces
a probability distribution over its vocabulary V .
TBW modifies this distribution by adding a small
logit bias δ to all tokens in the selected green list.
This increases the likelihood of sampling topic-
aligned tokens after applying the softmax function,
subtly guiding the generation process without al-
tering the model architecture or requiring multiple
decoding passes. The watermark strength is con-
trolled by the value of δ: higher values produce
stronger attribution signals but cause detectable
shifts in word choice or token distribution. The
approach is model-agnostic and incurs minimal
overhead, making it compatible with standard gen-
eration pipelines.

3.2.3 Detection
TBW uses a statistical test to detect whether a given
text contains a watermark. Detection mirrors the
generation process by recovering the relevant topic
inferred from the input text using the same keyword
or embedding-based matching procedure, and the
corresponding green list Gt∗ is recovered.

The number of green-list tokens g is then
counted in the text ztest, and compared to the total
number of tokens n. A z-score quantifies whether
the green-token rate exceeds an expected baseline
proportion γ:

z =
g − γ · n√

n · γ · (1− γ)
.

If z > zthreshold, the text is classified as water-
marked. The threshold can be tuned to balance sen-
sitivity and specificity, and the method is prompt-
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and model-agnostic at inference time, requiring ac-
cess only to the generated output. Importantly, the
detection process is model-agnostic and does not
require access to the model logits or original input
prompt.

3.2.4 Watermarking Configurations
To ensure consistency with the original TBW im-
plementation while adapting it to the domain of
peer review, we retain most of the original pa-
rameter settings. We use the same sentence em-
bedding model, all-MiniLM-L6-v2 (Reimers and
Gurevych, 2020), to encode tokens and topic labels
into a shared semantic space. Topic extraction from
input prompts is performed using KeyBERT (Groo-
tendorst, 2020), as in the original work.

Following the TBW framework, we partition
the vocabulary into green lists based on seman-
tic similarity to a predefined set of K = 4 topics.
While the original implementation used general-
purpose topics such as {animals, technology,
sports, medicine}, we adapt these categories to
reflect the structure and content of machine learn-
ing conference reviews. Specifically, we define
the following domain-specific topics: {theory,
applications, models, optimization}. These
topics are designed to capture broad themes in
peer review content from venues like ICLR and
NeurIPS, and can be adjusted to suit different re-
search domains.

We apply a logit bias of δ = 2.0 to green-list
tokens during generation, consistent with values re-
ported in prior literature (Kirchenbauer et al., 2023).
For token-to-topic assignment, we primarily use a
cosine similarity threshold of τ = 0.7, but also
evaluate a lower threshold of τ = 0.3 to assess
how watermark detection and text quality vary un-
der relaxed alignment constraints.

3.3 Rationale for Topic-Based Watermarking

While several general-purpose watermarking meth-
ods exist, we select topic-based watermarking
(TBW) for its unique combination of robustness,
adaptability, and minimal performance overhead.
Prior work has demonstrated that TBW is resilient
to paraphrasing, while preserving generation qual-
ity and incurring no additional inference cost (Ne-
mecek et al., 2024). This property is important in
the peer review setting, where paraphrasing repre-
sents a realistic threat model where a reviewer seek-
ing to obscure LLM use may rewrite or rephrase
parts of a generated review, but is unlikely to intro-

duce noise or degrade the review’s usefulness or
semantic integrity. These full-paraphrase attacks,
rather than token-level perturbations or synthetic
distortions, reflect plausible reviewer behavior un-
der current policy constraints.

TBW’s semantic token-level biasing strategy is
well-suited to this context. It subtly steers genera-
tion toward topic-consistent vocabulary without dis-
rupting fluency or style, both of which are critical in
high-stakes peer review writing. In addition, TBW
supports domain adaptation through customizable
topic lists, and relies on a topic-matching assump-
tion that naturally holds in peer review, where con-
tent is expected to stay aligned with the paper under
evaluation.

Finally, the peer review task inherently satisfies
TBW’s core assumption of topic consistency be-
tween the prompt and the generated output. One
known limitation of TBW is the Topic Matching
Assumption, which requires that the generated text
remain semantically aligned with the prompt topic.
In general-purpose settings, this assumption can be
violated due to topic drift or open-ended genera-
tion. In peer review, however, this risk is minimal,
as the input (e.g., paper title and abstract) directly
constrains the review content. A reviewer cannot
reasonably produce a review on a different topic
than the paper itself. As such, TBW aligns natu-
rally with the structural and semantic constraints
of the peer review task.

4 Experiments

To evaluate the applicability of topic-based water-
marking (TBW) in the domain of peer review, we
conduct a series of experiments across multiple
dimensions, including text quality, robustness to
paraphrasing, and classifier-based attribution.

4.1 Generation Quality

To assess the impact of TBW on peer review
generation, we evaluate outputs using perplexity
and BERTScore (Zhang et al., 2019). Following
prior work (Nemecek et al., 2024), we apply a
semantic similarity threshold of τ = 0.7 to con-
struct topic-aligned green lists. We use 1,000 sam-
ples per model configuration (base, few-shot, fine-
tuned), each consisting of approximately 200± 5
tokens. Additional results for a lower threshold
(τ = 0.3) and comparisons to baseline watermark-
ing schemes are provided in Appendix B.
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4.1.1 Perplexity
We compute perplexity using the same model that
generated the text (Llama-3.1-8B), with lower val-
ues indicating higher fluency. Values above 20
are truncated in visualizations for readability (Fig-
ure 1), and the number of retained samples is shown
in Table 1. This setup reflects how confidently the
model assigns probability to its own output, serving
as a proxy for fluency.

No Watermark Topic-Based Watermark
Watermarking Scheme

1

2

3

4

5

6

7

Pe
rp

le
xi

ty

Model
Base
Few-shot
Fine-tuned

Figure 1: Perplexity distributions across model configu-
rations with and without TBW (τ = 0.7). Lower values
indicate better fluency. Values above 20 are truncated
for clarity.

Model Scheme Samples Retained

Base
NW 508
TBW 991

Few-shot
NW 1000
TBW 1000

Fine-tuned
NW 1000
TBW 1000

Table 1: Number of retained generations with perplexity
≤ 20, comparing no watermark (NW) and TBW across
model configurations.

TBW introduces only a slight increase in per-
plexity, consistent with prior findings (Nemecek
et al., 2024). In the base model, over 50% of un-
watermarked generations exceed a perplexity of
20, while nearly all TBW outputs fall below this
threshold. This suggests that TBW preserves natu-
ralness and may even enhance lexical consistency
in low-context settings by nudging generation to-
ward topic-relevant vocabulary.

4.1.2 BERTScore Evaluation
We use BERTScore F1 to evaluate semantic simi-
larity between generated reviews and ground-truth

references. This metric, which compares contex-
tual embeddings, is tolerant to paraphrasing and
thus well-suited for open-ended review generation.
Results across all model configurations are shown
in Figure 2.

No Watermark Topic-Based Watermark
Watermarking Scheme

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

BE
RT

Sc
or

e 
F1

Model
Base
Few-shot
Fine-tuned

Figure 2: BERTScore F1 distributions across model con-
figurations with and without TBW (τ = 0.7). Higher
values indicate greater semantic similarity to the ground
truth.

TBW causes only a minor drop in BERTScore,
indicating that semantic fidelity is largely pre-
served. Notably, in the base model, TBW narrows
the BERTScore distribution, suggesting more con-
sistent alignment with the source prompt across
samples.

4.2 Robustness to Paraphrasing Attacks

We assess TBW’s resilience to paraphrasing at-
tacks, a realistic threat model wherein reviewers
may rephrase LLM-generated reviews to evade de-
tection while preserving meaning. We focus on
full-paraphrase attacks, which best reflect plausi-
ble reviewer behavior, and exclude token-level or
partial edits.

To align with prior experiments, we generate
1,000 samples per model (base, few-shot, fine-
tuned), each with ∼200 tokens, using τ = 0.7
for topic alignment. Paraphrasing is applied using
PEGASUS and DIPPER, the latter configured with
lexical = 60 and order = 40, following stan-
dard robustness benchmarks (Hou et al., 2024; Liu
and Bu, 2024).

Detection uses the TBW statistical test (see Sec-
tion 3.2.3), applied to both original and paraphrased
generations. Table 2 reports accuracy under three
conditions: no paraphrasing, PEGASUS, and DIP-
PER.

TBW maintains strong robustness in base and
fine-tuned models across attack types. The few-
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Model Attack Setting ROC-AUC Best F1 Score TPR@1%FPR TPR@10%FPR

Base
No Attack 0.9678 0.9546 0.9080 0.9560
PEGASUS 0.9359 0.8928 0.7460 0.8610
DIPPER 0.9221 0.8568 0.6690 0.8260

Few-shot
No Attack 0.7286 0.7677 0.6260 0.6690
PEGASUS 0.7221 0.7584 0.6090 0.6550
DIPPER 0.7647 0.7537 0.5650 0.6590

Fine-tuned
No Attack 0.9813 0.9266 0.8170 0.9480
PEGASUS 0.9435 0.8584 0.5930 0.8260
DIPPER 0.9064 0.8605 0.3480 0.5980

Table 2: Detection performance across model configurations and attack settings. Metrics include ROC-AUC, best
F1 score, and true positive rate (TPR) at fixed false positive rates (FPRs) of 1% and 10%.

shot configuration, however, shows reduced recall
(0.6260 → 0.5650 under DIPPER), likely due to
topic mismatch between prompt examples and the
target paper, which weakens topic alignment and
reduces detectability post-paraphrasing.

Finally, we verify TBW does not yield false pos-
itives on human-written reviews, owing to a parti-
tioning strategy that preserves vocabulary diversity
across green lists. For full ROC curves and com-
parisons with baseline watermarking schemes, see
Appendix C.

4.3 Classifier-Based Attribution

To complement watermark detection, we evaluate
whether LLM-generated peer reviews can be at-
tributed to their original review labels (e.g., ac-
cept, borderline, reject) using standard classifica-
tion models. This task provides a content-based sig-
nal of semantic alignment, helping assess whether
watermarking affects the interpretability or label
consistency of generated reviews. We frame this
as a three-way classification problem based on the
review score originally assigned to each paper.

4.3.1 Data and Training Protocol
We first construct a labeled dataset by extracting
review texts from our generation pipeline and as-
signing a class label based on the associated ground
truth rating (e.g., scores 1–4 mapped to reject,
5–6 to borderline, and 7–10 to accept). To en-
sure accurate mapping, we align generated reviews
with their original metadata using paper titles as
unique identifiers. The final dataset consists of
generated reviews paired with class labels, drawn
from the fine-tuned generation split described in
Section 3.1.4.

We train two transformer-based classifiers,

BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), to predict the rating category of each
review. The dataset is stratified into training and
held-out test splits, with 9,000 balanced training
samples (3,000 per class) and 1,000 test samples.
Tokenization is performed using each model’s na-
tive tokenizer, and models are fine-tuned using
the HuggingFace Trainer API with early stop-
ping based on F1. We adopt 4-bit precision, label
smoothing (0.1), and a cosine learning rate sched-
ule with warmup. Additional training hyperparam-
eters and evaluation on the testing set are provided
in Appendix D.

4.3.2 Evaluation

Once trained, both classifiers are applied to a
held-out set of generated reviews produced by vari-
ous generation configurations (base, few-shot, fine-
tuned) with and without TBW using τ = 0.7. For
each review, we extract the title from the input
prompt, retrieve the associated ground truth score
from metadata, and map it to a label for evaluation.
We evaluate model performance with and without
TBW to assess whether watermarking impairs label
recoverability.

As shown in Table 3, we observe no degradation
in classification performance due to TBW. On the
contrary, in most configurations, applying TBW
leads to modest improvements in both accuracy
and F1. This suggests that topic-based watermark-
ing preserves the semantic structure necessary for
accurate label prediction and even enhance it by
encouraging more topically consistent language.
These findings reinforce TBW’s suitability for at-
tribution tasks in domain-sensitive contexts like
peer review, where both traceability and semantic
fidelity are critical. Additional analysis on class-
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Table 3: Overall classification performance on original LLM-generated reviews. Metrics are averaged over Accept,
Borderline, and Reject classes.

Classifier Model Watermark Accuracy Precision Recall F1

BERT

Base
NW 0.290 0.353 0.328 0.278
TBW 0.321 0.346 0.342 0.317

Few-shot
NW 0.403 0.373 0.379 0.360
TBW 0.437 0.366 0.369 0.358

Fine-tuned
NW 0.400 0.367 0.370 0.364
TBW 0.416 0.366 0.367 0.366

RoBERTa

Base
NW 0.486 0.344 0.341 0.305
TBW 0.432 0.357 0.352 0.350

Few-shot
NW 0.399 0.362 0.368 0.337
TBW 0.424 0.371 0.371 0.353

Fine-tuned
NW 0.406 0.367 0.374 0.367
TBW 0.443 0.401 0.403 0.402

specifics for human-written reviews is provided in
Appendix E and classifier attribution performance
under a lower topic similarity threshold (τ = 0.3)
to assess the impact of weaker topic alignment is
provided in Appendix F. For an analysis of how
review content and structure shift under paraphras-
ing, see Appendix G, which provides changes in
accuracy under paraphrasing.

5 Discussion

Topic-based watermarking performs particularly
well in the peer review setting due to the natu-
ral alignment between the subject of a paper and
the content of its corresponding review. Unlike
more open-ended generation tasks, peer reviews
are tightly grounded in the paper being evaluated,
making significant topic shifts unlikely, unless in-
troduced deliberately by the reviewer. Since high-
quality, relevant reviews are needed for the aca-
demic evaluation process, such intentional degra-
dation is improbable in practice.

We also observe that topic-based watermark-
ing is compatible across varying levels of LLM
adaptation, from base models to fine-tuned vari-
ants. While the few-shot setting shows degradation
in detection robustness, we attribute this to topic
mismatch between the few-shot exemplars and the
review being generated. This limitation can be mit-
igated with better exemplar selection or dynamic
prompt construction.

From a deployment perspective, TBW offers

a practical solution for reviewer attribution. The
method is efficient and detection incurs minimal
computational overhead, making it suitable for
integration into existing conference submission
pipelines (Nemecek et al., 2024). Its low latency
and lack of architectural modifications make it a
compelling candidate for enforcement mechanisms
in venues that prohibit LLM-assisted review writ-
ing.

Lastly, our evaluation uses a constrained input
(title and abstract) due to context window limita-
tions. We expect that access to the full paper would
further enhance generation quality and strengthen
watermark consistency by grounding outputs in
topic-relevant content.

6 Conclusion

We present a comprehensive evaluation of topic-
based watermarking in the context of academic
peer review, a high-stakes domain where LLM use
is often restricted but difficult to detect. Unlike
prior work that focuses on general-purpose text, our
study demonstrates that topic-based watermarking
can preserve generation quality, maintain robust-
ness under paraphrasing, and support attribution
across different LLM configurations. Its semantic
grounding and low computational overhead make
it a practical solution for enforcing LLM usage
policies in peer review, offering a minimally intru-
sive mechanism to help safeguard the integrity of
academic evaluation.
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Limitations

This work inherits a key limitation of topic-based
watermarking: the topic-matching assumption. As
noted in the original proposal (Nemecek et al.,
2024), watermark detection may degrade if the se-
mantic topic of the generated output drifts signifi-
cantly from the original prompt. This is particularly
challenging in open-domain generation, where the
input prompt is often unavailable at detection time.
However, in the context of peer review, this limita-
tion is largely mitigated. Reviewers must prompt
the LLM using the content of the paper, either by
directly including the text or referencing its ab-
stract and title, ensuring that the generated review
remains topically aligned with the source. Further-
more, during detection, conference organizers have
access to the submission itself, allowing them to
reliably identify the intended topic and recover the
correct green list. As a result, the topic-matching
assumption holds in this use case.

A second limitation concerns deployment and
coverage. For watermarking to serve as a reliable
attribution mechanism, it must be consistently ap-
plied across all LLMs used in a given environment.
This is a general challenge for watermarking ap-
proaches and not unique to TBW. If only certain
LLM providers implement watermarking while oth-
ers do not, users can simply switch to unwater-
marked systems to bypass attribution. While the
governance and policy mechanisms required to ad-
dress this challenge are beyond the scope of this pa-
per, we acknowledge that the effectiveness of TBW
in real-world enforcement depends on broader co-
ordination across providers and platforms.

Ethical Considerations

This work addresses the growing concern of unau-
thorized LLM usage in academic peer review.
While many conferences permit LLM use for au-
thoring papers, they explicitly prohibit it for gen-
erating reviews, citing risks to confidentiality, fair-
ness, and accountability. Our goal is not to penalize
reviewers but to support conference organizers in
enforcing existing policies through lightweight and
interpretable attribution tools. Topic-based water-
marking introduces no additional risk to authors
or reviewers, as it operates at the generation level
without modifying model internals or relying on
invasive detection mechanisms. We advocate for
transparent disclosure of LLM usage in reviews
and emphasize that attribution tools should be de-

ployed with clear governance structures and ethical
oversight.
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A Peer Review Task Specifics

This appendix provides additional details regard-
ing the peer review generation setup described in
Section 3.1. Specifically, we include conference-
level review statistics and implementation details
for fine-tuning the Llama-3.1-8B model.

A.1 Conference Review Statistics
Table 4 reports the number of reviews collected
from each ICLR and NeurIPS conference used in
our experiments. Only reviews submitted prior to
the release of ChatGPT (November 2022) were
included to minimize the likelihood of LLM-
generated content in the training data. No addi-
tional filtering was applied beyond restricting the
dataset to pre-ChatGPT conferences where all re-
views were used in their original form.

Conference: Year Number of Reviews
ICLR: 2018 935
ICLR: 2019 1419
ICLR: 2020 2213
ICLR: 2021 2594
ICLR: 2022 2617
ICLR: 2023 3793
NeurIPS: 2021 2768
NeurIPS: 2022 2824

Table 4: Review counts per conference used in training
and evaluation. The total number of unique reviews is
19,163.

A.2 Fine-tuning Details
For instruction-tuned generation, we fine-tune the
Llama-3.1-8B model using a parameter-efficient
LoRA (Low-Rank Adaptation) method. LoRA
freezes the original model weights and injects train-
able low-rank matrices into a subset of layers, en-
abling effective fine-tuning with a small number of
additional parameters. This approach is well-suited
for large-scale models, reducing memory usage and
training time while maintaining performance. Key
settings include:

• Adapter type: LoRA

• LoRA r/α: 16/32

• LoRA Dropout: 0.1

• Training epochs: 3

• Batch size (per device): 2

• Max sequence length: 2048 tokens

• Learning rate: 1e-4

• Warmup ratio: 0.2

• Quantization: 4-bit (NF4), double quantiza-
tion enabled

• Target modules: q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj, down_proj
(These target modules correspond to the at-
tention and MLP projections in transformer
layers, where LoRA adapters are most effec-
tive.)

All experiments were run using the Hugging Face
Transformers and PEFT libraries, with training
orchestrated using the Trainer API. The final
adapters and tokenizer were saved for downstream
evaluation. The dataset consists of the prompt (ti-
tle, abstract, and generation instruction) and a com-
pletion (review text), compatible with instruction
tuning for causal language models.

B Generation Quality Evaluations

We expend our evaluation of topic-based water-
marking (TBW) to assess its sensitivity to differ-
ent token-to-topic similarity thresholds. In partic-
ular, we re-run perplexity and BERTScore evalu-
ations using a lower semantic similarity threshold
of τ = 0.3 (vs. τ = 0.7 in the main experiments).
We also compare TBW against two baseline water-
marking schemes, KGW and SynthID, to contex-
tualize performance. We utilize and open-source
watermarking framework, MarkLLM (Pan et al.,
2024), and the specified configurations for the base-
line watermarking implementations.

B.1 Evaluation with Lower Topic Similarity
Threshold (τ = 0.3)

We repeat the perplexity and BERTScore evalua-
tions described in Section 4.1.1 and Section 4.1.2
using a relaxed topic assignment threshold of τ =
0.3. This setting allows more tokens to be included
in each green list, resulting in stronger watermark
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signals but potentially greater degradation in gener-
ation quality. The results help assess how sensitive
TBW is to this design parameter.

B.1.1 Perplexity
Figure 3 shows the perplexity distributions for all
model configurations, comparing outputs generated
with and without TBW under τ = 0.3. Following
the same visualization protocol as in the main paper,
we truncate values above 20 for readability. Table 5
reports how many samples remained below this
threshold in each setting.
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Figure 3: Perplexity distributions across model configu-
rations with and without TBW (τ = 0.3). Lower values
indicate better fluency. Values above 20 are truncated
for clarity.

Model Scheme Samples Retained

Base
NW 508
TBW 684

Few-shot
NW 1000
TBW 1000

Fine-tuned
NW 1000
TBW 1000

Table 5: Number of generations with perplexity ≤ 20,
comparing unwatermarked (NW) and TBW outputs
(τ = 0.3).

As expected, TBW at τ = 0.3 produces slightly
higher perplexity than unwatermarked generations,
reflecting modest fluency degradation. Compared
to TBW at τ = 0.7, this lower-threshold variant
results in fewer retained samples in the base model
(684 vs. 991), suggesting increased fluency loss un-
der weaker semantic filtering. Additionally, there
is worse performance in the few-shot model, con-
sistent with less effective topic alignment, but with

improved perplexity in the fine-tuned model poten-
tially due to the broader green lists better overlap
with the model’s learned domain-specific vocabu-
lary.

These results support the view that τ serves as
a tradeoff between watermark strength and gener-
ation quality, and that optimal settings may vary
depending on the model’s adaptation level.

B.1.2 BERTScore Evaluation
We repeat the BERTScore F1 evaluation under the
same setup described in Section 4.1.2, using gener-
ations produced with TBW at τ = 0.3. Results are
shown in Figure 4.
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Figure 4: BERTScore F1 distributions across model con-
figurations with and without TBW (τ = 0.3). Higher
values indicate greater semantic similarity to the human-
written reference.

We observe that TBW with τ = 0.3 results
in similar BERTScore degradation as seen with
τ = 0.7 in both the few-shot and fine-tuned model
configurations. This indicates that semantic fidelity
is largely preserved even with a broader green list,
suggesting the robustness of TBW’s semantic bi-
asing strategy in these more guided generation set-
tings.

However, the base model configuration shows
more pronounced differences. Compared to TBW
at τ = 0.7, the base model with τ = 0.3 produces
generations with a broader range of BERTScore
values, indicating increased variability in semantic
alignment. This dispersion suggests that, in the
absence of stronger conditioning (e.g., few-shot
or fine-tuning), relaxing the similarity threshold
introduces more topical drift, potentially reducing
TBW’s ability to maintain consistent semantic guid-
ance.

These results reinforce that TBW is more sta-
ble in controlled generation setups, while its per-
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formance in lower-context settings (like the base
model) is more sensitive to the choice of τ .

B.2 Baseline Watermarking Quality
We compare TBW against two existing watermark-
ing methods:

• KGW (Kirchenbauer et al., 2023): one of, if
not the first watermarking approach for LLMs.

• SynthID-Text (SynthID) (Dathathri et al.,
2024): Google’s proprietary watermarking
technique designed for text attribution.

We evaluate their impact on fluency using perplex-
ity and semantic similarity using BERTScore.

B.2.1 Perplexity
We evaluate perplexity for generations produced
using KGW and SynthID, comparing their impact
on fluency using the same evaluation framework as
in Section 4.1.1. Figure 5 shows the perplexity dis-
tributions for each baseline, while Table 6 reports
the number of samples with perplexity ≤ 20 after
truncation.
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Figure 5: Perplexity distributions across model configu-
rations with KGW and SynthID. Lower values indicate
better fluency. Values above 20 are truncated for clarity.

Across all models, KGW performs reasonably
well in preserving fluency. In the base model, its
perplexity distribution is narrower and more favor-
able than that of SynthID, with 840 out of 1000
samples retained. In the few-shot setting, KGW is
comparable to TBW at τ = 0.7, exhibiting slightly
less variability. In the fine-tuned model, KGW per-
forms better than TBW at τ = 0.7 and is similar
in trend to TBW at τ = 0.3, suggesting its soft
constraints are better tolerated by a model already
adapted to the domain. In contrast, SynthID yields
noticeably higher perplexity and wider distribu-
tions in the base and few-shot models, indicating

Model Scheme Samples Retained

Base
KGW 840
SynthID 538

Few-shot
KGW 1000
SynthID 1000

Fine-tuned
KGW 1000
SynthID 1000

Table 6: Number of retained generations with perplexity
≤ 20 across model configurations, comparing KGW
and SynthID.

reduced fluency and more frequent sampling of
low-probability tokens. Only 538 base model gen-
erations were retained under the perplexity cap of
20. In the fine-tuned model, SynthID performs bet-
ter, but still shows greater perplexity spread than
KGW or TBW.

B.2.2 BERTScore Evaluation
We evaluate BERTScore F1 for generations pro-
duced with KGW and SynthID, using the same
test setup and reference alignments as described in
Section 4.1.2. Results are presented in Figure 6.
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Figure 6: BERTScore F1 distributions across model con-
figurations with KGW and SynthID. Higher values in-
dicate greater semantic similarity to the human-written
reference.

In the few-shot and fine-tuned configurations,
KGW performs comparably to TBW at τ = 0.7,
with similar median BERTScore values and dis-
tributional tightness. However, in the base model
configuration, KGW shows a broader distribution
of scores, indicating higher variability in seman-
tic fidelity. This suggests that KGW, like TBW, is
more effective when the generation is guided by
conditioning or domain adaptation. SynthID shows
a similar pattern but with slightly more pronounced
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effects. In the base model, SynthID outputs ex-
hibit a wider spread compared to both TBW and
KGW, reflecting less stable semantic alignment. In
contrast, SynthID performs slightly better in the
few-shot and fine-tuned settings, with a 1–2% im-
provement in BERTScore F1 over TBW at τ = 0.7.

These results highlight that while all watermark-
ing methods introduce some tradeoff between attri-
bution and quality, their semantic fidelity is more
stable in strongly conditioned generation settings.
SynthID offers stronger semantic preservation un-
der tight generation constraints, but at the cost of
higher perplexity and fluency degradation in lower-
context scenarios.

C Robustness Evaluations

We provide additional details for the robustness
evaluations described in Section 4.2. We include
ROC curves for topic-based watermarking (TBW)
and compare detection accuracy against the KGW
and SynthID baselines under paraphrasing attacks.
These results offer a more comprehensive view of
how watermarking methods perform under realistic
adversarial transformations.

C.1 ROC Curves
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Figure 7: ROC curves for TBW detection under no
attack, PEGASUS, and DIPPER paraphrasing, across all
model configurations. The curves demonstrate TBW’s
robustness across attack severity and adaptation settings.

Figure 7 presents ROC curves for TBW eval-
uated on outputs from the base, few-shot, and
fine-tuned models. Detection performance remains
strong in the base and fine-tuned settings, with area
under the curve (AUC) values exceeding 0.90 under
no attack and only moderately degraded under para-
phrasing. The few-shot model is more sensitive to

topic dilution, as discussed in Section 4.2, resulting
in lower recall and reduced detection confidence
under attack conditions.

C.2 Baseline Watermarking Robustness

To assess detection robustness of baseline meth-
ods, we apply the same paraphrasing attacks (PE-
GASUS and DIPPER) to generations produced
by KGW and SynthID, and then evaluate each
method’s ability to recover the watermark. Each
row in Table 2 reflects detection accuracy out of
1,000 watermarked samples per setting.

Detection Accurcy
Language Model Attacks TBW KGW SynthID

Base
No Attack 0.9460 0.9710 0.9090
PEGASUS 0.8470 0.4770 0.1350
DIPPER 0.8760 0.7540 0.1730

Few-shot
No Attack 0.6220 0.9750 0.9590
PEGASUS 0.5800 0.5800 0.3590
DIPPER 0.5170 0.7480 0.2250

Fine-tuned
No Attack 0.8800 0.9260 0.9600
PEGASUS 0.5830 0.4370 0.1800
DIPPER 0.5840 0.6570 0.1590

Table 7: Detection accuracy of TBW, KGW, and Syn-
thID across model configurations and paraphrasing at-
tack types. Each score reflects the proportion of cor-
rectly identified watermarked samples out of 1,000 ex-
amples per condition. Bolded values indicate the best
result per row.

Under no-attack conditions KGW and SynthID
outperform TBW in the few-shot and fine-tuned
models. In the base model variant, TBW performs
better than SynthID, but still worse than KGW with
a smaller margin.

Under paraphrasing, TBW shows better robust-
ness. In the base model, TBW outperforms KGW
and SynthID by a wide margin, maintaining de-
tection accuracy above 84% under PEGASUS and
87% under DIPPER. KGW degrades more sharply,
and SynthID performs poorly across all paraphras-
ing conditions. In the few-shot setting, TBW and
KGW perform similarly under PEGASUS, but
TBW trails slightly under DIPPER. SynthID again
suffers larger drops in accuracy. In the fine-tuned
model, TBW maintains accuracy comparable to
KGW and outperforming SynthID.

D Classifier Specifics

We provide implementation details for the classifi-
cation experiments described in Section 4.3.1. We
outline the training setup used for both BERT and
RoBERTa classifiers and summarize the evaluation
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strategy for attribution analysis on generated peer
reviews.

D.1 Classifier Training

For reproducibility, we provide the specific training
parameters used to fine-tune our LLM classifiers
for predicting peer review labels corresponding to
paper rating categories: reject, borderline, and
accept.

Each model is fine-tuned using the Hugging Face
Trainer API with early stopping based on F1. Key
training settings include:

• Model types: bert-base-uncased,
roberta-large

• Number of classes: 3 (reject, borderline,
accept)

• Max sequence length: 512 tokens

• Training epochs: 5

• Batch size (per device): 16

• Learning rate: 2e-5

• Warmup ratio: 0.1

• Optimizer: AdamW

• Scheduler: Cosine with restarts

• Dropout: 0.2 (attention and hidden layers)

• Gradient clipping: Max norm 1.0

• Label smoothing: 0.1

• Precision: Mixed (FP16 with full-eval)

• Quantization: 4-bit weight loading (for mem-
ory efficiency)

• Evaluation strategy: Per epoch; best model
selected via F1 on validation set

• Early stopping: Enabled (patience = 1)

Tokenization was performed using each model’s
pretrained tokenizer. A padding-aware data collator
was used for batch construction. All training was
conducted using the Hugging Face Transformers
library and saved checkpoints were used for down-
stream evaluation on generated samples.

D.2 Classifier Evaluation

We evaluate both BERT and RoBERTa classifiers
on a held-out test set of 1,000 human-written peer
reviews. This evaluation step assesses whether the
models can correctly recover the original review
rating category (reject, borderline, accept) be-
fore applying them to generated or watermarked
samples.

Predictions are obtained from each trained classi-
fier on the tokenized test set and compared against
the ground truth labels. We compute confusion ma-
trices to visualize class-specific misclassification
patterns and report overall accuracy as a coarse
measure of performance. BERT achieves an accu-
racy of 51.3%, while RoBERTa performs slightly
better at 53.9%. Figures 8 and 9 present the con-
fusion matrices for BERT and RoBERTa, respec-
tively.
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Figure 8: Confusion matrix for the BERT classifier on
1,000 human-written peer reviews.

Both classifiers exhibit a strong predictive
tendency toward the borderline class. As
shown in the confusion matrices, the majority of
borderline samples are correctly classified by
both BERT (367/763) and RoBERTa (374/763).
However, a large number of reject and accept
samples are also misclassified as borderline. For
instance, BERT misclassifies 18 reject and 60
accept samples as borderline, while RoBERTa
reduces this to 14 and 46, respectively. Compared
to BERT, RoBERTa shows slightly improved sep-
aration between all three classes, with fewer mis-
classifications across off-diagonal entries. In partic-
ular, it shows higher retention of true reject and
accept labels, suggesting better overall discrimi-
native performance.
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Figure 9: Confusion matrix for the RoBERTa classifier
on on 1,000 human-written peer reviews.

E Class-Specific Classifier Evaluation

To further characterize classifier performance, we
conduct a class-specific evaluation of human-
written peer reviews based on the same classifi-
cation framework introduced in Section 4.3. This
appendix extends the aggregate metrics reported
in Table 3 by analyzing model behavior across the
three target rating categories. Specifically, we ex-
amine confusion matrices for each classifier (BERT
and RoBERTa), stratified by language model con-
figuration (base, few-shot, fine-tuned) and water-
marking condition (with or without topic-based
watermarking). These matrices provide insight into
the distribution of true versus predicted labels, al-
lowing us to identify patterns of misclassification
across rating levels.

Overall, we observe that classifier performance
is strongest for the accept and borderline cate-
gories, with higher precision and recall scores rel-
ative to the reject class. This trend holds consis-
tently across most configurations. The primary ex-
ception is observed in the BERT classifier applied
to generations from the base LLM (without water-
marking), where performance on the borderline
class drops, leading to more frequent misclassifica-
tions into the neighboring categories.

This analysis underscores the relative semantic
distinctiveness of strongly positive (Accept) and
moderate (Borderline) reviews, while highlight-
ing the challenges involved in distinguishing lower-
quality (Reject) reviews, which often exhibit more
linguistic and structural variability.

F Classifier-Based Attribution under
Lower Topic Similarity Threshold
(τ = 0.3)

We extend our classifier-based attribution analysis
to topic-based watermarking (TBW) applied at a
lower semantic similarity threshold of τ = 0.3,
using the same evaluation methodology described
in Section 4.3. This threshold relaxes the token-
to-topic alignment constraints, thereby increasing
green-list coverage and watermark signal strength,
while potentially impacting semantic coherence.

Across classifiers and model variants, we ob-
serve a more balanced distribution of predic-
tions among the three rating categories: accept,
borderline, and reject. This suggests that the
broader topic alignment may reduce overfitting to
specific semantic patterns. However, in the fine-
tuned model configuration, misclassifications of
reject reviews remain more pronounced, indicat-
ing continued difficulty in capturing the linguistic
signals associated with negative evaluations, even
under stronger watermarking. The results are il-
lustrated in Figure 10. Table 8 reports the classifi-
cation metrics for each classifier and LLM model
variant under TBW with τ = 0.3. While overall
performance remains comparable to the τ = 0.7
condition, we observe that the fine-tuned model
achieves the highest accuracy across both BERT
and RoBERTa classifiers, suggesting that domain
adaptation remains a dominant factor in attribution
effectiveness even under relaxed topic alignment.

G Peer Review Shifts Under
Paraphrasing

To evaluate the impact of paraphrasing on classifier-
based review attribution, we examine both classifi-
cation accuracy and label stability under two para-
phrasing threat models: PEGASUS and DIPPER.
Specifically, we sample 100 LLM-generated peer
reviews and apply paraphrasing to each using both
models. We then assess the classification perfor-
mance before and after paraphrasing under three
watermarking conditions: no watermark (NW),
topic-based watermarking (TBW) with τ = 0.7,
and TBW with τ = 0.3.

Figure 12 presents accuracy changes across all
classifier and model configurations. Table 9 re-
ports the number of label transitions (e.g., Accept
→ Borderline) observed in the paraphrased re-
views. These metrics reflect the semantic resilience
of reviewer intent and classification stability under
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Table 8: Classification performance for topic-based watermarking (TBW) at a lower similarity threshold of τ = 0.3.
Results are shown across all model configurations (base, few-shot, fine-tuned) and for both BERT and RoBERTa
classifiers.

Classifier Model Accuracy Precision Recall F1

BERT
Base 0.289 0.322 0.322 0.288
Few-shot 0.387 0.334 0.342 0.333
Fine-tuned 0.414 0.372 0.366 0.360

RoBERTa
Base 0.438 0.338 0.340 0.332
Few-shot 0.360 0.339 0.344 0.335
Fine-tuned 0.398 0.375 0.368 0.361
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(e) BERT Fine-tuned
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(f) RoBERTa Fine-tuned

Figure 10: Confusion matrices for topic-based water-
marking (TBW) applied at a lower topic similarity
threshold (τ = 0.3). Results are shown across all model
configurations (base, few-shot, fine-tuned) and for both
BERT and RoBERTa classifiers.

adversarial rewording.
Our results indicate that paraphrasing generally

reduces classification accuracy across all settings,
though the degree of degradation varies. Notably,
TBW models exhibit consistent accuracy declines
under paraphrasing for both τ values, suggesting
that watermarked outputs are more sensitive to ad-
versarial modification in terms of downstream at-
tribution. In contrast, non-watermarked outputs
show mixed effects while some configurations ex-
perience accuracy drops, others see minor improve-
ments. We attribute this to incidental lexical clarifi-
cations introduced by the paraphrasers. In terms of
label stability, TBW reduces the number of class
shifts compared to the non-watermarked baseline.
This trend is especially evident under the PEGA-
SUS paraphrasing model, where non-watermarked
outputs exhibit the highest number of shifts. These
findings suggest that TBW not only leaves a de-
tectable signature but may also provide a degree
of structural regularity that preserves classification
under text manipulation.
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(c) RoBERTa Base NW
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(d) RoBERTa Base TBW
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(f) BERT Few-shot TBW
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(h) RoBERTa Few-shot TBW
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(i) BERT Fine-tuned NW
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(j) BERT Fine-tuned TBW
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(k) RoBERTa Fine-tuned NW

acc
ep

t

bo
rde

rlin
e

rej
ect

Predicted Label

accept

borderline

reject

Tr
ue

 L
ab

el

0.33 0.47 0.19

0.23 0.54 0.22

0.19 0.47 0.33

0.0

0.2

0.4

0.6

0.8

1.0

(l) RoBERTa Fine-tuned TBW

Figure 11: Confusion matrices comparing topic-based watermarking (TBW) at τ = 0.7 with unwatermarked (NW)
text across all model configurations. Each matrix reports the performance of either the BERT or RoBERTa classifier
applied to outputs from three LLM variants: base, few-shot, and fine-tuned. Results highlight class-wise prediction
behavior across watermarking and classifier settings.
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Figure 12: Classification accuracy on paraphrased peer reviews across three watermarking settings: (a) no watermark
(NW), (b) topic-based watermarking (TBW) with τ = 0.7, and (c) TBW with τ = 0.3. Results are shown across all
model configurations (base, few-shot, fine-tuned) for both BERT and RoBERTa classifiers under PEGASUS and
DIPPER paraphrasing attacks.

Classifier Model Watermark PEGASUS Shifts DIPPER Shifts

BERT

Base
NW 58 54
TBW-0.7 37 23
TBW-0.3 51 45

Few-shot
NW 24 14
TBW-0.7 24 24
TBW-0.3 24 22

Fine-tuned
NW 27 20
TBW-0.7 15 15
TBW-0.3 25 15

RoBERTa

Base
NW 13 9
TBW-0.7 23 25
TBW-0.3 16 19

Few-shot
NW 30 13
TBW-0.7 27 22
TBW-0.3 25 20

Fine-tuned
NW 24 14
TBW-0.7 18 22
TBW-0.3 21 18

Table 9: Number of review classification shifts under paraphrasing attacks. Each entry reflects the count (out of 100
paraphrased samples) where the predicted class label differs from the original. Results are grouped by classifier,
model variant, and watermarking scheme (NW, TBW-0.7, TBW-0.3), and evaluated separately under PEGASUS
and DIPPER paraphrasing models.
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