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Abstract—The Model Context Protocol (MCP) plays a crucial
role in extending the capabilities of Large Language Models
(LLMs) by enabling integration with external tools and data
sources. However, the standard MCP specification presents sig-
nificant security vulnerabilities, notably Tool Poisoning and Rug
Pull attacks. This paper introduces the Enhanced Tool Definition
Interface (ETDI), a security extension designed to fortify MCP.
ETDI incorporates cryptographic identity verification, immutable
versioned tool definitions, and explicit permission management,
often leveraging OAuth 2.0. We further propose extending MCP
with fine-grained, policy-based access control, where tool capa-
bilities are dynamically evaluated against explicit policies using
a dedicated policy engine, considering runtime context beyond
static OAuth scopes. This layered approach aims to establish
a more secure, trustworthy, and controllable ecosystem for AI
applications interacting with LLMs and external tools.

Index Terms—Model Context Protocol, Large Language Mod-
els, AI Security, OAuth 2.0, Tool Poisoning, Rug Pull Attacks,
API Security, Policy Engine, Access Control, Cedar, Open Policy
Agent.

I. INTRODUCTION

The proliferation of Large Language Models (LLMs) marks
a paradigm shift in human-computer interaction, with these
models being embedded into a myriad of applications requir-
ing nuanced understanding and generation of natural language.
The Model Context Protocol (MCP) [1] has been instrumental
in this evolution, providing a standardized mechanism for
LLMs to interface with external tools, APIs, and data reposi-
tories. This contextual enrichment allows LLMs to transcend
their inherent knowledge cut-offs, perform real-world actions,
and offer dynamic, personalized user experiences.

Despite its functional benefits, the inherent openness and
extensibility of the current MCP specification introduce sig-
nificant security risks if not adequately protected [2, 3]. The
current MCP specification, while fostering innovation, lacks
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comprehensive security primitives to ensure the authenticity,
integrity, and consistent behavior of integrated tools. This defi-
ciency exposes users and systems to significant risks, primarily
focusing on two critical attack vectors: Tool Poisoning and
Rug Pull Attacks [4].

This paper introduces the Enhanced Tool Definition Inter-
face (ETDI), a comprehensive security extension for MCP.
ETDI’s core is built on: (a) Cryptographic Identity and
Authenticity for tools; (b) Immutable and Versioned Def-
initions to track changes; and (c) Explicit and Verifiable
Permissions, often mapped to OAuth 2.0 scopes [5] and
conveyed via signed JSON Web Tokens (JWTs) [6, 7].

Furthermore, we explore a significant enhancement: in-
tegrating fine-grained, policy-based access control. This
involves extending MCP to support dynamic evaluation of tool
actions by a policy engine (e.g., leveraging Amazon Verified
Permissions with its Cedar policy language [8], or Open Policy
Agent (OPA) [9]). This allows defining what a tool can access
based not just on its identity and static OAuth scopes, but
also on the current context (time, location, user attributes,
previous actions), enabling precise control over tool operations
and supporting permission delegation policies.

This paper provides an in-depth analysis of MCP’s
architecture and vulnerabilities, a detailed exposition of
ETDI, its OAuth-enhancement, the proposed policy-based
access control extension, and a security analysis of these
combined measures. We have demonstrated the feasibility
of these enhancements here: https://github.com/vineethsai/
python-sdk and detailed documentation here: https://github.
com/vineethsai/MCP-ETDI-docs.

II. THE MODEL CONTEXT PROTOCOL (MCP)

Before we dive in, we need to understand how Standard
MCP works. MCP [1] operates on a distributed client-server
model, enabling LLM applications (Hosts) to connect via
MCP Clients to MCP Servers that expose tools, resources,
and prompts.
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A. Architecture Overview

MCP operates on a distributed client-server model. Key
components include:

• Host Applications: User-facing applications (e.g., AI-
powered desktop apps, IDE extensions) that orchestrate
interactions.

• MCP Clients: Software components within Host Appli-
cations that discover, connect to, and interact with MCP
Servers.

• MCP Servers: Services that expose capabilities (tools,
resources, prompts) to MCP Clients.

• Tools: Discrete functions or services invokable by an
LLM via an MCP Server.

• Resources: Data sources accessible by the LLM for
context.

• Prompts: Pre-defined templates guiding LLM tool/re-
source usage.

Figure 1 illustrates the high-level MCP architecture.

Fig. 1. High-Level MCP Architecture - This diagram shows the interaction
flow between the user, host application, MCP client, LLM, and various MCP
servers providing tools.

B. Standard Operational Flow

The MCP interaction involves two main phases:
1) Initialization and Discovery Phase: This phase estab-

lishes the operational context between MCP Clients and
Servers.

1) Application Launch & Client Initialization: Upon
startup, the Host Application initializes its embedded
MCP Client module(s). This client is responsible for
managing all subsequent MCP communications.

2) Server Handshake and Capability Negotiation: MCP
Clients initiate a handshake sequence (e.g., an initialize
request) with known or discoverable MCP Servers. Dur-
ing this handshake, servers may declare their supported
protocol versions, specific capabilities (including ETDI
support if present), and other relevant metadata. Clients,
in turn, may also communicate their capabilities.

3) Tool Listing Request: Once the connection is estab-
lished and capabilities are negotiated, the MCP Client
typically sends a listTools (or equivalent) request to each
connected MCP Server to enumerate the available tools.

4) Tool Definition Exchange: MCP Servers respond with
a list of tool definitions. Crucially, in the standard MCP,
these definitions include human-readable descriptions,
a machine-readable name or ID, and a JSON schema
detailing expected input parameters and output format.

However, they lack verifiable authenticity or integrity
markers.

An end-to-end flow of the standard operational flow, including
initialization and tool discovery phase is illustrated in Figure 2

Fig. 2. MCP Initialization and Tool Discovery Sequence.

2) Tool Invocation and Usage Phase: This phase describes
the dynamic interaction leading to tool execution.

1) User Request Processing: The user interacts with the
Host Application, issuing a request or command that
may benefit from external tool capabilities (e.g., ”What’s
the weather in London?”, ”Summarize the key points of
document.pdf”).

2) Tool Selection by LLM/Host Application: The Host
Application, often in conjunction with an LLM, pro-
cesses the user’s request. The LLM, having been pro-
vided with the (unverified in standard MCP) descriptions
and schemas of available tools, identifies a suitable tool
and determines the necessary input parameters based on
the user’s query.

3) Permission Adjudication (Conditional and Flawed):
If the selected tool is flagged as requiring specific per-
missions (e.g., access to location services, file system, or
incurring costs), or if it’s the first time a user encounters
this tool (by name/ID), the MCP Client (via the Host
Application) might prompt the user for explicit approval.
However, this approval is based on potentially spoofed
or misleading tool descriptions.

4) Tool Invocation Command: Upon receiving approval
(if sought), the MCP Client dispatches an invokeTool
(or similar) command to the relevant MCP Server,
specifying the tool ID and the parameters derived by
the LLM.

5) Server-Side Tool Execution: The MCP Server receives
the invocation command and delegates the request to the
actual tool implementation. The tool then executes its
defined function, which could involve interacting with
other services, performing computations, or accessing
data.

6) Result Propagation: The tool returns its output (or an
error status) to the MCP Server, which then relays this
information back to the MCP Client that initiated the
request.



7) Context Augmentation and LLM Response Gen-
eration: The MCP Client provides the tool’s results
to the Host Application. These results are typically
incorporated into the LLM’s context. The LLM then uses
this newly augmented context to generate a final, more
informed, and potentially action-oriented response to the
user’s original query.

An example of tool usage and invocation flow is illustrated in
Figure 3.

Fig. 3. MCP Tool Usage and Invocation Sequence.

III. CRITICAL SECURITY VULNERABILITIES IN MCP

The standard MCP flow, lacking robust tool identity and
integrity verification, is susceptible to critical attacks [2].

A. Attack Vector 1: Tool Poisoning

Definition: Tool Poisoning involves a malicious actor de-
ploying a tool that masquerades as a legitimate, trusted, or
innocuous tool [3]. The attacker’s objective is to deceive either
the end-user or the LLM (during automated tool selection) into
selecting and approving the malicious tool, thereby granting
it unauthorized access or capabilities.

Vulnerability Analysis: The susceptibility to Tool Poison-
ing in standard MCP stems from several deficiencies:

• Lack of Authenticity Verification: There is no built-in
mechanism for MCP Clients or users to cryptographically
verify the true origin or authenticity of a tool. Tool names,
descriptions, and even claimed provider names within the
tool’s metadata can be easily spoofed.

• Indistinguishable Duplicates and Ambiguity: If a ma-
licious tool meticulously replicates the metadata (name,
description, JSON schema) of a legitimate tool, it be-
comes virtually impossible for the user or an automated
LLM-based selection process to differentiate between
them. This is especially problematic if multiple tools with
similar names appear, and the selection criteria are not
robust.

• Exploitation of Implicit Trust: Attackers leverage the
user’s inherent trust in familiar tool names (e.g., ”Calcu-
lator,” ”Calendar Access”) or reputable provider names.
A tool might falsely claim to be from ”TrustedSoft Inc.”
in its description.

• Unverifiable Claims in Descriptions: A tool can assert
claims like ”secure,” ”official,” or ”privacy-preserving”
in its human-readable description without any underlying
mechanism to validate these assertions.

Impact: Successful tool poisoning (as illustrated in Figure 4
can lead to a wide array of detrimental consequences, includ-
ing but not limited to: exfiltration of sensitive personal or
corporate data, unauthorized execution of system commands,
installation of malware or ransomware, financial fraud through
manipulated transactions, and the subtle manipulation of LLM
outputs to spread misinformation or achieve other nefarious
goals.

Illustrative Scenario: An attacker deploys a malicious
MCP server hosting a tool named ”SecureDocs Scanner.” They
meticulously copy the description, JSON schema, and even
claim ”TrustedSoft Inc.” as the provider in the tool’s metadata.
The user’s MCP Client discovers both the legitimate and
the malicious ”SecureDocs Scanner” tools. Due to identical
presentation, they appear as duplicates, or the client might
even de-duplicate them, potentially favoring the malicious
one based on arbitrary factors like discovery order. The user,
intending to use the trusted tool, selects the entry that corre-
sponds to the malicious version, or the LLM selects it. Upon
invocation, the malicious ”SecureDocs Scanner” exfiltrates the
entire content of any document processed through it to an
attacker-controlled server, while possibly returning a fake ”No
PII found” message.

Fig. 4. Tool Poisoning Attack Sequence.

B. Attack Vector 2: Rug Pull Attacks

Definition: Rug Pull attacks, also known as ”bait-and-
switch” in this context, manifest when the functionality, data
access patterns, or permission requirements of an already
approved tool are maliciously altered by its provider after
the initial user consent has been granted [3]. The tool ini-
tially presents benign or expected behavior to gain trust and
approval, then later changes to perform unauthorized actions



without re-triggering a consent request. An example of Rug
Pull attack is illustrated in Figure 5

Vulnerability Analysis: The core vulnerabilities enabling
Rug Pulls are:

• Mutability of Server-Side Logic: The fundamental issue
is that a tool’s underlying code and behavior on the MCP
Server can be modified without any notification to, or re-
verification by, the MCP Client or user, especially if the
tool’s primary identifier (e.g., name) remains static.

• Lack of Continuous Integrity Checks: Standard MCP
Clients, once a tool is ”approved” (often based on its
name or a transient session approval), typically do not
re-fetch and re-verify the tool’s complete definition (in-
cluding its schema or a cryptographic hash) on every
subsequent invocation.

• Absence of Re-Approval Triggers for Definition
Changes: If the tool’s identifier (like its name or version
string, if superficially unchanged) doesn’t change, or if
the client isn’t designed to detect subtle modifications
in its JSON schema or descriptive metadata, no new
approval prompt is presented to the user. The client might
continue to operate under the assumption that the tool’s
behavior aligns with the initially approved state.

• Exploitation of Established Trust: The attack leverages
the trust established during the initial, benign approval
phase. Users are unlikely to scrutinize a tool they believe
they have already vetted.

Impact: Rug Pulls can lead to severe breaches of privacy and
security, such as unauthorized access to sensitive data (e.g.,
private conversations, files, contact lists, financial information)
that the user never explicitly consented to share with the
*modified* version of the tool. This effectively bypasses the
initial permission model and can lead to a profound loss of
user trust once discovered.

Illustrative Scenario: A user installs and approves a ”Daily
Wallpaper” tool. Version 1.0 of this tool fetches a new wall-
paper image and sets it. It requests permission only to ”access
the internet” and ”modify desktop wallpaper.” Weeks later, the
provider (or an attacker who compromised the server) updates
the tool’s server-side logic. The tool, still identified as ”Daily
Wallpaper v1.0” to avoid re-approval, is now modified to also
scan the user’s Documents folder for files containing financial
keywords and upload them. The next time the tool runs, it
performs this malicious action silently in the background.

IV. ETDI: THE ENHANCED TOOL DEFINITION INTERFACE

ETDI is a security layer extension for MCP designed to
counter Tool Poisoning and Rug Pulls by introducing verifiable
identity and integrity for tool definitions.

A. Foundational Security Principles of ETDI

ETDI is architected upon three fundamental security prin-
ciples:

1) Cryptographic Identity and Authenticity: Tool defini-
tions are digitally signed by the provider. MCP Clients
verify these signatures.

Fig. 5. Rug Pull Attack Sequence.

2) Immutable and Versioned Definitions: Any change
to a tool’s definition (functionality, metadata, schema,
permissions, or a hash of its backend API contract
like an OpenAPI specification) mandates a new, signed
version. This helps detect unauthorized modifications
and API contract drift.

3) Explicit and Verifiable Permissions: A tool’s required
capabilities (e.g., OAuth scopes) are declared in its
signed definition. Critically, the tool definition should
also declare any specific permissions or entitlements the
*user or calling application* is expected to possess and
present to the tool for it to operate (e.g., subscription
level for a paid service). These are presented to the user
for approval.

A simplified pseudo-code for ETDI client-side verification
of a tool definition upon first encounter or update might look
like the listing in listing 1.

1 FUNCTION verifyAndApproveTool(toolDefinition,
providerPublicKey)

2 // 1. Verify cryptographic identity and integrity
3 IF NOT

Crypto.verifySignature(toolDefinition.content,
toolDefinition.signature, providerPublicKey)
THEN

4 log("Tool definition signature invalid for " +
toolDefinition.id);

5 RETURN FALSE; // Reject tool
6 ENDIF
7

8 // 2. Check against previously approved version
(if any)

9 approvedDef =
getApprovedDefinition(toolDefinition.id);

10 IF approvedDef != NULL THEN
11 IF toolDefinition.version ==

approvedDef.version THEN



12 // If version is same, ensure definition
content hash matches stored hash

13 IF Crypto.hash(toolDefinition.content) !=
approvedDef.contentHash THEN

14 log("Tampering detected for " +
toolDefinition.id + " version " +
toolDefinition.version);

15 // Requires re-approval even for same
version if content changed

16 IF NOT promptUserForApproval("Tool " +
toolDefinition.id + " content changed.
Re-approve?", toolDefinition) THEN

17 RETURN FALSE;
18 ENDIF
19 ENDIF
20 ELSE IF toolDefinition.version <

approvedDef.version THEN
21 log("Warning: Older version " +

toolDefinition.version + " of tool " +
toolDefinition.id + " presented.");

22 // Policy decision: allow, warn, or block
older versions

23 ELSE // New version
24 IF NOT promptUserForApproval("New version " +

toolDefinition.version + " for tool " +
toolDefinition.id + ". Approve?",
toolDefinition) THEN

25 RETURN FALSE;
26 ENDIF
27 ENDIF
28 ELSE // First time seeing this tool
29 IF NOT promptUserForApproval("Approve new tool

" + toolDefinition.id + "?", toolDefinition)
THEN

30 RETURN FALSE;
31 ENDIF
32 ENDIF
33

34 // 3. Store/update approval with new definition
hash and version

35 storeApproval(toolDefinition.id,
toolDefinition.version,
Crypto.hash(toolDefinition.content),
toolDefinition.permissions);

36 RETURN TRUE;
37 ENDFUNCTION

Listing 1. Simplified ETDI Tool Definition Verification Logic

B. ETDI Countermeasures

1) Thwarting Tool Poisoning: ETDI’s design directly coun-
ters Tool Poisoning by establishing a chain of trust rooted in
cryptographic verification:

• Provider Key Infrastructure: Legitimate tool providers
generate a public/private cryptographic key pair (e.g.,
RSA, ECDSA). The private key is kept secret by the
provider, while the public key is made securely available
to MCP Clients. This can be achieved through various
mechanisms, such as distribution with the Host Applica-
tion, a trusted key registry, or via a PKI.

• Digitally Signed Tool Definitions: When a provider
creates or updates a tool, they generate a comprehensive
tool definition encompassing its name, description, in-
put/output JSON schema, semantic version, and a detailed
list of required permissions. This entire definition is
then digitally signed using the provider’s private key,
producing a signature that is bundled with the definition.

Fig. 6. ETDI Preventing Tool Poisoning through Cryptographic Signatures.

• Mandatory Client-Side Verification: When an ETDI-
enabled MCP Client discovers tools, it receives these
signed definitions. Before presenting a tool to the user or
LLM, the client must verify the digital signature using the
claimed provider’s public key. This verification confirms
that the definition was indeed signed by the legitimate
provider and has not been altered in transit.

• Policy Enforcement for Unverified Tools: If a signature
is invalid (e.g., fails verification, signed by an untrusted
key) or missing, the tool is flagged as unverified or
potentially malicious. The ETDI client can then enforce
policies such as hiding such tools from the user, dis-
playing prominent warnings, or entirely preventing their
invocation.

Consequently, an attacker cannot forge a valid signature for
a tool they don’t legitimately own unless they compromise
the legitimate provider’s private key. This makes simple im-
personation computationally infeasible. Figure 6 demonstrate
how ETDI can be used to prevent tool poisoning attack through
cryptographic signatures.

2) Preventing Rug Pulls: ETDI’s immutability and ver-
sioning principles are key. An important aspect is that if the
tool definition includes a hash of its backend API contract
(e.g., derived from an OpenAPI/Swagger specification), any
change to this contract by the tool provider (even if the tool’s
descriptive metadata remains the same) would alter the hash.
This change would necessitate a new tool definition version,
triggering re-approval by the user and making such backend
changes transparent.

Figure 7 demonstrate how ETDI can be used to prevent rug
pull attacks through versioning and signature verification.



Fig. 7. ETDI Preventing Rug Pulls through Versioning and Signature
Verification.

C. Advancing Security with OAuth-Enhanced ETDI

While direct cryptographic signatures provide a strong se-
curity foundation, integrating ETDI with an established autho-
rization framework like OAuth 2.0 [5] offers significant advan-
tages in terms of standardization, ecosystem interoperability,
fine-grained access control, and centralized trust management.

It is also important to distinguish between ETDI verifying
the tool’s identity and permissions to the MCP client/user,
and the tool itself potentially needing to verify the *user’s
or calling application’s authorization* to use its services. In
many real-world scenarios, particularly for commercial tools
or APIs, the tool acts as an OAuth Resource Server. The
MCP Host Application (acting as an OAuth Client) would
obtain an OAuth token for the user (e.g., an access token
from an IdP like Google, or a custom token indicating user
entitlements like ”premium access”) and pass this token with
the invocation request to the MCP Server, which then forwards
it to the tool. The tool would validate this token to ensure the
user/application is authorized for the requested operation (e.g.,
has paid for the service). The tool’s ETDI definition should
declare what kind of user-level authentication/authorization
(e.g., specific OAuth issuer, required scopes in the user’s
token) it expects. The architecture of OAuth-Enhanced ETDI
is illustrated in Figure 8

Fig. 8. OAuth-Enhanced ETDI Architecture, introducing an Identity Provider.

D. EExample Workflow with Amaicy-Based Access Control

While ETDI, especially with OAuth, provides robust tool
identity and permission scoping, integrating fine-grained,
context-aware access control using dedicated policy engines
offers a powerful enhancement. This approach moves beyond
static permission declarations to dynamic evaluation based on
the runtime environment and detailed policies.

1) Concept and Architecture: MCP servers (or the host
applications themselves) would integrate with a Policy De-
cision Point (PDP). This PDP could be an existing solution
like Open Policy Agent (OPA) [9] or a service like Amazon
Verified Permissions, which utilizes the Cedar policy language
[8]. Tool definitions would be augmented to include or refer-
ence specific resource access control policies that detail what
resources the tool can access under specific conditions (e.g.,
time of day, user location, nature of data, previous actions).
These policies themselves could be signed artifacts managed
within a Policy Administration Point (PAP).

When an MCP Client intends to invoke a tool, after the
standard ETDI identity and integrity checks, a request is made
to the PDP. This request would typically include:

• Principal: The authenticated identity of the tool (e.g.,
derived from its ETDI-OAuth token).

• Action: The specific operation the tool intends to perform
(e.g., ‘ReadFile‘, ‘SendEmail‘).

• Resource: The target resource of the ac-
tion (e.g., ‘urn:filesystem:/user/docs/file.txt‘,



‘urn:email:recipient@example.com‘).
• Context: A rich set of contextual attributes, such as user

identity, device security posture, time, location, purpose
of the request, or data sensitivity.

The PDP evaluates these inputs against the applicable policies
and returns a decision (Permit/Deny).

2) Policy Server Interaction and Signed Policies: The pol-
icy engine (PDP) and the policies it uses must be part of the
trusted computing base.

• PDP Discovery and Authentication: PDP endpoints
could be discovered via a trusted service registry [10]
or be pre-configured in MCP clients/servers. Communi-
cation must be secured (e.g., using mTLS).

• Policy Integrity and Distribution: The policies them-
selves (e.g., Cedar policies) must be securely managed
and distributed. If policies are treated as signed artifacts,
the PDP (or a component feeding policies to it) would
verify policy signatures before loading or using them,
ensuring they originate from a trusted policy adminis-
trator and haven’t been tampered with. This creates a
chain of trust for policy definition and enforcement. The
process of evaluating signed policies involves the PDP
fetching the relevant policy, verifying its signature against
a trusted key, and then executing the policy logic against
the request attributes.

This model aligns with authorization patterns seen in microser-
vices architectures, where centralized policy management and
enforcement provide consistent security [11].

3) Example Workflow with Amazon Verified Permissions:
The pseudo-code in listing 2 illustrates a workflow where an
MCP system component consults Amazon Verified Permis-
sions before allowing a tool invocation.

1 // Context: LLM has determined ToolX is needed to
access ResourceY for UserZ

2 // HostApp or MCPClient is orchestrating this.
3

4 FUNCTION invokeToolWithPolicyCheck(toolId,
resourceId, userContext)

5 // 1. Retrieve and verify ToolX’s definition via
ETDI (OAuth/signature)

6 toolDefinition =
MCPClient.getVerifiedToolDefinition(toolId);

7 IF toolDefinition == NULL THEN
8 RETURN AccessDenied("Tool identity/integrity

verification failed for " + toolId);
9 ENDIF

10

11 // 2. Prepare policy evaluation request attributes
12 principal = toolDefinition.identity; // e.g.,

"ToolVendor::ToolX_v1.2"
13 action = determineToolAction(toolDefinition,

resourceId); // e.g., "File::Read",
"API::Invoke"

14 resource = resourceId; // e.g.,
"UserDocs::Private::AnnualReport.pdf"

15

16 // Enrich context with user and environment data
17 context = {
18 user: { id: userContext.userId, department:

userContext.department },
19 request: { time: currentTime(), purpose:

userContext.statedPurpose },

20 // Potentially, information about data
sensitivity, location, etc.

21 };
22

23 // 3. Call Policy Engine (e.g., Amazon Verified
Permissions)

24 // policyStoreId identifies the set of applicable
Cedar policies

25 policyStoreId = "userZ_policy_store"; // Could be
user-specific or group-specific

26

27 authDecision =
AmazonVerifiedPermissions.isAuthorized(

28 policyStoreId,
29 principal,
30 action,
31 resource,
32 context
33 );
34

35 // 4. AVP evaluates applicable Cedar policies
(internal to AVP service)

36

37 // 5. If authorized, tool invocation proceeds via
MCP Server

38 IF authDecision.isAllowed() THEN
39 log("Policy check passed for " + toolId + " on

" + resourceId);
40 // If tool requires user-specific token,

HostApp retrieves and passes it
41 userAuthToken =

HostApp.getUserTokenForTool(toolId);
42 toolResult =

MCPServer.invokeTool(toolDefinition,
resourceId, userAuthToken);

43 RETURN toolResult;
44 ELSE
45 // 6. Access denied if policies don’t permit
46 log("Policy check failed for " + toolId + ": "

+ authDecision.errors());
47 RETURN AccessDenied("Tool " + toolId + " not

authorized by policy for this
action/resource/context.");

48 ENDIF
49 ENDFUNCTION

Listing 2. Tool Invocation with Amazon Verified Permissions Policy Check

4) Policy-Based Call Stack Verification for Tool Chain
Security: Fine-grained requirements are applicable not just
to restrict tool access to particular resources but also to the
dynamic chaining of tool invocations. This is accomplished
using Call Stack Verification, an approach that keeps track
of and enforces guidelines on the order of tool calls made
during an active session. In this case, the series of tools that
have called each other, leading to the current invocation, is
represented by a call stack. The callee is the tool invoked and
the caller is the tool initiating the invocation.

The main goals of Call Stack Verification are to prevent:
• Enforcing rules that specify acceptable tool call se-

quences (e.g., Tool A can call Tool B, but Tool C cannot
call Tool D directly) is denoted as ”Unauthorized Tool
Chaining.” Allow and block lists for particular caller-
callee pairings, as specified in a CallStackPolicy,
can be used to manage chaining.

• Privilege Escalation Through Tool Calls: Identifying
and preventing scenarios in which a caller tool with
lower privileges calls a callee tool with higherprivileges



in a manner that improperly raises effective permissions
without explicit approval. This involves contrasting the
caller’s and callee’s authorization scopes.

• Circular Call Dependencies: Unless specifically allowed
by policy, identifying and stopping call sequences in
which a tool calls itself directly or indirectly (e.g., A
→ B → A) can result in resource exhaustion or infinite
loops.

• Excessive Call Depth Attacks: Preventing denial-of-
service attempts that take advantage of deep call chains or
stack overflow-like situations by limiting the maximum
number of nested tool calls.

• Rate Limit Violations: Preventing misuse or resource
exhaustion by imposing restrictions on the number of
times a particular tool may be called in a given time
frame.

The state of the active call stack for every session would be
maintained by a specialized component, like a ETDI Call
Stack Verifier. This verifier checks the call against
the active CallStackPolicy on each attempt to invoke
the tool. This policy establishes guidelines for circular calls,
allowed/blocked chains, maximum call depth, and criteria for
identifying privilege escalation. Depending on the severity
and policy settings, a call that violates these policies may be
prevented, logged, or an alert raised. By closely examining
the runtime behavior of linked tools, this procedure adds an
essential layer of operational security.

5) Benefits and Challenges: Benefits: This extension offers
highly granular, context-sensitive access control. Users or
administrators could review and approve not just broad tool
permissions but specific operational policies. It allows for
dynamic risk assessment at runtime.

Challenges:
• Runtime Overhead: Each policy evaluation adds latency

to tool invocation.
• Complexity: Designing, managing, and debugging com-

prehensive Cedar policies or similar requires expertise.
• Secure Policy Distribution: Ensuring policies are se-

curely delivered and updated to the PDP is crucial.
• MCP Server/Client Certification: To ensure this model

is effective, the MCP server and client components that
interact with the policy engine must be certified or
audited. They must guarantee that all resource accesses
are correctly gated by the policy engine and that the
contextual information provided to the engine is accurate
and complete. Any bypass or manipulation of context
would undermine the system.

V. SECURITY ANALYSIS

The ETDI security model, particularly when enhanced with
OAuth 2.0 and further extended with policy-based access
control, provides a multi-layered defense against the identified
threats. The core ETDI with OAuth effectively counters Tool
Poisoning by requiring verifiable cryptographic attestations
for tool identity and definitions. Rug Pulls are mitigated by
immutable versioning, integrity checks on definitions (which

can include API contract hashes), and mandatory re-approval
for changes in version or scope. The policy engine layer
then adds a dynamic authorization check based on richer
context, meaning that even if a tool is generally ”approved”
and its definition is valid, a specific invocation can be denied
if it violates fine-grained contextual policies. This addresses
scenarios where a tool might be safe in one context but risky
in another.

The efficacy of this combined approach stems from the
synergistic application of its core principles:

• Defense against Tool Impersonation (Tool Poisoning):
– Cryptographic Authenticity: OAuth tokens issued

by a trusted IdP ensure a tool’s claimed identity is
backed by a verifiable cryptographic attestation.

– Provider Verification: Clients can trust tokens only
from specific IdPs and verify the iss (issuer) claim.

– Binding of Token to Tool Definition: Custom
claims (e.g., tool_id, tool_version) link the
token to the specific tool definition, preventing token
replay for malicious tools.

Figure 9 demonstrate how OAuth-Enhanced ETDI can be
used to prevent tool poisoning attacks.

Fig. 9. OAuth-Enhanced ETDI Preventing Tool Poisoning.

• Defense against Post-Approval Modification (Rug
Pulls):

– Immutable Versioning with Re-Approval: Changes
to security-relevant aspects (permissions/scopes,
schema) necessitate a new version number, triggering
user re-approval.

– OAuth Token as a Version-Specific Contract:
Tokens are tied to a specific tool version and scopes.
Modifications without a new token may lead to scope
mismatches or client detection of definition changes.

– Scope Adherence: The client/host can enforce that
tools operate only within approved OAuth scopes.

– Integrity of Stored Approval: The client stores
approved versions and permissions, scrutinizing de-
viations.



Figure 10 demonstrate how OAuth-Enhanced ETDI can
be used to prevent rug pull attacks.

Fig. 10. OAuth-Enhanced ETDI Preventing Rug Pull.

• Enhanced Trust and Auditability:
– Centralized Trust Management: OAuth IdPs cen-

tralize tool provider identity and authorization policy
management.

– Standardized Permissions: OAuth scopes offer
standardized permission definitions.

– Revocation Capabilities: IdPs support token/creden-
tial revocation for swift response to compromises.

By requiring cryptographic proof of identity and integrity
for each tool version, making changes explicit and subject
to re-approval, and adding contextual policy checks, ETDI
significantly raises the operational bar for attackers. However,
the security of the policy engine itself, the integrity of the
policies, and the faithful enforcement by MCP components
become critical elements of the trust model.

VI. DISCUSSION

The introduction of ETDI, its OAuth-enhancement, and the
proposed policy-based access control layer address critical
security deficiencies in the MCP ecosystem.

Trust Assumptions and Scope: It’s important to note that
the primary focus of ETDI, as presented, is to address the
trustworthiness of *tools* from the perspective of a *trusted
user and host application*. This is analogous to the permission
model in mobile operating systems (like Android/iOS [12]),
where the user grants permissions to applications (tools) to
access platform resources or user data. The user and their
primary application environment (Host App, MCP Client)

are generally assumed to be non-malicious in this part of
the model. The extension to include user/application-specific
JWTs being passed to tools (as discussed in Section IV-C)
begins to address scenarios where the tool also needs to verify
the caller’s entitlements, which is common in service-oriented
architectures (e.g., checking if a user has paid for a feature).

Several challenges accompany the adoption of ETDI and its
extensions:

• Implementation Complexity: For tool providers, ETDI-
OAuth and policy integration means managing creden-
tials, tokens, scopes, and potentially policy authoring.
MCP client/server developers must implement robust
validation, policy query logic, and approval workflows.

• Performance Overhead: JWT validation and especially
remote policy engine calls introduce latency. Caching
strategies (for JWKS keys, policy decisions where ap-
propriate) are essential.

• Key and Policy Management: Secure management of
signing keys (IdP, tool provider, policy administrators)
and policy lifecycle is paramount.

• User Experience (UX): Re-approval workflows and ex-
plaining policy implications to users must be carefully
designed to balance security with usability. Presenting
complex Cedar policies for user approval might be chal-
lenging; abstractions or summaries would be needed.

• Ecosystem Adoption: Broad adoption by tool providers
and client applications is necessary for the ecosystem to
benefit. Standardization of policy expression and context
attributes would be beneficial.

• Certification of Components: Particularly for the policy-
based extension, certifying that MCP servers and relevant
client components correctly and comprehensively enforce
policy checks (i.e., they don’t bypass the policy engine)
is a significant undertaking.

Despite these challenges, the security benefits are substan-
tial. This layered approach moves MCP towards a model of
verifiable trust and explicit, context-aware authorization.

Future work could explore further decentralization of iden-
tity and policy using Verifiable Credentials (VCs) and De-
centralized Identifiers (DIDs). Automated analysis of tool
behavior against declared permissions and policies could also
complement static and dynamic checks.

VII. LITERATURE REVIEW

Recent studies highlight security vulnerabilities when in-
tegrating LLMs with external tools, such as data poisoning,
prompt injection, and unauthorized access through compro-
mised APIs [13]. Prompt injection attacks, where attackers
manipulate model inputs to bypass intended security policies
or alter outputs, have been extensively analyzed [14].

Tool poisoning attacks targeting MCP-like protocols have
been explored, demonstrating practical examples of malicious
tools impersonating trusted entities [3]. Analyses of MCP’s
security gaps [15] emphasize the ease of impersonation and
lack of cryptographic verification mechanisms in the initial
specification [2].



OAuth 2.0, standardized in RFC 6749 [5], provides a
framework for delegated authorization, widely adopted for
securing API access. Its flexibility allows granular permissions
(scopes), reducing over-privilege risks. Comprehensive anal-
yses of OAuth deployments outline common vulnerabilities
such as token leakage, session hijacking, and improper scope
validation [16]. RFC 7519 (JWT) and RFC 7515 (JWS) further
enhance OAuth’s security posture by providing standards for
token integrity and authenticity [6, 7].

Proper API management and protection, including the use
of OAuth to prevent unauthorized API usage, data breaches,
and Denial-of-Service (DoS) attacks, are critical. The necessity
of cryptographic assurances, identity verification, and robust
token lifecycle management is emphasized [17].

Policy-based access control (PBAC) systems, such as those
provided by Amazon Verified Permissions using the Cedar
language [8] and Open Policy Agent (OPA) [9], offer dynamic,
context-sensitive security enforcement mechanisms. Cedar
provides expressiveness and scalability tailored to complex,
cloud-native applications. OPA provides a flexible, general-
purpose policy evaluation framework adopted across Kuber-
netes and microservices environments.

PBAC improves security posture in microservice architec-
tures through centralized, fine-grained policy enforcement,
minimizing privilege escalation and unauthorized access by
embedding policy checks into service logic [11]. This literature
emphasizes PBAC’s strengths in enforcing granular, context-
driven authorization decisions beyond static scopes provided
by OAuth.

Immutable and versioned software definitions are founda-
tional security strategies explored in supply-chain security
literature. The importance of immutable build artifacts and
cryptographically signed components in preventing supply-
chain attacks is demonstrated, highlighting parallels to ETDI’s
approach for tool definitions [18].

Docker and Kubernetes ecosystems have adopted im-
mutability and versioning as fundamental principles. The
effectiveness of immutability and signature verification in
container security parallels ETDI’s versioned and signed tool
definitions, reducing risks associated with unauthorized mod-
ifications [19].

Cryptographic verification methods, such as digital signa-
tures, are cornerstones of software and API security. Founda-
tional work on RSA encryption [20] paved the way for widely
adopted cryptographic verification practices. Comprehensive
coverage of cryptographic methods for identity verification and
secure communications underpins ETDI’s use of cryptographic
signatures for tool authenticity verification [21].

Exploration of decentralized identities (DIDs) and verifiable
credentials (VCs) provides an additional layer of security
relevant to ETDI. The benefits of decentralized approaches
in identity management, emphasizing improved resilience,
privacy, and reduced reliance on central authorities, are exten-
sively documented [22]. These concepts could further extend
ETDI, enhancing security and reducing single points of failure.

Usable security, especially in permission systems like ETDI,
is critical. Studies on Android permission models conclude
that clarity, minimal friction, and explicit consent significantly
improve user security behavior and reduce inadvertent risk
acceptance [12]. These insights guide ETDI’s approach in
balancing security with practical usability.

VIII. CONCLUSION

The Enhanced Tool Definition Interface (ETDI), augmented
by OAuth 2.0 and a fine-grained policy-based access control
layer, provides essential and robust security enhancements for
the Model Context Protocol. By systematically incorporating
cryptographic identity, immutable versioned definitions (in-
cluding API contract attestations), explicit permission/scope
management, and dynamic contextual policy evaluation, this
framework effectively mitigates critical vulnerabilities like
Tool Poisoning and Rug Pull attacks. This layered approach
fosters a significantly safer and more trustworthy environment
for AI applications. Ultimately, these mechanisms aim to
bolster user confidence and enable the responsible expansion
of LLM-integrated systems by ensuring that tool interactions
are based on verifiable trust, explicit consent, and continuously
enforced, context-aware policies.
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