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Abstract
The rise of hardware-level security threats, such as side-channel
attacks, hardware Trojans, and firmware vulnerabilities, demands
advanced detection mechanisms that are more intelligent and adap-
tive. Traditional methods often fall short in addressing the complex-
ity and evasiveness of modern attacks, driving increased interest
in machine learning-based solutions. Among these, Transformer
models, widely recognized for their success in natural language
processing and computer vision, have gained traction in the secu-
rity domain due to their ability to model complex dependencies,
offering enhanced capabilities in identifying vulnerabilities, de-
tecting anomalies, and reinforcing system integrity. This survey
provides a comprehensive review of recent advancements on the
use of Transformers in hardware security, examining their appli-
cation across key areas such as side-channel analysis, hardware
Trojan detection, vulnerability classification, device fingerprinting,
and firmware security. Furthermore, we discuss the practical chal-
lenges of applying Transformers to secure hardware systems, and
highlight opportunities and future research directions that posi-
tion them as a foundation for next-generation hardware-assisted
security. These insights pave the way for deeper integration of
AI-driven techniques into hardware security frameworks, enabling
more resilient and intelligent defenses.
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1 Introduction
Hardware security has emerged as a critical pillar in the protection
of modern computing systems, which are increasingly targeted by
a diverse and evolving array of sophisticated threats [38]. Attacks
such as side-channel exploits, hardware Trojans, and firmware-level
vulnerabilities pose significant risks across a wide spectrum of plat-
forms, from resource-constrained embedded devices to large-scale
high-performance computing systems. These threats are partic-
ularly difficult to detect due to the complexity of modern hard-
ware architectures and the ability of attackers to operate below the
software stack [37, 56]. Traditional security mechanisms, such as
rule-based heuristics, signature-based detection, and static analysis,
often fail to generalize across evolving threat vectors and adapt to
the dynamic nature of contemporary attacks.

As adversaries continue to develop more advanced and adaptive
techniques, there is a pressing need formore intelligent, data-driven,
and robust detection mechanisms. In recent years, to address these
challenges, machine learning (ML)-based approaches have gained
attention in the hardware security community. ML models can
learn complex patterns from data, enabling anomaly detection,
behavioral analysis, and predictive securitymeasures [46]. However,
conventional ML models often face limitations in this domain: they
may struggle to capture long-range dependencies in hardware data,
require extensive manual feature engineering, and frequently fail to
scale effectively with the increasing heterogeneity and complexity
of hardware systems data.

Transformer models have recently emerged as a powerful solu-
tion to these limitations. Originally designed for natural language
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Figure 1: Scenarios where Transformers detect, classify, and mitigate vulnerabilities.

processing, Transformers leverage self-attention mechanisms to
capture intricate relationships within sequential data [22, 23, 45].
This makes them especially well-suited for fast and accurate mod-
eling of temporal and multi-modal patterns of the low-level data in
hardware systems, without the need for high-overhead feature anal-
ysis. As depicted in Figure 1, Transformers offer promising capabili-
ties across a range of hardware security applications, from hardware
Trojan detection and vulnerability assessment to malware detection
and device fingerprinting. Their versatility and modeling power
position them as a strong candidate for enabling next-generation,
intelligent threat detection systems.

This paper presents a comprehensive survey of the application
of Transformers in the context of hardware security. We review the
current state of research, highlight key challenges and limitations,
and outline future opportunities for advancing secure and intelli-
gent hardware systems through this emerging paradigm. Section
2 provides background on deep learning models relevant to this
domain. Section 3 reviews recent research applying Transformers
to secure hardware systems. In Section 4, we discuss the current
challenges and opportunities, including practical constraints, archi-
tectural considerations, and potential directions. Lastly, Section 5
concludes this study.

2 Background on Transformers
Vaswani et al. [55] introduced the Transformer, which leverages
the attention mechanism to model dependencies between input
and output in machine translation. This approach eliminates the se-
quential nature of RNNs, enabling more efficient parallel processing
and capturing long-range dependencies more effectively. Figure 2
illustrates the detailed computations within a Transformer architec-
ture. This encoder-decoder-based architecture consists of multiple
Transformer blocks, each containing a multi-head attention (MHA)
module and a feed-forward network (FFN) module. Each block in-
cludes Layer Normalization (LayerNorm) and a residual connection.
The MHA module first projects the input sequence using weight
matrices𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 , generating query, key, and value repre-
sentations. These representations are then split into ℎ heads, where

each head has a hidden dimension of 𝑑/ℎ, and processed as follows:

𝑄𝑖 = 𝑄𝑊 𝑖
𝑄

𝐾𝑖 = 𝐾𝑊 𝑖
𝐾 , 𝑖 ∈ ℎ𝑒𝑎𝑑𝑠

𝑉 𝑖 = 𝑉𝑊 𝑖
𝑉

(1)

The scaled dot-product attention function computes the attention
scores and output:

𝑂 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 (2)

The attention outputs from all heads are concatenated along
the hidden dimension 𝑑 and projected using𝑊𝑜𝑢𝑡 . The result is
processed with LayerNorm and a residual connection to form the
MHA output. The FFNmodule consists of two linear layers: the first
projects the input from 𝑑 to a higher dimension, and the second
projects it back to 𝑑 .

3 Transformers in Hardware Security
3.1 Hardware Trojan Detection
Trojan is a malicious modification of a hardware design that can
compromise functionality, integrity, or confidentiality. Since HTs
are stealthy, ML-based models have been proposed to help with
identification [14]. For pre-silicon Hardware Trojan (HT) detec-
tion and localization, a Transformer-based method called HTrans is
proposed. It utilizes a Graph Convolutional Network (GCN) in the
preprocessing stage to ensure scalability across various design sizes.
The model achieves 96.7% F1 score for HT detection and 91.7% accu-
racy for HT localization on the Trusthub benchmark, with detection
completed in under a second at the Register Transfer Level (RTL)
[25]. Authors in this paper propose a non-destructive, golden-chip-
free transformer-based framework for Hardware Trojan Detection
(HTD), utilizing Power Side-Channel (PSC) data. They apply Gener-
ative AI techniques such as GPT, BERT, and transformers to classify
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Figure 2: Architecture of the Vanilla Transformer, featuring (1) an Encoder-Decoder structure, (2) Multi-Head Self-Attention
for capturing diverse contextual relationships, and (3) Scaled Dot-Product Attention for efficient information weighting.

hardware trojans into Enabled, Disabled, and Triggered categories.
The framework processes side-channel data through different trans-
former networks and achieves 87.74% accuracy in HT detection,
demonstrating superior performance compared to existing methods
in identifying abnormal IC behaviors [34]. TrojanFormer incorpo-
rates a unique message-passing scheme within a graph transformer
network to enhance detection performance while reducing com-
putational complexity. It achieves an average F1 score of 97.66%
on medium and small-scale datasets, surpassing other graph learn-
ing baseline models. On large-scale circuit datasets, TrojanFormer
shows a 4% performance improvement and an 18% reduction in com-
putational overhead, highlighting its effectiveness and efficiency in
large-scale integrated circuit HT detection scenarios [4].

TrojanWhisper [10] explores the potential of general-purpose
LLMs for detecting HTs in Register Transfer Level (RTL) designs,
including modules like SRAM, AES, and UART. The tool systemati-
cally evaluates state-of-the-art LLMs (GPT-4o, Gemini 1.5 pro, and
Llama 3.1) in HT detection without prior fine-tuning. To address
training data bias, perturbation techniques such as variable name
obfuscation and design restructuring are implemented. The experi-
mental results show perfect detection rates (100% precision/recall)
for GPT-4o and Gemini 1.5 pro, with performance degradation
under code perturbation for all models, particularly in payload
localization. This work demonstrates the potential of LLMs for
hardware security applications [10].

NtNDet leverages large-scale pre-trained NLP models. It intro-
duces amethod called Netlist-to-Natural-Language (NtN) to convert
gate-level netlists into a format suitable for Natural Language Pro-
cessing (NLP) models, applying the self-attention mechanism of
Transformers to capture complex dependencies. Experiments on the
Trust-Hub, TRIT-TC, and TRIT-TS benchmarks demonstrate that
NtNDet outperforms existing methods, achieving improvements of
5.27% in precision, 3.06% in True Positive Rate (TPR), 0.01% in True
Negative Rate (TNR), and a 3.17% increase in F1 score, setting a
new state-of-the-art in HT detection [21]. The work in [5] propose
the TA-MobileViT lightweight model, which integrates the triplet
attention (TA) mechanism with the MobileViT network to address
the challenges in Hardware Trojan detection. This model enhances

cross-channel interaction without increasing the parameter count,
improving both classification accuracy and generalization ability.
By combining convolutional and transformer blocks, TA-MobileViT
effectively extracts both local and global features, achieving 100%
recognition accuracy for single Trojan types and 72.2% accuracy for
AES-600 detection. In multi-Trojan detection, the model reaches an
impressive 97.04% mean accuracy. Compared to other deep learn-
ing methods, TA-MobileViT offers better performance with fewer
parameters, making it a highly competitive model for hardware
Trojan detection.
3.2 Packaging Defect and Counterfeit Detection
In the field of integrated circuit (IC) packaging and PCB design sur-
face defect detection, ensuring high precision in identifying defects
such as cracks, scratches, and contamination is crucial for maintain-
ing product quality and manufacturing efficiency [6, 27, 32, 33]. The
work in [57] addresses challenges in industrial IC surface defect
detection, particularly the imbalance in information density due
to data collection difficulties. The proposed hybrid model, SDDM,
combines ResNet and Vision Transformer (ViT) to enhance defect
detection by leveraging multi-channel image segmentation and con-
volution operations within patches. This approach improves the
identification of high-information-density areas while optimizing
computational efficiency for industrial applications. Experimental
results show that SDDM achieves 98.6% accuracy on imbalanced
datasets, improving productivity in IC packaging and testing.

Bhure et al. [3] discuss the challenges posed by counterfeit com-
ponents in the global semiconductor supply chain, which threaten
product quality and reliability. The distributed nature of manu-
facturing and distribution increases the risk of fraud. To address
this, they propose a Vision Transformer model for counterfeit IC
detection, capable of classifying authentic samples and 11 types of
counterfeit defects. Their model achieves 88% accuracy on the test
set, with attention map visualizations providing insights into its
predictions [3].

3.3 Side-Channel Attacks
Recent advancements in leveraging Transformer models for the mit-
igation of side channel attacks (SCA) have significantly improved
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Table 1: System-Level Hardware Vulnerability Detection using Attention-Based Methods

Category Subsection Description Attention Usage

Design-Time Security

Vulnerability Classification [12, 26] Categorizing flaws in CWE and
NVD datasets.

LLMs for processing datasets
through a storytelling frame-
work to suggest mitigations.

Trojan Detection [10, 25] Detect hardware trojans in 3P
IPs or RTL.

Graph Attention Networks
(GATs) to detect unusual paths.

Information Flow Tracking (IFT) [30] Trace propagation of sensitive
data.

LLM-driven hierarchical depen-
dency analysis across modules.

Defect & Packaging Analysis [3, 57] Detect packaging-related de-
fects & fake components.

Transformer models trained on
SEM/X-ray images or electrical
response sequences.

Runtime Security

Malware Detection [8, 44, 51] Detect malicious behavior dur-
ing operation.

Binaries converted into images,
and ViTs are used instead.

Side-channel Attack Detection [15, 16] Identify information leakage via
timing, EM, power, etc.

attention-modal on power
traces, timing, etc.

Fault Injection / Reliability-Aware Security [53] Detect when injected faults
cause vulnerabilities.

Multi-modal attention models
combining error signals and sys-
tem state.

HW-SW Interface Exploits [1, 59, 60] Firmware and IoT systems face
security risks.

Transformers model firmware,
system calls, and network traffic
as sequences to detect complex
attacks.

Post-Deployment Assurance

Device Fingerprinting [43, 52] Identify unique behavior profiles
of devices.

Attention over power, Radio Fre-
quency (RF) characteristics, or
EM patterns.

Remote Attestation [11] Verify system integrity over a
network.

Transformers for cyber threat
detection in IoT networks.

Insider Threat Detection [41] Legitimate user abusing access
privileges.

Attention models over system
access logs and patterns.

the robustness and effectiveness of cryptographic systems [39].
Berreby and Sauvage’s work [2] employed the ANSSI Side-Channel
Attack Database (ASCAD) and introduced a JAX-based framework
specifically tailored for exploiting side-channel vulnerabilities in
AES implementations.

The SCAR framework [54] introduces a pre-silicon mitigation
strategy utilizing Graph Neural Networks (GNNs) integrated with
LLMs for early detection and automatic mitigation of power side-
channel (PSC) leakage vulnerabilities at the Register-Transfer Level
(RTL). SCAR converts RTL designs into control-data flow graphs
(CDFGs), where nodes represent RTL basic blocks, and edges rep-
resent control flow. A GNN-based classification approach is ap-
plied for identifying modules susceptible to leakage, supported
by LLM-generated mitigation code to automatically fortify identi-
fied vulnerable RTL code segments. This technique significantly
enhances the early detection and mitigation of side-channel vulner-
abilities, embedding security deeply within the hardware design
cycle. TransNet [16] offers a significant advance by incorporating
shift invariance into transformer networks, a critical feature to
effectively manage desynchronized power traces, and a common
side channel countermeasure. TransNet leverages a modified Trans-
former architecture incorporating relative positional encoding and
self-attention mechanisms that effectively capture dependencies
among distant points of interest (PoIs).

Building on TransNet, EstraNet [15] further optimizes the Trans-
former network specifically for SCA by achieving linear time and
memory complexity. EstraNet introduces the GaussiP self-attention
layer, an approach featuring relative positional encoding for en-
hanced shift-invariance and computational efficiency. Additionally,
EstraNet employs a new layer-centering normalization method
instead of traditional batch or layer normalization techniques, over-
coming typical normalization challenges encountered in SCA ap-
plications. EstraNet demonstrated substantial robustness against
masking, random delays, and clock jitter. Its scalability to very long
traces (exceeding several thousand points) highlights its practical
applicability in real-world cryptographic security scenarios.

3.4 Malware Detection
Transformer models, with their powerful ability to capture intri-
cate dependencies through self-attention mechanisms, have demon-
strated significant potential in malware detection. A notable study
by Seneviratne et al. introduces SHERLOCK [51], a self-supervised
deep learning framework that leverages ViT to detect Android mal-
ware. SHERLOCK adopts a self-supervised approach to learn robust
feature representations from unlabeled binary samples. The bina-
ries are converted into grayscale images, allowing the model to
recognize malware patterns visually. To address the challenge of de-
ploying effective malware detection on resource-constrained edge
devices, Ravi et al. proposed ViT4Mal [44]. ViT4Mal also converts
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executable byte-code into images and employs a customized, light-
weight ViT architecture designed explicitly for limited-resource
hardware.

Another innovative approach, TransMalDE, developed by Deng
et al. [8], targets the detection of IoT malware through a hierarchi-
cal Transformer-based framework. The TransMalDE framework
migrates computationally intensive malware detection tasks from
IoT devices to edge computing nodes, thus significantly reducing de-
tection latency. TransMalDE captures the latent behavior patterns
characteristic of evolving IoT malware by analyzing the textual
semantic patterns that traditional methods might overlook.

Further extending Transformer models to utilize process re-
source utilization metrics, Natsos and Symeonidis present a dy-
namic malware detection technique [35]. The authors encode input
data as sequences of processes, each represented by its resource
metrics (CPU, memory, disk usage). Additionally, this research intro-
duces dynamic malware signatures derived from resource metrics,
revealing indirect malware activity indicators through cascading
effects on system-wide processes. These studies underscores the
Transformer model’s versatility and robustness in diverse malware
detection contexts, from resource-rich cloud environments [28] to
resource-constrained edge devices, outperforming traditional ML
techniques.

3.5 Device Fingerprinting
Similar to machine learning fingerprinting [36], device fingerprint-
ing is also crucial for securing IoT communications against spoofing
and cloning attacks by extracting unique radio frequency (RF) char-
acteristics. Recent advancements in this domain extensively use
deep learning methods for automatic feature extraction from trans-
mitted signals, significantly improving the accuracy and robustness
of device identification. Wu et al. [58] leveraged an LSTM recurrent
neural network for RF fingerprinting. Their model automatically
captures intrinsic hardware-specific features, such as frequency
drift and transient behaviors, achieving high accuracy even in envi-
ronments with significant noise interference. Lee et al. [24] further
explored deep-learning-aided RF fingerprinting in Near Field Com-
munication (NFC) systems and utilized neural networks, including
CNN and RNN.

Focusing on IoT scenarios, Jafari et al. [19] used CNN and RNN
to identify individual ZigBee devices. Their experiments across
varied signal-to-noise ratio (SNR) conditions showed robust ac-
curacy in distinguishing identical devices.Shen et al. [52] intro-
duced Transformer-based models specifically for LoRa device fin-
gerprinting, effectively managing variable-length signals and im-
proving accuracy significantly through data augmentation and
multi-packet inference, especially in low SNR conditions. Building
upon Transformer architectures, Parpart et al. [43] proposed trans-
former masked autoencoders pre-trained on large-scale unlabeled
RF data. Their method significantly enhanced classification accu-
racy, surpassing traditional CNN-based models, and demonstrated
efficient handling of extensive datasets with thousands of devices.

3.6 Remote Attestation
The rapid growth of IoT devices demands efficient mechanisms for
detecting network-based attacks. SecurityBERT is a lightweight

BERT-based model for cyber threat detection in IoT networks, us-
ing a novel Privacy-Preserving Fixed-Length Encoding (PPFLE)
combined with a Byte-level tokenizer. Trained on the Edge-IIoTset
dataset, it achieves 98.2% accuracy across 14 attack types, outper-
forming traditional ML/DL methods while maintaining low in-
ference time and small model size, making it ideal for resource-
constrained IoT devices [11].

3.7 Insider Threat Detection
Insider threats pose a serious challenge for hardware systems, as
they can exploit behavioral drift and data imbalance to stay hidden
within normal activities. Detecting such threats is difficult due to the
rarity of malicious behavior compared to regular user actions. [41]
proposes an insider threat detection approach using an ensemble
of stacked-LSTM and stacked-GRU attention models trained on
sequential activity logs. A new equally-weighted random sampling
technique balances different threat categories, improving model
fairness and performance.

3.8 Hardware-Software Inference Exploits
The hardware-software interface is a possible source of security
vulnerabilities caused by misconfiguration. Transformers can be ap-
plied to detect the vulnerability patterns through analyzing firmware
routines, system calls, and instruction-level execution traces as se-
quences. The rise of IoT devices has further exposed firmware
over-the-air (OTA) updates to threats like distributed denial of
service (DDoS) attacks. Notably, the Mirai botnet exploited IoT
vulnerabilities to launch massive attacks. Recent works, such as
DDoSViT, leverage Vision Transformers (ViTs) by converting attack
flows into images and training on datasets like CICIoT2023 and
CICIoMT2024. These models achieved detection rates as high as
99.50%, demonstrating the effectiveness of attention-based methods
in identifying complex multi-vector attacks across the hardware-
software boundary [1]. FirmVulSeeker is a firmware vulnerability
search tool that leverages BERT pretraining and a Siamese network
to match semantically similar functions [60]. SLFHunter is a LLM-
based framework for detecting command injection vulnerabilities
in embedded Linux firmware. By identifying sensitive dynamically
linked library functions (DLLFs) with ChatGPT, it marks new sinks
for static analysis tools like EmTaint [59].

3.9 Information Flow Tracking
Information flow tracking (IFT) is a method for monitoring how
data moves through a system. It aims to detect unauthorized or sus-
picious flows that may lead to vulnerabilities such as data leakage
or privilege escalation. LLM-IFT leverages LLM-driven hierarchical
dependency analysis across intra- and inter-module levels to over-
come the scalability and adaptability limitations of traditional IFT
methods. The approach achieves 100% success in confidentiality and
integrity checks on Trust-Hub benchmarks, shows the effectiveness
of LLMs for security analysis in integrated circuits [30].

3.10 Fault Detection
Fault attacks, such as electromagnetic (EM) injection, voltage glitch-
ing, and clock manipulation, are powerful techniques for inducing
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errors in hardware and bypassing security mechanisms. Smart Mon-
itor is a hardware framework that uses on-chip sensors and an AI
core to detect and classify fault attacks like electromagnetic (EM)
and clock-glitch (CG) injections. It achieves 92% detection accuracy
and 78% classification accuracy with zero false positives [53].

3.11 Vulnerability Classification
With the increasing number of reported vulnerabilities, datasets like
the National Vulnerability Database (NVD), Common Weakness
Enumeration (CWE), and Common Vulnerabilities and Exposures
(CVE) have become essential for developing effective security so-
lutions. However, extracting meaningful insights from these vast
datasets is not easy, making it necessary to apply AI techniques
for effective vulnerability classification. VulExplainer is a deep
learning approach for classifying and explaining vulnerabilities
using a Transformer-based hierarchical distillation framework. It
improves classification accuracy by 5%–29% and is compatible with
models like CodeBERT, GraphCodeBERT, and CodeGPT without
architectural modifications [12]. The HW-V2W-Map Framework is
a machine learning-based approach for mapping hardware vulnera-
bilities to weaknesses, with a focus on IoT security. It incorporates
an Ontology-driven Storytelling framework to track vulnerabil-
ity trends. Additionally, it leverages GPT-based LLMs to generate
mitigation strategies, helping to predict and prevent future vulner-
abilities [26]. To enhance Industrial Control System (ICS) security,
this study proposes deep learning-based automated vulnerability
categorization. Given the limitations of national NVDs, the authors
demonstrate that LSTM-tuned BERT models achieve superior pre-
cision, F1 score, accuracy, and recall. This approach strengthens
cyber threat intelligence (CTI) and improves attack mitigation in
ICS environments [29].

4 Challenges and Opportunities
4.1 Computational Cost and Overhead
Transformer models offer strong performance for hardware secu-
rity tasks like side-channel analysis, Trojan detection, and malware
classification, but they come with high computational costs. Their
self-attention mechanism has quadratic complexity, making it diffi-
cult to deploy them directly on resource-constrained systems like
embedded devices or FPGAs. To address this, some models like
EstraNet and TA-MobileViT use efficient attention mechanisms or
lightweight architectures that reduce memory and power usage
while maintaining detection accuracy. Various optimization tech-
niques help reduce overhead. These include pruning unnecessary
weights, quantizing models to use lower precision numbers, and
using efficient attention mechanisms like sparse or linear atten-
tion. Such changes can make models faster and more suitable for
low-power environments with minimal impact on performance.
Designs often combine convolution layers with attention or reduce
input size early to ease processing.

In real-world deployments, heavy computation is often offloaded
to edge servers to lighten the burden on local devices, as seen
in frameworks like TransMalDE. While this reduces latency and
energy use on-device, it can introduce new trade-offs like network
dependency. Overall, by applying the right balance of architectural

changes and deployment strategies, Transformers can be effectively
used for secure, real-time applications in hardware systems.

4.2 Lack of Explainability
One major challenge in using transformers for hardware vulner-
ability detection and mitigation is the lack of explainability and
interpretability. These models function as black boxes, making it dif-
ficult to understand their decision-making process, which is crucial
for security-critical applications. Without clear insights into how
vulnerabilities are identified, debugging and trust in the system
become significant concerns. Additionally, the absence of inter-
pretability hinders the ability to validate predictions and ensure
robustness against adversarial attacks. Solutions to address these
limitations include attention visualization, feature attribution meth-
ods, saliency-guided training to enhance model focus on relevant
features, and hybrid approaches that integrate symbolic reasoning
for improved transparency [20].

4.3 Vulnerability Against Adversarial Attacks
Despite their effectiveness, deep learning models remain highly
susceptible to adversarial attacks, and attention-based architectures,
including Transformers, are no exception. Adversarial attacks in-
volve crafting subtly perturbed inputs that mislead the model into
making incorrect predictions or failing to detect malicious behavior
[31]. This vulnerability poses a significant challenge for security-
critical applications such as malware detection, where adversaries
can potentially exploit model weaknesses to evade detection [9].

To address these risks, researchers have explored defense mech-
anisms such as adversarial training, which improves robustness by
incorporating adversarial examples during model training. He et al.
[17] has demonstrated that ML-based malware detection systems
are susceptible to adversarial attacks, especially those operating
on structured tabular data like processor performance counters.
To address this, a multi-phased defense framework based on Deep
Reinforcement Learning (DRL) was introduced, combining adver-
sarial training with real-time attack pattern prediction and dynamic
defense assignment via a UCB-guided controller, This approach
significantly improved detection robustness, achieving up to an
86% increase in F1-score.

In addition, recent studies have also highlighted the vulnera-
bility of Transformer models to Bit-Flip Attacks (BFAs), where
adversaries manipulate a small number of model parameters at
the binary level to degrade performance. A novel defense strat-
egy, Forget and Rewire (FaR) [40], introduces targeted rewiring
in Transformer Linear layers to obscure critical neurons and re-
distribute computation, significantly improving model robustness
with minimal accuracy loss. Additionally, hybrid approaches that
combine deep learning with rule-based or statistical methods may
offer enhanced reliability by introducing complementary detection
layers. As Transformer-based models are increasingly adopted in
hardware and system security, developing robust, interpretable,
and attack-resilient architectures remains a key research priority.

4.4 Availability of Dataset
One of the main challenges in applying attention-based models
is their reliance on large-scale, high-quality datasets for effective
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training. However, in this research domain, such datasets are often
scarce or inaccessible. In many cases, access to design files or de-
tailed system information needed to construct meaningful datasets
is restricted, as hardware companies are unwilling to share pro-
prietary or sensitive data. This lack of transparency significantly
hinders dataset creation and model development. To address this
limitation, researchers must explore alternative solutions such as
synthetic data generation, simulation-based environments, or data
augmentation techniques to produce diverse and representative
training samples.

4.5 Real-Time Hardware-Level Threat Detection
Hardware-level threat detection has gained momentum as a ro-
bust complement to traditional software-based defenses, offering
deeper visibility into runtime behavior through low-level microar-
chitectural signals. Hardware-Assisted Malware Detection (HMD)
techniques leverage sources such as Hardware Performance Coun-
ters (HPCs) and other on-chip telemetry to collect fine-grained
execution traces, enabling the identification of anomalous and po-
tentially malicious activities in real-time [7, 13, 49, 50]. Transform-
ers present compelling opportunities for advancing HMDs. Their
self-attention mechanism enables context-aware modeling of exe-
cution behavior, allowing the capture of subtle correlations in tab-
ular hardware data that may be overlooked by traditional models.
This capability is particularly valuable for detecting complex and
stealthy attack patterns, including zero-day malware that manifests
across temporal sequences or diverse microarchitectural events
[18, 47]. Moreover, Transformers’ ability to handle multi-modal in-
puts makes them well-suited for fusing heterogeneous side-channel
signals (e.g., HPCs, power telemetry) into a unified representation,
enabling a more in-depth analysis of system behavior under attack.

However, there exist several challenges in employing Transform-
ers for hardware-assisted malware detection. Transformers are
computationally demanding, limiting their deployment in resource-
constrained environments where HMD is most needed. Their use
with structured tabular data, such as HPC traces, also requires
careful architectural tuning and feature encoding. Additionally, in-
terpretability and robustness remain critical concerns, especially
in security-sensitive applications where transparency is essential
[42, 48]. Despite these challenges, the continued evolution of Tiny
Transformers, efficient attention mechanisms, and self-supervised
pretraining on hardware execution traces presents a path forward.
Future work could explore hybrid architectures that balance accu-
racy and efficiency, domain-specific pretraining to improve general-
ization, and adversarial training techniques to strengthen resilience.
Asmalware growsmore sophisticated, the integration of Transform-
ers into HMD systems, and more broadly across hardware-assisted
security domains, holds the potential to unlock next-generation,
adaptive, and intelligent threat detection frameworks.

5 Concluding Remarks
This paper presents a comprehensive review of recent develop-
ments in the application of Transformer-based models for hard-
ware security. We examine their application across a wide range
of critical domains, including side-channel analysis, hardware Tro-
jan detection, device fingerprinting, vulnerability classification,
malware detection, and firmware security. With their ability to

capture complex dependencies and process multi-modal inputs,
Transformers represent a significant shift in the design of intelli-
gent, context-aware threat detection mechanisms at the hardware
level. Despite their considerable promise, the application of Trans-
formers to hardware-based security remains an emerging area with
several open challenges, each of which also presents opportunities
for future exploration. Key issues include computational overhead,
susceptibility to adversarial attacks, limited interpretability, limited
publicly available datasets, and the need for enhanced adaptability
to structured hardware telemetry. Addressing these limitations will
be critical to enabling scalable, trustworthy, and widely deployable
Transformer-based security solutions, and offers a rich landscape
for advancing research in secure and intelligent hardware systems.
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